
Z. Phys. C - Particles and Fields 44, 213-225 (1989) 
Zeitschfiff ~ ' c ~ i c ~ s  I~r Physik C 

and 
�9 Springer-Verlag 1989 

Electroweak baryon number violation at finite temperature 

J. Kripfganz*, A. Ringwald 
Deutsehes Elektronen Synchrotron DESY, D-2000 Hamburg, Federal Republic of Germany 

Received 16 January 1989 

Abstract. We consider baryon and lepton number 
violating processes in the electroweak theory induced 
by gauge and Higgs fields passing the sphaleron 
solution at finite temperature. We show that for 
temperatures larger than 19GeV the anomalous 
baryon and lepton number violating processes are 
suppressed by the Boltzmann factor exp(-flEsp), 
where E~p is the sphaleron energy, rather than by the 
instanton tunneling factor exp ( - 8n2/g2). We caculate 
the rate of baryon and lepton number violating 
processes at finite temperature and determine the 
freezing temperature of the anomalous processes in 
the early universe as a function of the Higgs mass. We 
compare the freezing temperature with the critical 
temperature of the electroweak phase transition 
infered from the one-loop finite-temperature effective 
potential. We obtain a critical Higgs mass of the order 
of 100 GeV, slightly depending on the top mass and 
the magnitude of the pre-exponential factor in the rate 
of the B non-conservation, above which the anomalous 
processes are certainly in equilibrium after the 
electroweak phase transition. Assuming that the 
temperature-dependence of the sphaleron energy is 
given by that found from the one-loop finite- 
temperature effective potential, this critical Higgs mass 
is lowered to a value of the order of 50 GeV. 

1 Introduction 

Baryon and lepton number are not conserved at 
quantum level in the standard electroweak theory [1]. 
In fact, if gauge and Higgs fields fluctuate over the 
barrier between topological inequivalent vacua [2, 3] 
which are characterized by different winding numbers 
then due to the anomaly [4, 5] of the baryon and 
lepton number currents (unless otherwise stated we 
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take the limit 0w = 0) 
g2 

~,J~ = ~,J~ = - f o  1~2n2 tr (F~vF*~'"), (1.1) 

wherefo is the number of generations, ~*) " Fu,., is the (dual) 
SU(2) field strength, there will be baryon and lepton 
number violating processes according to the selection 
rule 

B(t2) -- B(tO = L(t2) - L(tx) = -foQ(ta, t2). (1.2) 

B (L) denotes the number of baryons (leptons) minus 
the number of anti-baryons (anti-leptons), and Q(tl, 22) 
denotes the winding number difference between two 
spacelike hypersurfaces at equal time (t 1 and t2) 

n 2 t2  

Q(tl, t2) = ~ S dt ~ d3x tr (ru~r*u*). (1.3) 
16n t, 

From (1.2) it is clear that B - L is conserved whereas 
B + L is violated. 

At zero temperature B + L violating processes are 
associated with instantons which describe tunneling 
between vacuas and are therefore exponentially 
suppressed by the euclidean action S~ = 8 7 ~ 2 / 0 2  [1]. 
This makes the effects unobservably small . .  

However at high temperatures the situation seems 
to be different. A key role in the calculation of B + L 
violating processes at high temperatures plays a new 
static, but unstable solution of the fundamental S U (2) 
Higgs theory [6-10], called sphaleron [10], which 
correspond to a saddle point configuration of the 
potential between two topological distinct vacua 
[9, 10]. It has been argued by Kuzmin et al. [11] that 
thermal fluctuations cause classical transitions from 
one vacuum to another passing via the sphaleron. The 
effects of the sphaleron should be suppressed by the 
Boltzmann factor exp( - flEsp), where Es~ = (9(mw/o:w), 
rather than by the factor exp ( - 8 7 ~ 2 / g 2 ) .  Arnold and 
McLerran [-12] and one of us (A.R.) [13] have 
estimated the prefactors before the Boltzmann factor 
and have confirmed the observation of Kuzmin et al. 
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[11] that the rate of B + L violating processes exceeds 
the Hubble expansion rate of the universe at 
temperature above (9 (200) GeV. 

An important question is at which temperature 
the transition between instanton dominated and 
sphaleron dominated baryon and lepton number 
violating processes appears [14]. A preliminary 
investigation of this question can be found in [15]. 
We derive a formula which can be used at all 
temperatures and which includes both quantum 
tunneling and classical thermal transitions. 

Another important question is the dependence of 
the freezing temperature of the anomalous processes 
on the Higgs mass. This has to be compared to the 
critical temperature of the electroweak phase transi- 
tion. It is possible to define a critical Higgs mass merit 
in that way that for a Higgs mass larger (smaller) than 
re,it the anomalous processes are in (out of) 
equilibrium after the electroweak phase transition. The 
value of merit is important for the following reason: if 
mn< re,it then all the baryon asymmetry of the 
universe (BAU) generated by the B -  L conserving 
decays of leptoquarks in grand unified theories has 
been washed out to the freezing moment of the 
anomalous electroweak processes [ 16]. In the opposite 
case a part of the BAU proportional to the ratio of 
the mass square of the heaviest lepton to the freezing 
temperature survives [16]. In addition, it was pointed 
out by Shaposhinkov [17] that the BAU can be 
produced already in the standard electroweak theory 
if the phase transition is of first order. This requires 
a non-trivial degeneracy of the high temperature 
ground state with respect to the Chern-Simons 
number. The BAU generated in this way survives to 
the present time only if the Higgs mass satisfies the 
upper bound mu < merit. A strikingly low value of 
about 45 GeV has been given for merit [18]. A Higgs 
boson in this mass range should be observed relatively 
soon at LEP, however. Therefore it seems to be very 
important to point out clearly, to what extend this 
estimate of mc~it could be trusted. 

The bound on merit [18] has been obtained on the 
basis of various assumptions. The starting point is a 
high temperature approximation for the one-loop 
temperature-dependent W-mass which is obtained 
by the replacement of mw = (1/2)gv by the effective 
mass row(T)= (1/2)g(T)v(T) where the temperature- 
dependent expectation value v(T) follows from the 
one-loop finite-temperature-effective potential. The 
temperature-dependent barrier height between neigh- 
bouring topologically inequivalent vacua is obtained 
from the sphaleron energy by replacing m~ and ~w 
by their temperature dependent running values 
[11-13, 18]. This is the crucial assumption which is 
not justified in general. For the 1 + 1 dimensional 
Abelian Higgs model it has been shown [19] that this 
procedure does not reproduce the correct coefficient 
of the leading one-loop term proportional to T. This 
could be a consequence of the severe infrared problems 

of this model and one could argue that this result is 
irrelevant for the 3 + 1 dimensional theory. In this case 
the leading temperature contribution would indeed 
arise if the one-loop free energy of the sphaleron is 
evaluated as a weak-field expansion in powers of the 
external field. This temperature-dependent term is 
directly related to the quadratically divergent 
contribution. However, the appearence of an unstable 
mode for fluctuations around the sphaleron indicates 
that the weak-field expansion presumably breaks 
down before the sphaleron is reached. To clarify this 
problem a direct calculation of the one-loop free 
energy for a sphaleron background is urgently needed. 
For the special case of spherical symmetric fluctua- 
tions of the gauge and Higgs fields such a calculation 
has been carried out [20]. In this case only a weak 
temperature dependence is found, but this does not 
finally settle this question since there is also no 
quadratic divergence in this approximation. In order 
to determine the influence of the temperature- 
dependence we calculate the rate of the anomalous 
processes with the zero temperature W-mass as well 
as with the temperature-dependent W-mass found 
from the effective potential. 

Apart from the temperature-dependence of the 
barrier height a substantial uncertainty arises from the 
fact that not much is known on the order of the electro- 
weak phase transition and the critical temperature. 
This information should eventually become available 
from numerical lattice studies. Results available so far 
[21, 22] do not indicate a first order transition but it 
is presumably too early to draw definite conclusions. 
In particular, one should not base estimates of limits 
on the Higgs mass too strongly on the value of the 
critical temperature found from the one-loop finite- 
temperature effective potential. 

In order to get the critical Higgs mass one needs 
the freezing temperature of the anomalous processes 
and the critical temperature of the electroweak phase 
transition as a function of the Higgs mass. We get an 
upper bound me~it=97(l13)GeV for a top mass 
mt= 44 GeV (mr-~ rnw), with an uncertainty of a few 
percent due to an unknown constant in the 
pre-exponential factor in the rate of the anomalous 
processes, if we work with the zero temperature 
W-mass and assume that the one-loop finite- 
temperature effecitve potential correctly gives the 
critical temperature. If we use the temperature- 
dependence for the W-mass found from the one-loop 
effective potential this upper bound is lowered to 
merit = 47(48)GeV, in accordance with [18]. 

The paper is organized as follows: In Sect. 2 we 
review the spherical symmetric ansatz in the 
fundamental SU(2) Higgs model [20,23,24]. The 
sphaleron as well as the unstable eigenmode of the 
second functional derivative of the static Hamiltonian 
are spherically symmetric. We represent a simple 
variational ansatz for the sphaleron radial functions 
with the help of which many analytical results can be 



obtained. We consider massless left-handed fermions 
in a spherical symmetric background field which 
passes the sphaleron adiabatically. We show that there 
exists a normalizable solution of the Dirac equation 
where the energy of the solution crosses zero as the 
background field passes the sphaleron. This level 
crossing gives a physical interpretation of the anomaly 
(1.2) [25-28] and demonstrates the importance of the 
sphaleron for the anomalous processes. In Sect. 3 we 
specialize the path passing the sphaleron. We consider 
the energy functional along the unstable eigenmode 
in the sphaleron background found in [20]. In this way 
we obtain a one-dimensional potential barrier which 
has the form of a double well. This has to be overcome 
by quantum or thermal fluctuations. We calculate the 
winding number difference between configurations 
which sit on the minima of the potential and the energy 
of the normalizable solution of the Dirac equation in 
the background field. In Sect. 4 we calculate the 
one-dimensional transition rate over the potential 

.barrier found in Sect. 3. It is observed that for 
temperatures below To =~2/2g, where ~2 is the 
magnitude of the negative eigenvalue of the unstable 
mode, the transition is dominated by quantum 
tunneling whereas for T >  To thermal transitions 
dominate, in accordance with the general considera- 
tions in [29]. The transition region is very narrow. In 
Sect. 5 we generalize the results to field theory. We 
take into account the normalization of the zero modes 
in the sphaleron background which can be calculated 
analytically with the help of the variational ansatz for 
the sphaleron radial functions from Sect. 2. We show 
where the effective temperature-dependence of the 
sphaleron energy arises in our formalism and point 
out that it is not strictly proven that it is the same 
temperature-dependence which follows from the 
one-loop finite-temperature effective potential. In 
Sect. 6 we calculate the rate of anomalous B and L 
violating processes for the case ofa B - L = 0 universe. 
We determine the freezing temperature of the 
anomalous processes as a function of 2/g 2, where ;t is 
the Higgs self coupling and g is the SU(2) gauge 
coupling. We compare the freezing temperature with 
the critical temperature obtained from the one-loop 
finite-temperature effective potential and get, as 
already quoted, mr 97(113)GeV, if we use the zero 
temperature W-mass. This represents actually a quite 
save upper bound on the critical Higgs mass. Using the 
temperature-dependence found from the one-loop 
finite-temperature effective potential we establish the 
result of [18], mr = 47(48)GeV. Section 7 contains 
the conclusions. 

2 S p h e r i c a l  s y m m e t r i c  a n s a t z  

We consider the fundamental SU(2) Higgs theory, 
given by the Lagrangian density 

= - �89 ) + (Duq))*DU~ - 2 @*cI) - 2 ,] ' 

(2.1) 
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where 

F,~ = ~?~W~ - ~ W  u - ig[W~, W~], (2.2a) 

W u = ( r a / 2 )  W ] ,  (2.2b) 

Dr = ~? u - i9 W,. (2.2c) 

The general spherical symmetric ansatz in the 
temporal gauge (Wo = 0)is [20, 23, 24] 

1 [ 1 - fa(r, t) (n x r) + fB(r' t ) ( r -  (nr)n) 
W ( x ,  t) = r 

+ fc(r, t)(n r)n], (2.3a) 

(0,) 
rI)(x, t) = ~ [H(r, t) + K(r, t)i(nr)] , (2.3b) 

,/2 

where n = x/r. 
The field equations for H, K, and fi, i = A, B, C, can 

be found in [20, 23, 241. They follow either directly 
by inserting the ansatz (2.3) in the general field 
equations obtained from (2.1), or by variation of the 
effective Lagrangian, which can be found by inserting 
(2.3) in (2.1), 

4n~ f "2 "2 rZ "2 L = ~  ! d r l f  A + f , + ~ f c  + 2m~r2[ Ii2 + 1~2] 

_2mZr2[(H, +�89 +(K, ~fcH ) 2 

1/-IA+ KI.- Kt2] 

(m'rnn)22 r2(H2 + K2 - 1)2 } , (2.4) 

where m~=(1/2)gv and rnH=,v/2-2v denote the 
classical W-boson and Higgs boson masses, respec- 
tively. A dot denotes the derivative with respect to t 
and a prime denotes the derivative with respect to r. 

The sphaleron [6-10] corresponds to 

fa(r, t) =f~V(r) = 1 - 2f(r), 
K(r, t) = KSp(r) = h(r), 

fsp __ f sp  __ L/sp B - ~ c  - "" - 0 ,  ( 2 . 5 )  

where the functionsf(r) and h (r) have to be determined 
numerically. A simple variational ansatz for f and h, 

(2.6a) f(~) - ~2 + a 2' 

h(~) - (2.6b) 

where ~ = m~r, gives for the sphaleron energy 
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E ~ p ( a , b ) = [ 3 + b + a  1 + 
[_4a 8 aJ  ~ ] ~ "  

(2.7) 

The sphaleron represents a minimum of the energy 
functional for fields restricted to the ansatz (2.5). The 
values of the variational parameters a and b which 
minimize the energy (2.7) are given in Fig. 1. In Fig. 2 
we have plotted the corresponding sphaleron energies 
from (2.7), for comparison the numerical results, E hum 
[10,24], and El, n~ which has been obtained gy 
�9 . P . 

lnterpolatmg the numerical results. The latter values 
for the sphaleron energies will be used later on for the 
calculation of the rate of the anomalous processes. As 
can be seen, the trial functions (2.6) give reasonable 
approximations to the sphaleron radial functions, and 
the sphaleron energies agree with the numerical results 
within a few percents. The advantage of our ansatz is 
that we have a closed expression with the help of which 
we can do some analytical calculations (see below). 

Now let us consider gauge and Higgs fields which 
pass the sphaleron [20] 

f A(r, t) =f~lP( r )  + rc~ A(r , t), 

f B(r, t) = rc~B(r , t), 

f c(r, t)= ,J/2dpc(r, t), 

1 
H (r, t) - w/~m~ dpn(r, t), 

1 
K(r, t) = KSp(r) + 7 qSr(r, t), (2.8) 

,,/2m~ 

where r i =  A . . . . .  K obey the boundary conditions 
r~b~+0 for r + 0  and ~b~--,0 for r-- ,m. The 
normalizations of ~b~ are chosen such that the kinetic 
Hamiltonian for the modes passing the sphaleron is 
given by 

4n r2 dr ~ . (2.9) 
Hkin = ~ 0 i=A t 

' '  . . . . . . .  I ' ' ' " ' " 1  ' ' ~ ' " * ' 1  . . . . . . . .  I ' . . . . . . .  I ' ' "  . . . .  

a 

. . . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . . .  I " " , - / ,  ~ ' , T , H -  - r " ~ - H  + ,  

10 -a 10 -= 10 -~ 1 10 10 2 10 3 

Fig. 1. Sphaleron variational parameters 
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Fig. 2. Sphaleron energy. The solid line corresponds to the 
variational result (2.7), the circles are the numerical results 1-10, 24], 
and the dots represent the interpolation of the numerical results, Eis~ t 

Consider the Dirac equation for a massless doublett 
in the background (2.3a) and (2.8), 

ia" (O u - ig Wu) ~b L = O, (2.10) 

where a u = (1, tr) acts in spinor space. It has been 
shown [30,31] that (2.10) has a normalizable zero 
energy solution in the background of the sphaleron 
(2.5), i.e. for q5 i - 0. It has the form 

~(o) = ea,u(r), (2.11) Lao: 

where ~ = 1, 2 and a = 1, 2, are spinor and weak isospin 
indices, respectively, u(r) is given by 

2 r dr ' f (r ' )  , 

where N is some normalization constant. With the 
help of the trial ansatz (2.6a) we obtain 

p2 
- -  ( 2 . 1 3 )  u(r) = N r2 -q- p2 '  

where p = a/mw. 
Now assume that the background fields which pass 

over the sphaleron are adiabatically changing in time. 
We take the ansatz 

eL(X, t) OC exp ( - iE(t)'t) (2.14) 

and obtain from (2.10) 

ia(O - igW(x, t)0 L = E(t)~ L. (2.15) 

From first order perturbation theory it follows that 
there exists a normalizable solution of (2.15) with 
energy 

(o) (o) 
Ef( t )=  <OL Igo'&WlOL ) =  

,1,(o) d,(O) % 
W L  W L  / 

r 2 dr(ac(r , t)u2(r) 
1 o 

 r2 ru2(r) 
0 

(2.16) 



where gW = W -  W ~p. The fermionic energy crosses 
zero as dpc(r,t ) crosses the sphaleron (~bc- 0). The 
physical interpretation of (2.16) is clear. If Ei( t  ) crosses 
zero from below (above) fermions (anti-fermions) are 
created by the time-dependent background field. 

In general this level crossing is expected to occur if 
the winding number difference (1.3), which is given in 
terms of our ansatz by [23] 

Q(tx ,  = dr{f f'. -fc(f  - 1)} 

(2.17) 
is nonvanishing [25-28]. 

3 A one -d imens iona l  potent ia l  barrier 

We want to calculate the rate at which the gauge and 
Higgs fields pass the sphaleron. In this section we 
construct gauge and Higgs field configuration which 
describe the creation and decay of the sphaleron in 
the vicinity of the sphaleron. Thereby we obtain a 
one-dimensional potential barrier which has to be 
overcome by quantum or thermal fluctuations. 

The linearized field equations for the ansatz (2.8) 
possess an unstable eigenmode in the channels B, C 
and H [20]. There is no unstable mode in the 
sphaleron channels A and K. This is already clear from 
the fact that the sphaleron is a minimum of the energy 
functional for fields restricted to the ansatz (2.5). The 
creation and decay of the sphaleron in the vicinity of 
the sphaleron therefore happens in the directions B, C, 
and H. For this reason we argue that the following 
ansatz describes the decay of the sphaleron at early 
times: 

f A (r, t) = fsAP (r), 

f s(r, t) = c(t) f~-)(r), 
f c(r, t) = c( t) f(c- ) (r), 
H(r, t) = c(t)H (- )(r), 
K(r, t) = KSP(r), (3.1) 

where the ( - )  indicates the unstable modes, which 
are normalized according to [20] 

! dr f(-)2 + 2- f(c-)2 + 2m~r2H(-)z = m ;  1. (3.2) 

With the help of this ansatz we obtain from (2.4) the 
following effective Hamiltonian for the variable c(t): 

H = M dE + V(c), (3.3) 
2 

where the effective potential is given by 

V(c) = - ~zx .-,2 .~uc. 2 + �88 4 + E~p. (3.4) 

With the help of(3.2) we find for the effective "mass" 

M = g 2  ~ 
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87z 
- ( 3 . 5 )  

g2mw" 

The parameters .0 and A in the effective potential are 
related to the following integrals 

I2fsP, f ( - ) f ( - )  - . 0 2 = m w ~  dr a Jn  Jc  

+ ( f 7 ) '  + (f ; ,p2 - 1) 

+ 2m~rZ[(H (-)' + 1 /c(-)Ksp]2 
2JC ~ / 

+ 1 (H(_)fsp + KSpf~_ ) _ H(_)) 2 
2r 2 ~ aA 

f(n-)Ht-)K~P ] 
st, (-) (-) ( f ~  + 1) - K  fc  H r2 

+ (mwmu)2rE(Ksp2 _ 1)H (-)2 }, (3.6) 

A = 2 m ~ ! d r  f T ) 2 f ( c - ) 2 + k  f(n-) 4 
2r 2 

- . . . w -  . .  2 r  2 

lm2 rr~2 F2H(-)4"~ + ~ ~"'n -- j" (3.7) 

Note that - . 0 2  is just the negative eigenvalue of the 
unstable eigenmode at the sphaleron..02 and A are 
strictly positive. The effective potential V(c) has the 
shape of a double well. 

Considering fields of the form (3.1) we obtained the 
potential well which has to be overcome by thermal 
or quantum fluctuations. The minima occur at 

.0 '- 
c_+ = -4- x / ~ ,  (3.8) 

where the potential has the value 

1 .0 4 
V(c+) = - M + Esp. (3.9) 

- 4 A  

We have numerically calculated the integrals in (3.6) 
and (3.7) for the case mu = row, that is 2/g 2 = 1/8, using 
the unstable eigenmode of [20]. We obtain 

~2  _ _ 02 = _ 2.3m 2, (3.10) 

in accordance with [20], and 

A = 2.8m 2. (3.11) 

The corresponding effective potential is plotted in 
Fig. 3. For 2/92 = 1/8 we get for (3.8) and (3.9) 

c_+ = _ 0.9, (3.12) 
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Fig. 3. The one-dimensional  effective potential  

V(c+) = - 0.9 mw+ Esp = 2.7 rnw, (3.13) 
Ctw gw 

where we have used Esp = 3.6 m~/ew 1-24]. 
Now consider the winding number difference (2.17). 

If our ansatz (3.1) is inserted we obtain 

Q ( t l ,  t2) = q l [ c ( t 2 )  - c ( t l ) ]  - q2 [c3 ( t2 )  - c 3 ( t , ) ] ,  
(3.14) 

where 

ql = ~ ~ ~'tJaJBa~YrsPt'{-)' _ jAr~P'r~-)--~B f ( c - ) ( f~  2 -- 
0 

1)}, 

(3.15) 

(3.16) 
1 

= _[ dr~.~-)r q2 J C  J B  " 
0 

We have also numerically evaluated ql and q2 for 
2/9 2 = 1/8 and find 

q, = 0.4, (3.17a) 

q2 = 0.1. (3.17b) 

If c changes from c_ to c+ we get for the winding 
number difference 

Q ( - ,  +) = 2qlc + - 12q2c3+ = 0.6. (3.18) 

That is, we obtain a winding number difference not 
too much different from one, in spite of the fact that 
we are far away from the vacuum (see (3.13)). 

The fermion energy (2.16) is given for our ansatz 
(3.1) by 

E:(t) = - ec(t), (3.19) 

where 

1 ~ r2drf(c-)(r)u2(r) 
o 

e = (3.20) 
2 

r 2 d r u 2 ( r )  

o 

For )L/g 2 = 1/8 this yields 

e =0.1row. (3.21) 

Note that the minus sign in (3.19) nicely fits onto the 
minus sign in the anomaly (1.2). If c changes from a 
negative to a positive value, the winding number 
difference will be positive (at least for Ic] < c+), and 
Ei( t  ) will change from a positive to negative value, 
indicating that the fermion number is decreasing, in 
accordance with (1.2). 

In conclusion, we have found a path in configuration 
space which passes the sphaleron thereby creating or 
destroying fermions according to the selection rule 
(1.2). With the help of this path the potential barrier 
in "c-space" or, equivalently, in winding number space, 
has been found explicitely. The effective potential will 
be used in the following for the calculation of the 
transition rate over the barrier between topological 
distinct vacua. 

4 One-dimensional transition rate 

In this section we consider the one-dimensional 
problem of the transition over the barrier in c-space. 
The general framework has been set up by Affleck 
[293. We consider both quantum tunneling and 
thermal transitions. We assume that the system is 
prepared at an initial time to sit in one of the potential 
wells. We note in passing that the degeneracy of the 
minima of V(c) is lifted in the presence of fermions, 
due to E i ~ c .  The one-dimensional equilibrium 
transition rate is given by the Boltzmann average of 
the probability current over a set of quantum states 
[29] 

oo 

F1 = Z o  1 S dEp(E)T(E) exp ( - fiE), (4.1) 
o 

Zo exp [ -  (n + ~)flCOo] = [2 sinh (�89 ] - 1, 
,=o (4.2) 

where Oo/2 denotes the ground-state energy. We take 
~o = mw in the following. The incident flux per unit 
energy, p(E) is set equal to the classical value 1/2~. 

For E < Esp the transmission coefficient T(E) can 
be inferred from the WKB linear turning-point 
formula 

T(E)wKB=exp --2 d c ' [ 2 M ( V ( c ' ) - E ) ]  1/2 , (4.3) 
Cl 

where cl and c2 are the classical turning points at 
energy E. 

For E > Esp the linear turning-point formula is 
invalid but since the transmission occurs very close to 
the top of the well one can use the transmission 
coefficient for a parabolic barrier 

T(E)p,r = { 1 + exp [ -  2n(E - Esp)/12] } - 1. (4.4) 

Note that this is exact for A = 0 at all energies. 
Figure 4 shows the transmission coefficient for the 

parabolic potential, T(E)par  , and the WKB trans- 
mission coefficient for our potential, T(E)wKB, as a 
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Fig. 4. Transmission coefficients. The solid line give the transmis- 
sion coefficient for the parabolic potential (4.4), the dashed line 
corresponds to the WKB result (4.3) 
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Fig. $. Energy spectrum dF~/dE at temperature T = 0.22 rnw 

function of 5 = E - E s v .  As can be seen, both 
expressions cross at about 5 = -  0.03 m~,/~,,. In the 
following we take T(E)pa, for 6 larger than this value 
and T(E)wKB in the opposite case. We have checked 
our numerical integrations in the WKB case by 
putting A equal to zero. We find perfect agreement 
between the transmission coefficient obtained in this 
way and the transmission coefficient of the parabolic 
potential. 

In Figs. 5 and 6 we have plotted the energy spectra 

dF1 

dE I(E_ ~p) 
(4.5) 

for different temperatures. Here we observe the 
following behavior which was argued to be true on 
general grounds by Affleck [29]: For temperatures 
below T o -  ~2/2n = 0.24row the transition is domi- 
nated by quantum tunneling, whereas above this 
temperature the transition is dominated by classical 
thermal transitions. In Fig. 5 we see that, at a 
temperature T = 0 . 2 2 m , <  To, a broad maximum 

1 . 0 0  . . . .  I . . . .  I I ' 

0.10 

O . O l  , , p r I , 

- 0 . 3  - 0 . 2  - 0 .  1 0 . 0  

Fig. 6. Energy spectrum dN1/dE at temperature T = 0.30 rnw 
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Fig. 7. Mean energy of transition 

exists in the energy spectrum in an energy range strictly 
below the sphaleron energy. This means that the 
typical transition is a quantum tunneling. On the other 
hand, the energy spectrum at temperature T =  
0.3row> To, (see Fig. 6) is sharply peaked at the 
sphaleron energy. Here classical thermal transitions 
begin to dominate. This behavior can be clearly seen 
in Fig. 7 where we have plotted the mean energy 

o 3  

dEEp(E)T(E) exp ( - fiE) 
( E ) = o , (4.6) 

o 3  

dEp(E)T(E) exp ( - fiE) 
o 

as a function of temperature. We observe a narrow 
transition from quantum tunneling to thermal 
transitions at the temperature To. Note that there 
exists a smooth transition region between both cases. 
There appears to be no discontinous change as has 
been found in [15] by the use of an ad hoc ansatz for 
the gauge and Higgs fields which pass the sphaleron. 
The order of magnitude of To, however, agrees with 
the value found by Aoyama et al. [15]. 
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Fig. 8. The one-dimensional prefactor. The circles represent the 
numerically integrated values of F1 exp(flE~p), the solid line gives 
the corresponding expression computed from (4.7), and the dashed 
line corresponds to the classical result (4.8), COo/2n 

Since for T >  To the integral is dominated by 
E > Esp (see Fig. 7), where the transmission coefficient 
for the parabolic potential is valid, we can to a very 
good approximation evaluate F1 [29], 

a Z o l  ~ dE(2n)-i  F1 ~ - F  1 =- 
d 

- -  O O  

-{1 + exp [ - 2n(E - E~p)/12] } - t  exp ( - fiE) 

= Z o  1014n sin (�89 -~ exp ( -- tiE,p). 
(4.7) 

For large temperatures this gives the classical 
transition rate 

r t  ~ r ~ l  ~ ~  exp ( - flEsp). 
~ 1  : Z T t  

(4.8) 

In Fig. 8 we have plotted the F 1 exp (flEsp), which has 
been numerically calculated, the corresponding rate 
from (4.7) and the classical rate for a temperature range 
above 2row. We see that (4.7) gives an excellent 
approximation to F1 for these temperatures and that 
the classical transition rate is approached from above. 
In the following, however, we use unless otherwise 
stated the more general numerically integrated rate. 

We note in passing that F A can be written as [29] 

F~ = "Qfl Im F, (4.9) 
7r 

where F is the free energy of the saddle-point of V. 
This form was the starting point of previous 
calculations [12, 18]. Here we have justified the use of 
this formula for temperatures larger than To = O/2n = 
19 GeV. 

5 Transition rate in field theory 

Now we come to the calculation of the actual 
transition rate in field theory. Since there is only one 
unstable eigenmode in the background of the 
sphaleron [20], the field theoretic transition rate is, in 
the Gaussian, i.e. one-loop, approximation, given 

by [29] 

I-I 2 sinh 1 i ( ~ O o )  
F = ( x ~ ) . ! ,  , r~ ,  

2 sinh (�89 flof) 
i 

where 

(5.1) 

(JV'3 V') = (,~/'3U')tr(~A/'"//')rot (5.2) 

denotes the normalized volume factors for physical 
zero modes in the sphaleron background related to 
the translation and rotation invariance. The co i are the 
eigenfrequencies of the stable modes in the sphaleron 

i background, and the co 0 are the eigenfrequencies in 
the vacuum. A prime means that the zero modes have 
to be omitted. The normalized volumes of the zero 
modes can be calculated according to [20] 

(JI/'"//')tr = VF mw~tr ]3/2 (5.3) 
L2n/~J 

P ,g -]3/2 
(~/'ff/')rot = 87~2/ '~rot / 

L2n/~mw~.J ' 
(5.4) 

where V denotes the physical volume of the system. 
~tr and ~rot are related to the following integrals of the 
sphaleron radial functions (2.5) 

8 
~t r=  4 ~ d r ~ 4 f , 2 + = f 2 ( l _ f ) 2 + m Z w r 2 h ,  2 

3mw o ( r ~ 

+ 2m~hZ(1 - f)~t' (5.5) 

8m w oo 2 ,2 
~ o t = ~  - ! dr{r f +4f2(1  --f)2+m2r2h2(1 _ f ) 2 } .  

(5.6) 

Using our trial ansatz (2.6) we can evaluate these 
expressions analytically and find 

= 2 n F 3  +b8_ t a ] ,  (5.7) 
~tr 3 L2a (1 +b/a) 2 



2zca 4a47z[-3 a a 3 - b  3 ] 
~rot = 3 + 3 [~  a 2 - b 2 (az -b2)  2/_]" (5.8) 

From Fig. 1 we get ~tr=3.8 and erot=4.4 for 
2/92= 1/8, in comparison to the values obtained 
numerically [20], ~tr = 3.6 and ~ot = 3.5. 

The calculation of the products over the transverse 
modes in (5.1) lies beyond the scope of the present 
paper. We simply extract a factor by counting the 
number of zero modes, which equals to six, three from 
translations and three from rotations, and get for the 
transition rate per unit volume 

/" --(~tr~rot)3/2 x[2 sinh (�89 6F1, (5.9) 

where x is a constant of order one. This procedure 
corresponds to the dimensional arguments in 
[12, 13, 18]. It is amusing to note that it leads to the 
exact formula for high temperatures in the 1 + 1 
dimensional 0(3) sigma model [32]. x can also mimick 
possible damping effects in the plasma [12, 13] which 
reduce the rate. Note that (5.1) can be written for 
T > To as (see 4.7) 

F = Z o 112 [4zc sin (�89 - I (W~)  

exp[  ln , -e'~176 -e-'~  ,10, 
This shows that the infinite product in (5.1) gives the 
infinite zero temperature contribution to the vacuum 
energy and the sphaleron energy (first exponent), and 
the T r 0 contribution to the free energy of the 
sphaleron (second exponent). The zero temperature 
infinities can be absorbed into the sphaleron energy. 
It is important to note that by estimating (5.1) in the 
form (5.9), i.e. by replacing 

I~2 sinh(�89 
i E 

1-I'2 sinh (�89 exp { - fl sp} "+ ~c[2 sinh (�89 N~ 

i .exp { -  flEsp}, (5.11) 

where No denotes the number of zero modes, we have 
already taken into account a part of the one-loop 
finite-temperature correction to the transition rate per 
unit volume. In the 1 + 1 dimensional 0(3) sigma 
model the procedure (5.11) gives just the right answer 
(for T >> coo/2), apart from a constant of order one 
which can be absorbed into x [32]. In this model the 
finite-temperature contribution just leads, in addition 
to (5.11), to the appearance of the temperature- 
dependent running coupling constants in the final 
expression [32]. Since the dependence of the coupling 
constant on T is weak in the range of temperatures 
we are considering this has a negligible effect on the 
rate of the anomalous processes. In previous 
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calculations [12,13,18] in addition to (5.11~ the 
classical W-boson mass has been replaced by the 
temperature-dependent W-boson mass row(T) = (1/2)gv 
(T), where v(T) has been read off from the one-loop 
finite-temperature effective potential of the theory. In 
our formalism the temperature contribution to the 
sphaleron energy comes from the second exponent in 
(5.10), which formally is the same as the one-loop 
finite-temperature contribution to the classical poten- 
tial. Indeed, the replacement of v by v(T), found from 
the effective potential, gives the leading temperature 
effect on the sphaleron energy, if we take the 
frequencies co, to be the eigenfrequencies in a 
space- and time-independent back-ground field. But the 
sphaleron is space-dependent and therefore this 
assumption is not justified in general (see for example 
[19]). In particular, there will be also corrections to 
the kinetic terms not only to the potential. For large 
Higgs masses these corrections are presumably 
inessential [33] but for low Higgs masses of the order 
of the Coleman-Weinberg mass [34] they cannot be 
neglected [35]. What we want to stress is that the 
temperature-dependence of the sphaleron energy can 
be expressed through a temperature-dependence of the 
expectation value but that this temperature-depen- 
dence need not be of the same functional form than 
that found from the one-loop finite-temperature 
effective potential. 

6 Rate of  B + L violating processes 

In the case of a baryon and lepton number symmetric 
universe, B--L,  the rate of the transitions over the 
sphaleron and the rate of the baryon and lepton 
number violating processes are related by [22, 13, 18] 

f 1 3  3 F 
F , =  g~-fl V" (6.1) 

This has to be compared with the Hubble expansion 
rate of the universe 

T 2 
H = 1.66x/~**-- , (6.2) 

mpl 

where g, denotes the effective relativistic degrees of 
freedom and mpl---- 1.2.1019 GeV denotes the Planck 
mass. We take the number of generations, fo, to be 
three. In this case g, = (9(100). 

We want to determine quantitatively the influence 
of the assumed sphaleron temperature-dependence on 
the value of the critical Higgs mass. For this end we 
first calculate the rate of the anomalous processes 
using the zero temperature W-mass. This results in a 
larger value for the critical Higgs mass han the one 
obtained in [18], because the anomalous processes are 
more suppressed in this case due to a larger exponent 
in the Boltzmann factor. 

Figure 9 shows the ratio FB/H for a range of 
temperatures in the case 2/92= 1/8 and x = 1. The 
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Fig. 9. FB/H for 2/92= 1/8. The circles represent the numerical 
results, the solid line corresponds to the use of (4.7) 
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300 

20O 

circles represent the values which have been found by 
the numerical integration of the one-dimensional 
transition rate. We used the numerical values quoted 
in the previous sections for the effective potential V(c) 
and the zero mode normalizations. For comparison 
we have plotted also the values of FB/H which can be 
obtained from (4.7), (5.9) together with the variational 
results from Fig. 1, Fig. 2, (5.7), and (5.8) (solid line). 
Here we u s e d  Eisp t = 3.64 from Fig. 2, a = 1.11, and 
b = 0.82 from Fig. 1. We obtain nice agreement with 
the numerical results. This is to be expected because 
we are in a temperature range large compared to To. 
In this range we can work with formula (4.7) for the 
one-dimensional transition rate (see also Fig. 8). We 
see that the rate of the baryon number violating 
processes exceeds the Hubble expansion rate for 
temperatures larger than T, = 2.61 m,  = 209 GeV. If 
we vary x from 0.1 to 10, T, varies only moderately 
from 224 GeV to 196 GeV. 

We have repeated the calculations for different 
values of 2/02, i.e. for different Higgs masses. We used 
t h e  high temperature formula (4.7) for the one- 
dimensional transition rate, the results from the trial 
ansatz for the zero mode factors, and Else, t from Fig. 2 
for the sphaleron energies. I2 has been set equal to the 
values in the case 2/02 = 1/8. We assume that the major 
effect comes from the different sphaleron energies. 
Furthermore it is expected that I2 does not vary very 
much with 2/g 2 in the range we are considering 
because the sphaleron radial functions do not change 
very much in that range (see Fig. 1). Anyway, for 
T >> 0 / 2  the actual value of g'2 is not important, 
because it drops out in the one-dimensional tran- 
sition rate (4.7). What  we found can be seen in 
Fig. 10, which gives the freezing temperatures, 
determined as 

(re/H)lr, = 1, (6.3) 

as a function of 2/g 2. As can be seen, the freezing 
temperature does not depend too much on ~c. 

Of course, the calculations are valid only below the 
the critical temperature, where the SU(2) symmetry is 
spontaneously broken, because the sphaleron ceases to 
be a solution in the unbroken phase. As already 
mentioned in Sect. 1 not much is known about the 
critical temperature of the electroweak phase transi- 
tion. Nevertheless, in order to get the critical Higgs 
mass we need also the critical temperature as a 
function of 2/g 2. In the following we assume that the 
one-loop finite-temperature effective potential correctly 
gives the critical temperature. For the Higgs self 
coupling we concentrate on the region 

04 << 2 << g2. (6.4) 
64n 2 

In this region one has to take into account one-loop 
effects from gauge bosons and the top quark. The 
one-loop finite-temperature effective potential reads 
[18, 36] 

v(~, T) = V(~, 0) + V T, 

2 
~b 4 + Bq54 In 4~, (6.5) V(qS, 0) = -- (2/2 + B)vZ~b 2 + ~ v ~ 

where (1/2)~b 2 = g)t q0. V T behaves for large tempera- 
tures or near ~b = 0 as 

n 2 1 2 V r = - - g , ( T ) ~ T  4 + ~ g  

E m 2 

�9 2 + COS2 0~ \ m . , /  j 

2 + T~b3 + A 2(T) gb4 ' 
32n 4 

(6.6) 



where 

3 2 [ " '  T2~B ^~ 14 
A2(T) = ~ z ~ l z i n  _2 + In 

L m w cos Ow '~ 

_ 4(m,'~41n T2~v], 

\m.J m, J 

T2 ~B COS20w 

2 
m w 

(6.7) 

In ~n = 3.91, (6.8) 

In ~V = 1.34. (6.9) 

m, denotes the mass of the top quark which is larger 
than 44 GeV experimentally [37]. The constant B is 
given by 

3 2 [  1 4 (m~)41  (6.10) 
B = ~ 2 -~ cos4 0~ \m,,,/ 3" 

The Higgs mass found from the zero temperature 
effective potential is 

m 2 = (12B + 22)v z. (6.11) 

The electroweak phase transition practically coincides 
with the moment of the absolute instability of the 
phase with ~b = 0 [36] because tunneling transitions 
are strongly suppressed. The corresponding critical 
temperature T~, can be found by looking at which 
temperature d2V/d(~ 2 at q5 = 0 vanishes. One finds 
[18,36] 

T2 ~ _ (B + 2 / 2 ) v  2 

~z9212+ 1 ( ~zl ,  (6.12) 
cos z 0~ + 2 m, \mw/  J 

We have plotted the critical temperature as a function 
of 2/g 2 in Fig. l0 for mt =44GeV (mr= 0.97m~). As 
can be seen, for ~/g2  larger than 

(2/gZ)erit = 0.19(0.26), (6.13) 

corresponding to a Higgs mass (6.11) 

merit = 97(113)GeV, (6.14) 

the freezing temperature of the anomalous processes is 
smaller than the critical temperature. That means that 
for rnu > 97(113)GeV the anomalous processes are in 
equilibrium after the electroweak phase transition. 
Here we took x = 1. For x = 0.l the corresponding 
critical masses are m~it = 102(121)GeV, whereas for 
x = 1 0  we obtain m ,  it=86(101)GeV. Since at 
temperatures above the phase transition the ano- 
malous processes are presumably unsuppressed 
[11,12] the actual freezing temperature of the 
anomalous processes is given by 

Tfr = min {T~,, T,}. (6.15) 

Working with the zero temperature sphaleron 
energy gives the most efficient suppression of the 
anomalous processes. That means that (6.14) actually 
gives an upper bound on merit. It is reasonable to 
assume that finite-temperature effects lead to a 
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decrease of the sphaleron energy. These finite- 
temperature effects can be represented by replacing 
mw, 12 and Esp by 

F(T) 
m,~(T) = m~,, 

V 

O( T) = E( T) .(2, 
13 

Esp(T) = F(T) E~u- (6.16) 
V 

As argued in the previous section F(T) need not 
coincide with v(T), the minimum of the one-loop 
finite-temperature effective potential (6.5). Following 
[11-13, 18] let us now assume that setting F(T) = v(T) 
gives the right order of magnitude for the temperature- 
dependent sphaleron energy. This is reasonable since 
in the range of Higgs masses in which we are working, 
(6.4), we are far away from the Coleman-Weinbrg 
mass, mcw2 = 8BY 2, [34]. Since we are interested in 
the crossing point of T~, and T,, we can take for v(T) 
the value at T = Tc,, which follows from (6.5) and (6.6) 

2 0 0  ' I . . . .  I . . . .  I ' 

150 . . "  . . - ' " -  

t O 0  

5 0  , ~ , , I , , r , I , , , , I , , r 
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Fig. lL Determination of merit in the approach [18] for 
m t = 44 GeV. The solid line represents T,, the dashed line To, 
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Fig. 12. Determination of merit in the approach of [18] for rn t = 0.97 
mw. The solid line represents T,, the dashed line Tc~ 
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3Tel 3 I- 1 -] 
v ( T J - 3 ~ g  1_2 + ~ J ,  (6.17) 

where 2elf = 2 + A2(T). What we found can be seen 
in Fig. 11 and Fig. 12. T, has been calculated 
according to (6.3), but in FB we used (6.16) at the 
temperature Tel. From the crossing points with T~I we 
infer 

merit = 47(48) GeV (6.18) 

for mt=44GeV (mt=0.97mw) and x =  1, in ac- 
cordance with [18], where a value of merit = 45 GeV 
was obtained. In this case merit is very insensitive to 
the top mass. 

7 Conclusions 

We discussed baryon and lepton number violating 
processes in the electroweak theory induced by gauge 
and Higgs fields passing the sphaleron. We reduced 
the complicated problem to a one-dimensional 
problem by considering the energy functional along a 
path in configuration space which passes the sphaleron 
along the unstable eigenmode found in [20]. In this 
way we got a better understanding of the shape of the 
potential between topological inequivalent vacua near 
the sphaleron. It turned out that a parabolic 
approximation, requiring knowledge of s only, is 
already adequate, because there is no substantial 
tunneling down to To = 19 GeV where the transition 
rate is totally negligible. This confirms previous 
calculations [12, 13, 15]. We showed that the gauge 
fields along the path create and destroy fermions 
according to the anomaly (1.2). 

Our main result is the freezing temperature T, of the 
anomalous processes as a function of •/g2 (Fig. 10). 
This was obtained by working with the zero 
temperature W-mass and therefore gives an upper 
bound on the actual freezing temperature. By 
calculating T, it was also assumed that we are in the 
broken phase of the theory. T, contains a number of 
uncertainties: (i) the magnitude of the pre-exponential 
factor x, which however changes the freezing 
temperature only by a few percent (see Fig. 10); (ii) 
further finite temperature effects which could eventually 
lower T, [18]; (iii) the magnitude of s which was set 
equal to the value at 2/92 = 1/8 [20]; (iv) corrections 
from 0w r 0. Points (i) and (ii) are of course intimately 
related. A complete one-loop calculation of the free 
energy of the sphaleron could resolve these uncertain- 
ties. Point (iii) requires the calculation of the unstable 
mode for different values of 2/02. But it should have 
little influence on the rate because s drops out for 
T >> s Corrections from 0,~ ~- 0 could be taken into 
account perturbatively [10]. The sphaleron energy 
does not change significantly for 0w r 0 [10], so we 
expect no dramatic change from that. 

We determined a critical Higgs mass merit which is 
defined in that way that for a Higgs mass larger than 

merit the anomalous processes are in equilibrium after 
the electroweak phase transition. In the context of the 
generation of the BAU within the electroweak 
standard model [17] merit represents an upper bound 
on the Higgs mass. To t u r n  T,(2/g 2) into merit one 
needs to know the critical temperature of the electro- 
weak phase transition. This brings the next uncertainty 
because the transition temperature is not known 
exactly. If we take for granted the results for the critical 
temperature from the one-loop finite-temperature 
effective potential, we obtain 

m e r i t  = (_9(100) GeV, (7.1) 

if we work with the zero temperature W-mass 
Equation (7.1) actually represents the most conser- 
vative upper bound on the critical mass. Inclusion of 
finite-temperature effects on the sphaleron energy lead 
to a decrease of the critical mass. If we assume that the 
temperature-dependence of the sphaleron is dictated 
by the one-loop finite-temperature effective potential, 
which is reasonable in the range of relevant Higgs 
masses, we get the low value 

merit = (9(50) G e V ,  (7.2) 

in accordance with [18]. A calculation of the exact 
one-loop free energy of the sphaleron and an accurate 
determination of the critical temperature as a function 
of the Higgs mass by lattice calculations are urgently 
needed in order to strengthen the bound. 
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