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As an example for various generalizations of the vacuum overlap order parameter, we review gauge invariant two- 
point-functions and order parameters in the Georgi-Glashow model. From the discussion a surprising possibility 
emerges: the existence in the Higgs phase of Zu-charged states. 

The vacuum overlap order parameter (VOOP) was 
designed to replace the Wilson loop as an order para- 
meter for gauge theories with matter fields in the fun- 
damental representation 1. In the case of scalar matter 
fields, it turned out to be a useful quantity for numerical 
investigations 2. The VOOP is the scalar product with the 
vacuum (hence its name) of an appropriately constructed 
(energy regularized) candidate for a charged state. The 
charge is measured via Gauss' law, i.e. by measuring the 
total electric flux at infinity. In a nonabelian theory the 
electric field operators are not gauge invariant. The only 
gauge invariant electric flux is that associated with the 
gauge group center ("n-ality"). 

The original VOOP was defined as the limit ~_'--* oo, 
n _> c I-~ - 2'1 (c is some constant), of 

where the horizontal direction is one of the space direc- 
tions, the vertical direction is Euclidean time, the strings 
in the numerator and denominator carry a path-ordered 
exponential of the gauge field in the fundamental rep- 
resentation, the dots stand for the fundamental matter 
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fields at time zero, the "staple" in the numerator has 
height n (n is the energy regularization parameter), the 
rectangle in the denominator has height 2n, and both 
have the points z and ~' as their spatial projections (we 
shall use the convention that purely spatial quantities are 
underlined, but space-time ones are not). p(Ix_ - ~'1, oo) 
(best possible energy regularization) is a 9auge invariant 
version of the matter field two-point-function (2PF) and 
has the following generic behaviour in the three typical 
regions of standard phase diagrams: 

1. In a flee charge phase (e.g. QED), p(l~--~-'1 ,oo) 
behaves like a propagator of the charged particle 
(e.g. electron); for large distances Ix_-~-'1 it goes 
to zero, i.e, the candidate for the charged states 
becomes orthogonal to the vacuum; the charge is 
not screened. 

2. In a Higgs mechanism phase/region, assuming the 
matter field ~ is scalar, p ( I x -  ~'1, oo) behaves like 
a perturbative ~-2PF; for large distances it goes to 
a constant which is nothing else than the square of 
the "vacuum expectation value of the Higgs field"; 
the charge is screened. 

3. In a confinement phase/region, and assuming that 
we call the matter field "quark", p([~ - ~'1, oo) be- 
haves at small distances like a perturbative quark 
propagator, but at some characteristic length scale 
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hadronization sets in and for asymptotically large 
distances it goes to a nonzero constant (which 
is a nonperturbative effect); the charge is again 
screened, but by a different mechanism than in the 
Higgs phase. 

In generalizing the VOOP, we have to consider sit- 
uations in which we expect to have particle states that 
are charged with respect to something else than the cen- 
ter of the originalgauge group G. One typical situation 
is that of a Higgs mechanism whereby the "unbroken" 
subgroup H is nontrivial. There we can ask the question 
of whether there exist free charges with respect to the 
center of H 3. 

A different generalization is to ask whether there are 
charged states with respect to a nonabelian group, which 
may be either G or H. It is possible that the argu- 
ment that such charged states cannot exist since there 
is no gauge invariant electric flux, is nothing more than 
a heuristic argument that hides our inability to come up 
with a better way to measure a nonabelian electric flux 
at infinity. One thing that can be done is to contruct a 
candidate for a state containing such a nonabelian flux, 
the contruction being analogous to that used to define 
the original VOOP, and then to use the vacuum overlap 
as a test of whether this state is in the vacuum Hilbert 
space or in a different superselection sector. 

In order to define these generalizations, the first step 
is to decide what are the possible objects whose gauge 
invariant 2PFs we want to write down. The simplest pos- 
sibility is to take those particles occuring in the pertur- 
bative description of a given phase, that are not neutral 
with respect to the "unbroken group" of that phase (for 
the neutral particles, the 2PFs are between gauge invari- 
ant local quantities and we have nothing new to say with 
respect to them). After having replaced the perturbative 
definition of a 2PF with the gauge invariant one, we can 
use nonperturbative methods to compute that 2PF in the 
other phases too. This procedure can be carried out for 
each phase/region, so that in the end we can compute 
simultaneously the particle 2PFs for all possible breakings 
and (hopefully) decide dynamically which is the realized 
situation. 

In the end (see 3 for what "in the end" means), 
all generalizations of the VOOP are defined by putting 
in (1) something different on the strings, corresponding 
to the flux we wish to create, and something different at 
the endpoints, possibly composite objects in terms of the 
original fields, with the correct transformation properties 
(of course, both for the numerator and for the denomina- 
tor, the quantities whose expectation value we take have 
to be gauge invariant). 

We shall exemplify these ideas for the case of the 
Georgi-Glashow model 4, which is one of the simplest ex- 
amples we can use. On a hypercubic lattice this model 
has the action2,3: 

S = - ~  ~ ½Tr V(p) - ~ ~ (~., m(V.,u) ~,.+~) (2) 
P e , ~  

where the lattice gauge field U~,~ is an SU(2) matrix 
in the fundamental representation that lives on the link 
starting from ~ and going in the p-direction, U(p) stands 
for the product of U's around the plaquette p, ~ ,  is a 
real 3-component (i.e. adjoint) field with ko~l--- 1 (for 
simplicity we take the ~o 4 coupling ,~ to be infinite), D z 
denotes the adjoint representation and/2 denotes the unit 
vector in direction/~. This model has the following phase 
diagramS,2: ~k~.H ( ~ , oo )  

IGGS 

CONFINEMENT 

(o,o) 

The Wilson loop of the U-fields is a good order pa- 
rameter: it obeys an area law in the confining phase and 
a perimeter law in the Higgs phase. The reasons for this 
are described e.g. in S. In the confining phase, the elec- 
tric flux between two fundamental sources at z_ and _~' 
cannot be interrupted if there are no fundamental mat- 
ter fields. As a consequence, the potential between these 
two sources grows linearly with the distance, which can 
be proven using the strong gauge coupling expansion. In 
the Higgs phase however, the vacuum can be viewed as 
a condensate of the ~o-fields which screens the force be- 
tween the two fundamental sources in a similar way to 
the screening of the force in a plasma. 

The perturbative picture is the following. In the con- 
fining phase, which from the point of view of perturbation 
theory is a free charge phase, the particles are the charged 
~o's and the gluons. Both carry the adjoint representation 
of G'---SU(2). In the Higgs phase the particles are two 
vector bosons, to be called W's, a photon and a Higgs 
scalar. With respect to H -- U(1), the W's carry the 
charge ±1, while the photon and the Higgs are neutral 
and will not be discussed further. 

The ~-2PF is obtained by putting DI(U)  on the 
strings and ~o at the endpolnts of (1) (and then, of course, 
taking n--~ oo). In the confinement phase it behaves like 
a propagator for short distances, but after fragmenta- 
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tion sets in it goes to a nonzero constant at large dis- 
tances. For weak gauge couplings, the small distance 
behaviour can be computed in perturbation theory, at 
large distances however we can only use a hopping pa- 
rameter expansion in ~ or numerical simulations. In the 
Higgs phase, the ~o-2PF can be computed in perturba- 
tion theory for all distances. It decreases monotonically 
to a nonzero value, which is a possible definition of the 
"Higgs expectation value". This definition can be used 
in nonperturbative calculations too. 

The gluon-2PF is obtained by putting ad U= DI(U) 
on the strings and Tr raU(pffi_) (and a similar object at g )  
at the endpoints; here va are the Pauli matrices, U(p=_) 
is the product of the four U's around the plaquette p_=, 
starting at the point x_ in the time-zero hyperplane which 
is one of the corners of p=_. This is nothing but the 
gluon B-field-2PF (spacelike p=_) or the gluon E-field- 
2PF (timelike p~). Again, in the confining phase, the 
gluon-2PFs can be computed in perturbation theory for 
short distances alone. At large distances we probably 
can only use numerical simulations. If the coventional 
wisdom that there are no free gluons is true, the gluon 
2PF should go for large distances to a nonzero constant, 
whose physical meaning is similar to that of the "gluon 
condensate" < T rF~  >. In the Higgs phase the gluon- 
2PF has not yet been computed in perturbation theory. 
Since we do not expect the gluons to be particles here, 
its asymptotic value should again be a nonzero constant. 

We have seen that both order parameters that test 
the existence of nonabelian charge do not distinguish be- 
tween the confining and the Higgs phase. We should 
however keep in mind the fact that, from the point of 
view of rigorous results, a phase with free gluons and 
charged ~o's has not really been excluded, either in this 
particular model or on general grounds. For order param- 
eters associated with the "unbroken group" of the Higgs 
phase the situation is however different. This group is 
Abelian, and we expect the corresponding generalizations 
of the VOOP to be zero in the Higgs phase (since there 
are charged W's) and nonzero in the other phase. 

The W-2PF was first introduced in 3 Let us de- 
fine the group H --- U(1) as the stability group of the 
vector ¢ = ( 0 0 1), H = {h e GIDI (h )¢  = ¢} ,  and 
let us further define the "transformation to the unitary 
gauge" v(~o) as a rotation around an axis in the x-y plane, 
the rotation angle being not larger than 7r, that obeys 
Dl(v(¢,o))~o = ¢ (up to a zero measure set where v(~o) 
is discontinuous and has to be fixed by extra conditions, 
the solution of this equation is unique). Let us introduce 
the new link variable W=,,=v(~=)U~,,v(~o~+;,) -1, which 
transforms as a gauge field under gauge transformations 

that are only in H. To define the W-2PF we put on the 
strings of (1) products of a function u of W=,, with the 
following transformation properties: 

u(hW) = u(Wh)  = x(h)  u(W) (3) 

for h E H and X the charge-1 character of H (in our 
conventions the fundamental U(1)-charge is ~). At the 
endpoints o f ( l )  we put a function w of a spatial link W=,~ 
(since the W particle has spin one) with the property: 

wChW) = xCh)wCW) , wCWh) = ,~(W) (4) 

The simplest choices for u and w are u = D~z and w -- D~o 
(D~n are the irreducible representation matrix element 
functions). In the na~'ve continuum limit, we obtain the 
usual U(1) gauge field and W field respectively. There 
is an ambiguity here 3. We could take for u any linear 
combination with positive coefficients of the D~I. As far 
as we can see now, we have to live with this kind of ambi- 
guity, which is another case where there is not a unique 
lattice regularization for one and the same continuum 
quantity (the charged W )  - see 3 for more details. No- 
tice that, although we took some ideas from the unitary 
gauge discussion, we never fix a gauge. 

The W-2PF behaves in the Higgs phase like a W- 
propagator. It can be computed perturbatively. The 
large distance asymptotic value, i.e. the order parame- 
ter, is then zero. In the confinement phase, the W-2PF 
can be computed in the strong gauge coupling expan- 
sion. For large distances it goes to a nonzero constant. 
It is interesting to note that for large ~, close to the 
pure U(1) gauge theory (the limit ~ --* c¢), the finite 
distance behaviour of the W-2PF is similar to that of 
a gauge invariant matter-field-2PF in an ordinary U(1) 
gauge theory with a charged matter field. For small ~ we 
can also compute the W-2PF in the hopping parameter 
expansion. The interesting thing to note is that, modulo 
a factor of ~4, it is almost equal to the gluon E-field-2PF. 

We conclude that the generalized VOOP defined 
with the W-2PF is indeed a good order parameter, that 
is zero in the Higgs phase and nonzero in the confining 
phase. 

Up to now all the fields whose gauge invariant 2PFs 
we constructed had trivial transformation properties un- 
der the center of SU(2). Let us now couple an additional 
heavy 2-component (i.e. fundamental) matter field ¢.  In 
principle ¢ could be either bosonic or fermionic. Just for 
simplicity, let us assume that it is a scalar matter field 
of fixed length 1 (again this can be achieved by appro- 
priately tuning parameters in the potential part of the 
action). The action now gets an extra piece: 
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s ~ s - . '  ~ Re (¢=, u=,. ¢=+~) (s) 

(in this way we only have a 3-parameter phase diagram). 
The fact that ¢ is a heavy field implies that the hopping 
parameter ~' is small 2. For a small ~' we expect to 
have the same two phases as for ~' = O. Of course, for 
n'~: 0 the Wilson loop of the U's obeys a perimeter law 
throughout the whole phase diagram. The W-2PF on 
the other hand still goes to zero in the Higgs phase and 
to a nonzero value in the confinement phase. 

In the presence of the field ¢, the usual Higgs mech- 
anism discussion predicts a U(1)-charge-½ particle ~/ in 
the Higgs phase. Let us introduce the field 7/~ = v ( ~ ) ¢ = .  
Under h E H its first component, ~/+, has charge + } ,  
while its second component, 7/-, has charge - } .  The 
gauge invariant ~/-2PF is defined by putting in (1) a prod- 

! 

uct of u½(W) = D~½(W) on the strings, an r/+ at one 

endpoint and an 7/- at the other endpoint. In the Higgs 
phase it behaves like a particle propagator. One method 
to derive this conclusion is perturbation theory; another is 
the small ~t hopping parameter expansion, supplemented 
by the known behaviour of the u½-Wilson loops at ~ '=  0 
(perimeter law in the Higgs phase, area law in the con- 
fining phase - the degree of rigour to which this is known 
is the same as for the U-Wilson loops). In the confining 
phase, the expansion in n' can be used to show that at 
large distances the ~/-2PF goes towards a nonzero con- 
stant. 

The last 2PF we discuss is that for the field ¢ itself. 
It is defined by the original version of (1), i.e. by putting 
fundamental representation U's on the strings and ~'s at 
the endpoints. Using the small ~' expansion, it follows 
that at large distances the ¢-2PF goes to zero in the 
Higgs phase and to a nonzero constant in the confine- 
ment phase. A zero value indicates the existence of a 
charged state. As opposed to the T/particle, in the Higgs 
phase the ¢ is neutral under U(1), since we tried to cre- 
ate an electric flux of a type that is screened (see 3 for 
more details). On the other hand, the ~ transforms non- 
trivially under the center Z~ of the original gauge group. 
So we may have constructed a state carrying a center 
charge alone! There are no other examples in the liter- 
ature of such a state in models with nonabelian (not to 
speak of continuous) gauge groups. 

A computation, again in the small ~' expansion, of 
the ratio of expectation values of the total (multiplica- 
rive) Z2-electric flux at infinity in the candidate state for 
a charged ¢ and in the vacuum, gives 1 in the confining 
phase and -1  in the Higgs pase. This gives us confidence 
that, as far as we can trust the small ~ expansion, the 
conclusion about the Z~-charged state is correct. 

Apparently, there is a contradiction in this discussion 
of Z2-charged states. For a given closed surface, the 
exponentials of the (additive) totaI-U(1)-flux operators 
form a U(1) group. The totaI-Z2-flux operator, together 
with the identity, is a subgroup thereof. How can it be 
that for the candidate of a Z2-charged state the sub- 
group is represented nontrivially while the whole group 
is represented trivially? At least as presented here, this 
is a fake contradiction. As opposed to the ratios of flux 
expectation values, the total flux operators are not well 
defined when the surface becomes infinite. The reason is 
that particle-antiparticle fluctuations across the surface 
wash out the flux measurement, These operators need 
to be regularized, but for the regularized versions we have 
a priori no reason to believe that the relevant copy of Z2 
is still a subgroup of the relevant copy of U(1). 

As a next step have to compute the ¢-2PF in the 
Higgs phase using perturbation theory. We also have to 
investigate whether the U(1)-charged ~/ particle is also 
Z2-charged. Finally the relationship between the U(1) 
and the Z2 flux operators requires a more detailed treat- 
ment. 
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