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Abstract. QCD duality sum rules are applied to the 
calculation of the B-parameter for N = 1 supergravity- 
induced local operators. Using the chiral realization 
of local operators, the duality region has been found 
and the tree-level coupling constant determined. The 
result is in full accordance with a related calculation 
of the B-parameter in the standard model by Pich and 
de Rafael and support it. The result is an order of 
magnitude smaller than the one obtained by using 
vacuum saturation. Consequences of softened con- 
straints are discussed. 

I Introduction 

Supersymmetric (SUSY) theories [1] present a very 
appealing extension of the standard model (SM). On 
the one hand, they are mathematically less divergent 
and, because of underlying supersymmetry, they are 
more constrained. On the other hand, in the local 
version, i.e. supergravity, they are a very promising 
candidate for the unification of the SM with gravity. 
Last but not least, SUSY is the unavoidable content 
of superstring theories. 

The most intriguing prediction of SUSY is the 
existence of superparticles, which have presently 
escaped experimental detection. Most of these are 
presumably heavy particles with masses already 
constrained either by experiment (direct searches) or 
by almost perfect agreement of the SM with 
experiment. Being very heavy, they are difficult to 
detect and a viable alternative is to look for the effects 
of heavy superpartners on theoretical predictions. 

* On leave of absence from the Rudjer Bo~kovi6 Institute, Zagreb, 
Yugoslavia 
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The predictive power of supersymmetric models is 
largely constrained once supersymmetry breaking is 
considered. The most appealling way to break SUSY 
softly appears to be through the hidden sector of 
supergravity. Requiring the possible minimal number 
of effective fields in low-energy theory defines the 
minimal model of supergravity. 

Low-energy supergravity effects have been studied 
by a number of authors [2 3]. Dugan et al. [4] have 
studied the minimal N = 1 supergravity in the 'general' 
version, with only one restriction on the soft operators 
(at p = Mplanck): 

MaEb = 2 m3/E~ab , (1) 

where Mab are scalar masses and m3/2 is the gravitino 
mass, which appears to be of the order of 100 GeV. 

The most stringent constraints on supergravity 
parameters come from the virtual (loop) effects of 
superpartners in the kaon system (CP violation, e'/e, 
rare decays, etc.). Among a class of supersymmetric 
graphs studied by Dugan et al., of particular interest 
are those leading to effective operators with mixed 
L - R  helicities, i.e. with the structure typical of penguin 
graphs in the SM. Their existence sets the most 
stringent constraints on supergravity parameters. 

Once heavy fields are integrated out, the effective 
hamiltonian contains only light-quark fields, u, d, s, 
and the problem is reduced to the calculation of matrix 
elements of composite quark operators, i.e. one has to 
deal with a typical QCD calculation. The calculations 
of these matrix elements are largely influenced by our 
lack of knowledge concerning the QCD confinement. 
The standard estimate, vacuum saturation, which 
(without fierzing) corresponds exactly to the large-Nc 
limit, is known to be rather uncertain. This is especially 
pronounced for operators with mixed L - R  helicities. 
The same is true for calculation in phenomenological 
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quark models. A few new, rather sofisticated 
approaches have recently been addressed to this 
problem: QCD lattice calculations [5], the large-No 
approach [6] and the QCD duality approach 
[7-10]. In this letter we propose to calculate the 
matrix element of the new induced AS :-- 2 operators 
0~ in the framework of QCD duality sum rules, first 
used by Pich and de Rafael [7] to estimate the B 
parameter in the standard model and later extended 
to a number of different problems [8-10]. 

We organize the paper as follows. In Sect. II we 
discuss the effective AS= 2 operators induced by 
N = 1 supergravity in its general version and the 
vacuum-saturation value of their matrix elements. In 
Sect. III we apply the duality sum rules to the 
calculation of these matrix elements. In Sect. IV we 
discuss the results obtained. Finally, in Sect. V we give 
a short conclusion. 

II Supergravity-induced local operators 

The local AS = 2 operators with the L - R  current 
structure are generated by the strong superbox graph 
(Fig. 1) which leads to the effective operators 

1 2""SD'"~S ~ ME 
~'~ = ~ 3  ~ J (01 - -  302)  , (2) 

ttt3/2 

where 

(01}  - - i j - k l ~ l  (3) 
~ dil 6Jk ~ 

02 -- SLTudLSR7 d R ( OiJ6kt J 

and 
1 

f(x) = 20 ~ d((3(1 - ( ) [ (  + x(1 - 0 ] - 3 ,  f(1) = 1. (4) 
o 

The notation for the mass parameters in (2) is 
explained in [4]. 

The contribution of the above operators to kaon 
processes sets the most stringent limit on the quantity 
r which enters in a cubic gauge-invariant 
polynomial in the complex scalar fields. From the 
K L -  Ks mass difference one has at the Planck scale 

~u = m312AJ.v + "~U (5) 

and the same for ~o with U ~ D. In the general version 
of the model considered by Dugan et al., A may have 
an imaginary part and ~, although small, may be 
nonzero. 

The matrix elements of the operators 0~ and 02 can 
be calculated in the vacuum-sturation approximation. 
One uses the Fierz reshuffling of quark :fields and the 
well-known relations 

(_g~ = - i f r m ~  
m s +md 

(OIg3?sdlK ~ ) = - i  f ~ : m ~  (6) 
ms + m d" 

_I i 
Sl 15 

i i 
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_ I 

Fig. 1. Supes box A S = 2 diagram. Full lines represent 
fermions and dashed lines scalars. Crosses on lines represent mass  
insertions 

The results follow straightforwardly: 

1 2 2  I- 1 <xoio, iKo>=j,,m,,L_g_2 ( ",<_ 32-], 
km~+ma/ J 

(g~176189  -1-2-(3 \ m  s -mr+ mdj)2] . (7) 

These results differ from those obtained by Dugan 
et al. in the sign of the second terms in (7). This trivial 
error, however, changes the results essentially. 
Numerically, with rn s + rn d ,,~ 200MeV, the result of 
Dugan et al. gives positive value for matrix 
elements. . The corrected formulae (7), however, give 
negative values for the respective matrix elements. This 
completely changes the character of the derived 
constraints. Before going into details, we want to 
estimate the above matrix elements using the QCD 
duality approach. We shall keep the usual definition 
of B parameter in units of i 2 2 f xmK(1 + 1~No). Thus we 
define 

(K~176 f rm K 1 +  Bo, (8) 

With this definition, the vacuum saturation values are 
Bo,  = -  9.6 and Bo~ = -  4. For  the reason we shall 
explain later, we first proceed to the calculation of the 
02 operator. 

III Q C D  duality sum rules 

The basic idea is to combine the information one gets 
from the chiral realization of the effective weak 
hamiltonian with its short-distance behavior. It 
happens via duality which is studied using finite- 
energy sum rules (FESR's). 

A chiral realization of the effective weak hamiltonian 
can be studied in the framework of chiral perturbation 
theory (ChPT) in the sense of the Weinberg-Gasser-  
Leutwyler program [11, 12]. The latter represents a 
meaningful low-energy field theory which has 
advantages over the standard approaches in many 
cases. Its importance as an alternative approach is 
especially evident in processes where our lack of know- 
ledge of the true QCD confinement is blurring our 
view of electroweak interactions [13, 14]. The Weinberg 
program [11] has been successfully realized by Gasser 
and Leutwyler [12] in the strong and elctromagnetic 



sector and has been put forward recently by Ecker et 
al. [15], showing the powerfulness of ChPT in 
rare-kaon processes, where a complicated interplay 
between short- and long-distance dynamics is 
especially pronounced. 

To proceed, one needs the chiral representation of 
the operators 0~. The operator 02 is a composite 
operator which in the large-Nr limit reduces to the 
product of two bare weak currents with the L R 
structure. Their respective chiral realization can be 
obtained by gauging the strong lagrangian locally: 

f 2  
( v -  A). = i ~  u~.u*, 

2 

f2  
(V + A) u = i - -  U*O, U. (9) 

2 

Here U is the unitary matrix field 

2 
U(~b) = exp i ~ ~ ,  (10) 

where �9 is the usual 3 x 3 matrix containing the 
pseudo-Goldstone bosons, n's, K's and qs. The field 
U enters the strong lagrangian which to order p2 reads 

f2  
~(t2L.g = ~tr(8~USuU*) + v t r ( ~ U  + U*Jg), (11) 

where ~ is the quark mass matrix and v is the quark 
condensate, related to quark and meson masses. 

The operator 02, being the composite operator, 
would have an overall constant go~ whose value cannot 
be obtained from ChPT alone. 

1 f 2  2 2 K . . f n  

(12) 
We have normalized the operator A ~h~*a~ in such a way ~2 
that if it were of the ( V - A ) x  ( V - A )  type, the 
constant go= = Bo2 would correspond exactly to the 
B-parameter of the K ~  mixing in the standard 
model. This enables one to keep a close analogy with 
the calculation of the B-parameter by Pich and de 
Rafael [7]. Defined in such a way, both BsM in the 
SM and Bo= in our case have the same absolute value 
in the large-N~ limit, [BsM[ = [Bo2[ = 3/4. 

Next, we have to study the behavior of the 
two-point function 

0o2 (q2) = i ~ d4xe iq "~ < 01 T(O2 (x)0~(0) I 0 >, (13) 

both in ChPT and QCD. In ChPT, the presence of 
final-state interactions would lead to the formation of 
resonances--their influence will be taken into account 
by modulating them using the Breit-Wigner form. 

The spectral function in ChPT then reads* 

* The notation is explained in [7] 
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Fig. 2. QCD calculation of the two-point function: a asymptotic 
diagram with chiral quarks, b mass corrections, c quark condensate 
corrections, d gluon condensate corrections 

1 Im tpo2(t ) 
7~ 

dtt 
16n 2 1 8 \ f 2 j  c ,,o 

( , / t - , / t l )  2 

S dt221/2( 1, tt/t, t2/t) 
t20 

"~h[ (tl +t2-t)21-ImHth~ n 

+ 22(t, tt, t2) 1 Im H~~ 1 Im Fl~t)(t2) 
7C 7r 

+ [(tl + t2 -- 02 + 8tlt2] 1 Im H~t)(tl) 
7~ 

where h = VV, AA, i.e. Im H(h ~ is either lmT xx'-'C~ or 
Im f / ~  t). Here, contrary to the case of (gas= 2 in SM, 
only the products VV x VV and AA x AA survive. 

Next, we shall calculate the spectral function 002 in 
QCD. It receives contributions from the asymptotic 
diagrams [Fig. 2a), mass corrections (2b) and quark 
(2c) and gluon condensates (2d). Radiative corrections 
are not calculated for reasons to be discussed later. 
The spectral function then reads 

1 n ) [  130m~-2 l i m ~  o(t)=OC tm~Tm( t  1 
~Z 3 t 

+ (16x 2) t2 b --- , (15) 

where t~ is the running quark mass, <~q> is the quark 
condensate and the gluon condensate does not 
contribute in this case. The asymptotic spectral 
function is given by 

1 1 1 
a s y m  t 4 .  - Im ~bo2 ( t ) -  (16) 

n 20 (16/r2) 3 

Compared with (I/n) Im'/'a~ym tt~ which was calcu- 
'P'(~ AS = 2 \%/ '  
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lated by Pich and de Rafael [7], one finds that 

1 Im '//asym/t] : 3 1 a - ~'0~ ~~ x-Im~'~?Ym2(t)" (17) 

This relation, of course, is no longer valid once the 
mass and condensate corrections are included. 

Duality constraints can be easily written in terms 
of FESR's. We need two sum rules to fix: So, which is 
the onset of the asymptotic QCD continuum. These 
a r e  

SO 

No= ~ dtl-lmOo~(t), 
4 m  K 7~ 

~,  = ~o dttlimtPo2(t)" (18) 
4m~( 7~ 

Once So is fixed, any of the above sum rules leads to 
the value of 902. The ratio of the sum rules does not 
depend on 90~ and may be used to fix So 

6 : ~  
r = - -  - - .  (19) 

5So ~o  

We want to stress that the ratio r in (119) is a very 
sensitive test of duality which 

(i) in ChPT does not depend on the unknown 
coupling go~, and 

(ii) in QCD does not depend on missing 
leading-logarithmic and finite er corrections in (15), 
which are canceled in the ratio (19). 

IV Results and discussion 

The results are plotted in Fig. 3, both in ChPT and 
QCD. The departure from the asymptotic QCD 
prediction (the dashed line) is due to mass and con- 
densate corrections, which are obviously important in 
restoring the duality. The dots are the values of r in 
ChPT, and the solid line is the full QCD result. The 
duality region is clearly established in the range 
8-_< s o < l l .5GeV 2. The QCD curve asymptotically 
approaches the dashed line for high So. For  
So < 8GeV 2, the mass and condensate corrections 
become large and break the expansion. On the other 
hand, ChPT values depart from the QCD curve after 
So _-> 11.5 GeV 2, indicating the necessity of including 
higher resonances. 

Any of the sum rules in (18) leads to the value of 
9o2 once So has been determined. In fact, since we 
have found the duality region for the range 
8 < So < 11.5 GeV 2, any value of s o in this range lead 
to the same value of g02. Therefore, 9o2 plotted as a 
function of So should show plateau behavior in the 
duality region. This is shown in Fig. 4. The duality 
plateau is clearly seen in the range 8 < s o < 1 1.5 GeV 2. 
To reduce possible errors in establishing the duality 
and plateau regions, we employ the following 
'theoretical cuts': 

r 
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1.00 
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[ .~,~ I I I I , i i i �9 

so(GeV z) 

Fig. 3. The ratio r is plotted versus s o. The dots represent the 
behavior obtained in ChPT. The continuous line is the full QCD 
result which approaches the asymptotic freedom behavior - - the  
dashed l ine- -a t  large So values 

O,5 

0./. 

O3 

O2 

0.1 

5 6 7 8 9 I0 I~ 1'2 ll3 I~ 
so[GeV z] 

Fig. 4. Results for the Bo2 parameter as a function of s o 

(i) We establish duality region in Fig. 3; 
(ii) we use the sum rule No in (18) to find the plateau 

behavior which should appear in the duality region 
established in Fig. 3; 

(iii) we apply procedure (ii) to the sum rule N1 and 
demand that the values of 9o2 obtained by (ii) and (iii) 
agree within a few percent. 

Applying the above criteria, we find that they are 
really satisfied. The values for 9o2 obtained using the 
sum rules No and N1 agree within 2%. Then, the value 
of [Bo21 is centered arround I Bo2 [ = �88 In the following, 
we discuss the errors coming from the inherent 
approximations we are using. 

To the order we are working on there are no 
logarithmic or finite es corrections. The effective 
hamiltonian (2) corresponds in the SM to the effective 
hamiltonian fff as = 2 with the Wilson coefficient q = 1, 
i.e. without leading-logarithmic corrections. However, 
the result for Bs~t scales a s  (O~s(m2)/O;s(So)) 2/9 which is 
rather modest, since the scale So is much higher than 
the usual choice of the renormalization scale #. Also, 
finite ~ corrections influence the curve for B in such 
a way that the plateau is slightly translated either to 
higher or to lower values. We shall take these effects 
into account by increasing the error bars, which in the 



calculation of Pich and de Rafael [7] amount to 
-,, 25%. Our final result is then 

I Bo2 [ = 0.25 +_ O. 15. (20) 

Our calculation nicely confirms the validity of the 
QCD duality approach and clearly shows that in the 
calculation of Pich and de Rafael duality and plateau 
are not accidental. Our input parameters (condesates, 
masses, resonances) are the same as in [7]. However, 
because of the different helicity structure, the ChPT 
spectral function (14) is 'crippled', i.e. the terms 
H v v H A A  are absent. This difference with regard to 
[7] has had to be compensated by different QCD 
corrections if the whole approach makes any sense. 
Our results show that this is really the case. Changes 
in the ChPT spectral function are in one-to-one 
correspondence with adequate changes in QCD 
spectral functions, as required by duality. 

There are some principal difficulties in determining 
the matrix element of the operator 0 = 01 - 302. The 
QCD duality approach determines only the absolute 
value of the B parameter and separate determination 
of Bo, would not be very useful. However, the operator 
01 is of higher order in ChPT with respect to 02 and 
is expected to be significantly smaller. Therefore, we 
employ the Ansatz from [10], where penguins (also of 
higher order in ChPT) are accounted for as a 
correction to the QCD spectral function and the ChPT 
spectral function has been kept unchanged. Effectively, 
this means that the tree-level renormalized 98 has been 
slightly changed. As long as the corrections are modest, 
this can be considered as a safe approximation. In our 
case, we obtain the following spectral function for 0: 

I Im~/QCD(t)= 8 1 [ 110-2 
rc 20(16/r2) 3 t4 1 3 m~t 

4 0 . , .  2, ms(clq)  
J t2 

~ (162c 2) (~ (21) 
t2 1" 

Again, we look for the duality and plateau regions. 
We have found that both regions correspond in the 
range to the regions found in the case of the operator 
02. The value of IB0] agrees within a few percent with 
31Bo2 I. Our conclusion is that the 01 contribution can 
be neglected to a very good approximation. 

Using our estimate (20) of the matrix element of the 
02 operator and the experimental values for A m K and 

a n d  ~,,//, 2. e, we obtain the following constraints on M~o --- ~s- 

/ M 2_S D ~` o , 2 "~ 2 V f "~ 2 - 1 - 5 m3/2 3 

\ m412 M w  L \m312)_] 
(22) 

2 2 - 1  iMP- M*-2 m '2F r( I m [  s~176 < 3  • 10 -v 
4 Mw L \msl2/J k m312 2 a 2 " 

(23) 
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These constraints are rather sensitive to the variation 
of the ratio M3/m312. If we take M3 = m3/2 as it was 
done in [4], we find that (22) and (23) are weaker by 
a factor of 5 than the corresponding constraints of 
Dugan et al.* 

a n d  A//*2 The scalar mass insertions M2v ----~s also appear 
in the A S = 1 transition dipole moment operators [4] 
yielding the effective hamiltonian 

~tOeff - -  
32~ m3/2 rn3/2 \ m 3 / 2 /  

L r 312 
(24) 

with 

~ ( x ) =  l Z J ( x ) +  4 1 j ( l ~ ,  
7 x  2 

1 
t ( x )  = 5 d((1 - ~)2[~ + x(1 - 0 ] -2 ,  

o 

~-(1) = 1 + }. (25) 

This effective hamiltonian could give a significant 
1 amplitude in the K--* zczt contribution to the A I = 7  

decay. Using, for example, the bag model estimate** 
of the above transition moment operators [16], we 
find the transition dipole moment contribution (in 
GeV) 

, . . . . . . . .  1 .2x  1 0 - 5 (  100 GeV) 
as~2 --  \ m312 /t 

2 M~ s M 3  ~ M 2 
" R e ~ m 2  + . . ~ T -  - -  _2-- " 

3/2 m312 m312 m3/2 
(26) 

The constraints (22) and (23) indicate that the 
@2 imaginary parts of M2o and MDs are much smaller than 

the real parts. Thus, neglecting the imaginary parts 
and assuming further that Re Mg o ~ Re M6s, we obtain 
from (22) and (26) 

t . . . . . . .  M 3  o~'( M32 "~F x'( M3 2 ~7 -I12 
all2 <20xlO-8m3i2~iz3iz)LJtm~iz~iz)] ' 

(27) 

which has to be compared with the experimental value 

allzexp = 27 x 10 -8 GeV. (28) 

* The constraint (22) in I-4] should be larger by a factor of 2 
** The bag model estimate may be rather crude for the operators 
containing gluon fields. Unfortunately, the QCD duality approach 
is very difficult to apply here because of the huge a~ corrections, 
typical of A I  = 1/2 processes [10]. The work on this problem is in 
progress 
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V. Conclusions 

Our results show that there is no matrix-element 
enhancement as speculated by Dugan et al. [43. On 
the contrary, there is suppression of the 02 matrix 
element by a factor of 16 with respect to the 
vacuum-saturation result. Nevertheless, we find no 
dramatic change in the constraints of the mass 
parameters given by Dugan et al. One reason is the 
already mentioned error in the Fierz rearrangement 
which partly compensates for the suppression. 
Equation (27) opens an interesting, although perhaps 
unrealistic, speculation that a great deal of yet 
unexplained AI = 1/2 enhancement could be attri- 
buted to the transition dipole effective operators 
induced by the extended, supergravity model. The 
mass relation M3/m3/2 is yet unknown. If we assume 
M 3 ~ m3/2, then the transition moment contribution 
(27) could be as large as the experimental value (28). 
This should rather be interpreted either as an over- 
estimate of the bag model (cf. second footnote on 
previous page) or that the true constraints are in reality 
much stronger than the constraints derived. 
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