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We investigate an inflationary scenario leading to a power spectrum for the scale dependence 
of primordial density fluctuations, AO/O- l ~. The model has no very small dimensionless 
parameters and Ap/p is of order unity for scales / E corresponding to the horizon near the end of 
inflation. The small primordial density fluctuations on galactic scales lc; are explained by the huge 
ratio l(;/l E, and are therefore a direct consequence of the many e-foldings of the scale factor 
during inflation. Possible observable consequences for the structure formation in the universe are 
shortly addressed. 

1. Introduction 

I n f l a t i o n a r y  cosmology [1] was in t roduced  as a way of unde r s t and ing  the ob-  

served i so t ropy  [2] in the 3 K cosmic  background  radia t ion.  A n  early epoch of 

exponen t i a l  expansion,  if last ing long enough,  implies  that  the whole of today ' s  

obse rvab le  universe was once causal ly  connected.  This opens  the poss ib i l i ty  that  

m ic rophys i ca l  processes were responsible  for the high degree of i so t ropy  and 

h o m o g e n e i t y  of  the early universe. Al though  a necessary ingredient ,  the early causal  

connec t edness  of  the universe is not  an explana t ion  of the observed isotropy,  and  

m a n y  ear ly  a t t empt s  in in f la t ionary  cosmology failed because  the induced  f luctua-  

t ions in the energy densi ty  AO/O turned out  too big to be compa t ib l e  with 

obse rva t ion .  The  p rob l em was c i rcumvented  [3, 4] la ter  by  decoupl ing  inf la t ion  f rom 

k n o w n  par t i c le  physics,  making  a scalar  singlet field the dr iving ingredient  for 

infa t ion .  The  scalar  potent ia l  was then model led  to be compa t ib l e  with small  AO/O.  

This  needed,  however,  the in t roduc t ion  of a comple te ly  unexpla ined  t iny d imens ion-  

less p a r a m e t e r  ( typical ly  10 14 or  smaller).  In  this app roach  the i so t ropy  p rob l e m is 

shi f ted  to the  p rob lem of unders tand ing  this t iny parameter .  We  do not  think that  
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the isotropy of the 3 K background radiation has been satisfactorily explained at 
this point. 

In this paper  we adopt a different approach where the primordial density 
fluctuations on galactic scales are small as a consequence of the many e-foldings 
during the exponential expansion of the scale factor, rather than being linked with a 
tiny dimensionless parameter. In our model the primordial density fluctuations have 
not a flat Harrison Zel'dovich spectrum [5]. They depend on the length scale of the 
fluctuations with a power law 

AO 
- - ( t )  - l -~ (1.1) 
p 

with v ~ 1 to x.1 There is no very small dimensionless parameter and the primordial 
density fluctuations are large at scales l E corresponding to the horizon near the end 
of the inflationary phase (/Z ~ i cm, A p / P ( I E ) =  O(1)). Fluctuations on galactic 
scales la  went out of the horizon about 55 e-foldings before the end of inflation 
( I c / l  E = exp55) and z l O / p ( l ~ )  is around 10 -4  according to the power law (1.1). 
For scales corresponding to our present horizon, l H -- 3000/G, which are relevant for 
the large angle anisotropy in the 3 K background radiation, the primordial density 
fluctuations are suppressed by another factor 4 8. 

At first sight a power law spectrum with positive v may seem surprising. In the 
usual inflationary models the Hubble parameter H decreases during inflation and, 
as a consequence, AO/o slightly increases with l. Indeed, the exponent v is given by 

v = I2I/H 2 (1.2) 

with H measured when l goes out of the horizon. Our model exhibits positive /~ 
during inflation. This becomes possible through a violation of the equivalence 
principle: the scalar particle, whose field drives inflation, does not move on 
geodesics. It is subject to additional interactions with geometry due to its coupling 
to higher derivative curvature invariants - R  2, R ~ R  ~ etc. In this case the dynam- 
ics of a scalar coupled to gravity are governed by two different potentials: whereas 
H 2 is proportional  to the usual scalar potential V, the time evolution of the scalar in 
a de Sitter universe is driven by a new "de Sitter potential" W. The difference 
between V and W reflects the additional scalar couplings to R 2 type terms and 
becomes irrelevant for late cosmology (small R2). In our model W decreases during 
inflation, whereas V increases. (In contrast, the equivalence principle would imply 
W = V and therefore decreasing V.) 

This line of thought was first followed in a scenario where inflation describes the 
transition f rom a universe with more than four dimensions to an effectively four 
dimensional one [6]. The decrease of A0/p  with l was already noted [7] there. In a 
certain sense our paper elaborates these ideas. In this paper we illustrate the effects 
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of a violation of the equivalence principle in a simple four dimensional model, 
namely a scalar field coupling to the Euler form. The field equations of this model 
contain no more than two derivatives and there are no problems with classical 
stability. We describe inflation in this model in sects. 2 and 3, whereas primordial 
density fluctuations and their scale dependence are discussed in sects. 4 and 5. The 
last section addresses briefly the possible observable consequences for the structure 
formation in the universe. 

2. Inflation with scalar coupling to the Euler form 

We consider the action for a (dimensionless) scalar field s coupled to gravity 

S =  - fd4xgl /2{  M 2 R - 1 F o M 2 0 , s O " s +  V(s)  

+ SI(s )( R2 - 4R.~R"~ + R,~ooR""°" ) } . 

M 2 = M2/16~r. (2.1) 

For constant "~ the last term is the Gauss Bonnet invariant (integral over the Euler 
form) and does not contribute to the field equations. For nontrivial ,~(s), however, 
it leads to an additional source in the field equation for s. This represents the 
violation of the equivalence principle we are interested in. The field equations 
derived from this action read 

1 
R , , -  ½Rg,~- 2M 2 { V(s )g , ,  + FoM2(s>s;~ - ls:°s:og,~) + K, ,  + T,~ , (2.2) 

K = 4 ~ ' ( s ) ( R s ; , ~ -  Rs;Ppg,,- 2R,ps;~ ° - 2R~ps:, p 

+ 2R°°s:oog~ + 2R,,s:°p - 2R~0~os; p° ) 

+ 4~" ( s )  { Rs;.s:~-  Rs;Ps:og,~ - 2R,psz~s; ° - 2 R . o s j ?  

+ 2RP°s: os: og.~ + 2R~s;Ps;o - 2R~p.~s.~'. , , (2.3) 

FoM2s:~+ V ' ( s ) + ~ " ( s ) ( R 2 - a R ~ . R ~ + R . . p . R ~ ° ) = q ~  (2.4) 

Here we have included the contributions from incoherent matter fluctuations (for 
nonvanishing entropy) 

= , q s =  g 1 / 2 8 S  (2.5)  
8glzv irlcoh ~S incoh 
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and we note that for a nontrivial coupling of the scalar to matter (qs 4= 0) the 
ene rgy -momen tum tensor for matter T ~  is not conserved if s evolves with time [8]: 

TMt~;v + qss/' = O. (2.6) 

The field equations (2.2) and (2.4) do not contain more than two derivatives of the 
metric or the scalar field. For small curvature (R << M 2) they reduce to the Einstein 
equations coupled to a scalar field in the standard way. For " la te"  cosmology the 
standard hot big bang is a very good approximation if V(s)  has a minimum at s o 
with V(so)= 0 and V"(So) not too small, provided s evolves in the range of 
attraction of this minimum and is sufficiently coupled to matter so that its 
oscillations around s o are damped rapidly enough. The Friedmann universe (and 
Minkowski space) are stable with respect to local (classical) fluctuations provided 

F o > O, V"(So) > O. 
Preceding the Friedmann universe we need an inflationary period which allows 

the scale factor to grow big enough and a subsequent heating of the universe which 
creates its entropy. During the inflationary epoch the (four dimensional) curvature 
may be substantial and we have to study the role of violations of the equivalence 
principle proportional "~'(s). We will consider a sufficiently large approximately 
homogeneous and isotropic piece of the universe which can be described by a 
Rober t son-Walker  metric with k = 0. Inflation is characterized by an almost 
constant Hubble  parameter, 1/41 << H 2, and a slow evolution of the scalar field 
]g[ << H. We therefore look for solutions where higher derivatives (/:], &" etc.) can be 
neglected. In this "slow evolution approximation" the field equations simplify 

considerably: 

6MZH 2 - V(s )  - 24~ ' (s )H3~ = O, (2.7) 

4M212I+8~'(s)H3d = - ( p + p ) ,  (2.8) 

3FoM2Hd + 24"~'(s) H2/-) + V' ( s )  + 2 4 ~ ' ( s ) H  4 = q~. (2.9) 

The equation for matter (2.6) reads 

+ 3H(p + p )  + q~A = 0 (2.10) 

and can be used to replace the equivalent field equation (2.8). The incoherent source 
in the scalar field equation qs should not exceed p (]qs] _< p) and the last term in eq. 
(2.10) is therefore small (suppressed by Ig l / H) .  We find the usual exponential 
decrease of O during inflation and take the approximation p = p  = qs = 0. In a first 
approximation to eq. (2.7) the Hubble parameter is proportional to the scalar 
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potential V 1/2 

V 
H02- 6M 2 , H 2 = H 2 + A H, (2.11,2.12) 

4 1 V' 
A . =  ~5~'(s)H3o ~ , 121 = -~ --~Ho~. (2.13,2.14) 

Inserting this into the scalar field equation gives 

1 { V2(S) / 
g(s)Ho~= M2 V'(s) + ~5"(s) M4 j ,  (2.15) 

V'(s) 16 VZ(s) 
( , ( s ) = 3 F o + 2 9 ' ( s ) ~ 7 - +  ~ - ( 9 ' ( s ) )  2 M s (2.16) 

The violation of the equivalence principle proportional 9 ' ( s )  has two effects: a new 
contribution is added to the damping force in eq. (2.16) and, most importantly, the 
source term for the scalar evolution equation is changed. We may define a "de Sitter 
potential" [9] W(s) by 

w ' ( s )  = v'(~) + ~ ' ( s ) V 2 ( s ) / V  4 (2.17) 

The range of slow evolution for s is connected to the shape of W(s), whereas the 
Hubble  parameter  remains determined by V(s). The existence of these two poten- 
tials is a direct consequence of the violation of the equivalence principle and has 
interesting consequences for the physics of inflation. In terms of these potentials the 
ratio between ~ and H reads 

6 W'(s) 6 (V'(s) 2_~,(s. V(s)) (2.18) 
no- g(,) V(,)-  g(,)lV--~+3 , ,  M4---w(s). 

We choose our conventions such that the minimum of V is at s = 0 and the 
inflationary period is associated with a slow decrease of (positive) s. We require 
g ( s )  > 0 and w(s) < 0 during the inflationary phase. The existence of an inflation- 
ary period requires some region for s where Iw] << 1 and ]H I << H 2. This period 
will last until /q becomes of order H 2 (or w of order one). During inflation, the 
deviation from an exponential expansion of the scale factor is governed by 

/4 1 V' 
w. (2.19) 

H 2 2 V 
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3. A simple model 

Before going on with a discussion of density fluctuations, we present in this 
section a simple model characterized by 

V(S ) = UO M4 exp( -- Ds)(1 - exp( - 2 s  ) ) 2 ,  (3.1) 

~(s )  = ~,exp(Ds).  (3.2) 

This model embodies the most important qualitative features of inflationary models 
obtained from gravity in more than four dimensions [6,10]. The variable s corre- 
sponds to the logarithm of the radius of internal space and the factor exp(Ds) 
represents the volume of D dimensional internal space. A similar exponential 
behaviour of V and ~ may arise in string theories, once the four dimensional 
Newton constant is appropriately scaled. The action for this model has three 
dimensionless parameters F0, v 0 and ~,. 

One finds for the de Sitter potential and the damping force 

] 

v ( , )  1 - z  
- - {  2-~-~TVo(1- z)3 + ( D+4 ) z -  D}, (3.3) 

1 6 ~ 2  2 2 / ~  g ( s )  = 3F o - 2DTvo{ D(1 - z )  2 - 4z(1 - z)} + T t J  y you  - -7) 4 

w'(s) 
=3F°+4DZTZv (1-z)4+2Dyv°(l-z)2 V(s) (3.4) 

z = e x p ( - 2 s ) .  (3.5) 

We choose the parameters such that if(s) and W'(s) are positive within the range of 
validity of the slow evolution approximation for large positive s. (For F 0 > 0 and 

yv 0 > 3 / 2 ,  for D-%<2, 

Y% > (D + 4)3 /72D,  for D >~ 2, (3.6) 

both W' and ~ are positive for all s > 0.) For small values of s the potentials V(s) 
and W(s) have qualitatively the same shape, with a substantial quadratic term at the 
minimum for s = 0. There is a maximum for V(s) with positive s and asymptoti- 
cally V(s) vanishes exponentially, 

lim V(s) ~ v o M 4 e x p ( - D s ) .  (3.7) 
s ---~ oo 

In contrast, the potential W(s) has no maximum for s > 0. For large s it approaches 
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exponentially a constant 

lim W ( s )  ~ W~ - (27Vo - 1) v 0 M 4 e x p ( - D s ) .  
S ---~ OC 

(3 .8 )  

Suppose that at some moment  of its evolution a sufficiently homogeneous and 
isotropic part  of the universe is characterized by a value of s corresponding to the 
exponentially flat tail of W(s), with ~ vanishing or small. Then s will slowly "roll  
down" the potential W(s), until its motion gets accelerated when entering a region 
of large W'/V.  The inflationary period corresponds to this slow evolution of s. For 
a more quantitative discussion we concentrate first on the case where F 0 is much 
bigger than D2TZv 2 so that g(s)  is well approximated by the constant 3F0*. One 

obtains 

2{2° 1 w(s) F 0 ( l _ z  ) - - f - y V o ( 1 - z ) 3 + ( D + 4 ) z - D  , (3.9) 

I-:I { D - ( D + 4 ) z } { 2 D y v o ( 1 - z ) 3 - 3 D + 3 ( D + 4 ) z }  
H 2  ( S )  = 3 F o ( 1  _ z )  2 (3.10) 

For large enough s (small z) the relative change of H during a Hubble time 
(/aC/H 2) is slow provided 

121) D2((2/3)TVo - 1) 
= <<1 (3 .11 )  

Fo 

This easily obtains for a suitable choice of F 0. On the other hand, for small enough s 
(z near 1) there will always be an end to this slow evolution, since I2I/H 2 is 
proport ional  (1 - z )  -2 and must therefore get large. 

We finally note that the assumption of large F 0 is not necessary for the existence 
of an inflationary phase. For F 0 = 0 one has 

lim ~(s )  = goo = 2DTvo(2DTvo + W' /V)  
S ~ o o  

(3.12) 

and the condition (3.11) for small /aC/H 2 at large s is replaced by 

( H  3 27v 0 -  3 ) ~ -  2yv 0 8yv o 3 <<1" (3.13) 

For positive F o eq. (3.13) constitutes an upper bound for ( H / H 2 ) .  

* In the higher dimensional model of ref. [6], F o is generically of the order D 2, but it may be 
substantially bigger depending on the choice of parameters. 



148 C. Wetterich / Inflation 

4. Primordial density fluctuations 

Density fluctuations are due to fluctuations of the scalar field inducing inhomo- 
geneities in the metric [11]. During the inflationary period the physical length scale 
of a given fluctuation grows exponentially. Large scale (e.g. galactic scale) fluctua- 
tions in the late universe correspond to fluctuations on extremely short distances at 
an early stage of inflation. Let us assume that during inflation the fluctuation 
spectrum of s for length scales within the horizon is well approximated* by the 
ground state quantum fluctuations in de Sitter space [12], 

(a )2 
- F o M ~  - 16~r3FoM 2 . (4.1) 

When a fluctuation A s ( l )  with wavelength l (labelled in comoving units) goes out 
of the horizon, its amplitude is determined by the Hubble parameter H ( l )  corre- 
sponding to this scale. Scalar fluctuations A s ( l )  induce metric fluctuations on the 
same length scale l, and the amplitude of those "geometry" fluctuations remains 
frozen as long as the corresponding physical distance scale remains outside the 
horizon. When entering again the horizon long after the end of the inflationary 
period, the local fluctuations in the metric translate into corresponding adiabatic 
fluctuations in the density of matter and radiation. There is a gauge invariant 
quantity which is conserved for adiabatic fluctuations outside the horizon [13]. Its 
value at horizon crossing is 

~" = - 3 ( H / / 1 )  zSH. (4.2) 

In Einstein gravity, which is a very good approximation after the end of the 
inflationary period, one has ~" = Aot/(Ot + Pt)), where Pt and Pt are the total energy 
density and pressure (including contributions from the scalar) as defined by the 
right hand side of the Einstein equation. Using the equation of state p = ( n / 3  - 1)p 
with n = 4(3) for scales reentering the horizon during the radiation (matter) domi- 
nated period, one obtains 

= ( 3 / n ) ( A p / p ) .  (4.3) 

* Here we neglect the time dependence of H and the coupling of s to R 2 type terms in a first 
approximation.  More generally, the proportionality factor Fo M2 between z3s and Aq~ should be 
replaced by the coefficient of the term - ~Ol~sO"Ss in an expansion of the action for a fluctuation 
~s around the (background) cosmological solution, taking into account properly the interplay with 
fluctuations in the metric. 
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During inflation, we use eqs. (2.7) and (2.14) 

149 

and obtain 

1 V '  

2 H A H  = ~ AV = 6M----- 7 As ,  (4.4) 

3Ho 3 
~' -  - -  A s  = - -  - -  A s .  ( 4 . 5 )  

w 

For a given wavelength l one equates ~(l) when l goes out of the horizon (4.5) and 
when it reenters the horizon (4.3). This gives (for n = 4) the amplitude for the 
primordial density fluctuations when the scale l reenters the horizon* 

A o ( / ) =  _(61r3Fo)_l /2w(s( l ) )_ l (  V(s(l))M 4 )1/2 . (4.6) 

Here s(l)  is the value of s during the inflationary phase when l goes out of the 
horizon. 

For  the model discussed in sect. 3 the fluctuations As (4.1) and in consequence 
A p / p  (4.6) are exponentially suppressed for large values of s during inflation! 

( ) lim - - - - ,  {2D(27Vo - 1 ) } - l e x p  - D s  (4.7) 
s ~  0 k6 Tr3 ] 

This is due to the exponentially small value of H / M  which suppresses the scalar 
field quantum fluctuations in de Sitter space (4.1). There is therefore a good reason 
why primordial density fluctuations at the scales of galaxies or our horizon are 
small, provided s(l)  is sufficiently large. More precisely, in order to obtain density 
fluctuations on galactic scales of the size AO/O - - -  10 -4, one needs s(lo)  = g 

1 {  6~'3Fo } 
£ = - -  18.5 + 21n(-woo 1) - in 

D v o 
(4.8) 

2D 
wo ~ _ _ ( 2  1) (4.9) ~yv o - . 

Fo 

For  not too large values of D one finds ~ substantially bigger than 1. This justifies 
the use of the asymptotic value woo for w(s) and similar for V(s). 

* Eq. (4.6) coincides with the estimate in Einstein gravity/~ O/P = ~r 3/2H2/Iq~l, qb = Fol/2Md, which 
was used as a simple approach in ref. [7]. 
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For an estimate of s( l~)  we first have to evaluate the value s E corresponding to 
the end of the inflationary period, and then to extrapolate back to the time when 
"galactic" fluctuations left the horizon. The end of the inflationary period corre- 
sponds to a breakdown of the validity of the slow evolution approximation (2.7)-(2.9) 
for the field equations. We will argue that the inequality 

I/~1 << H 2 (4.10) 

is sufficient to justify the neglection of higher derivatives in s or H. Typically, the 
derivatives of H appear in the combination H/L  /~2, H2H. From eq. (4.7) follows 
[H/:] L << 12H2/11 (with a straightforward generalization to theories with more 
derivatives, e.g. ]HI << ] 2H/~/ -  2/42] etc.). Similarly, the derivatives of s appear in 
the combinations Y, g z, H2 and the slow evolution approximation holds provided 

I~J << H,  12,'1 << IH~I. (4.11,4.12) 

Using eq. (2.19) 

2 ( H )  2 ( 1 - z )  /4 

H =  ( l n V ) ' "  ~ 5  = -  D - ( D + 4 ) z  H 2 '  (4.13) 

we see that eq. (4.11) follows from eq. (4.10) (except near the maximum of V at 
z = D / ( D  + 4) where I2I/H 2 vanishes). Similarly 

H/~) g 2(ln V)"  
- 1 -}- V ) , 2  ( 4 . 1 4 )  H~ (ln ~-Y H 2 

justifies that g (and higher derivatives) can be neglected. We therefore date the end 
of the inflationary period when LI:I/H 2 ] = c E, with c E some constant of order 1. We 
now can use eq. (3.10) to determine s E as a function of the parameters and c E. 
(Typically s E may be between ~ and 1.) 

For  the extrapolation backwards from s E we use (with a the Robertson Walker 
scale factor) 

dln a = H d t ,  ds = w ( s ) H d t  (4.15) 

and obtain for the number of e-foldings 

aE s(l) (Is 1 fz( / )  dz 
N ( l ) = l n a ( l ~  - f~E w ( s ) - 2  E z w ( z ) "  (4.16) 

For  fluctuations which correspond to galactic scales one finds ln(aE/a(l)) . -~ 55, 
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whereas for our present horizon size ln(aE/a( l ) )  = 63*. In order to obtain density 
fluctuations in the right order of magnitude we require 

--(W 1) = 55/(S-- SE) (4.17) 

with (w 1) the mean value between s E and s. We remember that typically Y is 
substantially bigger than one and w(s) is constant for large s to a very good 
approximation.  For a rough estimate we may approximate the mean value by its 
asymptot ic  value (w -1)  ~ w~ t (4.9) and use s E = 0. The condition (4.17) together 
with eq. (4.8) then requires - w ~  ~ 1 /2D to 1/3D. This is not a very small quantity 
and no fine tuning of parameters is needed! 

5. Scale dependence of primordial density fluctuations 

Let us study the scale dependence of Ap/p in more detail by monitoring the 
value of f at a given number of e-foldings before the end of inflation. Using eqs. 
(4.6), (4.16) and (2.19) one obtains 

dl  ~ l n , ~ , j / \ ~ - s l n ~ , / /  d s l  p ]j 

I l d  
V d l n ( - w )  = - l - l w  lnM4 ds p 

=(w,_I V'wl,-l o 
2 v /  o 

= w ' -  l - l A O = - v 1 - 1  (5.1) 

For  constant v, this gives the primordial fluctuation spectrum (the amplitudes of 
fluctuations measured when the scale l reenters the horizon) 

Ap (l)  ( le)  (5.2) 
0 7 -  

Here l e is the scale corresponding to the horizon at the end of inflation. For the 
model of sect. 3 we find that w' vanishes for large s (3.9) whereas I2I/H 2 

* Here we assumed a high heating efficiency with heating after inflation to temperatures around 
10 iv GeV, as indicated in the model of refs. [6,10]. 
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approaches a constant (3.10), (3.11). Thus v is indeed approximately constant 

#) D (5.3) 

In order to obtain density fluctuations which can generate the structure of our 
universe we need (4.17) w~ = - g / 5 5  and, using eq. (4.8) 

1 1 (5  4 )  
1) ~'~- ~ - -  4 . 

Thus we arrive at the central prediction of our model, namely that the scale 
dependence of the primordial density fluctuations is a power spectrum - l 1/4 to 
l 1/6 ! 

Several comments  are in order: 
(1) The power spectrum A0/o  - l  -"  follows quite generally for inflationary cos- 
mologies where 6p/H and I£I/H2 are approximately constant. Using A P/O - H 2/Iq~ ] 
one obtains 

d AO d l n H / d l n l ]  1 121 
v = -  d i n / I n  . . . . .  P dt ~ dt } H 2 .  (5.5) 

(2) For theories without very small dimensionless parameters there is no reason why 
density fluctuations should be small for scales corresponding to the horizon at the 
end of the inflationary period. Typically one expects 

A 0 
- - ( l E )  = O(1) .  (5.6) 
P 

The smallness of primordial density fluctuations on large scales is then entirely due 
to the power law of the spectrum (5.2) and the long duration of inflation. Primordial 
density fluctuations on galactic scales are small because they left the horizon many 
( =  55) e-foldings before the end of inflation. Small Ap/p  on large scales is a 
consequence of inflation, rather than being due to some small dimensionless cou- 
pling! 
(3) From eq. (5.2) we can make a simple model independent estimate for the value 
of v which is necessary if primordial density fluctuations are responsible for the 
structure formation in the universe. Assuming eq. (5.6) one obtains for galactic 
scales l ~ / l  E ~ exp 55 

Ap 
_ I ( 5 . 7 )  - - ( l ~ )  = 10 -4 = e x p ( - 5 5 v ) ,  v -  g. 

O 
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The precise value of p depends on details of the specific model, but it should not 
deviate by much from eq. (5.7). If structure formation is due to other cosmological 
objects (e.g. cosmic strings) the observed isotropy of the 3 K background radiation 
implies that eq. (5.7) constitutes an approximate lower bound for ~". In this class of 
models I2I/H 2 cannot be arbitrarily small! On the other hand, t:I/H 2= ~ is still 
sufficiently small compared to one so that the slow evolution approximation is 
trustworthy (compare the discussion following eq. (4.10)). 
(4) So far the value of u is fixed by observation (structure formation), but not 
predicted by the model. The parameters of the model have to be chosen appropri- 
ately in order to obtain ~ ~ 1 to 1. This does not require any fine tuning. 
(5) The power spectrum (u = constant) is only an approximation. It becomes invalid 
at the end of inflation w h e r e  I/~/HZl rises and becomes of order 1. Another small 
correction, relevant for large scales, comes from terms neglected in the slow 
evolution approximation ( -  ~2, y etc.). 
(6) The coupling of the scalar to R 2 type terms is crucial for this scenario. Without 
the violation of the equivalence principle induced by this coupling there would be 
only one'potential  V(s) determining both the Hubble parameter and the evolution 
equation for the scalar. During inflation V(s) would have to decrease and /~ 
therefore be negative. This implies either a flat Harrison-Zel 'dovich spectrum 
(u near 0) or e v e n  Ap//p increasing with l 0 '  < 0). Only the appearance of the 
de Sitter potential W(s) allows an increasing Hubble parameter during inflation. (A 
scalar coupled to the curvature scalar (8(s)R instead of M2R) can also lead to a 
violation of the equivalence principle. During inflation and the subsequent radiation 
dominated epoch, however, the coupling of the scalar to other particles can be 
neglected for cosmology. For the coupled system of scalar and gravity we always 
can remove the violation of the equivalence principle by an appropriate Weyl 
scaling of the metric. There is again only one relevant potential [14], namely V/82.) 
(7) It may seem that our choice of the large s behaviour of the potential V -  
e x p ( -  Ds) and "7 - exp(Ds), (3.1) and (3.2), is quite arbitrary. This behaviour arises, 
however, very naturally in the context of higher dimensional theories, where 
inflation is associated with the transition to an effectively four dimensional universe. 
In these models V, ,~ and also the square of the Planck mass (the coefficient 8(s) in 
front of the curvature scalar) are all proportional to the volume of internal space 
- exp(Ds). After an appropriate Weyl scaling of the metric (in order to obtain a 
constant Planck mass) this leads [9] for large s to the general form V -  e x p ( - D s ) ,  
provided that the effective higher dimensional cosmological constant and Newton's 
constant (after integrating out the other fields) do not vanish. Similarly, one finds 
[14] 9 - exp(Ds) if the higher dimensional coefficient of the Euler form is nonzero. 

* M u c h  smal le r  values of u would  require a small  d imens ionless  quan t i ty  to make  (AO/p)(IE) much 
smal le r  t h a n  1. 
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(8) The general condition on V and { which is necessary for a constant v (in a 
certain range of s) follows from eq. (5.1) 

V '  ~' q- W ~ 
2 - -  (5.8) 

V w 

with w given by V and ,~ according to eqs. (2.18) and (2.16). These equations can 
also be used to model primordial fluctuation spectra not obeying a power law, 
where v depends on s and therefore on l. In order to generate galaxies from spectra 
with AO/P(IE)  = O(1) one requires for the mean value of v (N~ --~ 55) 

1 - / N ~ , d l n ~  ~ 1 
No, J0 6 

(5.9) 

(9) For the model of sect. 3 a large value of F o ( F o l D  2 >> 16y2u2 - -  32~ /U0)  implies a 
small value of v (e .%< ~).  This would require small (Ap/p) ( IE) ,  which is possible for 

v o sufficiently small (4.6), but not in the spirit of this paper. For smaller values of F 0 
the scalar kinetic term is significantly influenced during the de Sitter phase by terms 
- ~'. This may induce some quantitative modifications (for example in eq. (4.1)), 
but should not change the qualitative feature of a power law for the primordial 
spectrum. We see in general no problem to arrange the kinetic term such as to 
obtain e ~ ~ to ¼, especially if we use the freedom of adding to the action additional 
kinetic terms like 

S k i n :  - f d 4 x g l / 2 ( - ~ a l ( s ) R s ; . s ; " - ~ a 2 ( s ) R " ~ s ; . s ; ~  

+ ( 6 1 ( s ) +  ½ 6 2 ( s ) ) ( s ; " s ; ~ - s ; " ~ s ; . ~ ) + b l ( s ) ( R s ; ~  - 2R"~s; .~)) .  (5.10) 

The corresponding additions to the field equations contain no more than two 
derivatives [14] and only influence the scalar kinetic term during inflation. In a 
subsequent paper  [14] we will discuss a model [6] describing inflation as the 
transition from a higher dimensional universe to four dimensions. There p = ~ to ¼ 
is easily obtained. 

6. Observable consequences for the structure formation in the universe 

We have presented an inflationary scenario where the small primordial density 
fluctuations on galactic scales are explained by a power spectrum A p / p  ~ l -~. This 
spectrum differs from the usually assumed flat spectrum. The shape of the spectrum 
influences the formation of structure during the matter dominated period. Our 
scenario may therefore be tested by observations on the matter distribution in the 
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universe. We can fix the value of AO/O on galactic scales and then consider the 
modifications compared to the flat spectrum: 
On cluster scales A P /0  is somewhat smaller than for a flat spectrum. This may lead 
to a conflict with large scale structure observations within cold dark matter 
scenarios. The observations on the cluster-cluster correlation and the "great attrac- 
tor", however, are not yet on firmly settled grounds [15]. 

The large angle anisotropy in the 3 K background radiation is smaller than usual* 
by a factor 4 8. This may become of relevance when the sensitivity of measure- 
ments of AT/T is further increased. 

Objects on scales smaller than l(~ may form before galaxies since AO/o is enhanced 
for smaller scales. We do not know if this may be relevant for globular clusters or 
even stars. 
The abundance [17] of small black holes, formed immediately after the end of 
inflation, depends critically on Ap/O (lE) being bigger or smaller than 1. Primordial 
massive black holes ( M  > 1015g) are, however, extremely rare, since 210/0 is small 
for the corresponding scales and the transition to the radiation dominated universe 
after inflation is rapid. 

The author would like to thank the Institute for Theoretical Physics in Santa 
Barbara for an enjoyable stay, where most of this work was done. He also thanks R. 
Bond, R. Brandenberger, J. Primack, J. Silk, A. Starobinski and M. Turner for 
helpful discussions. 
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