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This talk summarizes recent calculations of the glueball mass spectrum that I have done in collaboration with F. 
Brandstaeter, A.S. Kronfeld and K.J .M Moriarty. 

1. INTRODUCTION 

In this talk I will present new results 1 on the 0 ++ 

and 2 ++ glueball masses in the pure SU(3) lattice gauge 

theory. The main progress in this work comes from us- 

ing glueball operators which have been constructed 2 so 

as to improve the projection onto the low-lying glueball 

states and, consequently, the signal over noise ratio. 

To compute the glueball mass spectrum one pro- 

ceeds in two steps. First, one constructs color singlet, 

zero momentum operators ¢( t )  localized at time t and 

belonging to some representation of the cubic group to 

project out the glueball states. In the second step one 

computes the correlation function 

c(t) = <  +( t )+(o)  > 

= Tr(TL'-t~Tt~) 

L'Z-~< O[~( t )~ (O) lO > 

= ~ J <  01¢p. > I:c -m°',  
n = 0  

(1) 

where T is the transfer matrix and L, is the tempo- 

ral extent of the lattice. The mass of the ground state, 

n~ - ~1, which we are particularly interested in, is then 
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extracted from the asymptotic behavior of the correla- 

tion function. 

For our further discussions it is useful to introduce 

the normalized correlation function 

r(~) = c ( o )  (2) 

In the limit of large times and for Lt )~ 2i this reduces 

to 

r (~ )  ~ c~ - ~ ' ,  (3) 

where the coefficient c denotes the projection onto the 

ground state (0 < c < 1). To be sure that one is ex- 

tracting the true ground state, the correlation function 

must be computed at large times until the asymptotic 

exponential decay is displayed. This demands a suffi- 

ciently large projection c. Otherwise the signal will be 

lost in the noise before one gets there. 

We have emphasized 2'3 that the projection, in par- 

ticular its dependence on the lattice spacing a, is largely 

determined by the dimension of the operator ~. For 

local operators, such as the plaquette, which have di- 

mension four, one computes 

c c( a ~. (4) 

This dependence was also found 3 in the Monte Carlo 

d a t a )  As a result, the projection went down to the 



G. Schierholz / The glueball mass spectrum 245 

level of a few per cent already at D' = 5.9, and it was 

not possible to extend the calculations beyond that. 

To remedy this situation, we have taken a theoret- 

ical approach and systematically constructed glueball 

operators of lower dimensions. It turns out that  the 

best one can achieve is 

c ~< a .  (5 )  

The operators that  accomplish this derive from the in- 

verse of the spatial covariant Dirac operator. They have 

been presented in refs. 2,3 and will not be repeated 

here. For a detailed discussion of their properties and 

the derivation of equ. (5) the reader is furthermore 

referred to ref. 1. 

2. THE CALCULATION 

This work extends our previous calculations 3 in two 

respects. First of all, we have done computat ions on 

larger lattices and for larger values of/3. The objective 

is 

- to compute the masses for various values of z (say 

5 < z < 15), 

- to increase L~ until they fall on a universal curve, 

- and finally to use LGscher's equation, 5 

. ~ ( : )  = . , ( o ~ ) ( ~  - C ~ ~ ), (6) 
z 

to extrapolate them to the infinite volume. 

Here z - m o . ¢ a L s  (assuming that m0++ is the lightest 

glueball mass), where L~ is the spatial size ot the lat- 

tice, and G parameterizes the triple-glueball coupling. 

Secondly, we have computed the glueball operators for 

all fermionic boundary conditions, 

~(x + ~L~) - ~>;(x),~ - l , e  ±2~/3. (7) 

where ~ is the one-component Grassmann field in the 

Kogut-Susskind action, and ~ is a unit vector in the 

spatial direction. As our covariant Dirac operator lives 

on spatial planes, this amounts to 3 × 3 = 9 different 

boundary conditions. This allows us to compute the 

string tension and the energy of all states of one and two 

units of electric flux at the same time. In the glueball 

mass calculations the operators are averaged over all 

posible boundary conditions. 

In order to speed up the inversion of the Dirac op- 

erator, we have partially blocked the gauge field con- 

figurations and applied our method to the blocked lat- 

tice. The prescription is adopted from the factor-of-two 

renormalization group transformation, i.e. each spatial 

link is replaced by a link two lattice spacings in extent 

which represents the average color field of its spatial 

surroundings. This step is applied only once. 

In the original formulat ion our method was re- 

stricted to states belonging to the representations Aa 

and E. By blocking the gauge field configurations ac- 

cording to the ~ (x/3) renormalization group trans- 

formation and applying the method to the resulting, 

nonorthogonal planes, we can also construct, a rather 

elegantly, glueball operators belonging to the represen- 

tations A2,T1,T~ (T2). 

3. RESULTS 

So far we have reliable results only for the 0 +'~ and 

2 ++ glueball masses, and in the latter case only for the 

representation E. I will restrict myself to recent results 

obtained on larger lattices. The parameters are given 

in the fol lowing table: 
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The correlation functions are computed for a matr ix 

_~I of 20 × 20 different masses of the Dirac operators 

ranging from 0.02 to 1.6. The glueball masses are then 

extracted from the correlation function 

C = xWMx, (8) 

where x is a vector which is f i t ted such that  the sta- 

tistical errors are minimal. It should be noted that  our 

philosophy is very different from that of Michael and 

"leper 6 who opt imize @(1)/@(0). It requires a strong 

signal at larger t ime separations though. 

In figs. 1-3 I have shown the resulting correlation 

functions of states of one unit of electric flux averaged 

over the spatial directions and of the 0 +~ and 2 +÷ glue- 

ball operators on the 164 lattice at/3 = 6.0. The lowest 

energy in the one-unit-of-f lux channel is ](a2Ls, where 

K is the string tension. We obtain a useful signal up to 

f = 6 for the flux state and the 0 ++ glueball and up to 

f = 5 for the 2 ++ glueball. This has never been achieved 

before on lattices of this size and for/3 > 6.0. It is per- 

haps interesting to remark that the vector x chosen by 

the f i t t ing routine does not nearly maximize C(1 ) /C(0) ,  

and, vice versa, the vector x that maximizes C ( 1 ) / C ( 0 )  

r-(t 
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F(t) 
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0.001 
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Figure 1: The correlation function of states of one 

unit of flux. 

Figure 2: The 0 ++ correlation function. 
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does not guarantee a large signal over noise ratio. 

The results for the glueball masses and the string 

tension are compiled in the following table: 

F(t) 
1 

0.1 

0.01 

0.001 

L~Lt /3 too++ a m2.+ a V/Ka 

14320 o.o 0.o3(3) 1.o1(9) 
16316 6.0 0.57(3) 1.10(7) 0.234(4) 

16316 0.2 0.48(4) 0.77(4) 0.180(2) 

The correlation functions of the higher flux states are 

(sti l l)  too noisy to give any useful information on the 

corresponding energies beyond upper bounds. 

In fig. 4 I have shown the obligatory z-plot. The 

solid circles represent our data, while the open circle 

is taken from the calculations in ref. 4 - which are 

of similar quality - and refers to the 10320 lattice at 

/3 - 5 . 9 .  

As far as the scalar glueball mass is concerned, our 

errors are small enough so that  we can make a quanti- 

tat ive statement about the scaling behavior (for a com- 

parison with other work see ref. 7). We find that m0+{ 

obeys asymptotic scaling within ~ 5%. It follows that 

the 0 ++ masses fall quite nicely on a universal curve 

nT0+.(=). This allows us to extrapolate m0++ to the 

infinite volume. I have f i t ted L~scher's equation (6) to 

this curve and obtain 

0 1 2 3 4 5 6 7 8  
t 

Figure 3: The 2 +~ correlation function. 

c : 190 ± 70. (9)  

The result is the solid curve shown in fig. 4. From this 

we conclude tha t  mo+÷(oo ) ~ rao÷+(10 ). 

The 2 ++ mass  is about  50% higher than the 0 ++ 

mass. Note, however, that in the extreme case the cut- 

off is only 

a -1 = 0.9m2÷*, (10) 

so that we may expect large O(a ~) corrections. 

If we extrapolate the string tension to the infinite 

volume by means of the equation ~ 
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Figure 4: The z-plot. 

71" 

K(L , )  = K(c¢)  - 3L-~' (11) 

we find that the two values of K(oo) are also consistent 

with asymptotic scaling within the errors. 

4. OUTLOOK 

Before we can claim that the results for the 2 ++ 

glueball mass are relevant to the continuum limit, we 

have to increase /~ further, and this is what we plan 

to do in the future. This should also allow us to (reli- 

ably) compute the masses of some of the higher glueball 

states lying above the 2 ++ . 
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