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Abstract. We calculate determinants of second order partial differential 
operators defined on Riemann surfaces of genus greater than one using a 
relation between Selberg's zeta function and functional determinants. In 
addition, we perform a calculation of these determinants directly using 
Selberg's trace formula, and compare our results with previous computations 
which followed the latter route. 

1. Introduction 

Since Polyakov [1] introduced his geometric, covariant approach to string 
perturbation theory, the question of computing functional determinants of 
Laplace-like differential operators on compact Riemann surfaces has gained some 
attention. As it is well known in string perturbation theory (see e.g. [2, 4-6, 10, 15]), 
the functional integral representing the string partition function may be reduced to 
a finite dimensional integral over moduli (or super-moduli) space, where the 
integrand can be expressed in terms of some of the determinants considered here. 

Several authors [2-9] have evaluated the principal dependence of these 
determinants on Selberg's zeta function for the most interesting case of surfaces of 
genus greater than one. However, to our knowledge only D'Hoker and Phong 
[3, 4] completed the computations in determining the full answer for operators 
acting on tensor and spinor-tensor fields of arbitrary weight. In the following we 
present an alternative and more straightforward calculation of those determi- 
nants. The commutation relations for the relevant first order differential operators 
allow us to derive the spectra of the Laplace-like operators of arbitrary weight 
recursively from those of lowest weight. This gives us the opportunity of setting up 
a closed formula for the determinants of all those operators and for all genera. For 
the case of constant-curvature surfaces of genus greater than one a product 
representation of Selberg's zeta function involving determinant functions was 
obtained in [7-9]. This enables us to derive explicit expressions for the desired 
determinants, including all constants. Alternatively, we perform a direct calcula- 
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tion using a trace formula for automorphic forms, following the suggestion of one 
of our referees. It turns out that our final expressions are in disagreement with 
those of D'Hoker and Phong obtained in [3, 4]. 

Our paper is organized as follows: First we review some basic facts on 
hyperbolic geometry, Laplace-like operators, determinants and zeta functions. We 
then develop the necessary tools for computing the determinants via the first 
method. After having evaluated them this way, we perform the trace formula 
calculation and then compare our result with that of D'Hoker and Phong I3, 4] 
and comment on their computation. 

2. Hyperbolic Geometry 

We will mainly adhere to the notations and conventions of 1-3, 4, 7] and restate at 
first the basic facts of hyperbolic geometry: 

On a Riemann surface M with line dement ds 2 = g~adx~dx ~, locally isothermal 
coordinates may be introduced, so that g~a=e2*~a .  As M admits a complex 
structure, one may change to complex coordinates z = x l +  ix  2 and g=x  1 -  ix  2, 
implying ds 2 = 2gz~dzd~; g ~  = 0 = g~z, gz~ = ( g ~ ) -  1 = � 8 9  

According to the uniformization theorem of Klein and Poincar6 any compact 
Riemann surface M is conformally equivalent to some constant-curvature surface 
C/F ,  where C is the universal covering of M and F is some lattice group, 
isomorphic to the first homotopy group of M. We will be concerned with the case 
of surfaces of genus greater than one, where C is the Poincar6 upper-half-plane 

~,~: = { z = x + i y l -  oo < x <  o0, y>0} 

endowed with the line element d s 2 = y - 2 d z d ~  (hence g~=�89 and scalar 
curvature R = - 2 .  F is then a hyperbolic, discrete subgroup of 
PSL(2 ,  R):= SL(2, R)/{_ 1} (also called a Fuchsian group). Since M possesses a 
complex structure, traceless tensors of weight n may be represented as (see e.g. 
Do]): 

7"  : = { f ( z ) d z " l f ( z ) d z "  = f ' ( z ' ) d z " } ,  n e N o . 
(1) 

[A prime denotes quantities with respect to new coordinates z '=  z'(z).] 

If one fixes for genus g > 2 one of the possible 2 2g spin structures on M, n will also be 
allowed to take half-integer values. That means, T 1/z denotes the space of spinors 
on M. 

Now define covariant derivative operators on M: 

17J: T " ~  T " -  1, VJ[ f ( z )dz"]  : = [gZ~O,f(z)]dz"-  1, 
(2) 

~" : T"--+ T" + 1, V~"[f(z)dz"] : = [(g~)no~((g*~)"f(z))]dz" + 1. 

With these one can define the invariant, second order differential operators 
(henceforth called Laplace-like): 

A~,+): T " ~ T " ,  A~,+): = -- 2Vj+ 1F~", 
(3) 

A ~ - ) : T " ~ T "  ' A~-): = - 2 ~ " -  117J. 
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IThis implies: A(+)-- A t-) - _ A" A : = ~ O.g'#VgO #, g: = det(g.#), A being the 
4 

~0 -- 0 ~ 

2 2 2 1 usual Laplace-Beltrami operator on M, here: d = y  (a~ + ay). 
d 

All the At• are non-negative and self-adjoint, provided one introduces a scalar 
product on T':  

f l ,  f2 T": ( f l ,  f2)T.:  = 
M 

= 2"-1 ~ d2zy2" - 2 f , ( z ) f z ( z ) "  (4) 
M 

One may now define spinor-tensors the following way: 
Introduce ~ C SL(2, R), - 1 e F, with/~/{ __ 1} = F. Then define a character X: r 

~{_+1}, X ( - 1 ) = - 1 .  (Since there are 2g generators for F, there will be 2 29 
inequivalent ways of choosing X on these generators, hence 2 2g possible spin 
structures.) 

Define the space S(2n) of automorphic forms of weight n on M by: 

�9 - 2,, c z  + d 2n 

(5) 
On S(2n) a scalar product is introduced through: 

fx, f2 ~ S(2n): <fx, f2>s(2.): = 2"- x ~ d 2 z y -  2 f~(z ) f z (z )"  (6) 
M 

One is now led to define self-adjoint second order differential operators acting on 
spinor-tensor fields: 

D 2. : = -- A + 2inyOx = -- y2(02 + 02) + 2inyOx . (7) 

A short calculation shows that D z . + n ( n +  1) and A~ ) are conjugate under the 
following isometry: 

1: T" ~ S(2n), 

f ( z )dz"  ~ y" f ( z ) .  (8) 

I -1  can thus be used to define T" for n being half-integer. 
As [D2. + n(n +_ 1)]y"f(z)  = y"At.+)f(z), one is left with the following commuting 

diagram: 
zl(~) 

T" ~ T" 

S(2n) 02.+.(.+ 1)> S(2n). 

3. Determinants, Zeta Functions, and Heat Kernels 

The operators At. +) (now denoted by A) are non-negative and self-adjoint on a 
compact manifold, thus possess a discrete spectrum with a complete set of 
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eigenvectors. Denote by 0 = 20 < 21 ~ )~2 ~ . . . .  /~j ~ O0 the eigenvalues of A. One 
then uses the zeta function of Minakshisundaram and Pleijel [11] (MP-zeta 
function) to regularize the functional determinant of A: 

(A(s):=Tr'A-~= ~ 2~ -~, R e s > l .  (9) 
n = l  

A prime means the omission of zero-modes of A; the convergence for R e s >  1 
follows from 2 .=  O(n), n-.o% see below. 

Then: 
d 

det'A : =exp  { -  ~ss ~,4(s).~=o}. (10) 

The trace of the heat kernel of A is: 

This gives: 

Oa(t):=Tre-ta= ~ e -~', t>O.  (11) 
n = O  

~A(S) = dt t s -  1 [ O A ( t )  _ do], Re s > 1, 

02) 
d o : = dim kerA = number of zero-modes of A. 

For the operators A considered here, the heat kernels have the following small-t 

asymptotics (see below): Oa(t)=t+O(1 ). Therefore the leading term of the 

asymptotic eigenvalue distribution of A is given by Weyl's law: 

7 dN ~t Oa(t) d2-d~e- , N(2): = ~{2,12,<2} =~N(A),,~a2, 2 - ~ ,  
b 

(13) 
implying 2. ,,~ n/a, n-* ~ .  

It is now convenient to define the determinant function ~A(Z) as a Weierstrass 
product over its non-vanishing zeros, which converges for all z e C due to Weyl's 
law: 

~ A ( Z )  : = det'(A + z): = ~A(O)e rAz N_ 1 + e , 
n = l  

(14) 

,A : =FP~A(1): ----!iml [~A(S)-- S--~]. 

In [7-9] these functions are related to Selberg's zeta function Zv(s) for - A and D x. 
These formulae will be used to compute the determinants of all A(~ • so we quote 
them here. For  - A  one has 1 [7-9] (note: do = 1): 

d e t ( -  A + s (s  - 1)) = s(s  - -  1 ) ~ ( s ( s  - 1)) 

= Z o ( s )  {(2u)Se-  1 /4-1/2  In 2n + 2~'(- 1)-  s (s -  1)a(s  ) - I G (  Sdt - 1 ) -  1} 2(g- 1) (15) 

1 Note the slight inconsistency in our notation, since we write ~a instead of ~-n 
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Here ~(s) denotes Riemann's zeta function. For  D1 one derives [7] (note: d o = 0): 

det (D 1 + s(s- 1)) = ~ol(s(s- 1)) 

= Zl(s) {(27t)Se- 1 /4 -  1/2 In 2~ + 2~'(- 1 ) - s ( s -  1)G( S + �89 2 )2 (g -  1) (16) 

with Barnes' double gamma function (y = Euler's constant): 

G(z + 1): =(2rt)=e = = ,__[I ~ 1  + n )  ~ (17) 

and Selberg's zeta function: 

Zv(s): = H I~ {1-(x(~))~e-(k+')t(r)}, R e s > l ,  v=0 ,1 .  (18) 
{y}p k = 0 

{~}p runs over all primitive conjugacy classes in F (if v=O) or i~ (if v= 1), 
l(~) denotes the length of the corresponding closed geodesic. 

Using Selberg's trace formula (see e.g. [12, Vol. I, p. 448] for m=O) for the 
operator - A  and taking the ansatz-function h(p)= e-  (p= + 1/4),, one can derive [9] 
the following small-t asymptotics for Oa(t)2: 

Oa(t)= ~-~=ob.t" +O(tN), (19) 

for n > ,  b o = 1 ;  b ~ = 2 2 . n ! [  +2k__~ 1 k ' - ' 

B=k are the Bernoulli numbers. 
Doing the same for D1 (see e.g. [-12, Vol. I, p. 448] for m = 1), using the same h(p), 

one obtains a similar result (the calculation is performed in Appendix A): 

- 1  N 
0 ~ = ---v~--~. -~" antn + O(tN)' 

(21) 
(-1)"" (~)(--1)'22kB2k, for n>O, 

o 

I + O(t)}. (22) Oo,(t)=(g-1) {~ - -~ 

4. Calculation of the Determinants 

Our goal is to evaluate the functional determinant of cA~ +), c~R+,  n ~ N  or 
n e No +�89 since these are the relevant quantities in string theory. (We leave the 
value of the constant c open. It then can be chosen appropriately, according to the 
adopted normalizations of the operators, which are not unique in the physics 
literature.) To perform the calculations we determine the spectra of these operators 

2 Again we write Oa instead of O_a 
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recursively via commutat ion relations. For  an arbitrary (spinor-) tensor 
f(z)dz"e 7" one easily finds: 

-- {At" - ) -  At" +)}f(z)dz" = 2{ ~"-1 ~z _ ~+x V~"}f(z)dz" 

= - nRf(z)dz". (23) 

Note:  This formula is valid for Riemann surfaces of any genus, not necessarily 
restricted to the hyperbolic case g > 2. (R = 2 for g = 0, R = 0 for g = 1 and R = - 2 
for g>2.)  

Denote the eigenvalues of At. +) by 2tk ") and the respective eigenvectors by 
fr Then using (23) one obtains: 

at"+)l{(lT~ftk)(z))dz"+l}={--(n+ l)R + 2tk") } [~"f~k)(z)]dz"+ X (24) 

Thus [V~"fr + a is an eigenvector of ,~.+Ar with eigenvalue 2tk " + 1) = 2~k.) 
--(n + 1)R. Hence the eigenvalues 2tk ") are determined by those of "lowest weight" 
n = 0 or n = �89 respectively: 

n ~ N O : 2tk ") = 2tk ~189 + 1), (25) 

n ~ No +�89 "bk]tn)--r~k-- ] ( 1 / 2 )  -- 21x~, ' ` - 1  l~t.,2 ."  n - �88 (26) 

2tk ~ being the eigenvalues of Ato+)= - A  and 2[ ~/2) those of nt+) ~ 1 / 2 "  

In the case of genus g >  2 these eigenvalues correspond to the continuous 
spectrum of the operator D2. acting on the whole of o~r In addition, D2. has a 
discrete spectrum. 3 These eigenvalues can be understood physically as "Landau- 
levels," when one imagines D2. as a Hamiltonian to describe a free particle in a 
magnetic field on ~e. The discrete spectrum was determined e.g. in [16] for the 
Hamiltonian 
to be H. = - A - 2inyOx + n 2 = D_ 2. + n2 (27) 

2 1 1 2  En=n +-~-(n--m--~)  , O<=m<n-�89 (28) 

According to Fay [14] the spectrum of D2n depends only on Inl, thus for n __> 0 one 
can replace O_2n-'~D2n. This leads to the identification 

At"+)"~D2.+n(n+ 1 )~Hn+n,  

which gives the discrete spectrum of At" +) as 

z~)=n2 + � 8 8 1 8 9  + n = Z n m +  Z n - m 2 - m ,  O < m < n - � 8 9  (29) 

The eigenvalues in the discrete spectrum of At. +) remain unchanged when 
turning to the compact surface M = . ~ / F .  So the spectrum of At"+) on M splits into 
the "discrete" part {zt,, ")} and the "continuous" part {2tk")}, which is of course also 
discrete on M, but arises from the continuous spectrum on ~ .  According to this 
splitting of the spectrum the determinants fall into a product of two contributions, 

, (+ )  , (+ )  , (+ )  
det ( c A . ) =  det (cA.)di~ det (cA.)~o. .  (30) 

3 We would like to thank K. Oshima for pointing out that this part of the spectrum also 
contributes to the determinants and for drawing our attention to [17] 
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A prime on det indicates that the zero-modes of the operator should be omitted. 
For  g = 0,1 there is no additional "discrete" part of the spectrum and thus 

det' (cA t+ )) = det' (cA t+))oon. 
In a first step the "continuous" part will be treated. There the above recursion 

relations allow us to present general formulae for this part of the desired 
determinants (g > 0): 

n e No : det'(cA~.+))co. = det' {c(-  A -�89 + 1))}, (31) 

1 , , ( + )  _ _  , ( + )  1 2 n e N o + ~ . d e t  (cA.)oon-det  {c(A1/z-~R(n +n-�88 (32) 

We now again restrict ourselves to the case of hyperbolic surfaces (g> 2, 
R =  -2) .  There we use the eonjugacy of A~. +) and D2.+n(n+ 1): 

(i) n e N : det (cA~.+))con = det (c ( -  A + n(n + 1))) 

= c ~"(~ d e t ( -  A + n(n + 1)) 

= c;"(~ + 1)~n(n(n + 1)). (33) 

Note that there are no zero-modes for n >  1. Here we introduced: 

~.(s) : = Tr( - A + n(n + 1))-s = ~ (2tk.))-s. (34) 
k = O  

(ii) n e N O + �89 det(cA~.+))oo. = det (c(D 1 + n(n + 1))) 

= c ~"(~ det (D1 + n(n + 1)) 

= c~"(~ + 1)), (35) 

~'.(s) : = Tr(Dt + n(n + 1)) -s . (36) 

As explicit formulae for ~ and ~D~ are already known [(15) and (16)], the 
remaining task is to compute ~.(0) and ~.(0). This can be done using the small-t 
asymptotics of the respective heat kernels. Let 2k either be an eigenvalue of - A or 
D~ and O(t) be either heat kernel. Define 

On(t): __ ~ e-(a~+n(.+ t))t= e-.(.+ ~)'O(t). 
k = 0  

If ~.(s) now either denotes the above r or ~'.(s), then: 

1 ~dttS_~O.(t) ~.(s) = - ~  o 

1 ~dtt~_le_.(.+l),O(t), R e s > l  (37) - -  . 

r(s) 0 

Note: @.(t) = O(e - n(, + 1)t), t ~ ~ .  
Formulae (20) and (22) show the small-t asymptotics of @(t): O(t) 

--i 

= ( g - l ) [  t -b+O(t)[ ,  with b=�89 for A = - A  and b= 1 for A=D1. Therefore: 
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Now we can analytically continue (n(s) to s=O: 

1 
dt t s- x O.(t) 

+-r-~ ~ 
= -- (g - 1) {b + n(n + 1)} + O(s). (39) 

The second and third integrals are finite in the limit s ~0 ,  thus their contribution to 
1 

~n(0) vanishes due to the factor F(s~" 

Thus we obtain: 

~,(0)= - ( g - 1 ) { b + n ( n + l ) } ,  b=�89 for - A ,  b = ~  for D1. (40) 

Inserting (15), (16), and (40) into (33) and (35) yields the final expressions for the 
desired determinants: 

(i) n s N :  

det (cd t+))co. = n(n + 1)~a(n(n + 1)) exp { - (g - 1) [�89 + n(n + 1)] In c} 

= Zo(n + 1) exp {(g-  1) [ - ( � 8 9  n(n + 1))lnc + (2n + 1) ln21r 

- 2(n + �89 + 4( ' (  - 1) - 2 In (G(n + 1)G(n + 2))]  }. 
Using G(s+ 1)= G(s)F(s) and G(1)= 1 gives: 

In [G(n + 1 )G(n + 2)] = In r(n + 1) + 2 ~ In r(k) 
k = 3  

(empty sums are understood to be ignored). 

Thus: 

( F 
det(cA~+))oo.=Zo(n+ 1) exp ~ ( g -  1) / -(-~ + n(n + 1)) lnc + (2n+  1) ln2n 

(ii) neNo+�89  

det (cA~+))oo. = Nol(n(n + 1)) exp { - ( g -  1) [ ~  + n(n + 1)] lnc} 

= Zl(n + 1) exp {(g-  1) [ - ( ~ +  n(n + 1))lnc + (2n+  1) ln2~ 

-- 2(n+�89 +4( '(-1)-41nG(n+~)]} , 

[n] + 1 

lnG(n+~2)=lnG([n]+2)= ~ lnF(k); [n]=n-- �89 integer part of n. 
k = 3  

(41) 
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This yields: 

det(cAt.+))~o~=Z~(n+ l ) e x p { ( g - 1 ) [ - ( ~ + n ( n +  l))lnc +(2n+ l)ln2~ 

t.l+x -]) 
+ 4('(-- 1)-- 2(n + �89 --4 k~3 lnr(k)J . 

As a general formula for both n integer and half-integer one has: 

(42) 

det(cA(.+))co.=Z2(._t.l)(n+ 1)exp { (g -1 ) [ - ( � 89  - �89 1)) lnc 

+(2n + 1)ln2u + 4~'(-- 1 ) -  2(n + �89  Z lnF(k) 
3 _ ~ k < n + l  

+4(n--�89 1)]}. (43) 

Now we study the contribution coming from the "discrete" part of the 
spectrum, which will be treated for both n integer and half-integer together. In [16] 
the normalized eigenfunctions of d~ +) for the "discrete" spectrum on ~ are given 
to be 

"z" 1 / ( 2 n - 2 m -  1)m! e e (2ky) E m 1)(2ky), (44) 
�9 ' - - V  . - .  

where the/Jm are the usual generalized Laguerre-polynomials. Thus the "discrete 
part" of the heat kernel on 5r is 

oo 
dis K.  (z, z ,  t) = ~ S dkff2m, k(Z) e-c~+ )qPm.k(Z')" (45) 

O < m < n -  l l 2  0 

The diagonal part reads 

1 (2n - 2m - 1)m ! e- at2.m + 2.- m~ - ~) 
Kdnis(z, g, t) = -~ O<m<n-1/2E r(2n -- m) 

~du -u (2n-2m-1) (2n--2m- x S - - e  u [/2, t)(u)]2 
0 U 

1 ~ (2n - 2m - 1)e-ct(2nm + 2 n  - m 2 - m )  (46) 
4~ O<m<.-l/2 

where use has been made of the integral 7.414(3) of [13 ] ,  

F ( a + n + l )  
i dx - Xx~L%(x)L~(x) = Re a > 0. 6., e m ,  

n 

According to D'Hoker and Phong [3] only the "zero-length-term" in Selberg's 
trace formula contributes to the trace of the heat kernel on M = ~ / F .  This leads 
one to the trace of the "discrete" part of the heat kernel for cA(. +) on M: 

odi+s(t) = ~ d ~  KndiS(z, z, t) 
Jelr y 

= (g - 1) ~ (2n - 2m - 1)e- a(2.m + 2. - m~ - m). (47) 
O<_m<n- 1/2 
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Now the "discrete" part of the MP-zeta function is 
1 oo 

t s -  1/~'ldis/+~ 
~ .+ ( s )=  r - ~  ~"+~" 

= (g-- 1) ~ (2n -- 2m-- 1) [c(2nm + 2n--  m 2 - -  m)] - s. (48) 
O < m < n - 1 / 2  

Therefore one gets by differentiating and letting s = 0 the "discrete" part of the 
determinants 

det(cA(~+))dis = ex p { (g-1)  0_<. ~ _  t/2 ( 2 n -  2m-1) ln[c(2nm + 2 n - m 2 - m ) ] } .  

(49) 
The main result of this paper may thus be summarized in the following formula for 
the determinants of Laplace-like operators on Riemann surfaces of genus g > 2: 

det (cA (.+)) = Z 2(11 _ [111)(n + 1) exp {(g - 1) [ - (�89 �89 - I-n]) + n(n + 1)) In c 

+ (2n + 1) ln2~ +4~'(--  1 ) -  2(n + �89  ~ lnF(k) 
3_~k<n+l 

+ 4(n - �89 - I-n] ) In F(n + 1) + ~. (2n - 2m - -  1) 
O < r a < n - 1 / 2  

x ln[c(Enm + 2 n - m 2 - m ) ] l t ,  (50) 

which must now be compared with the expressions (3.5) and (3.6) in [31. 

5. D i r e c t  C o m p u t a t i o n  via the Se lberg  T r a c e  F o r m u l a  

The same result may also be obtained using a trace formula for automorphic 
forms, see [12, Vol. II, p. 402f.]. For simplicity we restrict ourselves to the case c = 1 
in this chapter. If then 1 2 Qk='~+pk are the eigenvalues of the operator D211, the 
formula reads in the case concerning us (i.e. for compact Riemann surfaces) 

sinh(21rp) 
h(p11) = (g - 1) j dp ph(p) 

c o s h  (2~p) + COS (2rm) I I = 1  --at)  

1 X(~)2"kl(~) 
+ ~ ( ~ ,  ~ g(kl(7)) 

k = 1 sinh(kl(7)/2) 

O ~ m < n - 1 / 2  

g(x) : = ~ dp h(p)e i'x . 
- -  o 0  

Now, h(p)= e -  (p~ + 1/4)~ yields the trace of the heat kernel for D211 and 

O~+,(t) = e -  11(11 + 1)~OD~n(t). 

Therefore 

oo 

~A~,+,(S) = ~ ( ~  ! at t ~- 'e-"("+ 1)'oo~.(t ) , Res > 1. (52) 
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The trace formula gives three contributions to the trace of the heat kernel, denoted 
by ~ _ ~{1) . r~t2) . ota) according to their appearance in (51), which will now 

I J  D 2  n - -  X J  D 2  n ~ X J  D 2  n T ~ "  D 2 n  

be treated separately. The first contribution is 

I!dppe-P2'tanh(np),n~N 
O~) (t) = 2(g - 1)e- �88 (53) 

[ ! dppe -p2'coth(rcp), neNo  +�89 

The Mellin-transform (52) then gives (Res> 1) 

p tanh(np) 
[~ dp [_t92 +(n+�89 n ~ N  

(ta~+ ,(s) = 2 ( g -  1) /o p coth(~rp) (54) 

"[ "Jo ap [p2 + (n + �89 ' 
n E N o  + �89 

Now the MP-zeta functions have to be analytically continued to s = 0. This is done 
in Appendix B. There we show that for n e N 

d~al~+'(S)'s=~ 

+ 2 lnF(n + 1) + 4 In G(n + 1)~, (55) 
and for n e N o + � 8 9  

) 

d~a{)+,(s)l,=o=(g-1){2(n+l)2-(2n+l)ln27r-4~'(-1)+41nG(n+~)}. 
(56) 

The second contribution from the trace formula to 002, is 

e - t/4 oo Z(y)2nkl (y )  k212(~ ') 
(2) y 4, (57) 

~ ,  k = 1 sinh 

which gives 

1 ( 2 n + 1 )  1 / 2 - s  

~2")+'(s) - V ~  F(s) ~ y' ~k= 1 sinhZ(~)2ikl(~k/~) 

x (kl(y))~- l/2K~_ l/2 ( ~ ( 2 n  + l )) , (58) 

where K~(z) denotes a modified Bessel function. Therefore 

d 
ds (~a~)+ ,(s)[~ = o = - In Z2( n _ t,j)(n + 1). (59) 

The third contribution can also easily be obtained, 

O~) (t) = ( g -  1) • (2n-2m-1)exp[-t(2nm+n-n2-m2-m)], (60) 
O < _ m < n -  1/2 
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~a])+ ,(s) = (g -- 1) Y, (2n - 2m - 1) [2nm + 2n -- m 2 - m] -~ (61) 
O ~ _ m < n -  1/2 

r /  
" ~a].)+'(s)l~=o=-(g - 1 )  E ( 2 n - 2 m - 1 ) l n ( 2 n m + 2 n - m Z - m ) .  (62) 
ds O<m<n-1/2 

All three contributions together exactly reproduce our result obtained in Sect. 4. 

6 .  C o n c l u s i o n s  

In [3] D'Hoker  and Phong computed the above considered determinants as: 

det (A ~+))D,n.p. = Z2t. - t.])(n + 1) 

x exp {(g-  1 ) [ o ~ . ~  - 1/2 2(2n - 2m-- 1) ln (2n-  m) 

+ (2n + 1)In 27r + 4~'(-- 1) - 2(n + �89 + 4(n-- In])(n + �89 (63) 
- I J  

for both n integer and half-integer. 

Thus our result differs from theirs. They proceeded by inserting an explicit 
expression for the heat kernel of e -'D2", which they derived from a paper by Fay 
[141 into Selberg's trace formula. Thus they computed a representation for the 
heat kernel of A~ +). Performing a Mellin-transform they obtained the MP-zeta 
function, which they analytically continued to s=0.  They give: 

Tr e-t,~.+, = e - "~" + 1)t{I~(t) + I.(t)}, 

I~(t): = 2 ( g -  1) 5-" ( 2 n -  2 m -  1)e ~"-')~"- " -  l)t 
O < r a < n -  1/2 

e -  tl# co be-  b2/4t 
+ 81r(g- 1 ) ~  ! d b ~ )  cosh((n-  [n])b), 

1 t '4  
= - - -  e . ( 6 4 )  I.(t): ~---~e ' E ~ [;~(?)]2"I(? i -k2t~,/4, 

{~,~ ,=1 sinh (kl(?) 

Note: An additional factor of two that occurred in [3] in front of the sum in I~ has 
been corrected in [41. We take the corrected version for our analysis. 

According to the definition (64) their I~e(t) is our O~)~.(t) + O~)~.(t) and their I"(t) 
is our Oto2~.(t) taken from Sect. 5. A comparison of the corresponding expressions 

n n 1 shows that their Ie(t ) and I (t) are both offby a factor of~. Besides that, the power of 
the character X in I" should be 2nk. But those are the only differences from our 
result, as (for n ~ N) 

e-tl4 | be-  b214t + oo 

I db - -  ( b )  =~-oo dpptanh(rcP)e-t'~+l/#)t' (65) 
b 

sinh 
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oo 

which may be seen by inserting tanh(rcp)= 1 ~ db sinbp , and (for n~No+�89 

e -t/4 (b) +oo 
~dbbe -b~/4'coth = ~ dppcoth(np)e -~p~+1/4)~ (66) 

] / / ~ t  3 / 2  0 - oo ' 

which was obtained in Appendix A (69). The error in [3] thus occurs in the analytic 
continuation of the MP-zeta function to s--0. 

We now would like to summarize our results as follows: In this article we have 
presented a method of calculating functional determinants of Laplace-like 
operators on constant-curvature surfaces of genus greater than one, which are 
interesting, e.g. in string perturbation theory. This method differs from the so far 
used direct trace formula calculations in that for the more involved "continuous" 
part of the determinants our method does not require an explicit calculation of the 
heat kernel for the operators on the upper half-plane. Rather our method relies on 
simpler considerations, concerning commutation relations of first order differen- 
tial operators on the surface and the spectra of the Laplace-like operators. We also 
present a computation of the considered determinants that is close to the one used 
in [3], mainly to be able to detect the error in the calculation done in [3]. We have 
also presented the general formulae (31) and (32), that give expressions for the 
determinants on arbitrary Riemann surfaces. These can also be used for the tree- 
level and one-loop partition function in string perturbation theory. The well 
known fact in string theory that in the one-loop case (g-- 1) the ghost determinant 
is in fact identical to the determinant of the Laplace operator (see e.g. [2, 4]) can 
easily be seen from our formula (31), since in this case R = 0 :  

(det'P~P1) ~/2 = det'(cA ~ +)) = det'( - cA) = ! d e t ' ( -  A). (67) 

As for the sphere (g = 0, R = 2) the spectrum of the Laplace operator is explicitly 
known, the MP-zeta function for cAt +) and thus the determinant can explicitly be 
computed (see e.g. [15]). Alternatively the determinant may be evaluated by 
formula (31) (see [8]). Both expressions are found to coincide. 

Appendix A 

We want to determine the small-t asymptotics of ODz(t), see (21): 
In [12, Vol. I, p. 448], one finds a version of Selberg's trace formula concerning 

the operator D1. This can be used with the ansatz-function h(p)=e -(p2+ i/4)t. 
Thus 2 1 . (2n =pn +�88 

Bol(t) = ~ h(Pn) 
n = O  

= ( g - - l )  ~ dppe-tn2+l/4)tcoth(np) 
--O0 

1 - #4 + ~---~e E ~ [Z(7)lkl(Tie-k2'2(')/4'' (68) 

,~,~ k=l sinh (~/(7) 
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The second contribution vanishes exponentially for t ~ 0  and will henceforth be 
neglected. Using (see e.g. [13, formula 4.131(4)]: 

oo x sinax 7~ . an 1 
dxe-  - -  = ~-cotla ~- 

o sinhx a 
as an integral representation for coth(zp) in (59) gives: 

GO 

O~(t): = 2(g - 1) ~ dp pe-tp2 + 1/4)t coth(~p) 
o 

_ g -  1 e -  t/4 2 ( g  - 1 )  e -  t/4 - x 

V ~ 7 + 1/~ t 3/~dxxe'-e-x2/to slnhx 

_ 2 ( g  - 1)  e -  t/4 o~ 
- -  ~ dxxco thxe  -~2/t. (69) 

o V ~  t 3/2 

Inserting the power series: x c o t h x =  ~. 2:kn~ k X 2k, Ixl < ~, yields the asymptotic 
k = 0 U~e~). 

expansion for Oo1(0: 

ODt(t)=(g--1) ~" t"-i ~ k (--1)k22kBek+O(tN) 
n --- 0 22nn ! k 0 

bl 
_ g - -  1 ~. a . t" + O( tN) ,  

t n=O 

, . ' . ( n )  
a. : = 22.n--- ~ k~o k ( -  1)k22kBzk" 

(70) 

This is the expression (21). 

A p p e n d i x  B 

In this appendix we want to derive formulae (55) and (56). To this end we define for 
Res>  1 and z~e0 the functions 

o n  tanh(r~p) 
I(z, s): = 2 ( g -  1) P 

o " ap ~ , (71) 

oo p coth(np) 
J(z, s): = 2(g- 1) ! ap (72) 

First, we treat I(z, s) and analytically continue it to s = 0 by a partial integration, 

_ oo (p2+z2~1-, 

Differentiation at s = 0 gives 

d I(z,s)l,=o=-7~(g-1) ~"  P 2+z2 i - l_ln(p2+z2)]  
0 ap coshe(7~p) 

= - ( g -  1)(  1 + z  2) + n ( g -  1) 

oo p2 + z 2 
x ~ dp ln(p z + z2). (74) 

c~-sh2-~-p) O 
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To perform the integral we now differentiate with respect to z, 

d d I(z,s)ls=o . . . .  ~ ' '  In(p2+z2) dz ds = z t g -  ijrrz Jo ap ~ . (75) 

An integral representation for the digamma function ~p(z+�89 (see I-3, p. 17], 
corrected through l n z ~ - l n 2 )  yields the integral in (75), 

( 2 )  n ~ "  ln(pZ+z2) 
~o z +  2 o  = ap cosh2(rcp) , 

therefore 

dz as 
This formula has to be integrated from �89 to z, 

dl(z,s) , ,=o=dI(~,s)  +4(g--1)[zlnF(~ +z) 
Ms .,. /is = 0 

-l i2dxlnF(1 +X)]. 

Using the integral ([13], formula 6.441 (4)), 

Z 

dxlnF(1 + x) = ~z In 2~ - z(z+2 1) + z lnF(1 + z) - lnG(1 +z) ,  
o 

and the well-known result for z=n+�89189 (i.e. for the operator -A) ,  

dl(1,s]l =(g-1)[~-In2n-4~'(- I)] 
ds k ,, is=o 

we get 

(76) 

(77) 

d I(z, s)]s = o = (g - 1) ] -- + - 4~'( - 1) 
[- 

2z ln2n 2z 2 

+21nF(z+l)+41nG(z+~)  1. (78) 

This is the result we wanted for z=�89 n~N. 
We now turn our attention to the function J(z,s). We use 2 co th2x=  tanhx 

+ c o t h x  in the definition (72) of J to obtain 

The small-t asymptotics of O~+ j(t) now determines I(0, s) and J(0, s). According to 
(40) this is (n + �89 z), 

/(o, s)--- -(g- I)(: 

J(O, s) = -(g- I)(z 
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This may be used to obtain from (78) and (79) 

~sJ(Z,s)l~=o=2~sJ(Z/2,s)ls=o+ 21n2(g- + 

+ 2 ( g - 1 ) 1 2 z ~ - 2 z l n 2 r ~ - 4 ( ' ( - 1 )  

+21nF(z+l )+41nG(z+~)]  �9 

At z = 0  this reads, taking G(�89 e a/2r 1)n-1/421/24 from [8], 

d 
~ J ( O ,  s)l ,= o = - 4 ( g -  1)( ' ( -  1). 

(80) 

(81) 

To analytically continue J(z, s) to s = 0 one subtracts from the integrand in (72) the 
parts being divergent at the upper limit of integration and splits the region of 
integration, 

_ 1 coth(np) 

o~  Fcoth0rp ) 1 +2(g-1)!apL~ pl-2"+sz2p-l-2". (82) 

Therefore 

d a 
ds J(z, s)[~= 0 = - (g - 1) - 2(g - 1) S dp p coth(np) ln(p 2 + z 2) 

, 0 

.83. 

To perform this integral we differentiate with respect to z, 

o~ p c o t h ( n p ) ~ ] ) .  (84) d d _ 4 ( g _ l ) z { i d p p ~ p )  .l_!dp E Pz+ z2 dz ~ J(z, s)l ,= o = - - - -  

In [13] one finds the following integral representation for the digamma function 
for R e z > 0  (see formula 8.361 (3)): 

~p(z)=lnz_l_2  ~ dt t o (t2+z2)(e2"t-1)" 

Introducing coth(np) into that  integral representation and splitting the region of 
integration yields 

oo p l ldppC~ !dp[ -c~ ~] ,  (85) 
v2(z)= 2z ! -~ ~ pZ + z z 

and thus 

d d 
dz ds J(z, s)[s = o = 4 ( g -  l)ztp(l + z ) -  2(g - 1). (86) 
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This  will now be integrated to give 

-~sd J(z, s)[.= o = J(0,s)ls=o + 4 ( g -  1) z lnF(1  +z)-~dxlnF(lo +x)- 2zl . 
(87) 

Again the integral  6.441 (4) f rom [13] appears ,  thus 

d J(z,s)ls=o=(g-1)[2z2-2zln2~-4~'(-1)+41nG(l +z)], (88) 

which is the desired result. 
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