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THE EFFECTIVE ACTION FROM MULTIGRID MONTE CARLO*
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We describe a new method to calculate the effective action in lattice field theories through the multigrid
Monte Carlo technique. It permits stochastic computations for critical and nearly critical systems without
critical slowing down . As a first application the ~4-theory in 4 dimensions with spontaneous symmetry
breaking is studied. We obtain an estimate of the dynamical critical exponent. Thestrong reduction of
the relaxation time permits accurate determination of the effective action close to the critical surface.

1. INTRODUCTION
The basic idea of the multigrid approach is

to map a nearly critical lattice field theory into a
noncritical theory which lives on a multigrid. In
effect one performs simultaneously a sequence of
renormalization group transformationsl .A previous
implementation2 of this proposal did not minimize
the coupling to high frequency fields, but renormal-
ization theory shows that this is essential to get a
noncritical system3 .

We present here a new Multigrid Monte Carlo
algorithm which is motivated by analytical investi-
gations and apply it to the 04 model with spon
taneous symmetry breaking in 4 dimensions . Our
scheme is designed for moderate couplings. We
believe that moderately strongly coupled models
are of prime interest because very strongly coupled
models tend to become moderately coupled very
quickly in initial renormalization group steps.

2 .

	

MULTIGRID DECOMPOSITION

To study a theory on the fundamental lattice
AN, called base, of lattice spacing a = aN, we in-
troduce a multigrid A = A0 + A1 + ... + AN. It is
composed of a sequence of lattices Ai, called hor-
izontal layers, of decreasing lattice spacings ai =
LN-jaN, L = 2 or 3. We set aN = 1. The multi-
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grid may be regarded as a kind of lattice in one
more dimension. The idea is to transform a nearly
critical system in a box on base iiito a noncritical
system on A. A linear multigrid transformation is
similar to a Fourier transformation . It maps a field
~ on the fundamental lattice base into a field tp on
the multigrid A. For instance

N

~(z) = 1:
ai-"
E Aj(z, x)SP'(x) (2 .1)

j=0 =EAi

in d dimensions . Sites x E Ai may be identi-
fied with cubes of sidelength L lattice spacings in

Ai+i, and with cubes called blocks of sidelength
LN-i lattice spacings in base . Given the real ker-
nels A?(z, x) - they are analogous to exp(ikx) in
a Fourier transformation - the decomposition (2.1)
is unique if one requires that the average of 0(x)
over cubes y E Ai- 1 of side Lai vanishes. There
are then equally many independent variables O(z)
and Vi(x).

The essential steps in a renormalization group
approach are
i) definition of a sequence of block spins V(x) on
the lattices Ai, e.g. as block averages

V(x) = avsEzO(Z)

	

for

	

x E Ai(z E base)(2 .2)



294

ii) a split of the fundamental field ~ into a term

called background field which is determined by the

block spin lij, and a fluctuation field (j . Both fields
live on base, and the fluctuation field contributes
nothing to the block spin i.e. has zero block aver-
ages

O(z) = aj E A(z, x)~(x) +(j(z) .

	

(2.3)
=Eej

Given the block spin definition (2.2) and the kernels
Aj, eq.(2.3) defines the fluctuation field (i as a
function of ~.

The multigrid transformation (2.1) yields such
a decomposition (2.3) for each j if we require that

avzEvA(z, x) = aj- ",6.

	

for

	

x,y E Ai (2.4)

and if Aj is constructed as convolution of kernels
All-1-1(m, y) which link neighbouring layers As a x
and Ak_1 -D y, and which share a property like (2.4).
The fluctuation field (k(z) equals the sumof terms
in eq.(2.1) with k > j+1, and the background field
is the rest . Thus the block spin receives contribu-
tions from V on layers j < k with lattice spacings
aj > ak .

In the updating procedure one uses block spins
and fluctuation fields (', but for the following

discussion of the requirementsfor noncriticality the
multigrid transform 0 H V is essential. It maps
a lattice field theory on base with Hamiltonian H
into a theory on A with Hamiltonian H,

H(0) = H(W)

	

(2.5)

This system will be noncritical if a variable 0(x)
attached to one site x E A has sizable correlations
with a reasonably small number of variables cpk(y)
only.

Assuming the kernel Aj(z,x) is smooth in z on
length scale aj, the contribution of the field Vi to
0 shall represent the contribution from a certain
frequency range. Therefor! the conditional prob-
ability distribution exp[- . .'r(W)]dVi for Vi, given
the fields Wk on other layers k # j, is given by
an auxiliary theory on Aj, with both an UV-cutoff
aj 1, and also an infrared cutoffaj11 for j ,E 0. One
can therefore expect that this auxiliary theory will
only have correlation length of order aj-1 , that is
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L lattice spacings on Aj. This is confirmed by the
renormalization group interpretation of the multi-
grid transform. In principle, the correlation length
on Ao equals that of the full theory, but our Ao will
be a single point.

This is not the complete story yet. In the full
theory there are correlations between layers . For in-
stance, a 4!(z) interaction couples fields cpn ...0
on possibly different layers, by eq.(2.1),(2 .5).The
kernels Aj(z, x) are chosen to decay exponentially
in the distance (z - al of z from cube x, with de-
cay length aj . Therefore they introduce nonlocality
in horizontal direction over distances aj only.But
for k > j the number of points y in At, "under-
neath" x E Aj - .that is within horizontal distance
aj - increases exponentially with k -j like Ld(k-j) .

Therefore the coupling between layers Aj and &
wit"::k > j could induce correlations in Ak over dis-
tances of order Lk-j lattice spacings . This shows
that noncriticality of the full theory can only be
achieved if correlations between vi and fields Vk
which represent higher frequency ranges k > j, de-
cay fast enough with k - j. Such decoupling be-
tween high frequency fields and low frequency fields
is a subject of renormalization theory.

Rigorous analytical work. Son renormalization
group and phase cell cluster expansions showed for
some weakly coupled models without spontaneous
symmetry breaking that the theory on the multi-
grid admits convergent cluster expansions, and is
therefore essentially noncritical, if one imposes the
following requirements on the kernels Ai(z, x)
i) relation (2.4) for block averages
ii) exponential decay in Iz - xl over distances ai
iii) the kinetic term (0, -00) does not couple dif-
ferent layers .

Because Vi(x) has vanishing averages over
cubes y E Aj_1, condition iii) is fulfilled if

- AA-(z, x) = const

	

(2.6)

as a function of z on cubes y E Aj . Step function
kernels as employed by Goodman and Soka12 do
not lead to a noncritical system .



3.

	

MULTIGRID MONTE CARLO SIMULATION
We did numerical studies of the performance of

such a scheme for moderate coupling, in the vicin-
ity of a critical point (surface) and including points
in the broken symmetry phase, for 1-component V
theory in 4 dimensions . The kernels Aj can be com-
puted from eq.(2.6) by relaxation . One updates at
pairs of points zi, z2 in the same cube to main
tain eq.(2.4) .

	

The result showed that Ai(z, x) is
very small except if, z is in cube x or in one of its
nearest neighbours . Therefore we set it to zero else-
where, for reasons of numerical simplicity. That is,
we substituted a Laplacian with Dirichlet boundary
conditions in eq.(2.6) . The kernels Aj need to be
computed only once .

The simulation was performed as follows. One
visits the layers Aj in sequence ; on AN = base one
does standard Monte Carlo updates for 0. Before
starting on Aj, (j < N) one computes the fluctua-
tion field Cj from the instantaneous field configura-
tion ¢ by eq .(2.3) . (.j enters the kinetic term be-
cause of our truncaiii*n of Aj) . Onesweeps through
sites x E Aj, updating -Pj(x), while Cj remains un-
changed.

Updating -j is essentially equivalent to update
because the contributions of lower frequency

fields cp k (k < j) will be changed by little,since
only cpj is not affected by critical slowing down.
We make updating proposals for 40 based on the
exact kinetic term which is bilinear in 40 and (j,
and filter with the exact interaction iynû0a+Ao04 .
This filtering is the costly step. It requires evalua-
tion of the change of O(z) for z in cube x and its
nearest neighbours, and of the associated change
in Ao E ¢4 (z). As a result the amount of computa-
tional work on a block lattice Aj, (j :A 0) is com-
parable to that on the finest lattice AN . Evaluation
of the exact Hamiltonian cannot be avoided with-
out introducing systematic errors in the probability
distribution of 0.

Our last layer Ao was chosen as a single point.
As a result, the last block spin V is a single real
variable, and

,o

	

=

	

a-3 - magnetization

C(z)

	

=

	

O(z) - ~P .
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The computations needed to update V yield the
effective action Yff(V) for free. By definition

e-Hmt(~°) --

DO eù(") S(eu - avsEA,,OW) (3.2)

The conditional probability distribution for
given t;o, is oc exp[-ff(-0+(0],and for a 0'° theory

4
É(40 +CO) = E 9n(C0)

(4>0)n

	

(3.3)
n=0

Theupdating procedure yields fluctuation field con-
figurations (â with a = 1 . ..Ns, Ns = number of
visits. We compute and gather the corresponding
fluctuating coupling constants gn,a = gn((a) . They
yield the effective action Yff(4) and its deriva-
tives with respect to 4 as follows . Define Za as a
1-dimensional integral, and g.,.(4) by reexpanding,

4

Za

	

dfi exp -E g. '.-t
-[ n=0

4

	

4 _
E 9n,a'n = E -4)n
n=0 n=0

Then we obtain

e-H-rr(*+a") - (3.4)

f
_

	

Ns

	

_r4

	

1

	

~nj 1Nil	Z .-'expl- E9,0#1§1'
1a=1 n=0

Expanding the logarithm on both sides in a power
series in b1~ yields Yff(4) and its derivatives . It
costs little to do this for many 4, .

We used a multigrid Ao + Ai + AZ to study
single component 4'4 theory on a 124 lattice . Al
had 44 sites, each representing a cube of 34 points,
A° was a single point. We have also results on a
244 lattice .

We choose as bare input parameters for the
coupling and mass the values Ao = 16.37E and
M0 = -1 .14,-1 .15 and -1.16 to study the ex
pected crossover of the effective action from a sin-

gle well shape to double well behaviour. Löscher
and Weisz4 predicted that the critical point asso-
ciated with second order phase transition for in-
finite volume is for this coupling at a bare mass
m0 = -1.157 f0.006 .
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Figure 1: Autoco!rre!ation function with Metropolis
updating (filled circles) and the multigrid algorithm
(open circles) on a 124 lattice .

In our simulation we visited the multigrid layers
in turn, performing 5 sweeps per visit with standard
50,20 and 10 hit Metropolis updates at each site
for the three layers. Fluctuating coupling constants
were determined once per visit. The effective ac-
tion was computed from data samples of 200 000
sweeps, as described above, essentially without ad-
ditional computational cost .

We made a comparison with the standard
("1-grid") Metropolis updating on the finest lat-
tice. In figure 1 we compare the normalized time
autocorrelation function of the total magnetization
for three values of the bare mass on a 124 lattice .
Our data for rrzô = -1.15 on the 244 lattice are
not plotted in fig.1 . The values for the autocorre-
lation time are T = 400, 550 and 800 for the three
Metropolis runs and -r = 35, 65 and 100 for the cor-
responding multigrid simulations . A change of the
linear size L of the system from L = 12 to L = 24
increases the autocorrelation time -r from 65 to 100
at the bare mass m.2 = -1.15 which is very close
to the infinite volume critical point. Therefore we
can give an estimate ZMGMC < 2 for our multigrid
Monte Carlo algorithms.

In figure 2 we show the total effective action
H,ff (not divided by the volume) in a narrow range
of bare parameters with the crossover from a single
well shape to double well behaviour. For rrao =
-1.14 the system is in the symmetric phase, at
Mô = -1.15 the symmetry is spontaneously broken
(due to the finite size shift), and at M2 = -1 .16
we are clearly in the broken phase. The dotted lines
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Figure 2: The effective action from the multigrid
simulation on a 124 lattice as a function of the
magnetization per site .

are the errors of H~ff . Note the scale forH.ff .
One can determine renormalized coupling con-

stants and masses Tn, from the location of the
minimum and derivatives of the effective ac-
tion. Using the known value Z ,. 14 of the
wave function renormalization constant we find
rn,

	

=

	

0.105 f .01, 0.060 t .006, 0.16 f .01 5
for mô = -1.14,-1 .15,-1.16 . This shows that
we are very close to the critical point. We stayed
so close in order to demonstrate the power of our
method to fight . critical slowing down.
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