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The gauge-invariant formulation of two-dimensional chiral U (N) gauge theories is analysed, for the special value of the regu- 
larization dependent parameter a where a close relation with the vector gauge theory, is known to exist. We show using the canon- 
ical quantizalion of the model that the theory, which consists of free right fermions and interacling left fermions at the classical 
level, is equivalent to an interacting vector gauge theory plus free massless Dirac fermions at the quantum level. Furthermore, we 
show that, after redefinition of the charge value, this equivalence also holds in the abelian case for values of the parameter a> 1. 
We also discuss the origin of the anomalous dimension at small distances found using the gauge-variant formulation of the abelian 
theory. 

In the last years, there has been a lot of  progress in 
the unders tanding  of  the behav iour  o f  two-dimen-  
sional anomalous  gauge theories.  Jackiw and 
Ra ja raman  [ 1 ] demons t ra ted  that  in spite of  the ab- 
sence o f  gauge invar iance the chiral  abel ian gauge 
model  is a consistent  and uni ta ry  theory provided  the 
arbi t rary  pa ramete r  a, that appears  in the regulariza- 
tion, does not  take values lower than one. Later  it was 
shown that  in the path  integral quant iza t ion  proce- 
dure [2] ,  the anomaly  is absorbed  while the group 
pa ramete r  of  gauge t ransformat ions  appears  as a new 
dynamica l  field, not  present  at the classical level [ 3 ]. 
In this framework,  the original formula t ion  o f  the 
chiral theory may be seen as a par t icular  gauge-fixing 
condi t ion,  the so-called uni tary  gauge [4] .  More  
progress has been made  in the quant iza t ion  of  the 
abel ian model ,  using path integral  methods  and the 
bosoniza t ion  procedure  [5] .  The theory admi ts  a 
complete  solut ion [6] .  The spectrum consists of  a 
massless and a massive state. The massive state is 
pseudoscalar  and is related to the e lectromagnet ic  
field strength ~"" in a s imilar  way to the massive state 
of  the Schwinger model  [7 ]. In the gauge-variant  for- 
mula t ion  of  the theory,  it was also demons t ra ted  that  
asymptot ic  lef t -handed fermions  exist in the theory 
[ 8 ]. Moreover ,  it  was shown, via the analysis  o f  the 
propagator  o f  the lef t -handed fermion,  that  the the- 
ory has an anomalous  d imens ion  at small  distances,  

in contradis t inct ion with the behaviour  of  fermions 
in the Schwinger model  where asymptot ic  f reedom 

takes place. These results show that  the chiral theory 
has new and interesting properties in comparison with 

the Schwinger model.  
However,  some evidence of  a close relat ion be- 

tween the vector theory and the a = 2 case of  the chiral 

theory has been found. It was not iced that  the gauge- 
invar iant  propagator  of  the left fermions and the 

gauge-invariant  effective act ion of  the gauge fields 
have the same expression in the chiral theory as in 

the vector  theory [ 9,10 ]. In the general nonabel ian  
case, s imilar  results were found in ref. [ 11 ]. There, 

we proved that  the structure of  the constraints ,  the 

equal- t ime gauge current  algebra, the gauge-invar- 

iant effective act ion of  the gauge fields and the gauge- 

invar iant  propagator  of  the left fermions coincide 

with the ones obta ined in the vector  theory. Similar  
results were obta ined  in the path integral framework,  

using the fermionizat ion of  the W e s s - Z u m i n o  field 
[10].  In this letter we will examine the canonical  

quant iza t ion  of  the U ( N )  theory in the a = 2  case and 

o f  the abel ian chiral  theory in a more general case, 
namely a > t. We will show that  a clear unders tand-  

ing of  the theory can be obtained,  once the hamil to-  
nian is wri t ten in terms of  currents. In addi t ion,  the 

origin of  the above-ment ioned  anomalous  d imension  
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of  the chiral theory at small distances will be 
discussed. 

Let us first recall the results found in ref. [ 11 ]. The 
lagrangian density of  the gauge-invariant formula- 
tion of  the theory in its bosonized version [12,13] 
reads 

ae2A.A" Ù~,g3"g- l 
5¢=Tr  - ~F~Fu~ + 8re + 8r¢ 

ie g -  13~g(g¢,, + el,~)A ~) 
41r + LPwz (g) 

+ T r ( G ~ 3 ~  ~ -  1 ( a -  1 ) ie ~uvgC~Vg- 1A ~ 
\ 8~r 4~r 

- ie ~,0,~- IA'(a4~z -- 1 ) ) + L~wz (~) , ( 1 ) 

where the same notat ion as in ref. [11] is used 
(Col = 1 ). Here the first part  of  the action is the bo- 
sonized version of  the gauge-variant formulat ion,  
while the ~ dependent  part  is obta ined directly f rom 
the part i t ion function of  the bosonized theory con- 
sidered in refs. [ 14,15 ], upon applying the Faddeev -  
Popov  gauge fixing procedure in the same way as in 
ref. [ 3 ]. Both parts of  the bosonic lagrangian have a 
Wess -Zumino  te rm that  we have symbolized with 
5~wz. 

From now on we will concentrate on the case a = 2. 
Following the Dirac quantization procedure [ 14-16 ] 
it can be shown that there is a set of  first-class con- 
straints in the theory, namely 

~g = o ~ ,  (2)  

(~, x, +eJo)~=og~,  (3)  

where ¢o~ is the Gauss law and Ju is the gauge cur- 
rent. The first-class structure of  the constraints is a 
reflection of  the gauge invariance of  the theory at the 
quan tum level. The hamil tonian of  the theory reads 

. . . . . .  [ ,, l ,~ I - A  o¢0 2 + Tr  - 27r(~T~T~) 

1 
q- ~ 0, ~01 ~ -  1 -- 2/r (7~Tg~Tg) 

+ OlgOlg -I 
8ZC 

+ e A l ( i ~ T g _ i g - ~ ' g )  
4Zr J 

( i ~ T  i g 0 1 g - ' ~ + e  2A~]  + e A , \  - ] 

) 
a a a a k  

+21¢ol +22o)2 f , (4)  

where rCo, rq, ~u and z~ u are the conjugate momen ta  
of  A0, AI, gu and gu, respectively. The physical states 
are defined as those annihilated by the first-class con- 
straints of  the theory. The spatial and temporal  com- 
ponent  of  the gauge current Ju have a simple expres- 
sion in terms of  the conjugate momenta ,  namely 

Jo = (i~Tg - ~g- 'O,g)  + (_ i~x+ i gOlg -1 )  i 
\ 4g 

(5) 

f A  1 
+ - -  (6)  ~r 

The equal-t ime gauge current algebra can be easily 
obtained from here, by using the nontrivial  Poisson 

brackets of  the conjugate momen ta  ~u and z~ u [ 14 ]. 
The equal-t ime current algebra is given by [ 11 ] 

[J~(x) ,J~(y)] t=i f~bcJ~(x)~(x ' -y ' )  , (7)  

[ J~(x) ,  J~(y) ]t = if~t~JC~ ( x ) 6 ( x  1 _ _ y l  ) 

i~,b,~(X ~ __yl) 
+ , (8) 

7E 

[J~(x) ,J~(Y)] t=i f~b~J~(x)~(xl-y l ) ,  (9)  

or, defining J+ = ½ (Jo -+Jl ), by 

[J~ ( x ) , J~ (y ) ] t  =i~b~Jq(x)~(xl--y  ' ) 

+ i ~ b ~ ( x l - - Y  I ) 
- -  2 ~  ' 

(10) 

[ J~+ (x), Jb_ (y) ]t =O . (11) 
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In ref. [ 1 1 ] we continued the quantization by going 
to the unitary gauge. This allowed us to prove the 
equivalence of  this formulation with the gauge var- 
iant formulation. In this work we will keep the first- 
class structure of  the constraints, because in this way 
it is easy to compare our results with the ones ob- 
tained in ref. [ 1 1 ] for the vector theory. The hamil- 
tonian, eq. (4),  may be expressed in terms of  the 
gauge currents J_  and J+ as 

H =  f dx'{[l . . . . .  ~nl 7~ --AoO) 2 +n(J%J~+ + J _ J _  ) 

+ 2 1 o ~ + 2 2 ~ o 2 ] + [ n ( G + G %  + G  a a . . . . . .  _ G _ ) ] }  (12) 

In the above we have introduced the currents G+ and 
G_, whose expression in terms of  the fields and their 
conjugate momenta  is 

~nng 0 ~  , (13) 

G_ = ( - - i g ~ T +  ig0,g-t)4n " (14) 

The hamiltonian is positive, when acting on physical 
states. It should be noticed that the currents G+ do 
not depend explicitly on the gauge fields. These new 
currents commute  with n~, with the gauge currents 
and with the constraints o f  the theory. That  is to say, 
they are gauge singlets. On the other hand, they sat- 
isfy the following algebra: 

[G~ (x),  G'~- (y) It = i f ,  bcGC+_ ( x ) g ( x ' - - y ' )  

+ igabOiC~(xl--Y')  (15) 
- 2 n  ' 

[G~_ (x) ,  G b _ (y) ] = 0 ,  (16) 

which is the algebra of  free fermionic currents [ 12 ]. 
The hamiltonian is given as a sum of  two parts, that 
commute  with each other. We will call the first 
expression between square brackets in eq. (12) HI 
and the second expression between square brackets 
H2. The time evolution of  the currents G+ is given 
only by H2. Taking into account the current algebra, 
eqs. (15),  (16) ,  we see that the second part o f  the 
hamiltonian is nothing but the hamiltonian of  a con- 
formal invariant theory o f  free massless fermions, 
given in the Sugawara form. 

A complete understanding of  the theory is ob- 
tained if we remember the results obtained in ref. 
[ 11 ] for the vector U ( N )  theory. There we showed 
that the equal-time gauge current algebra and the 
structure of  constraints of  the vector theory are iden- 
tical to the ones we obtained in the chiral theory, eqs. 
(2),  (3),  (10),  ( 11 ). The hamiltonian of  the vector 
theory may be given in terms of  the gauge current as 

H =  f d x  I [!  . . . .  _ A ~ o g ~ + n ( y + j ~ +  + j ~  2 " 1 " 1  _ J _ )  

+27o~7 +2~o9~]. (17) 

This expression coincides with the one we obtained 
for the first part of  the hamiltonian of  the chiral the- 
ory, Hi. Moreover, the equal-time commuta tor  of  the 
gauge currents with n~ and with the constraints of  the 
theory also coincides with the one obtained in the 
vector U ( N )  theory. From the structure of  the con- 
straints, the equal-time algebra of  currents and the 
expression of  the hamiltonian we can conclude that 
the quantum theory of  the nonabelian a = 2  chiral 
U ( N )  theory in two dimensions is equivalent to a 
vector U ( N )  theory, plus free massless Dirac 
fermions ~ 

This result can be extended to the general a > 1 case 
of  the abelian theory. In this case the hamiltonian 
[ 1 1 ] of  the theory is given by eq. (12) when a rede- 
finition of  the charge in the Gauss law is made, namely 

ado 
c o 2 = 0 1 n , + e 2  a ~ - l "  (18) 

Moreover, after the above redefinition o f  the 
charge, the current algebra and the equal-time com- 
mutator  of  the gauge and free currents with n~ and 
the constraints are the same as the ones in the a =  2 
chiral theory. The gauge and free currents in terms of  
the conjugate momenta  read a2 

i ) 
a " 4n~ g - l O l g  

+ ( _ _ i ~ T +  igc31g- l ) ]  
4n J ] '  (19) 

~ Indications of this equivalence have been given previously, by 
totally different methods, in ref. [ 10]. 

~: In the abelian theory the following relations are fulfilled: g=¢O, 
ifcXg=igfrV=no, ig01g - l=  --ig-~O~g=O~O. Similar relations are 
fulfilled for g=e i~. 
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Jl -- 4x/~a~- 1 ) i2Vg-i  
a 

( i~;~T i~0l~- I ( a -  1 ) ) a _ ~ -  l- 4~- 

eAla2 ] (20) 
+ 4n(a--  1 )  ' 

G_ = ( - - i g ~ T +  igO,g-')4~ ' (21) 

G + - a - 2 a  ( i ~ s g - i g - 1 0 1 g ~  J 

+ (2i~v~ 2 ( a -  1 )i~-'0,~4zca j . (22) 

Thus, after a redefinition of the charge, the equiva- 
lence of the abelian chiral theory with the vector the- 
ory plus free fermions is preserved. The physical 
spectrum of the abelian theory consists then of a 
massless state and a massive state of mass m 2= e2a 2/ 
4z t (a -  1 ). The gauge and free currents couple only 
to the massive and massless states respectively. As in 
the vector theory, the screening phenomenon also 
takes place in this theory, and only charge-zero states 
are observed in the spectrum. 

One must explain the origin of the anomalous di- 
mension at low distances found in the theory in its 
variant formulation. This behaviour appears para- 
doxical from the point of view of the above equiva- 
lence with the vector gauge theory plus a free fermion 
theory. On the other hand, it seems likely that one 
could be able to identify the asymptotic fermionic 
states found in the gauge-variant formulation with the 
free fermions of the theory discussed above. 

Before proceeding with the analysis of the fermion 
propagator, let us show how one can reinterpret the 
two poles of the gauge boson propagator in the uni- 
tary gauge of the abelian theory. In the unitary gauge 
the additional constraints 

( iRa,R- ' )  = (o03), (23) 

(_iB~s_ e(a-1)Ao eA' ) 
4~ 4~z = (~04) (24) 

must be imposed on the theory.The constraints are 
now of second class and, following the Dirac proce- 

dure, the relation o0i = 0 should be imposed at the op- 
erator level. Then, A_ and A+ may be rewritten in 
terms of the physical currents J+ and G+ as 

(Ao -AI  ) J_ 
e 4 ~  - ~ '  (25) 

(Ao+AI) ( a - 2 ) J +  2G+ 
- ( 2 6 )  

e 422 a (x/Ta-- 1 ) a 

Thus, the correlation function of the vector field in 
the unitary gauge must show the existence of both the 
massive state of the equivalent vector gauge theory 
and of a massless, asymptotic, state. This is, in fact, 
what was obtained in ref. [ 1 ]. Let us discuss this is 
more detail. In momentum space, the correlation 
function of the gauge bosons in the unitary gauge 
reads [ 1 ] 

/ ) ie 2 
T 41r~A,"(x)A"(O) (k)= (k2_m-2) 4re 2 

X (  - g ~ " +  a--ll { [ k ~ k " ( ~  k 2 ) ]  

+ k ~ + k 2 ) J '  

where we have included the factor e2/4zc 2 for future 
purposes and m 2 =e2a2/4lr(a - 1 ). From now on we 
will define x~{ =x,,(g~'+ e ~'). The correlation func- 
tions ofAU+ andA ~ are 

/ T  e2 L(O)l(k ) ~5~2A~ (x) A 

ik¢, kL 
= (28) ~(k2-m2)(a-1) ' 

IT e2 "+(0)) ~2A%(x)A (k) 

i4k~+k~+ i(a-2)2kU+k~+ 
-- g a Z k  ~ + ~ z ( a -  1 ) a 2 ( k Z - m  2) " (29) 

Eqs. (28), (29) are consistent with the operator re- 
lations given in eqs. (25), (26). In fact, after being 
multiplied by constant factors the correlation func- 
tion of A_ is nothing but the correlation function of 
the right-handed gauge current in the vector theory 
[17], while the correlation function of A+ is a sum 
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of correlations of a free left-handed current and a left- 
handed gauge current in the vector theory. The factor 
that appears in front of each term is in complete 
agreement with eqs. (25), (26). 

Let us return to the original fermionic version of 
the theory. The partition function of the model reads 
[5] 

~= f ~A¢, ~c~ ~ u  ~ q / e x p ( i S ) ,  (30) 

and the action S of the model is given by 

s =  f d 2 x (  - - '  ~'~'"~'4- .1,v +iq)@L~/4- (a--1)(O1'°z)28g 

Hv ) _eA~,[g ( a -  1) +e~"]0,c~ 
4zr ' (31) 

where 

~L(R) =0--ie~l ( 1 -  7S)2 ( ~ - i e d  (1 2 7 ' ~ )  ) 

and 7~'7s = E~'"7,. The field c~ is related to ~ by ~ = e  ~". 
In this formulation, the gauge variance of the Wess- 
Zumino action is exactly canceled by the jacobian of 
the fermionic measure 2~, [ 18 ] under gauge trans- 
formations. As we have already said, the first proof 
of  the existence of asymptotic fermion states in the 
theory was given by computing the correlations of the 
physical, composite operator [ 8 ] 

~u~ h'~" = ~VL, ( 32 ) 

which is neutral under gauge transformations. In the 
abelian chiral theory, one can define the new physical 
currents 

G,,=~I,,G , (33) 

and the charges 

Qf= f Goe.,:', Q~= f GSo dx'. (34) 

Here j5 corresponds to the gauge-invariant chiral 
current in the vector theory and Q~ and Q~ generate 
global vector and chiral transformations in the free 
fermion sector. It follows from the hamiltonian and 
the current algebra that 

0'J~,= 2 2~r ' 

a,,J,, = a,,a,, = a',a~, = 0 ,  (35) 

in complete agreement with the equivalence proved 
above. The theory is invariant under the global trans- 
formation generated by Qr and Q~. From the expres- 
sion of G +, eqs. (21 ), (22), we see that g transforms 
as g~exp[i(a--2)flL/a--iflR]g under this global 
U( 1 )L®U( 1 )R symmetry, while ~--,exp(i2flL/a)~. 
From the bosonization procedure [ 6 ], it follows that 
the transformation properties of ~u are given by 
~,L--,exp[i(a--2)flL/a]~vLand ~'r~exp(iflR)~vR. This 
global symmetry is part of a restricted local symme- 
try of the theory, which is obtained by promoting the 
global phases fit and fir to local phases flt.(x_ ) and 
fir (X+). This is a generalization, for all values ofa  > 1, 
of the restricted local symmetry found in the a = 2  case 
[10]. This restricted local symmetry reflects the 
presence of free massless left-handed and right- 
handed fermions in the physical spectrum of the the- 
ory. Unlike the right-handed free fermion, which is 
identified with q/R, the left-handed free fermion op- 
erator cannot be identified with any field appearing 
explicitly in the lagrangian density. However, its 
expression may be obtained from a correct identifi- 
cation of the physical operators of the theory, in a 
way similar to the analysis made in ref. [ 6 ]. 

It also follows from the bosonization procedure [6 ] 
that ~u~ hy~ carriers the quantum numbers of  a left- 
handed fermion in the free sector and ( 2 / x / a - I )  
units of chiral charge in the interacting sector. The 
transformation properties of ~,phys. suggest to Us the 
following picture: The composite field q~hys. (X) is 
given by a local product of a physical, left-handed free 
fermion and a bosonic, physical operator which has 
no dependence on the free fermion fields. The corre- 
lation function of the composite fermion is given as 
a product of the correlation function of the free left 
fermion and the correlation function of the bosonic 
operator in the equivalent vector gauge theory. The 
scaling behaviour at small distances of the bosonic 
operator appears as an anomalous dimension in the 
gauge-variant formulation of the theory. Further- 
more, the quantum numbers of ~h>s., together with 
the operator relations, eqs. (25), (26), explain the 
commutation relations 
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2i 
- -  - -  ~ h Y S ' ( X ) C ~ ( x l - - y l )  , (36) 

( a - l )  

found in the unitary gauge of the abelian theory [ 10 ]. 
From now on we will concentrate on the a = 2 case. 

We will follow another strategy to analyse the behav- 
iour of the propagator of the composite fermion. We 
will fermionize the Wess-Zumino term. This was al- 
ready done a few years ago in ref. [ 19 ] and also more 
recently in ref. [10 ]. The lagrangian density of the 
equivalent fermionic theory reads 

&o= i~7~L ~t+ iqTwz ~,wz, ( 37 ) 

where we have called ~wz the fermion that appears 
from the fermionization of the Wess-Zumino field. 
Both fermion theories are gauge invariant at the clas- 
sical level. At the quantum level one must introduce 
regulators for both interacting fermion theories. 
Consistent regulators for both sectors can be shown 
to preserve the gauge invariance at the quantum level 
of the whole theory ~3. The jacobian under chiral 
gauge transformation of the left-handed fields ~uL is 
exactly canceled with the one that comes from the 
right-handed fields ~u wz. The theory acquires then a 
left-right gauge symmetry at the quantum level. The 
gauge-invariant effective action of the gauge fields 
coincides with the one obtained in the Schwinger 
model [ 11 ], while the left-handed field q/wz and the 
right-handed field ~t R propagate as free massles fer- 
mions. In other words, the theory is equivalent to a 
vector gauge theory plus a free Dirac fermion as we 
have shown above. 

For studying the correlation function of the com- 
posite field q/~hys in the framework of the fermionic 
theory we must follow a correct fermionization pro- 
cedure that allows the identification of bosonic op- 
erators in terms of fermionic ones. The operator cor- 

responding to ~ in the fermionic theory is given by 

~?= K~WZ q/wz, ( 38 ) 

where K is a renormalization mass that depends on 
the normal-ordering prescription [6]. The correla- 
tion function may be obtained from the usual path 
integral expression. Due to the local left-right sym- 
metry of the theory, one must regularize the local 
product in eq. (32) in a gauge-invariant way. It is 
now easy to see that the correlation function of the 
composite, gauge-invariant fermionic field factorizes 
in a part corresponding to the left-handed free fer- 
mion gt wz and a part that depends on the interacting 
fermion fields as follows: 

(T  ~phys ' (x )  @~hys'(0) ) 

= ( (T)~R ( x ) z L ( x )  ~L(0)Z~(0) )SM) 

× (T  ~WZ(x)q~wz(0)), (39) 

where ( O )  SM means that the correlation is the same 
as the one in the Schwinger model and we have omit- 
ted a normalization constant. The last term in eq. 
(39) is the propagator of the free left fermions, while 
the first factor was calculated in ref. [ 17 ]. The final 
result is then, apart from a renormalization constant, 

(T  ~g~hys" (X) ~/~hys" (0 ) )  

= ( e x p [ i 4 n A F ( x  2, m 2 ) ] )SL(X, 0 ) ,  (40) 

which coincides with the result obtained in ref. [ 8 ]. 
The correlation function of the composite field 
~u~ hys corresponds to a sum of correlation functions 
in which one free massless left fermion and any num- 
ber of free massive bosons (0, 1,2 .... ) are exchanged 
between the points 0 and x. Thus, in the a = 2 case of 
the chiral theory, the anomalous dimension of the 
operator ~u~ hyS is a consequence of its compositeness. 
In fact, the anomalous dimension observed in the 
gauge-variant formulation is given by the well-known 
scaling behaviour of the operator ~r~ZL in the equiv- 
alent vector gauge theory. The asymptotic state is a 
left-handed free fermion, as suggested by our pre- 
vious discussions. 

~3 Using the point splitting method, the bosonic sector in eq. (31) 
( a=  2 ) is equivalent to the fermionized WZ theory, only if the 

~R (X--~/2)~ [ e x p ( l e f x _ , / 2 A + d x ) ]  regularization -wz u • x + , / 2  

X q/wz (x + e/2 ) for the right-handed current in the q/wz theory 
is used. 
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