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Abstract. In this paper a complete derivation of the Selberg supertrace formula 
for super Riemann surfaces and a discussion of the analytic properties of the Selberg 
super zeta-functions is presented. The Selberg supertrace formula is based on 
Laplace-Dirac operators Dm of weight m o n  super Riemann surfaces. The trace 
formula for all m ~ Z  is derived and it is shown that one must discriminate between 
even and odd m. Particularly the term in the trace formula proportional to the 
identity transformation is sensitive to this discrimination. The analytic properties 
of the two Selberg super zeta-functions are discussed in detail, first with, and the 
second without consideration of the spin structure. We find for the Selberg super 
zeta-functions similarities as well as differences in comparison to the ordinary 
Selberg zeta-function. Also functional equations for the two Selberg super 
zeta-functions are derived. The results are applied to discuss the spectrum of the 
Laplace-Dirac operators and to calculate their determinants. For  the spectrum it 
is found that the nontrivial Eigenvalues are the same for I-Ira and Do up to a 
constant depending on m, which is analogous to the bosonic case. The analytic 
properties of the determinants can be deduced from the analytic properties of the 
Selberg super zeta-functions, and it is shown that they are well-defined. Special 
cases (rn = 0, 2) for the determinants are important in the Polyakov approach for 
the fermionic string. With these results it is deduced that the fermionic string 
integrand of the Polyakov functional integral is well-defined. 

I. Introduction 

The Selberg trace formula has turned out to be a powerful tool to analyse the 
spectra of Laplacians on Riemann surfaces and to calculate their determinants. In 

* Present address: Imperial College of Science, Technology and Medicine, The Blackett 
Laboratory, Prince Consort Road, London SW7, UK 



434 C. Grosche 

addition, the Selberg zeta-function serves as a function with which many cal- 
culations and considerations can be simplified. In this paper I want to present a 
discussion generalizing these features to the "super"-case. 

The main interest in this field emerges from the Polyakov approach to string 
theory [49]. In this prescription the perturbation expansion is given by a summation 
of all Riemann surfaces with increasing genus g = 0, 1, 2 .. . .  and an additional 
integration over all variations of a Riemann surface with a given genus g, i.e. the 
integration over the Teichmiiller space. This partition function in the genus g, i.e. 
the multiloop expansion, has been in detail discussed by e.g. D'Hoker and Phong 
[16], Gilbert [21] and Namazie and Rajjev [45] for the bosonic string and by 
D'Hoker and Phong [18] for the fermionic string. In the bosonic string theory as 
well as in the fermionic string theory it turns out that the Selberg (super-)trace 
formula serves as a tool to express the (super-)determinants of the relevant 
Laplace(-Dirac) operators as ratios of Selberg (super) zeta-functions. There is the 
alternative to express these terms by means of Theta-functions as was pointed out 
by Alvarez-Gaum6 et al. [1] and Manin [40]. The final task is, Of course, the 
study of the superstring [24, 25] and the heterotic string as developed by Gross 
et al. [33]. The question of the superstring is relatively easy. In the fermonic string, 
the spinors on the Riemann surface are defined with some spinor structure, which 
can be independently chosen for left- and right movers. In type II superstring 
theory (type I theories contain open strings, whereas type II theories only closed 
strings), these spinor structures must be summed over to project (GSO-projection 
[22]) onto the correct sector of the Neveu-Schwarz-Rammond theory [18]. It 
turns out that at the one-loop level, for type II superstrings the resulting sum for 
the partition function vanishes by the use of a famous Jacobi identity on 
Theta-functions Caequatio identica satis abstrusa"), indicating the presence of 
10-dimensional space-time supersymmetry, i.e. the equality at each mass level of 
the numbers of bosonic and fermionic states (for details see e.g. [18]). 

Throughout this paper I work with type II theories in flat space-time having 
critical dimension d = 10. The question of heterotic strings is not discussed in this 
paper. 

However, the Selberg trace formula and its super generalization has much more 
applications than only for string theory. There is also the question of the 
spectrum of Laplace(-Dirac) operators on (super-) Riemann surfaces. The Selberg 
(super-)trace formula with appropriately chosen test functions gives answers for 
those considerations. 

Furthermore there is the study of quantum chaos. Classical motion on bounded 
domains on the Poincar6 upper half-plane (or the Poincar6 disc, respectively) turns 
out to be chaotic (Bernoulli-like) and there are an infinite set of closed geodesics 
in these domains. An remarkable achievement in this field has been presented in 
papers of Aurich and Steiner [4], where up to 200 million geodesics were 
determined, and by Aurich, Sieber and Steiner [5], where these geodesics have 
been used to determine the first low lying Eigenvalues of the Laplace operator on 
the simplest symmetric compact domain for g = 2, corresponding to the regular 
octagon. Also McKean [38] and Steiner [57] have used the Selberg trace formula 
to obtain information about determinants of Laplace operators and to study some 
properties of the Selberg zeta-function. 

This paper is devoted to the program to generalize as much as possible notions 
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of the bosonic case to the fermionic one. To make this paper selfcontained, I 
introduce in Chap. II the notion of superconformal transformation on the 
Poincar6 super upper half-plane 6r This includes a description of the super 
M6bius transformations and the construction of the metric on the super Poincar6 
upper half-plane 6 e ~  by the Vielbein approach of 2 + 2-dimensional supergravity. 

The further contents of the chapters will be as follows: In Chap. III the Selberg 
supertrace formula for automorphic forms of weight m on compact super Riemann 
surfaces is discussed, the latter are visualized as bounded domains on the super 
Poincar6 upper half-plane 6a~.  I will derive the corresponding trace formula in 
the super generalisation for Laplace-Dirac operators with weight m. This gives the 
super-generalization of the Selberg trace formula as introduced by Selberg [56] 
and discussed in great detail by Hejhal 136]. A supergeneralization of the Selberg 
trace formula was already given by Baranov et al. [7], but with some details not 
taken into account, i.e. in their discussion the term corresponding to the unit 
transformation (except m = 0) was missing. I derive this term explicitly and thus 
complete their work. However, I do not claim to be mathematically rigorous. 

The fourth chapter is .devoted to the discussion of the two Selberg super 
zeta-functions and contains entirely new results. These zeta-functions were 
originally introduced by Selberg [56] to study spectra of Laplacians on compact 
Riemann surfaces of genus g. The super Selberg zeta-functions are similarly defined 
as the usual Selberg zeta-function. I find similarities but also important differences 
for Zo and Z1 in comparison with the usual Selberg zeta-function. Functional 
relations for Zo, Z1 and a relation linking these two functions are derived. 

In the fifth Chap. I apply my results to fermionic string theory. This includes 
first the discussion of the spectra of the Laplace-Dirac operators, and second the 
calculation of their determinants. It is shown that the relevant determinants which 
have to be considered in the Polyakov functional integral exist and are regular. 
Discussions of the superdeterminants are already due to Baranov et al. [7] and 
Aoki [2]. In ref. [7] ratios of superdeterminants corresponding to different copies of 
super Fuchsian groups were considered (due to lack of knowledge of the analytic 
behaviour of super zeta-functions). In ref. [2] attempts have been made to express 
the superdeterminants by the super zeta-functions, where the functional equation 
for the usual Selberg zeta-function has been used. These indirect reasonings will be 
avoided here. Furthermore the behaviour of the superdeterminants of the operators 
[[],, in the case of degenerate super Riemann surfaces is discussed. 

Chapter VI contains a summary and concluding remarks. 

II. The Poincar~ Super Upper Half-Plane ~ j t f  

In this paper super Riemann surfaces are considered as special supermanifolds 
1-20,34,46,50,54] of the DeWitt-type [15,51]. These supermanifolds J// have a 
trivial topology in the direction of the soul coordinates, they are fiber bundles over 
their body J//B. The reason for this property is the fact that an open set in ./4 is 
always the cartesian product of an open set of R m with the entire space of the soul 
coordinates. If this restriction is omitted one gets Rogers-supermanifolds which 
allow a more complicated structure in the soul coordinates 1-53]. From the point 
of view of physics only the DeWitt-supermanifolds seem to be of interest 1-15]; for 
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further details see e.g. Rabin and Crane [51]. An introduction into superanalysis 
can be found e.g. in the books of Berezin [9] and DeWitt [15]. 

In the fermionic string theory one is interested in superconformal symmetry. 
The notion of superspaces and supermanifolds enables one to represent these sym- 
metry transformations as pure "geometrical" transformations in the coordinates 
(z,0)~C~ • Ca (the indices "a" and "c" denote the set of anticommuting and 
commuting (complex) numbers, respectively). Let us consider the transformation 
(~Co): 

~ = z + O e ,  O = 0 + e .  (1) 

Lagrangians are constructed from fields and their derivatives. Therefore one is led 
to use supersymmetric differential operators. This is nothing but to choose a 
Vielbein of complex dimension (1, 1), which is invariant under the transformation 
(1). Now rewrite Eq. (1) in homogeneous coordinates 

= 1 (2) 
0 

= 1 3 + e X : e x p ( ~ X )  

and realize the infinitesimal generator 

X =  0 
0 

(3) 

as a differential operator on the set of all superanalytic functions F(J / )  on the 
supermanifold Jg: 

, .~Px:~(Cc• f(z,O)~---~[~f(exp(eX)(z,O))]~=o (4) 

~ x  = - OOz + Oo. 

The operator 5e x obviously has odd parity. Invariance of an operator De TpJ/ i s  
now equivalent to the restriction [D, s176 = 0, where [A, B] = AB -- (-- 1)ABBA is 
the supercommutator of two operators A and B. For the operator D one chooses 

D = 00z + 00. (5) 

The operator D is something like the square root of 0z since D 2 = 0z. 
Let us consider a general superanalytic coordinate transformation 

= ~(z, 0), 0 = O(z, 0). (6) 

Then D transforms as follows 

D = (DO-)D + (D~ -- OD0")/~ 2. (7) 

Now, a superanalytic coordinate transformation is called superconformal, if the 
(0, 1)-dimensional subspace of the tangential space generated by the action of D is 
invariant under the coordinate transformation, i.e. 

D = (DO)D. (8) 
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Thus we have the 

Definition. A Super Riemann Surface is a complex (1, 1)-dimensional supermanifold, 
whose coordinate transformations are superconformal mappings. 

One introduces homogeneous coordinates and can represent the (1,1)- 
dimensional complex projective space as (4, zl, Z2)~Ca X C2\{0} ~ Ptt,1)(A~). The 
group SPL(2, C) of superconformal automorphisms is the natural super-generali- 
sation of the Mrbius transformations. Its generators are the operators Lo, L1, 
L_ 1, G1/2 and G_ 1/2 of the Neveu-Schwarz section of the Virasoro super algebra of 
the fermionic string [in ref. [2] SPL(2, C) is denoted as OSp(2[ 1, C)]. On Ptl,1)(A| 
these transformations can be realized as linear transformations, which are 
superconformal in the local coordinates. Also we have the constraint that 
SPL(2, C)Boay = SL(2, C). A resonable Ansatz reads: 

SPL(1, 2; Ca x C~) 

:= = a :a,b,c,d, esCc;e, fl,7,6eC.;ad-bc= 1;sdet?,= 1 . 
c 

(9) 
Locally the transformation x'= ~x, x, x'~P~m)(A| for 7eSPL(1, 2; C. x C~) reads 
as 

z' 6 0 + a z + b _ A  o ' = e O + ~ z + f l - F  (10) 
70+cz+d B' 7 0 + c z + d - B "  

Superconformal invariance gives the constraint: 

Oz' = O'DO' ~ (DA)B - A(DB) = r (or ) .  (11) 

Comparison of the coefficients yields e = 1 + (3/2)fl~, ? = d ~ -  eft, 6 = b~-  aft. Inserting 
into (10) gives finally 

z ,=az+b ~z+fl O'-~z+fl  F c z ~ ( 1  + ~ )  (12) 
cz +~--d + 0 (cz + d) 2' cz +~ " 

Let us define the quantities N~ and ~ by [7, 41, 43] 

ze[N~/2+N~ 1/2] = (a + d ) ( 1 -  ~ ) - ~ f l  = str7 + 1. (13) 

Nr is called the norm of an hyperbolic ~eF and Xv describes the corresponding 
spin structure. Xr can take on the values + 1 and has to be chosen as ~(~ = sign (a + d) 
or, respectively [43] 

{ 11 s t r , + l > 2  (14) 
Xv= _ s t r ? + l < - 2 .  

Nro will denote the norm of a primitive 7o~F, where elements y~/" which are not 
powers (greater or equal to 2) of any element in F are called primitive elements 
of F in analogy to the usual bosonic case. F is called a super Fuchsian group, the 
subgroup SPL(2, R) ofSPL(2, C), thus the group of superconformal automorphisms 
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of 5%r Its body NrB is the corresponding norm of an element 7BePSL(2, R), the 
group of hyperbolic transformation on the Poincar6 upper half-plane. In analogy to 
the classical bosonic case I denote by l~ = In Nr the length of a closed geodesic 
corresponding to a hyperbolic 7eF. Of course, Iro is the length corresponding to 
a primitive 70. In the bosonic case these generators are also called boosts, because 
they correspond to explicit Lorentz transformation on the pseudosphere A 2 which 
is analytical equivalent to the Poincar6 upper half-plane ]g  1-27-31]. They obey 
the important constraint 

"720--272g- 1)(70 71 " ' '720--272g-- 1) = ~- 12. (15) 

For a SPL(2, R) a hyperbolic transformation is always conjugate to the trans- 
formation 

z' = Nrz, 0' = Zrv/~r0,  (16) 

or in matrix representation: 

(i 0 00) 1, hyperbolic 7 e F  conjugate to z~N~-1/2 . 
0 z~N~- 1/ 

To normalize 7 correctly by sdet ? = 1 one has to multiply all matrix-entries of 
Eq. (9) by K = 1 - �89 = 1 + �89 Therefore: 

( l + ~ f l a  a ! )  { l + f l a  
7 = K | ba -- aft a = |ba - aft 

\ d a  - c \ d a -  

and the inverse transformation reads: 

1 + fla cfl - da 
7-1 = - fl d(1 - �89 

- a - e ( 1  - �89 

a(1--�89 b(1 �89 
c ( 1 -  �89  - �89 

( 1 8 )  

b a  - a / 1  

- b ( 1  - � 8 9  . 

a(1 -�89 / 
(19) 

To formulate s u p e r  u n i f o r m i s a t i o n  let us first remember the uniformisation theorem 
for Riemann surfaces (e.g. [10]): 

Theorem. Every compact Riemann surface is conformally equivalent to d/Ill-', where 
J [  = C (Riemann sphere), J/l = C (for the torus) or Jr  = ~ (upper half-plane) where 
F is a discrete, f ix-point free subgroup of  the conformal automorphisms o f  ~ l .  

Since C, C and Jog are simply connected, and super Riemann surfaces are fiber 
bundles over their body, there exist generalisations SC, SC and 5coW. The conformal 
automorphisms of C and ~ are subgroups ofSL(2, C). This is not true in general 
for the superconformal automorphisms of SC and 5coW. But for application in 
physics we need in general a metric and we can restrict ourselves to "metrizable" 
super Riemann surfaces. Superconformal automorphisms of a "metrizable" super 
Riemann surface, which leave the metric invariant, are always subgroups of 
SPL(2, C). 
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With the DeWitt definition of open sets, a subgroup F c SPL(2, R) acts discrete 
and without fix-points, iff FRed = FBody C SL(2, R). 

Theorem [51]. Every "metrizable" super Riemann surface Z is superconformaIty 
equivalent to ~g/1-" with J g =  SC, SC or 5 e ~  and F is a discrete f ix-point free 
subgroup of  the superconformal automorphisms on d/[. 

The coefficients in Eq. (9) are specified by a,b,c ,d~Rc and a, fleCa, ~ = i a ,  
= ifl. The fundamental group of a compact Riemann surface of genus g can be 

defined by 2g generators satisfying the relation (15). In the super case we have 
analogously: 

(y,~,;-1 ... y~g_ ~,l~gL 1)(yg 1~1 ... ~gL ~ g _  0 = 1 . (2o) 
0 

The real Teichmiiller space 3-  of a compact Riemann surface with genus g has 
(real) dimension d j  = 6g - 6, whereas super Teichmiiller space S J-, respectively, 
super Moduli space [44, 46, 58], has dimension dss~ = ( 6 g -  6, 4 g -  4). 

To construct the metric on ~ o ~  let us consider the Vierbein E A. The general 
method for constructing the Vierbein in a curved 2 + 2-dimensional super space 
was given b y  Howe [37]. Because a 2 + 2-dimensional superspace is conformally 
flat, if there exists a coordinate system in which the metric is proportional to the 
flat metric, one starts with the Vierbein/~r~ A in flat superspace 

^ 1 0 ^ 1 0 (21) 
Eua = 0 0 1 ' E A M  = 0 1 ' 

i f 0  - i f 0  

where /~au= (/~ua) -~ is the inverse Vierbein. This gives for the quantities 
p a = d z M ~ a :  

ffZ = dz + OdO, frO=dO 

P.e = d ~ -  OdO, if a= aft. (22) 

Under a super Weyl transformation the V ie rb e in /~a  changes as 

~M a -.., EM a ~EM a = A(Z)ff~M ~, (a = z, ~), (23) 
= ~EM ~ A 1/2(Z)ff~M= - i~~ 112(Z), (or = O, 0), 

where D= = E=MtgM, A(Z)  the scaling function and (?.) the y-matrices which in my 
notation read (raising and lowering of spin-indices are performed by the totally 
antisymmetric ~,a-tensor): 

( , z Y ' : ( ~  ~),  (?e)~a=(~ ~).  (24) 

Since the Vierbein E a should be (up to phase factors - see eg. [28]) invariant under 
the action of SPL(2, R) the appropriate scaling function reads A(Z)  = Y -  1, where 

0g 
Yis given by Y:= Im z + -~  = y + i0102, ifI further set 0 = 0 i + i02 and if= 01 - iO:, 
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where 0~ and 02 are real Grassmannians. Note: Y=  Y. The E a a r e  now given as 
(see [51, 59]): 

EZ dz + OdO EO dO t O -  O 
= ~ ,  - y t /2  F 2-~7~(dz + OdO), 

E e _  de + OdO E ~ _  dO iO + O - - 
~ ,  y t /2  ~y-~/~ ( d e -  OdO). (25) 

The SPL(2, R) invariant line element can be constructed by [59]: 

1 
ds 2 = E~E ~ - 2E~ o= ~ [ d e d z  

Rewriting ds2 = dq",,gbdq b we obtain 

(oob) = 

i0 

- iOdedO - iOdOdz - (2 Y + O0)dOdO]. 

the metric tensor on 5 a ~  

o oO/ 
0 - i 0  

iO 0 - ( 2 Y +  00 ) ) "  
0 2 Y + O 0  

(26) 

(27) 

1 
and its superdeterminant reads: sdet(,gb)= - -~ys"  Let us contruct the SPL(2, R) 
invariant volume element on S~aV as 

dzdedOdff 
dV(Z)  = x/I sdet(agb)l dzaeaoao= 2 Y (28) 

Note the difference in the power of Y to the PSL(2, R) invariant volume element 
on 9V: dV(z) = dxdy /y  2. The super hyperbolic distance between two points q(1) and 
q(2) on 60~'  is defined as [41, 60]: 

q(2) ! 
d(qO), q(2)) = S ds = (/-~--S~2dt = co(t2 -- tl), (29) 

q,. ~/ \ dtJ 

where co is a phase factor with I col= 1159]. This can be rewritten as 

cosh d(q (1), q(2)) = 1 + �89 (1), q(2)) _ 2r(q(1), q(2)), (30) 

where [set qO) = Z, q(21 =__ W = (U + iv, V 1 + V2), V = v + vF/2]: 

R(Z, w)_lz-co-Ovl2 Iz-w-Ovl 2 
Y V  T (y + O0/2)(v + v~/2)' (31) 

200+  i(v - i~)(O + tO) 2vF + i(O -- iO)(v + i~) 
r(z, w ) =  -v 

4 Y  4 V  

(v + ff)(O + tO) Re (z - w - Ov) 
+ 4 Y V  (32) 

All these two-point quantities are SPL(2, R) invariant. Following ref. [59] the super 
Laplae-Beltrami operator can be constructed as 

A SLB = ( - -  1)ag - 1/4pa g 1/2 a gbbpg - 1/4 (33 )  
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This super Laplacian is a straightforward generalisation of the classical bosonic 
one and is in general the simplest one which is invariant under general point 
canonical transformations (see [30, 47] for a discussion of the classical bosonic 
case). The quantum Hamiltonian on a super Riemann manifold is then given by 

1 A n = - 2ram SLB = --~--~["ObObOa + (-- 1)a(F~ag b + (d,"gb))db]" (34) 

Thus for the Hamiltonian on the Poincar6 super upper half-plane: 

Hse~ = - ~--m"gbS#)a = - Y  [ (2 Y -  Og)dzd~ + i f fdzd~ iOazd - Offd~ (35) 

The Hamiltonian Hs,~r can be factorized. Let us define 

[] = 2 Y D D  = 2Y(d#~ o + OOdzd e - Od#)z - ffdodz), 

D = d o + Odz, /) = - 8 ~  + fid e (36) 

[i.e. D = Do, D = D~, in the Vierbein notation of Eq. (21)]. It can be easily shown 
that the important relation holds: 

Ay~r = r-] 2. (37) 

Generally I will refer to the operator []  as the Laplaee-Dirae operator on 6p~ .  
With the invariant volume element on ~ ,  d ~  r and [] are hermitian with respect 
to the scalar product 

(~1, ~2) = ~ d V ( Z ) ~  ~z. (38) 

The operator []  is the zero-case of the more general operator []m which is defined 
by (I use a slightly different notation as in Baranov et al. [7, 8] and Aoki [2]; in 
refs. [2, 7] a description is given, how such operators can be constructed in a 
systematic approach): 

[]m = 2 YDD + m(iO - O)D. (39) 

This is the important operator for the fermionic string. In ref. [7] also the operator 
~,~ is introduced which is constructed by a linear isomorphism 

[]m = ym/2(  E]m + 2 ) Y-m/2. (40) 

Hence we have an unitary equivalence of []m and ~,~ + m. Explicitly ~,~ reads: 
L 

m 
~m = 2 YDD + ~(iO - O)(D + iO). (41) 

rn  
I denote this unitary equivalence by []m ~ ~ + ~-. Let us consider a differentiable 
superfunction on ~ g  

1 1 
a (z, e, o, if) = A(z, e) + [0Z(z, e) + ff (z, e)] + --OffB(z, z-). 

,/Y Y 
(42) 
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With the notation -At ,  = -4y2OzOe + imyOx = -y2(02 + 02) + imyO~ we obtain the 
following equivalence relation [7]: 

SA - A_,,A = s (1 -  s)A, B = -~ 

rh,.~ = s ~ . ~ / - A _ , . _  ~X = ( �88  :)Z, - A _ , . +  ~ = (�88 :);~, 

I x  s - g -- - 2yO~x - g ( m . -  llz, 

(43) 

where s is an even supernumber. Thus, the solution of the Eigenvalue problem is 
formally the same as the classical bosonic one. However, the periodic boundary 
conditions [for e.g. m = 0: ~u(yZ) = ~U(z), 7eSPL(2, R)] must be interpreted in the 
super language. By taking the body in all quantities, one recovers, of course, the 
bosonic problem. The equivalence relation legitimates to set s = � 8 9  ip (peR, 
so-called "small" Eigenvalues neglected). This reproduces the positivity of the 
operator - Am. 

Path integral treatments for the free motion on the entire upper halt-plane can 
be found in ref. [27, 29] for m = 0 and in ref. [26] for m ~ 0. As is easily checked, 
q~l = Y~ and q~2 = (0a + 02)y -~ satisfy (43), i.e. q~l and ~2 are an even and an odd 
solution of the Laplace-Dirac operator D,,, respectively, with Eigenvalue s: 

~ O~ = sO~, (i = 1, 2). (44) 

Starting from Eq. (43) it is straightforward to calculate the even and odd 
Eigenfunctions of/~, , .  In ref. [43] this has been done for the Laplacians f-qo with 
result 

~p,k(X,y,O,O ) o v a .  ~ /2 ips inhnp(  = n3 1 + _ _ O e i ~  Ki,(lkl), (45) '~y ,/ - -  

: c o s [ n ( c +  ip)] eikxw, rk/2,s(Zlkly), 
(ap,k(X, Y) ---- ~/2~2k(c + ip)~k 1 

. . . .  / cos [~(c + ip)] 
~P,,k(X, y)= i(c + zp) ~/2n2k(e + iP)~- 1 eikxw_ ~k/2,~(2[kIy) 

with k~R, p > 0, - 1 < c < �89 ak = sign (k) and a point (p, k) = (0, 0) is understood as 
excluded. K~ is a modified Bessel function and W~, u a Whittaker function. The 
functions �9 are orthonormal in the sense of the scalar product (38) [43]: 

(~p,k, ~q,t) = 6(k --/)J(p + q). (47) 

The heat kernel of the Laplacians ~r,  and [2] 2, respectively, has been calculated 
by Aoki [2] and can be constructed with the help of the heat kernel of the operator 

(46) 
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A,. on the Poincar6 upper half-plane. However, as has been pointed out by Oshima 
[48], in ref. [2] the term corresponding to the discrete spectrum is missing. An 
investigation of the heat-kernel of El,. and [-12, respectively, in fact shows that in 
addition to the continuous spectrum, there is also a discrete spectrum with o o( ram) 
Eigenvalues s = ~ - - l  and s = l + l - ~ -  I=0 ,1  . . . . .  N , . < ~  for the cor- 

responding even and odd Eigenfunction, respectively. This is, of course, due to the 
spectrum of/I  s on ~ [13, 26]. 

The scalar-product (38) does not form in general a Hilbert space inner product 
in the sense that it is not positive definite- quite puzzling in view of DeWitt's 
book [15]. The asymptotic behavior of the heat-kernel (see Chap. V and [23) 
suggests that one has to give up either positivity or diagonalizability of self-adjoint 
operators (or both), to have a super reparametrization invariant notion of super 
Hilbert space [3]. 

Let us consider the partition function for the fermionic string. The relevant 
action to be used in the Polyakov approach [12, 14, 37] reads: 

S(9, X ,  )~, ~p) = 1 I dZax/9[�89 X~' + i~"?mam@. 
4 m  

- FUF~ - ]~a?,.ya~p~'t?,.X~, + ~U~,yayb)~b]. (48) 

Here denote: 
1. M: the two-dimensional world sheet, 
2. gm,=  e,.%,~ metric on the world sheet, 
3. &:  real (Majorana-)spinor, 
4. Z,: spin {-gravitino field, 
5. F": nondynamical field which is needed to close the supersymmetric algebra off 
shell [37, 55]: 

3 X  = igtp, 3 g"= OoX?% + Fe, (SF = igy"t?dp, (49) 

where e is a two-dimensional spinor. One sets F = 0, since the equation of motion 
just reads F = 0. 
6. 2" (a = 0, 1, 5) denote the y-matrices 

y o = ( O  1 10) ' y t ~ ( O  1 10) ' ? s = ( ~  __01) ' (50) 

and a bar over quantities denotes complex conjugation. 
The action (48) is invariant under five fundamental symmetries [18] 

i) Reparametrization invariance, 

fie,." = 6 V" O,e,," + e." O,.6 V", 

6X,. = 3V"O,X,. + X,O,.~SV", 

3 X "  = ~ V ' O , X  u, 

6 ip ,  = • V"t?. 7 t~'. (51) 
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ii) Supersymmetry transformations, 

r e , "  = i~y"X,", 6X," = 2DI~ ,  6 X  ~' = ~ ~ ' ,  

6 ~ = -- �89162 ~P#) + i(y,")~#r #. (52) 

Here Dm=0,"-�89 5 are covariant derivatives taken with the connection 
i 

eg,, = e,"ePqOpeqbr,b- ~X,"YsY"Z,, where cab is the totally antisymmetric tensor for 

the raising and lowering of spinor indices. 
iii) Weyl transformations, 

fie,. ~ = Ae," ~, 6 ~P" = - � 8 9  ~ ' ,  

6z,"n = �89 6 X  ~' = 0. (53) 

iv) super-Weyl transformations 

6X," = y,"2, 6(anything else) = 0. (54) 

v) Local Lorentz transformations, 

r e , "  a = le"be,"~, 6 ~pu = �89 ~P#, 

,~z," = �89 , ~ x ,  = o. (55) 

(With 6V"  an infinitesimal vector field, ~ an infinitesimal spinor, A and 2 
an infinitesimal scaling-function and t an infinitesimal Lorentz transformation, 
respectively.) 

It is very important that the action (48) can be cast into a compact form if a 
superspace notion is used [37]. Define 

�9 (Z)  = X ( x )  + iO*r~ + 20*y~ (56) 

Then the action (48) can be rewritten as 

S = �88  eL'  L = E~MOm~(Z)E~nOn~(Z) .  (57) 

The equations of motion read 

D ~ ( Z )  = 0, (58) 

where D, = E,UOm . Mapping (in the sense that we want to study partition functions) 
a closed compact world sheet into a fundamental domain (of a super Fuchsian 
group) on the Poincar6 super upper half-plane 6 : ~  we get the Laplace-Dirac 
operator Do = 2 Y D D  which we have to study. The partition function is then 
calculated as follows: 

0 = 0  

~ X "  denotes the imbeddings in space-time (d = 10). Analogous considerations as 
in the bosonic case yield [6-8]: 

Z ,  = ~ d#swp[sdet '(- D2)]-5/2 [ sde t ( -  [-122)] a/2, (60) 
Sr162 o 
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where (in the notation I am using) 5~J//g is the super moduli space [44, 58] and 
d#swP the super Weil-Peterson measure. The factor [ sde t ( -D~]  ~/z is the contri- 
bution from the Faddev-Poppov ghosts determinant. 

III. The Selberg Supertrace Formula 

Let us consider the SPL(2, R) transformation as given in Chap. II, 

z , _ 6 0 + a z + b _ A  o , _ e O + ~ z + f l _ l "  (1) 
70 + Cz + d - B' 70+ cz + d  B '  

where A(Z) = az + b -  06, B(Z) = cz + d -  Or and 1"(Z) = ~z + fl + eO with e = 1 + 3 fl~, 
= d~ - cfl and 6 = bo~ - aft. The numbers a, b, c, d satisfy the relation ad - bc = 1 

and are real even supernumbers. The numbers ~ and fl are odd supernumbers with 
the property 0~ = i~,/~= ifl. I also use the notation Z ' =  (z', 0')= ~,(z, 0)= 7Z. A, B 
and 1" must be multiplied by K = 1 + ~ f i  to give the correct normalization 
sdet T = 1. I denote these quantities by A, B and/~, respectively. 

Let us introduce some important notions: 

Definition 1. Let F c SPL(2, R) be a discrete subgroup and U c 6 e ~  a fundamental 
domain of F which tesselates 6e~/f. 

Definition 2. Let 7e1". I call a function f (Z)(Z~6ej / f )  a super automorphic function 
of weight m iff it is satisfying the relation f(TZ) =j'~(Z)f(Z), where j~ is given by 

(~)m/2, ~ (z',O')=~(z,O). (2) jT:= F'~IF~I-" = F, :=  DO'-  B(Z)' 

The task is to construct the relevant operator for the super trace formula which 
maps super automorphic functions into super automorphic functions. 

Definition 3. Let us consider the integral operator L 

Ld?(Z) = ~ dV(W)km(Z, W)cj(W). (3) 

We call L the Selberg super integral operator on ~ J t  ~ where kr,(Z,W) is the 
integral-kernel of an operator valued function of the operator [J~. 

We introduce the functions #(x) and ~(x) sufficiently decreasing at Go. Since 
the Laplace-Dirac operator [] is a SPL(2, R) invariant operator its integral kernel 
(and the integral kernel of functions of []) must depend on SPL(2, R) invariant 
quantities. Therefore one makes the Ansatz 

k(Z, W ) =  ko(Z, W ) =  cI)[R(Z, W)] - r ( Z ,  W)~[R(Z ,  I403. (4) 

The invariants r(Z, W) and R(Z, W) have been defined in Eqs. (II.31, 32). For the 
heat-kernel of the operator •2 the integral kernel khe,t can be explicitly calculated 
[2, 43] and has the form of Eq. (4). It consists, of course, of two contributions, 
coming from the discrete and continuous part of the spectrum of [--lm, respectively. 
Let mEN o. k,, is now defined by 

kr,(Z, W) = J"(Z, W)k(Z, W), (5) 
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where 

Jm(Z, W) = ~ - w  + JOy J ' (Z, WeSeJ:). (6) 

jm has for Jm(Z, W)~Jm(~z, ~W) the transformation property: 

rn ( Z' -- ~C' nt- iO' v' ~ m12 
J (?Z,~W) = - -  =j•(Z)Jm(Z, W)j~'(W). (7) 

The Selberg super integral operator is then given by 

Lf(z) = S dV(Z)Jm( Z' W){~ER(Z, IV)] - r(Z, W)~[R(Z, W)]}f(W) (8) 

and maps super automorphic functions into super automorphic functions. 
Let f be a super automorphic function and g = Lf. Then: 

g(Z) = S dV(W)k.,(Z, W)f(W) = ~ ~ dV(W)km(Z, W)f(W) 

= ~ ~ dV(W)k~,(Z, ?W)f(~W) = ~ ~ dV(W)km(Z, ~W)j~(W)f(W) 

= ~ d V(W)K(Z, W)f(W), (9) 
u 

where U denotes a fundamental domain of the super Fuchsian group and 

Definition 4. 
K(Z, W) = ~ k,.(Z, ~W)j'~(W) (10) 

is the super automorphic kernel, 
Let us consider the supertrace of L. L represents an integral operator of an 

operator valued function h of the Dirac operator [:Ira, i.e. L -  h(IT,.). On the one 
hand we have 

str (L) = str ['h(f'lm)'l = ~ [h(2~m) - h(2~.m)]. (11) 
n=O 

2Btv) denote Bose- and Fermi Eigenvalues of [--1,,, respectively. n,m 

On the other, we have for the transformation W = yZ = (Nvz, Z~x//~-~ 0): 

F'~ _ (\IDzrv/~ OlDZ'x/~rO ) m jT-IFrI,, =Z~ m, (12) 

and therefore we obtain for str (L): 

str(L) = I dV(Z)K(Z, Z) = Z I dV(Z)km(Z, ?Z)j'~(Z) = ~, ~f'~A(~:), (13) 
u {~}p v {~}p 

where A(~) is given by 

f dxdydOdO 
A(~) = ! dV(Z)km(Z, 7Z) = Is ~ -  Jm(Z, ?Z) [~(R) -- r ~(R)] 

1 NO 

---~ ! dy ~o~ dxs %J ' (Z , ,Z)[q~(R)- - r~(R)] .  (14) 

Y + ~ -  
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Immediately one can state the term corresponding to the identity transformation 
[J"(z, z) = ( -  1) "/2 = i"] 

i m N~o dO dff 
A(o m, A ( I ) =  ~ ! dy j =-- dx  j ~ - -  (71)(0) = i"~(O -- 1 ) ~ ( 0 ) ,  ( 1 5 )  

- o o  

since vol (RSo)= 4n(g-  1), where RS o denotes a Riemann surface of genus g. For 
the explicit evaluation of (14) we need the following 

Theorem. Let L be the super Selberg operator and 4) any Eigenfunction of f3" in 
5f o%f with F'-l"dp = s~b. Then 

f dV(Z)k"(W,Z)q~(Z)=h(s)ck(W), (16) 

where the superfunction h depends only on s and the kernel k. The value of h(s) is 
thus independent of the function O. 

Proof. In [7] the proof of this theorem is given for all functions ~b (even and odd), 
all m~Z and all W ~ 9 ~ .  Since we need the theorem only at a specific value, i.e. 
W = Zo = (i,0), I restrict myself to that relatively easy case, which has also the 
advantage that the case of odd functions drops out. Thus for W = Z o = (i, 0): 

\ x + t t y + l ) ]  ' 

R(i,z)=X2 +(y-1)2  / 00-~ 
Y ~ l -~yy) ,  

s - 1  s - 2  -- 
ys-1 = y~-i + _ ~ _ y  00, 

0if 
r(i,Z) = ~y. (17) 

Let ~b an even superfunction as in Eq. (11.42) without linear in 0, if-terms, i.e. 4) is 

of the form q~ = A(x, y) 1 +~y  0 . Insertion yields: 

1 dy " 1)) '/2A(x,y) L4)(Zo) = S dV(Z)k"(Zo,Z)4)(Z) = ~ ~ y ~ dx(X - i ( y  + 
o -o~ \ x + i ( y + l ) J  

F s -  1 _ Oif , Oif q 

L + J 
=-4ol ~ ~-oodY ~ dx +i(y+ 1)J  A(x'Y)[-(s-1)q)(Ri)+Ri@'(Ri)+ 

=- cl)(Ri) 
1 ~ dy ~ d x ( X - i ( y +  1)~'/2A(x,y)~(Ri)" (18) 

= 4 o ~ - ~  \ x + i ( y + l ) /  

Since ~ depends only on Ro(z, i), where Ro(z, w) Iz wl 2 - is an SL(2, R) invariant 
yv 

quantity, the last equation can be interpreted in terms of the Selberg trace formula 
for automorphic forms of weight rn [36-] with integral kernel ~. Now, an operator 
L on the Poincar6 upper half-plane whose kernel depends only on Ro is in fact a 
function of the Laplace operator ,4". It follows that L multiplies q~ by 

h(s):=SyS-3/2Q(y+y-l-2)dy,  where Q ( y ) = ~ ( x 2 + y ) d x .  (19) 
0 0 
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This completes the proof. �9 

Let us turn to the calculation of A(7 ). The invariants r and R are given with 
the hyperbolic transformation W = 7Z = (Nrz, Zrx/~O) as: 

R(Z, TZ)=(Nr-1)2(x2+y2)(1-O~ff2)Nry2 = Ro(1 - ~ ) ,  

r(Z,~Z) (2 1/2 -1/2) 00 (20) 
= - - ) ~ N ~  - - z ~ N ~  2y" 

For the jm term: 

r (Z ,  ~Z) = ( z - N,~ + i~,,/<O0 ] ~ 
\ 5 -  Nrz + iz~x/~Off J 

- 2i cosh ~ iO0 re(Z, (21) 
- ~ 

+ 2icosh~J  (2 + 4cosh 2 

where use has been made of the substitutions: ~ = " N~ - 1 Y, u = In N r ys is an 
x 

Eigenfunction of ~ ,  with Eigenvalue 2 = s. Setting W = Zo(i, O) the theorem gives 
therefore the multiplication by the function h(s): 

1 ~ dy ~ dxldO~dygJm(i,Z){~[R(i,Z)]-r(i,Z)tP[R(i,Z)]}Y ~ h(s) = ~ 0 - oo 

l~dy ~ . fx-i(y+I)'V~/2 ~-2[- ( x2 -- ) 
=-4o -oo a x ~ ( ~ + ~ )  y [ - - ( s - -  1)~ +(Yy 1)2 

X2-l-(Y--1)2( X2 ) (  )1 + ~ '  + (Y --: 1)2 + ~P X2 + (Y - 1)2 , (22) 

Y Y Y 

where the (m/2y h power is to be a principle value (see [36], p. 454)�9 Now performing 
in the y-integral a partial integration for Re (s)> 1: 

-- i(y + 1)~ m/2 ~ [ X  2 "q- (y  - -  1) 2 
(s 1) l 

o ,, + i ( y +  1)] k y 

=i  dyy~- \x+i(y+l)]  
[ ( )x2+(y 1) 2 imx ( + ( y  1)2)] .  (23) �9 ~ t  X 2  + (Y - -  1) 2 - -  

Y Y x 2 ~ +  1) 2 ~ x2 Y 

Therefore for h(s): 

1 1/2~ S dx h(s) = ~ due u(~- 
- oo 4.sinh2u/2 (x + 4) m/2 
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~"(x) + 2(e u - 1)~'(x) r . . . . .  
t .  tetxj, u) + . ' ( -  u)] ,//-4sinh   

- ime ~/2 ~(x) am(~(x)' u) - era( __ ~(X), U) 
X + 4 (24) 

In the calculations the substitutions x = x/Y~ and y = e" have been made, followed 

by x = 42 + 4 sinh 2 ~. Further the abbreviation em(~, u) = ~ - 2i cosh ~ has been 

used. Thus we see that for appropriate h the operator h(~m).equals to an integral 
operator L of the form (3) whose integral kernel kin(Z, W) is related to h by the 
equations 

h(s)= ~ dueU(S-1/2)g(u), (s =�89 
--r 

1 oo 
g(u) = ~ Joo dpe-i~ph(�89 + ip), (25) 

g(u) = ~  4,i.!~./2 ~ ~  dx ~P(x)+2(e"-l)~'(x)r ~ ~  , +  + ~ _ ) _ i m e . / 2 ~ ( x ) ~ ] ,  

^ m 
with the abbreviation ~ =am[___ ~(x),u]. Since [--qm and [-q",+~- are unitary 

equivalent, we can study traces of Fqm instead of [3. .  But some care is needed. 
Going back to Vim, which is the relevant operator in the fermionic string, then 
y~-m/2 is an Eigenfunction of I-q,, with Eigenvalue 2 = s; thus 

~m Y~ = s Y ~ m+ Y~ = S+ 

(E] m ) Y  s-m/2 =~ []", y~-~/2 = ", + ~- = s Y~. (26) 

Consider now h as an operator valued function of � 9  we have h(K]m) = h VI I+~ �9 

Therefore one hase to replace in the calculation of h(s) as-a  multiplier of 
the kernel of h(Vlm)Y~ by y~-m/2. Considering s as an Eigenvalue of r"lm, this yields 
for the multiplier of the kernel of h([]m) 

h ( s  +2)=-~o~due~t~71/2)g(u) 

1 ~ dpe_i~h(i p m+ 1"~ L , (27) 

where g(u) is explicitly given in terms of �9 and ~ as in Eqs. (25). Note that the 
m 

contributions ~- coming from h(s + rn/2) and y~-,,/z cancel. To distinguish between 
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the functions h in Eqs. (25) and (27) I often denote h in Eq. (27) by h,.(s) - h( s + 2 ). 
Let us consider several combinations of g(u) and g( - u) for later use 

g(u) + o ( -  u) 

1 ~o dx ~P(x) + 4 sinh ~ qg(x) . u 0~+ - a ~ _ 
~ --,./2 - - - - - ~ - -  (a'~ +~"_)-~mcosh~x) x+~4-- ' 

4 4sinh u]2 (X "{- 4) ] ] 2' u 
= -  L 4 x-4s inh ~ 

(28) 
g(u)e-"/2 + g( _ u ) e U / 2  I 

- - - - -  " " ~ + -  - [  (29) 44sinh2u/z(X+4)m/2L~--4s~n22(O~r~+O~-)--tmtD(X) X+-~-- 
g(u) -- g( -- u) 

1 u ~ dx [ 4c~ 2 qD'(x) am ,.1 
�9 + - - ~ -  

=~sinh~ ~2 (X+4)m/2 ] - 7 ~ - - -  (~+~ t " 
4si.h ./2 LN/x_ 4sinh22 

(30) 
We have now the relevant terms to calculate A(7): 

N~o 
A(T)= S dy 7 d x f ~ j m ( z ,  Yz){~[R(Z, YZ)]--r(Z, YZ)tP[R(Z'?Z)]} 

1 -oo 4i  

! dy j exleOdO 

"f l --" x(N,-- 1)Zrx/r~0ff '~ 
/ tmx2(-~_ ~ ~ - 1 )  2 ) 

hu,Off  7 

Performing the 0ff-integration and the substitution x = y~ gives, 

1 NZ" dy d r  1 ) -  i (N,  + 1 ) ~  "~/z 

a(?)=~ ! Y ~ o  \ ~ I ) + i ( N , +  1)/# 

u 1 imr NrOff "[R~176176 . . . .  2 ,--~2~-~ ~-2 ~(Ro)]- 
rtN~- 1) +IN~+ 11 J 

Performing another substitution, r = ( x / / ~ / ( N r -  1) = ~ 2 sinh ~ ,  where Nr --- e" 
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and Ro (2 �9 z u = + 4 smh ~, the y-integration yields 
m/2 

A(7)- lnNyo -2icosh~ 

4sink2 2 -~7 d(tff + 2icosh~)U 

"I (~2 + 4 sinh2 2) ~'((2 + 4 sinh2 2) + (1 - Z~ cosh~) ~(~2 +4sinh2 2) 

+ ~  ~2+4sinh ~ + u ~ ~2+4sinh2 . (31) 
~e + 4 cosh 2 ~ 

Let us consider the 0~ and ~'-terms in (31) and perform a partial integration in ( 
m/2 

-~ d(t(+((- 2icosh~)2icosh2) i(2~,((2 + 4sinh ~) + ~ ( (  + 4sinhZ2) ] z u  1 2 

-- 2ic~ (2~,((2 + 4 sinh22) 

~ (~  [4)((2 + 4 sinh2 2) ((~- 2i c~ ~ ] "/2]) 

~ - 2icosh ~ ~2 + 4 sinh ~ (32) 

= -imc~ ffoo d(t( + 2icosh I )  ~-2 + 4cosh2 I 

�9 ==_ w o  With the substitution x = (2 + 4 slnh 7' dx = 2~d~ = 2 x 

A(7) - In N~o 7 dx 

8 sinh-U 4~i~112"/2 ( 2  x+ 4 sinh2 2) m/2 

�9 [ (1-Z,  c o s h 2 ) ~ ( x , + 4 s i n h : 2 + ' ( x  ) (~'~ + ~_) 

�9 0~+ - - ~ _  + zm ~(x) 
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(and finally by Eqs. (28) and (29)) 

In Nro 
A(7) - N~/~- ~ N~-1/2 [g(u) + g ( -  u) - Z,(g(u)e-"/2 + g( _ u)e,/2) ]. (33) 

This is the result of ref. [7]. Therefore the supertrace formula reads: 

s t rL  = i ' ( g -  1)n~m(0) 

Z y m In N~o 
+ I~b, ~" X~/~ Z N---~ i/2 [g(u) + g( - u) - z~(g(u)e-u/2 + g( - u)eU/2)], (34) 

where u = In N~ = l~ and g(u) is given by 

1 ( m + l ' x  
g(u)=~n-n -o0 ~ dpe- i"ph  i p + ~ - - ) .  (35) 

Furthermore an index m has been added in ~,,(x) to denote the dependence on 
m. Our  final task is to eliminate ~,n(0). 

Let us first consider m = 0. By Eqs. (30) we have 

U U 
g(u) - g( - u) = 2 sinh ~ cosh ~ 

4s inh2  u/2 

( = 4 s inh22 )  Let us denote w 

cl)'o(x)dx 

x - 4 sinh 2 2 

(36) 

1 ~ ~ ; (x ) .  
Qo(w) = ~ [g(u) - 9 ( -  u)2 = w ~ a x .  (37) 

Further  consider the integral 

, q%(Y) .  1 dw Qo(w) = ay 
~ x N / W - - X  x 

__ 1 ~ dytl),o(y) i d w ( w _  x ) _ l / Z ( x _ w ) _ l / 2  
T~ x w 

1 11"~ 
- B(x,~) dycI)'o(y ) = ~o(X). (38) 

x 

Here use has been made in the last step of the integral [23, p. 285]: 
b 

(x - a )" -  l(b - x) v- I dx  = (b - a) ~ + " -1B(v ,  #) (39) 
a 

and B(x,  y) = F ( x ) F ( y ) / F ( x  + y) is the Beta function. Thus we have the inversion 
formula 

q)o(X) = __1  ~ dw Qo(w). (40) 
7~ x N / ~ - - X  
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Therefore 
~3 dw 

Qo(w) y [g(u) - g( - u)] q~o(0) = __1 ( ~  = __1 du 

rc b ~ / w  rc o sinh~ 

_ 1 ~ d u ~ dp[e_,UPh(ip+�89189 
2re 2 o sinh u -~o 

2 

i sin up " 
= ~  ~ dph(ip+�89 du= t- ~ h(ip+�89 

- o o  U ~ - o ~  o s i n h ~  

where the integral [23, p. 503]: 

sin (ax) dx = r~ tanh 
i sinh (bx~ 

(41) 

has been used. Finally (in [7] a factor of two is missing): 

A~o ~ i ( g -  1) S h(ip +�89 (42) 
- -CO 

It is possible to construct the inversion formulas for, e.g. the m = 1 and m = 2 cases 
explicitly by starting from Eq. (30). But this is rather tedious and cannot be easily 
generalized to all meZ. Therefore I must develop a symmetric approach to invert 
Eq. (30), i.e. to express q~,,(x) by an integral (or integrals) over g(u) - g( - u). The 
general inversion formula must then be evaluated for q~.(0). 

/ 

us consider Eq. (30) by reinserting the variable ~ = / x  - _u. Let 4 sinh z 
2" 

g(u) -- g( -- u) 

l -2ico   / 
i  2/cos - J 

4 cosh 2 q~'(~z + 4s in22)  

m/2 

im, 

~2 + 4 cosh 2 2 
(43) 

Let be m # 0. I perform a partial integration in the second term, where it is assumed 
that all the relevant terms are sufficiently decreasing at oo: 

i(i 2icosh2/ 1 E o.( 2+4sinh22)l 
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m/2 2,cos / 
_ 1 S d~ . . . . .  

oo 

�9 [O,( ,2+4sinhZ2)+2~zq) ' (~=+4sinh22)  ]. (44) 

With the abbreviation w = 4 sinh 2 2 this gives in Eq. (44): 

9 ( u ) - g ( - u ) = l i ' t a n h 2  ~ + 4  ~ /  

"[-(W+~2 +4)q)'(W+~2)+�89 (45) 

Let us define [Q must not be confused with Qo in Eq. (37)] 

u 
Q(w) = 2 coth ~ [9(u) - 9( - u)], ~,.(x) = i"[(x + 4)q~;,(x) + �89 (46) 

t,e  .te: re,atio. (w 

- o o  \,/~-~-~/ ~~ (47) 

For  this integral relation I can apply an inversion formula given by Hejhal 
[36, p. 454] which yields for ~: 

~.(x)= 1 ~ Q'(x + dt. 
,~ -~o \ j x + 4 + : +  

Reinserting ~ we get a differential equation for q~: 

(48) 

1 (I)m(X) --1 7 Q'(x + ( J x + 4 + t 2 - t )  m/2 q) ',, ( x ) + . . . .  dt, (49) 
2(x + 4) iron(x+ 4) -~  ~ t2)kx/x + 4 + t 2 + t~ 

which can be easily solved to give the inversion formula for q~: 

1 dy t2) (~/y+4+t2-1)" /2  
i"~m(x) = ~ S S Q'(y + t 2 dt. (50) x ~ - o o  \ ~ 4 +  + 

This is the main result of this section. 

Note. 1) The integration constant in Eq. (50) is given by ~m(O0) = 0. 
2) The inversion formula is valid for meZ  [-see below Eq. (51) for m = 0]. 

To get some confidence in the inversion formula let us consider Eq. (50) for 
some specific values of m. 
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1) m = 0 :  

(W = y2 W t) 

1 dy 

1 d y  ' w 
- -  - -  a w .  

x y , / ~  , w,/~- y 

(Rearrangement  of integrations) 

1 dy 
~ y , / ~ - y  

2 dx - ~ a r c t a n / -  ] integral: S - ~_r./~. (ac<O) Elementary  x/(ax + b)(cx + d) x / _ a  c ~[ 

_ 2 w - x  
n ~  S Q'(w)arctan ~x~+ 4 dw" 

(Partial  integration) 

(w:4sin   ) 

_ 1 ~ Q(w)  dw 
n x (w + 4 ) w / w - x  

1 g(u) -- g(-- u) 
- ~ - -  d/~. (51)  

7[ 2arsinhx/x/2 %/ 2/'/ 
4 sinh ~ - x 

This is equivalent  with Eq. (40) and shows that  the inversion formula  is also valid 
for m = 0, i.e. the inversion formula  is valid for all meZ. 

2) m = 1: Similarly as for m = 0. 

1 . 
x y , / ~ - ~  §  

4 o~ g(u) - g ( -  u) u 
- - -  _ _  O cosh~du.  (52) 

J n x / ~  + 4 2arsinh,fi/2 4 sinh 2 ~ -- x 

In  par t icular  for x = O: 

ici)l(o)=i ~ hl(i p + �89 npdp, (53) 
7 [  - - o o  

where use has been made  of the integral [23, p. 504] 

7~a 
sinh - -  

~ . cosh f i x ,  n 7 
o sin ax ~ ax = 27 cosh n a  + cos nil" 

7 Y 

(54) 
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This gives finally for A~o 1) by Eq. (15) 

A~o 1) = i(g - 1) ~ coth rcph(ip + 1)dp. (55) 
- o o  

3) m = 2: 

i2~2(x) -  ~ S ~ Q'(y+ dt 
\,/y+4+:+ 

2 dy 

o ~ o  
4 ~ dy q ] j t2Q'(y + t2)dt. (56) 

7 ~  0 : ~ N / ~ - - ~ 3  0 

The first integral is up to a factor Eq. (51). For the second I get: 

4 dy tEQ'(y + tE)dt 
~ ~ (y + 4) s/2 0 0 

- -  / 2U 4 ~ [ g ( u ) - g ( - u ) ]  4sinh ~ - x d u .  (57) 
n(x + 4) 2arsinh~/x/2 

This gives for m = 2 the inversion formula 

i2~2(x)= 1 ~ 9(u)~o( -u!  du 
~ 2.rsin~,/;12 I...2u 

~/4 stun ~ -  x 

/ 4 j 4 sinh 2 ~ - x du. (58) 

In particular for x = 0: 

i 
co._oo tanh 2 ~ g(u) sinh ~u du, i 2 �9 2(0) = - ( h2(i p + �89 ~pdp - -  (59) 

7g - 7~ -co  

and therefore finally 

A(02)=i(g-1) ~ h2(ip+�89 (60) 
- c o  

4) m = 3: Similarly as for m = 2 it is straightforward to show that 

i3~3(0) = /  ~ h3(ip+�89 - 2  ~ g(u)sinhudu ) 
- co ~ - co (61) 

A~o 3) = i(g -- 1) ~ h3(i p + �89 coth rcpdp + (1 - 0)[h3(~) - h3 ( -  �89 
- c o  

Let us for a moment turn to test functions h for the operator ~, , ,  i.e. let us consider 
the function h(s) - ho(s). By Eqs. (25) (relating h and 9) 0 and (~ do not depend on 
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m ("hatted" quantities belonging to ~m). The equations for ~b,, (m = 0,1, 2, 3) suggest 
the following general structure for ~m: 

im~m(O ) i 7 h(ip+�89 2 m/2 . . . .  • ~ O ( u ) s i n h ( k - � 8 9  
--oo ~ k=l  -co 

(m even), 

(62) 

(m odd). 

(63) 

i J~ h(ip+�89 2 (m-l)/2 . . . .  E 70(u)sinhkudu im~)m(O) 
-oo ~ k=l  -09 

In particular, it remains to show that for all m (even and odd): 

m + l  
im+2~,,+2(0)__ imam(O ) = __2 7 ~(u)sinh---2---du" (64) 

2"~ --oo 

Having proved Eq. (64) once, one can go back to the operator Dm and all related 
quantities. I prove Eq. (64) by induction for m ~ m + 2. 

1) Since each step forward is by two units in the induction I have to distinguish 
between the even and odd cases. Equations (42) and (59), respectively Eqs. (53, 55) 
and (61) show that Eq. (64) is correct for m = 0 and m = 1, respectively. 
2) Let us consider Eq. (64) and insert for imam(0) and im+2~)m+2(O): 

=2~xl 7 ~dY~''(" +,~,p(~/y+4+,~--i)'m+~'/~_(~/y+4+:--t_~'/~ ] , L t , ~  + \ ~ + :  +d / 

_ 17  d>, 7 + : ) ( , / y  + 4 + , 2 - : + ' d , .  
o (y  + 4 )  ( ' +  a)/2 _ ~o 

Partial integration and w = 

m + l  ~ dy 
4n Jo (y+4) (m+3)/z 

"7 Q(w) [(dW+4__~)m+l+(x//~4_FX//~__y),n+l]" 

With a rearrangement of integrations: 

e.+~, +~(o)_ ~m ~m(o ) 

�9 m + l  V. Q(w) '~ dy V(~/-W-+4-w~iw~y-y) ' ' + '  ( ~ .  ww/"wS~-y_)"+l ] 
- -  a W - -  - -  

J ~ - - 7 ,  J / - ~ 1  ~ f  + (y + 4)(m+ 3)/2 J" 4n o n / w + 4 o x / w - - y L  ~v s 

[Substitution t 2 = 1 - (y + 4)/(w + 4)] 

m+l~ w Q(w) - / ~ + 4 ' F ( 1 -  t) ̀m-l)/2 (1 + t) tin- 1)/2] 
-- 2n ! d  w + 4  ~ [ _ o  O + t )  tin+3)/2 f( l - t ) tm+aW2J dr" (65) 
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Let us consider the t-integration and replace m ~ m + 2: 

~f~+4)I(1--t)('+ l)lZ (l + t)(m+ l)121rt. 

( . ) Partial integration and w = sinh2~ reinserted 

h u m + 2  ~ [ - ( 1  - t) ("- 1)/2 (l+t)(m-l)/27. 
=4COS 5 s i n h ~ - u - ( m + l )  ! ~l+t)tm+3)/2-t ( l ~ J a t .  (66) 

Thus repeating the calculations of Eq. (65) for m--, m + 2 and taking into account 

the result of Eq. (66) yield together with w = 4 sinh 2 2: 

im+4~m+4(O ) --im+2~m+2(O ) 

u m + 2  
_ 8 ~ [~(u) - 9 ( -  u)] c o s h ~ s i n h - - ~ - d u  - [irn+Z~)rn+2(O ) - -  i ' ( ~ r n ( 0 ) ]  

7[ 0 

2 ~ m + 3 
= - - j ~(u) sinh ~ du. (67) 

This proves the induction! �9 

Let us make some remarks concerning the property of the kernel k(Z, W) that in 
general for m ~ 0 it can be represented by a sum of a discrete and continuous 
spectrum contribution 

k(Z, W) = k d i s e ( Z  , W) + kco.t(Z, W), (Z, W~Se3~). (68) 

As mentioned in Chap. II, in the case of the heat-kernel on 6 a ~ ,  k(Z, W) can be 
explicitly calculated [2]. In the calculations of the supertrace formula, we have 
not made any reference to kaisc and kco.t, respectively. Of course, implicitly these 
two contributions to the complete kernel are always present and contribute to the 
trace formula. This is similar as for the usual "bosonic" trace formula and, of 
course, is important in the calculation of determinants [8, 11, 17, 48]. However, let 
us look on this feature more explicitly. Let h be an operator valued function of the 
Dirac-operator Rm. Then the kernel of h(iqm) is given by 

k(Z,W):~ dk;~=olh(2+l)--h(2-1--1)ltPl,k(Z)~,k(W) 

r n + l  . _ +1  +~odkidp[h(--~--+'P) h(m2 --iP)ltPp,k(Z)tP*,k(W). (69, 

Here ~,k and ~p,k denote the Eigenfunctions of the Laplacian f-qm on 5 e ~  with 
mm-1 

1 = 0, 1 . . . . .  NM < 2 '  2 (m even or odd, respectively). Equation (69) generalizes 

the result of [2] for some function h and the usual bosonic case [36]. Rewriting 
Eqs. (62) and (63) in terms of At0 m) we obtain using Eq. (69) 
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m + l '~ f tanh  zrp'~. .,<o~ i/7_. =ua  

,7o, 
l =OL \ 

for m even or odd, respectively. Thus we see explicitly the contributions in the Arc ") 
term coming from the discrete and continuous part of the spectrum of [3m. It is 
not difficult to show that for A(y) the corresponding terms coming from the discrete 
spectrum do not contribute; this can be shown by contour integration and is similar 
as for the bosonic case [8, 17]. The great advantage of discussing the abstract 
concept of a trace formula in comparison to an explicit expression like heat-kernels 
lies thus in the fact that one simply has not to take care of substilities of discrete 
or continuous spectra. Once stated, the trace formula contains all relevant 
information. 

I summarize. I have formulated the Selberg Supertrace formula on super 
Riemannian surfaces for operator valued functions of the Laplace-Dirac operator 
F-qm. Let h be a testfunction with the properties (following Baranov et al. I-7]): 

i) h(�89 ip)eC=(R), 
it) h(�89 + ip) need not be an even function in p, 

iii) h(�89 ip)~O(-~)(p~+oo). 

iv) h(�89 + ip) is holomorphic in the strip I Im(p)l < 1 + 2 + e, e > 0 to guarantee 

absolute convergence in the sums of Eq. (75) below (see [36, p. 30]). 

Its Fourier transform # is given by: 

1 ~. i .  / .  m + l ' ~  
g(u) -L 

The term Arc m) corresponding to the identity transformation reads 

m + l  Atom) = i(g-1) ~o h(ip +~)tanh~pdp 

~/-L2Fhlm k\ /m )1 

oo m + l  Atom) = i(g -1) _~ h( ip + ~ ) coth "pdp 

(m-1)/2F /rn+l kl 1 "~-(1--.) k=~l Lht T '~-  i-h( =7 k)] (=odd). (73) 
The last two equations can be combined and stated in a compact form yielding 

A~ m) =(1 -g) S g(u)-g u) Tm cosh~ du, (meZ), (74) 
o sinh 
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(cosh~U) cosh~-um where T~ = denotes the m t h  Chebyshev-polynomial in coshz.U 

Thus for the supertrace formula we get (lr primitive geodesic, 2, B{F) = �89 + pn B{r) (heN) 
are denoting the Bose and Fermi Eigenvalues of I-q, respectively): 

[h,.(p~) - hm(p.~)] 
n = O  

m 
= (1 -- g) ~ g(u) -- O( - u) cosh ~-du 

o sinh 2 

+ Z ~',.. ektrT~ I#(kl,) + g ( -  k l , ) -  )~k #(klr)e-kt/2 + g(_  klr)eU,/2 I 

{Sip k '---' 1 

(75) 

Equation (75) completes the work of refs. [6-8] by explicit statement of the inver- 
sion formula (50) and the A~o~)-term (74), respectively. 

IV. Analytic Properties of the Selberg Super Zeta-Functions 

1. The Selberg Super Zeta-Function ZI. The Selberg super zeta-functions are 
defined by 

Zq(s):= H f i  [1 - -  zrqe-(s+k)tT], (Re(s) > 1), (1) 
{~}p k = 0 

where q can take on the values q -- 0, 1, respectively. Z~ describes the spin structure 
and Ir is the length of a primitive geodesic, as already defined. The V product is 
taken over all primitive conjugacy classes 7EF. The Selberg super R-functions are 
defined by 

Zq(s) 
Rq(s):- Zq(s + 1~- {~}p[I [1 -- z~qe-~t~], (Re(s) > 1). (2) 

To study the analytic properties of Zo and Z1 let us consider the Selherg supertrace 
formula for m = 0, i.e. (throughout this Chap. I denote by 2~ tr~ = �89 + p~tr) (neN) 
the Bose and Fermi Eigenvalues of El, respectively): 

~, [h(p. B) - h(p.F)] 
n = O  

=i (9- -1)  ~ h(ip+�89 
- c o  

+~{,}p k~e~/21r-kl/2Fg(kl')+g(--kl')--z'k(g(kl')e-kl/2+g(--kl')eU/2)l'= 1 --e ' k 

(3) 

To get information for Z 1 or R~, respectively, one has to choose a test function 
h(p) so that the first two terms in the square bracket in the supertrace formula 
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cancel, i:e. g(u) = - g( - u). I choose the function (Re (s) > 1, Re (0-) > 1): 

[ 1~= ( 1 1 ) 2 - �89 2 - �89 = 2ip p2 0-2 ~_ p2 " (4) h~(p) = 2 "S2 __ (2  __ 1 )  2 0 . 2 _ _ ( 2 _ _ 1 ) 2  1.[a+ip $23r 

The second term plays the role of a regulator so that all the involved terms in the 
supertrace formula are convergent. Thus for g(u): 

1 !ooe-iUPh~(p)dp 2 ~ 1 1 d O(u)=-~_ = ~ ! p s i n u p  s2+p2 0.2yt_p2 P, (5) 

and we see that 9(u) is an odd function as required. Using [23, p. 406]: 

x sin ax . g 
o f l ~ Z x  2dx = 2 e'"p'  (6) 

we get (u > 0) g(u) = (e "~" - e -~") and for ueR 

0(u) = sign (u)(e -~l'l - e-<"l), (7) 

�9 thus finally for G(u, Z) 

G(u, ~(~) = 2x~(e-~lul _ e-  ~l"l) sinh 2" (8) 

Therefore only the xr-term remains in the supertrace formula which allows to study 
the properties of Z~ alone. Inserting G(u, ~) into the length term yields 

Y" ~ ~h kl, G(kl,, Z,) 
~rl~ k = 1 2 si 

2 
V 1 " _ - a  = 2 ~ l,z,k(e-~kt'-e-~k'') = 2 I ~ ,  l,)r,e % ] 

R'I(s) R'l(a) 
- R I ( s  ) R1(0.). (9) 

In the last step the property of the logarithmic derivative of the Selberg super 
R-functions has been used, i.e. for Re(s)> 1: 

d In R~(s) d ds = ~ss In I-[ [1 - zeqe-a,] = ~ l,_zfe-a, (10) 

The A o term gives 

A o = i ( •  ~ h~(p)tanhnpdp 
--o0 

4 ( 1 _ 9 ) ~  d u rTpsinup. ,psinup -I 

sinh-U [ Jo ~ ap - ! ~ dp J U 

2 

sinh 0. - s 
GO 

= 4 ( l _ g )  f e_((s+,~)/2) u 2 du, (11) 
o sinh_U 

2 
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where the integrals (6) and  (III.41) have been used. Using now [23, p. 356] 

i e -  ~ d x =  

where ~U(z) = F'(z)/F(z), z~C, we obta in  finally for A o 

Ao = 4(9 - 1)[ ~(s  + �89 - ~u(a + �89 (13) 

Let us denote  by An~o ~ = n g -  ng the difference between the number  of  even and 
odd zero modes  o f  the Dirac  opera to r  [5. Thus  we get the super t race  formula  for 
the function hs 

[hs(p~ ) _ h,(pr)]  _ An,O)F 1 1 ] 
.=i o L(s-�89189 (,,-�89189 

R'~(s) R'~(o-) 
= 4 ( g - -  1)[~U(s+�89 ~u(~r+�89 -t Rl(s ) Rl(a ). (14) 

First let us discuss the trivial s tructure of  zeros and poles of  R 1 and Z1 in the 
complex s-plane. We can read off the analytic propert ies  of  the Rl-function: 

(o) �9 Fo r  s = �89 there is a pole, zero or a regular point  depending on whether  Ano > O, 
An~o ~ < 0 or An~o ~ = 0, respectively. 

�9 Fo r  s = - � 8 9  there is a zero of multiplicity 4 ( 0 -  1)+An~o ~ (assuming that  
-An~o ~ > 4(9 - 1)). 

�9 Fo r  s = - � 8 9  (keN): there are zeros with multiplicity 4 ( 9 -  1). 

Here  in the discussion has been used that  Res ~U(z)lz=-k = - 1 (krNo) .  Therefore  
we get the analytic propert ies  of Z I :  

�9 F o r  s = �89 there is a pole, zero or a regular point  depending on whether  
dn~o ~ > O, An~o ~ < 0 or  An~o ~ respectively. 

�9 Fo r  s = - �89 - k (k~No): there are zeros with multiplicity 4(k + 1)(9 - 1). 

Second let us turn to the nontrivial  zeros and poles of these two functions (first 
so called "small  Eigenvalues" not  considered). Since 

I 1 1 1 h~(p) = 2ip (s + ip)(s-  ip) (~ + ip)(G - ip) 

one has 

Res [h~(p,n)] I~=ip.~ = 1, Res [hs(p~)] Is=_~p,~ = - 1 

(15) 

(16) 

with signs of the residua reversed for the Fermi  Eigenvalues. Thus  we see that  
Rl(s) has 

�9 for s = ipnntv): there are zeros (poles) of the same multiplicity as the corresponding 
Eigenvalue of if], 

�9 for S = - ipnntr): reversed si tuat ion for poles and zeros. 

Note  the crucial dependence on the signs. 
Since RI(1 + ip) is regular we can conclude by ZI(1 +__ ip) = RI(1 ___ ip).Zl(2 +_ ip) 

that  Z1 (s) is regular on the line Re (s) = 1. Fur the rmore  this gives by Z l(ip) = R l(ip)" 
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and poles of the zeta-function Z1 

ZI(1 + ip) that Zl(s )  has on the line Re(s )=  0 the same properties as Rl(s), i.e. 
zeros (poles) for s = ip~ <v) and poles (zeros) for s = - ip~, ~r). Repeating this procedure 
for Z l ( i p - k ) =  R l ( i p - k ) . Z ~ ( i p - k +  1) (keN), we see that we get an infinite 
number of critical lines for Z~ located at Re (s) = - k (keNo). Therefore we get the 
analytic properties of Z1 for the nontrivial zeros and poles (keNo): 

�9 For  s = ipa, ~v) - k: there are zeros (pg) and poles (p,~) with the same multiplicity 
as the corresponding Eigenvalue of F]. 

�9 For s = - ipS, (r) - k: there are poles (p~) and zeros (p v) with the same multiplicity 
as the corresponding Eigenvalue of [3. 

Finally, let us discuss the case of so-called small Eigenvalues (0 __< 2 < 1), which are 
also unknown and likely do not exist for small g [-5]. We can see from Eq. (14) 
that for R1 they are located in the complex s-plane at - � 8 9  < s < �89 

n �9 for s = 2, - �89 there are zeros and 
�9 for s = - (2, p - �89 there are poles of the same multiplicity as the corresponding 

Eigenvalue of D, respectively. 

By the same considerations as for the other nontrivial zeros and poles we get 
the structure for the Zl-function (keNo): 

~ ( p ) _  1 k there are zeros (poles) and �9 for s = ,0, 2 - -  

�9 for s = - ( 2 ,  n(v) - � 8 9  k there are poles (zeros) of the same multiplicity as the 
corresponding Eigenvalue of D,  respectively. 

All these Eigenvalues are of course, even numbers, i.e. elements of Co. Therefore 
we can conclude that the supertrace formula can be extended meromorphically to 
all seAoo and that R1 and Zx are meromorphic functions in A~. 

In Fig. 1 I have displayed the analytic properties of the Z: func t ion .  The trivial 
zeros are indicated by filled dots, the position of the bosonic zeros and poles by 
filled and empty squares, respectively, and the position of the fermionic zeros and 
poles  by filled and empty triangles, respectively. The small Eigenvalues are not 
considered. The x- and y-axis are taken at the body of A~o, i.e. (Aoo)Body = C. The 
y-axis is taken in arbitrary units. 

Let us consider Eq. (14) in the limit a ~ � 8 9  and get 

r An o ] 
xm 1 - - + o .  2 _ ~ -  4(9--  1 )~(a  + � 8 9  = A  1 + 4 ( 9 - -  1)ye, (17) Ln,(a) 
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where ~u(1)= -TE  is the Euler's constant  7~ = 0.57721.. .  and A1 is given by 

Ri (�89 ( An~o ~ = 0 ) ,  Ai =Rl ( �89  )' 

l~{ 1 - ,5 n(0 0 ) ) (1~  

_ --1 ~ ,  (an~o ~ < 0), 
0 (1 A,(Oho(-an~ ))t• 

- -  *-a'*O . t a ~ l  1,21 

= ~(a -- �89176176 (An~o ~ > 0). 
~(a -- �89 ~ 1R l(a)d a 

Therefore 

(18) 

~ [ S 2  2ipB" 2ip~n 2ipV" 2ipV" ] - 4 ( 0  1)TE--A1 
n = 1 q_ (pna)2 1 B 2 $2 ~ - -  - -  + (p.) + (pD ~ �89 + (pW 

dn~o ~ R'I (s) 
+ 4(9 - 1) ~U(s + I )  + - -  (19) 

(s - �89 + I) R,(s)" 

h~ has the symmetry hs = h-s, Writing down Eq. (i9) for s ~  - s  and subtracting 
it from Eq. (19) gives with ~(�89 + s) = ~(�89 - s) + n tan nS [39, p. 14] the functional 
equat ion in differential form for the R : func t i on ,  

d 
ds In R i ( s ) R l ( -  s) = - 4 ( 9  - 1)rc tan 7ts. (20) 

Of  course, every information about  the nontrivial  zeros is lost. This equat ion can 
be integrated yielding 

g i(s) R 1 ( -- s) = .A 1 (co s rts) 4(~ 1), (21 ) 

where A1 is a constant  given e.g. by -41 = Rl(so)Rx(-So)(COSnSo) 4~ with some 
soeC, which is however, independent  of So. We have, e.g. (no small Eigenvalue 
2 = �89 assumed) for s o = 0:A1 = R2(0) �9 

2. The Selberg Super zeta-Function Z o. In this section I derive the analytic 
properties of the Selberg super zeta-function Zo and present a functional equat ion 
connecting the two Selberg super zeta-functions Z o and Z 1.1 Let  us consider the 
test function (Re(s) > 3): 

1 I 1 
hs(P)=2(1 2 ) -  s(1 s) z:ip+(i/2) _ _ - p 2  + ( s  - I )  2 .  ( 2 2 )  

1 It is also possible to derive the analytic properties ofZ o similarly as the reasoning for ZI as in 
the previous section. The choice of the test function (Re(a) > 1, Re(a) > 1): 

22 0.22A22 = 1 + 2ip 1 + 2ip 
hs(P)=s2--22 "~ ,z=tl/2)+ip s2--(�89 2 o'2--(�89 2 

turns out to be the correct one 
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This gives at once A o = 0 because h~ is an even function in p. Furthermore for g(u): 

1 f~~ e '  iup = 9 ~  #(u) ~o (s - �89 + p2dP 
e - ( S - ( 1 / 2 ) ) l u l  (23) 

([39, p. 431]). Thus for G(u,z): 

e-tS-tl/2))klr[S -- �89 ~ )  
G(klr, Z~) = ~1 - Zr k cosh . (24) 

Therefore we get for the right-hand side of the supertrace formula 

l~ e - l S - l l / 2 ) } k l r /  k kly\ 
,,},~=,2sinhk/,}" s - � 8 9  ~ 1 - ~ ,  c o s h - ~ ) '  

2 

1 QO 

~-kl~ [ 2e-sktr - -  ~ , k e - ( s - ( l l 2 ) ) k l ~  - -  Z~. 'ke-(s+(ll2))klr] 
- -2S-  l{~pk~11-- 

1 d l n [  zg(s) ] (25) 
- 2 s -  1 ds Z l ( s -~ -~ l ( s  + �89 " 

Here use has been made of the properties of the logarithmic derivative of the super 
zetz-functions: 

d d to to I ~t q n ~ - s n l ~  
In Zq ( s )= - - In  ~. [ I  [1 --Z~%-(s+k)tr'~J=z~,~ 2.,w "r,-rT__ ~---:-~-~ " -  (26) 

fhus we lind the supertrace formula for the test function h~ 

dnto ~ 1 d i n  [ Zg(s) ] 
.~1  [ h s ( d ) . -  hs (p f ) ]  s(1 - s) - 2s - 1 ds ~Z~(s -~-~(s + �89 (27) 

Due to our knowledge of the analytic properties of the Zx:function we can deduce 
the analytic properties of the Zo-function. Therefore: 

�9 s = - k  (keNt): There are trivial zeros with multiplicity (g - 1)(4k + 2). 

Since both sides of Eq. (27) must be regular for s = �89 ___ ip, - k (keNt)  I get 
further 

�9 s = �89 + ip~ (v) - k: There are zeros (p~) and poles (/r 
�9 s = - � 89  - ip~(r) _ k: there are poles (p~ and zeros (p~), 

with the same multiplicity as the corresponding Eigenvalue, respectively. Similarly, 
as for Zx, we get an infinite number of critical lines. Note that there is no zero for 
s = 1 as for the ordinary Selberg zeta-function [36]. By the same considerations 
as for Z~ we get the structure of the Zo-function for the "small Eigenvalues" (keNt): 

�9 for s = 2~ (r) -- k there are zeros (poles) and 

�9 for s = 1 -  2~ t r ) -  k there are poles (zeros) of the same multiplicity as the 
corresponding Eigenvalue of l-q, respectively. 

A functional equation for R o can be derived, as can be seen in the next section. 
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Of course Eq. (27) and Zo can be extended meromorphically to all seA ~. In Fig. 2 
I have sketched the analytic structure of Zo. The trivial zeros are indicated b y  
field dots, the position of the bosonic zeros and poles by filled and empty squares, 
respectively, and the position of the fermionic zeros and poles by filled and empty 
triangles, respectively. The small Eigenvalues are not considered. The x- and y-axis 
are again taken at the body of A~, i.e. (AJBody = C. The y-axis is taken in arbitrary 
units. 

The test function he is invariant under the change s ~  1 - s .  Performing this 
substitution in Eq. (27) and subtracting it from (27) yields the functional equation 

--- t_dln[zl (  s Z~(s) Zo2(1-s) - ~ ( s  + �89 l = d  ln[zi( �89 s)Z~(3_ s) ]. (28) 

Let us consider the functional equation (20) for the Rl-function and perform the 
substitution s- . �89 By expressing the R~-function by the quotient of the 
Z~-funct ions,  this yields 

d l n  F zt ( �89 s)Z,(s -�89 7 _ .  , 
ds L Z~(} - s)Z, (s + �89 - '*xtg - 1 ) c o t  xs. (29) 

Thus we find by combining Eqs. (28) and (29) the functional equation in differential 
form connecting Zo and ZI: 

a, F z~(�89 ] 
m  s)Z i - - s ) j  = 2 (g- 1) cot (30) 

The functional equation can be integrated yielding (in ref. [8] the (sin r~s) 2e-1)- 
dependence is missing): 

z~(�89 s)Zo(s) 
Zt(�89 + s)Zo(1 - s) = Co(sin gs)2 e -  , (31) 

where C O is, e.g. given by ZI( �89 - so)Zo(so)/[Zl(�89 + so)Zo(1 - So)(sin nSo) m -g)] with 
some soeC which is, however, independent of So, e.g. for So= �89 Co = ZI(O)/ZI(1) = 
R , ( 0 )  = 

3.. The Super Zeta-Function Z s. To get around the difficulties of the combination 
of the Z o and Z 1 functions for general test functions h in the Selberg supertrace 
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formula let us (following Matsumoto,  Uehara and Yasui [42]) define the super 
zeta-function Zs: 

Zs(s):= 1-I f i  sdet I1 - diag (1, e-l~, zre-%/2), zre-(l~/2))e-tS+nitr] 
{~,}p n = 0 

-- I-I I~I [1-e- t~+'~ -e-(~+"+l) ' r ]  Zo(s)Z(s+ 1) 
{rIp n= o [~1 -- zre-( n~+l/2)lr] ~ Z~(s + �89 (32) 

Let us consider the resolvent of E]2: R~([Z] 2) = (s 2 -  I-'1o2)-1(Re(s)> 1). Therefore 

S 1 2  ~,=(1/2)+ip l h(p) = 2 - 2 = (s 2 _ 1) _ ip + p2. (33) 

We first calculate the Fourier transform of h(p): 

1 o~ 
g(u) = ~ ~o h(p)e-'UP dp = gl (u) + g2(u), (34) 

where 

1 7 cos up d p=gl(-u), 

- i 7 sin up, 
g2(u) = ~ -  - ~  (s 2 _ ~ ) _  ip + p2 dp = - g 2 ( - u ) .  (35) 

Using the integrals [23, p. 407]: 

7 ( b + c x ) s i n a X d x = I  c ~ - b  ] " 
-oo p + qx + x 2 -~ q 2 sin aq + c c~ aq ne-" ' f f~  

(36) 
7 (b + cx)cos ax dx = r b -  cq ] 

-0o p + q x + x  2 L x / p _ q  2c~ ne-a V'/7~ 

We get for u > 0: 

gt(u) = ~ c o s h  u__~ ~e , 

1 u ~ 
g2(u) = ~-s sinh ~e-  . (37) 

Therefore (u~R): 

g(U) = ~ e (u/2) -51ul, (38) 

which gives for G(u, Z) 

1 . f  u 
G(u, z r )=se -  t c o s h ~ -  Xr), (39) 
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and the right-hand side of the supertrace formula reads: 

1 ~o lr e_Sklr(eklr/2 1 Z's(S) 
,~p k~= , ek" 'z -- e-k,,/2 + e-k"/2 -- 2z'k)= 2S Zs(S )" (40) 

For the Ao-term: 

A o = i ( g - 1 )  ~ h(p)tanhnpdp 
- - 0 0  

= l ' g - - l ~ d u ~ - -  • 1-gs 2 , 

Osinh _u (s2 - 4 ) -  ip + p 2 d p -  
(41) 

2 

where the integral (36a) has been used. Therefore we have for the resolvent kernel 
the supertrace formula 

~ 1 [  1 1 ] dn~,~  1 Z~(s) (42) 
. sZ _ (2n)2 s2 _ (2v)2 -t s2 - 2s Zs(z) 

Equation (42) and Zs can be extended meromorphically to all sEAo~. We can read 
off the simple analytic structure of Zs: 

�9 s = 0 there is a zero with multiplicity 2(0 - 1 + An~o~ 
�9 s = +_ (1 + ipn) there are zeros (poles) and 
�9 s = +_ (�89 + ipr.) there are poles (zeros), 

with the same multiplicity as the corresponding Eigenvalue of D, respectively. A 
very simple functional relation can be deduced from Eq. (42), reading 

d In Zs(s) _ d In Z s ( -  s) (43) 
ds ds 

In terms of Z o and Z x Eq. (43) gives (in comparison to ref. 1-42] one has to take 
the limit ~ = 1 in the formulas): 

d lnZO(S)Zo(s+ 1) d ,  Z o ( - s ) Z o ( 1 - s )  
ds Z2(s + �89 - ~ m ~ s) " (44) 

Equation (43) or (44), respectively, integrated gives Zs(s ) = Zs ( - s ) ,  thus Zs(s ) is an 
even function in s. Combining Eqs. (20), (30) and (44) I deduce the functional 
equation for the R o function, which reads: 

d 
In Ro(s)Ro(-- s) = 4~(9 - 1) cot ~zs. (45) 

Equation (45) can be integrated to give 

Ro(s)Ro(-  s) = Bo(sin rcs) 4(g- l) , ( 4 6 )  

where the constant B o is e.g. given by B o = Ro(so)Ro(--So)(si n rCSo)4(1 -g) with some 
So eC, where B o is independent ofs o. We have, e.g. for s = + • Bo -- Z o  ( __ ~)/Zo(~)I 3 = 

Ro(-�89 Of course, any information about the nontrivial zeros and poles is lost. 
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A similar relation holds also for the ordinary Selberg zeta-function: 

Z ( s ) Z ( - s )  
R(s)R(-s)  - (47) 

z (1  + s)Z(1 - s) 

however, in this case the integration constant is given by B = 24(g- 1~. 
From Eqs. (21), (31) and (46) many relations linking Zo and Z1 for particular 

arguments can be deduced, e.g. 

Zo(-�89 zl(-  1)z (1) z (o) 
B~ = ~ = ZI(2)Z~(O ) - Z - - ~  = Cg = 41. (48) 

However, I do not see any valuable consequence as, e.g. determining from these 
relations the constants .41, Bo and Co like for the Selberg zeta-function. It is also not 
obvious to me to derive from these relations a functional relation for Zo or Z~, 
respectively, like for the ordinary Selberg zeta-function: 

s)F(2n)l-2s G(s)G(s+ 1) ] 2tg-lJ Z(s) Z(1 G(1 -- ~ ~ s)_] (49) k 

(here G(z) denotes the Barnes G-function, e.g. [23, p. 937; 57]). On the contrary: 
I believe that such relations do not exist for Z o and Z1, because we have an infinite 
number of critical lines for these two functions. The immediate consequence of 
such relations, if they would exist, would be that we could solve the Eigenvalue 
problem for the operator F]o by just looking at the poles (for 2~) and zeros (for 
2~) at, e.g. the critical line Re(s)= - �89  for Zo(s ). The values at the critical line 
Re(s) = - �89 for Zo(s ) would be related to the line Re(s)= 3, where Z o could be 
easily calculated by Eq. (1) once a sufficiently large enough set of geodesics {lr} 
would be known. This is, however, very unlikely (but not a proof). 

V. Spectra and Determinants 

I. Resolvent and Heat-Kernel. Since I-12 is not a positive definite operator I 
calculate the superdeterminant of c 2 - D 2 for Re(c) > m and analytically continue 
in c. Similar considerations have been done by Aoki [2] by means of the supertrace 
of the heat kernel of D 2. Fitted with the knowledge of the analytical properties 
of the Selberg super zeta-functions I can avoid the indirect reasoning of Aoki to 
get the superdeterminants in compact form. For this purpose I use the functional 
relations for Zo and Z1 of the previous chapter. These functional relations have 
not been available in [2]; without proof Aoki has used the functional relation of 
the Selberg zeta-function, assuming that it is also valid in the super case. As 
discussed at the end of the previous section this seems to be very unlikely that 
such functional relations exist. Furthermore, statements of the spectrum of the 
operators ~m and its relation to the spectrum of [] can be made (and similarly 
for D,, which I do not consider explicitly). 

Let be m~N o. Let us calculate the superdeterminants by the (-function 
regularization. This method of regularization was introduced by Ray and Singer 
[52] in differential geometry and Hawking [35] in field theory. We get: 
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s ot,c2 ox [ 1 
1 Go 

r c) = str  1,(c ~ - ts~.)-s,1 = ? - ~  ! ate  -~ str {exp I - - t  2 -  lq2)] }, (1) 

where use has been made of the integral 1,23, p. 317,1: 

x ~- le-l '~dx = 1~-~F(v). (2) 
o 

The function h corresponding to the heat-kernel of (c 2 -  V12) reads 

hhk(S) = e,U~ + ( r a / 2 ) ) 2  - c2]. (3) 

Therefore for g(u) 

1 ~ e _ i , , h h k ( i P + � 8 9  1) (4) a(u) = ~ - ~  

This gives 

u] 1 u~4,  r [- 1) u G(u , z )=- - - -~e -  / - | c o s h ( m +  2 - Z c ~  
~/z t  �9 t_ 

1 U2,4t C2 | U g ( u ) - g ( - u ) = = e -  / - s inh(m+ 1)~. (5) 

Splitting the calculation of fire(s; c) into two terms corresponding to the identity 
transformation and the length term, respectively, gives: 

(re(s; c) = ~(s;  c) + ~r(s; c). (6) 

Let us first calculate (~: 

__ ~ --r t A~J(t) = - - e  J e 
I (u2/4t) 

o 

sinh (m + 1)2 

sinh 2 

u 
c o s h m ~ d u = ( 1 - g ) e  -r ~. e k*t. (7) 

k = O  

Equation (7) can be e.g. proved by induction 1,2, 28-1. 
Similarly: 

A ( - 1 )  = 0 

m - - 2  

A V m ) ( t ) = ( g - ! ) e  -r ~ e k2' ( m = 2 , 3  . . . .  ). 
k = O  

This gives for ~ :  

F(s) W o o  ,,=o 

(8) 

(9) 



Selberg Supertrace Formula for Super Riemann Surfaces 471 

For later use I easily calculate 

8s~(s; c) = ( 0 - 1 )  ~ In(c2-  k2). (10) 
s = 0  k = 0  

Let us calculate ~rin two alternative ways. The first is appropriate to the analysis 
of the spectrum, the second to the calculation of the superdeterminants. 
1) The supertrace formula for the heat-kernel now reads: 

{e'[';'~.")2-cZ] - e[t(;~"V,m)2-c2]} =(1 _ g)e-C 2, ~, e k2' 
n = l  k = l  

o--c2t oo ] ~ km [- klr k klr] 
+ ~  E E ~ e-'~2"2/"/cosh(m+ 1)T--Z, c o s h m T J ,  (11) 

x/4rct r~r k = 1 sinh.-- r L 
2 

and the Ao term appropriately replaced for negative integers. With the help of 
Eqs. (2), (7) and the integral [23, p. 340]: 

ix"-le-tP/x)-V'dx 2 Kv(2w/~) , (12) 

we get for the supertrace formula of the generalized resolvent kernel: 

n = 0  [C  2 B 2 s __ _ (&,.) ] [c 2 ~,,.)2]s 

" i 1 ~ Irzr k'' f klr y - " /2 )  
=(1--O)k~=O(C2 2k2)S - I - ~  ~erk~__lekl:,/2 e--(kl~,/2)k 2C ] 

o + '  - m 
(13) 

\ /...I 

This gives explicitly for s = 1 (m even): 

~ o [  1 1 J C2 B 2 C 2 F 2 . - (.~.,..) - (,~.,.,) 

i (  )(m l r 
~ ( 1  2. c 2 _ k  2 t-2ccdcln - - m ~ - i - ~ - -  1 - ~  " ' (14) 

where the logarithmic derivative of the super zeta-functions has been used. For 
s = 1 and m odd: 

' ]  
.=o [c~-(~.~) 2] [c~-(~.~) ~3 

. i (  )(o)] =(1_9)k,-,c2__2.,o 1 1 d Z 1 ~ - + c + l  Z 1 c - ~ -  
[ ( m - ~ - - - ~ ~ ) ] "  (15) = - k 2  t-2cdccln Zo - ~ - + c  Z o c + - - ~ -  
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2) Let first m be an even number. Let us consider the representation (Res(s)< 1): 

_ 2 + c 

[~.(,t + 2c)y  
t s- 1 (16) 

F (  s) o 

where this integral representation follows with the help of [23, p: 318]. There- 
fore we get for (mF(C;S) with the help of Eq. (11)�9 and the representation 

K +_ 1/2(z) = w/~/2ze-~: 
d2 

r c) = sinzns ~o [2(2 + 2c)] ~ 

�9 2 ~  ~] 1 - - u  e-  r~ / / cosh  kl~ --~rkcosh kl~ 
yEFk= l - -  e ~' L 

Zo m + 2 + c + l  Zo 2 + c  - m  

[ , l ( , l + 2 ~ ) y d , ~ " / _  / m + l  _ "~_ / , , , - 1  _ "~|" 

(17) 

Let be f(s)=sin(ns)[2(2+2c)]-~]. Then f ' ( s ) l s=o=n  and we get for ('(0;e) 
(Re(s) > m): 

('(0; c) = (O - 1) ~ ln(c 2 - k 2) 
k=0  

. . . .  

I 1 . . . . .  _ (  
k=0  m + l  (g 1 ) ~ l n ( c  2 k 2) l n ~ z l ( c + ~ ) Z l ( c + ~ _ )  j .  (18) 

Here it was used that lim Zq(s) = 1, which follows at once from the Euler product 
$--+ oo 

representation of the Selberg super zeta-functions. Therefore (m = 0, 2 . . . .  ): 

Z m 

sdet(c2_l._]Zm) = ~ 1 7 6  fi(c2_k2)l_o. (19) 
/' m +  lX~ //  1 - - m X ~  2(g 1) k = l  

Similarly (m = 2, 4 . . . .  ): 

 o(c 
sdet(c 2 _ [--]2_,,) = -~-- - - -m~- '~  _ ~ - ~ -  ]--~m'~ k=0 (c2 -- k2)g-1. (20) 
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For m an odd number the roles of Z o and Z1 are just reversed and it follows 
immediately (m = t, 3 . . . .  ): ( ~ 

Z t  c + l + - -  Zt  c - - -  
2 2 %5-2 2 _ k2)1 

sde t (c2-  I~2)= / - m + - l - ~ - - ~ - - - ] - - - m ~ - 2  2 kl=lo(C -g. (21) 

Zot  +  )Zotc ' -  

S imi lar ly  (m = 1, 3 . . . .  ): ( m)(o) 
Z1 c+l- -Zl m-2 

sdet (c 2 - [] 2_ m) -- I-I ( c2 -- kZ) ~ 1. (22) 
Z o ( c  m +  l'~ i" 1 - m  ,=1 +-w-JZ~ +--r-) 

\ 

Equations (19-22) are the starting points for the calculation of determinants. 
Because the super zeta-functions are meromorphic functions in Ao~, the same holds 
for the superdeterminants. 

Let us denote by O(t):= str [exp(tl--]o2)]. Then we have: 

r 1 dttS_le_tC20(t) s=o]}.  sdet (c2 - [No2) = exp { - ~ s [ ~ - ~  i (23) 

Even if we are in the position to make statements about the t-integral this would 
be of no use because we have no information about the implicit moduli-dependence 
and signs which occur in the Grassmann-part, or respectively in the moduli-part 
in the super Weil-Petersen integration measure in Eq. (II.60). Thus no statement 
about the growing properties for sdet (c 2 - V]o 2) for increasing genus can be made, 
similarly to the argueing of Gross and Periwal [.32, 34] for the bosonic string. 
However, we can make some statement about O and can derive an equation 
expressing ~) by the zeta-function Zs. Let us consider the supertrace formula for 
the resolvent kernel: 

J~ e-tC2~)(t)dt- 1 Z's(C) g -  1 + anb ~ str(c 2 [--12) -1 i 

o 2c Zs(c ) c 2 (24) 

This equation can be inverted by the theory of Laplace transformations yielding 
(see e.g. [19, pp. 129]): 

1 b+i~176 l j "  Z's(C) g - - l +  An~o~ 
O ( t ) = ~ b _ i |  2cZs(c ) c z 

1 oo 
= ~ S ue-"214'(Z,a- 1 In Zs)(u)du - (g - 1 + An~o~ (25) 

x /  4nt o 

where 5r denotes the inverse Laplace transformation. In particular this gives 

0(0) = -- (g -- 1 + An~o~ (26) 

this result is consistent with Eq. (14). Equation (14) gives also that for t--* oo the 
supertrace for the heat-kernel for rq 2 diverges according to (meN) 

~),,(t) = str [exp (t � 9  _-__ (1 - g - dn~o~ m2', (t --* oo) (27) 

(and similarly for negative integers), a result found by Aoki [2]. 
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2. Discussion of the Spectrum. The operator D is simpler to study than the operator 
m 

D, . ,  because the trivial contribution ~- to the Eigenvalues has been subtracted 

(see Eq. (II.40) for the unitary equivalence between D,, and ~m + 2 ) .  For applying 

the supertrace formula for the operator Dr, we must change the formulas 
appropriate ly-  see Eqs. (111.25). We have 

( 9  Ato ") = (1 -- g) S g(u) - g(-- u) rm cosh ~ du, 
o sinh 2 

G(u, X) = g(u) + g(-  u) - Z[g(u)e-"/a + 0(-  u)eu/Z] �9 (28) 

The fimction h has taken on the argument ip + �89 This gives immediately: 

__ ) g ( u ) = - - e  -~'2/4'-c2t+u/2, G(u,z) l~e-U~/*t-:t(cosh U- 
~ \ 2 - Z '  

o o  

Atom ) 1 - -  g e_C2 t ! e_U=/4t c o s h  u g)e_~:_m=14) t .  = ~ m ~ du = (1 - (29) 

Therefore we get for the supertrace formula for the resolvent of ^ 2 [Zm for m even 
("hatted" quantities belonging to ~):  

/"(? L rc2 1 1 ] 1 -g  1 d ,  rZo(c + 1)Zo(c)-] 

.=, -(~. , . )  -( ,L,.)  J c -  c+~- 

(30) 
and similarly for m odd: 

I 1 1 ] 1 -g  1 d ,  r z l (c+l)Z , (c )  ] 
n= 1 ", n,mJ - -  ~,--n raJ C - -  " ~  

(31) 

m 
Analysing for the particular values c = e and c = +_ ~- + e we get for m even (le[ << 1): 

1 d 1)Zo(c)] 
~cln - g - 

( 2 ) ( m )  2c L ZZl(C +�89 J c-- c + ~  

A,~) 
8 2 

_ g -  1 + a to ~ 
82 

1 - g  
m 8  

(c = e, m = 0), 

(c =e ,m #0),  (32) 
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and regularly otherwise up to the nontrivial zeros and poles of Zo and Zt .  For  m 
m 

odd we get for c =  + � 8 9  and c =  +_~-+~ (181 << 1): 

1 d , m z l ( c +  1)Zl(c)]  g -  1 
2cdcmb J 

T 9 - 1 + Aa~o ~ 
8 

oc T A ti~~176 
8 

1 - g  
• 

me 

( c=  + � 8 9  1), 

( c=  _+�89 + e,m :/: 1), 

( ~  ) c =  + ~ - + ~ , m #  1 

(33) 

m even: m odd: 

a ~ o  ~ = o a ~ o  " = g - 1 
A#o m) = g - 1 (m # 0), ,_,,,a'~r 1/2 = 0 (m # 1), 

Aatm) - 1 (m # 0); aa(m) 1 (m # 1). 't'++.m/2 - -  - -  9 z"t"+m/2 = - -  9 

2. Atit0 ~ = 1 - g :  In a similar way: 

m even: m odd: 

A # o  ~ = 1 - g A~(o ~) = 0 

a~(o m) = 0 (m # 0), a~,(m) �9 - '- + x/2 = g - 1 ( m  # 1), 

Aa(m) = l - g ;  (m#0);  "~',+,,,/2 9 "+m/2 a a ( " )  = 1 - -  ( m  # 1). 

That trivial-modes or trivial Eigenvalues (as the trivial-modes of Fq,,) appear can 
be understood in the view of the corresponding results for the classical Laplacian 
- A m as discussed, e.g. by Hejhal [36, p. 408]. Let {2(, ")} be the set of all Eigenvalues 
of the Laplace-operator - A m = -- y2(0x2 + at2 ) + imytg:, and m > 2. Then (n~N): 

/'n d 1,1,1// ~ ") 

{,,~(nm)} = { 2 (  1 ~ ) } k = l U { , ~ , n  12 n :/: m (34) 
\ / J  

where d = 5 + (g - 1)(m - 1)and 5 takes on the values 0 and 1, depending on m. 
There are several methods of obtaining this result. E.g. one can first consider the 
trace formula for the (regularized) resolvent-kernel function and deduce this 
statement from the analytical properties of the Selberg zeta-function (nontrivial 
Eigenvalues) and the poles occurring in the Ao term (trivial-modes); second, one 
can consider commutation relations of the differential operators V k acting on 
tensorfields which give simple recursion formulas for the Laplacian Am depending 
on the curvature R of the space in question [11]. 

and regularly otherwise up to the nontrivial zeros and poles of Z o and Z 1. Let us 
discuss two scenarios for A#o ~ 

1. A#o ~ = 0: This yields for the various trivial modes of Dm for m even: 
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Equations (32) and (33) give also the relation of the Eigenvalues 2,,m of ~ , ,  
and 2, of ~o- I find due to the analytical structure of the super zeta-functions for 
the nontrivial Eigenvalues: 

2.,,. = 2., (n~N, m~N). (35) 

This simple result corresponds to the classical one noted in Eq. (34). 

3. Determinants and the Fermionic String Integrand. The starting points for the 
calculation of determinants of the operator VI 2 are Eqs. (19-22) which all can be 
analytically continued to c = 0 (including omission of zero-modes if necessary). Let 
us first consider Eq. (19) for m = 0. Performing the limit c--*e for I~1 << 1 one gets 

1 Z~176176 2)(0) e 2~"~~176 (36) 
sdet ( -  VI 2) = (29 - 2)~ [2~(�89 2 " 

Here I have denoted by Z~(�89 the appropriate derivative or residuum of Za at 
s = �89 depending whether An~o ~ < 0 or Anto ~ > 0, respectively. To make this quantity 
well-defined we subtract from s d e t ( - [ 3  2) the zero-mode which is denoted by 
priming the sdet. Using further the functional relation (IV.31) for Zo and Z~ we 
get finally: 

sde t ' ( -  F']2) = ( - 1)a"~0~ I 1Z~ 7r 9- (37) 
2,(�89 z~i)" 

For calculating the superdeterminant for m even and m > 2 a subtraction of zero- 
or trivial-modes is not necessary. Proceeding similarly as for m = 0 we get for 
m = 2 , 4  . . . .  : 

n ) a - I Z ~  + 2 )  ZI(~" Zx(0) 
sde t ( - [ - ]  2 ) =  (\ :'m' (38) 

Z1 

Similarly (m = 2, 4,... ): 

( m 2 

] D 
sde t (_  Vq2m) = (m ~2), .)  Z ~ ) J  Z1 (0~-)" (39) 

For m =  1,3,...: 

sdet ( - [~2) = 

._IZI 1 + m  2 

(40) 
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and m =  3,5 .. . .  : 

Note the differences to ref. [2] which are due to the additional super zeta-functions. 
The case of U]2_1 must be treated separately because of the appearance of 
zero-modes which must be subtracted. Therefore denoting the omission of 
zero-modes by priming the super determinant we get 

1,aJo~ 1-az l ( �89  
s d e t ' ( -  D2_1)=( - ) LrC Zo(1)J z l ( o )  (42) 

From Chap. II we know that the relevant string integrand is given by sdet' ( -  [3o 2) 
and s d e t ( -  N2). Equations (37) and (38) yield: 

[sdet' ( - [~o2)] - s/2 [sdet ( - []  22)] 1/2 

or alternatively 

1)5,2.o,oO,( Zo(1))-5( _y-1Zo(2) Zo( ! =- ( -  rig- 1 (43) k 21(�89 t,2) 

and I conclude that this expression is well defined. Furthermore for Zg of Eq. (11.60): 

Zg = S d#swp[sdet ' ( -  F-lo2)]-5/Z[sdet( - [-q2~al/22s, 
s M  9 

( 1 ) g - 1  DS/EA,~ooi(Zo(1)),SZo(2)(Zi(1))2 
= ~ sMgS d#swP(" " \ ~ ]  ~ \ Z - - - ~ J "  (44) 

Note the appearance of the various ratios of the Selbrg super zeta-functions. The 
main difference to Aoki [2-1 who first calculated super determinants of Laplace- 
Dirac operators lies in the additional factor [Zl(1)/Z~(O)-12 in the superdeter- 
minants. This factor is unambiguously given by the functional equations which 
have been used to derive Eq. (43) and it changes the super-moduli dependence of 
the integrand. 

Finally we can discuss the behaviour of the fermionic string integrand for the 
case of degenerate super Riemann surfaces. For this purpose let us consider such 
a surface, i.e. a pinching process takes place and at least the length of one geodesic 
vanishes. Let I o be the geodesics of ~,o~F with (lo)Body < (l~)aody for all ~,~F with 

~ ~o. Let us introduce the partial zeta-functions ~q(s) = .~q(s, lo) with 
co 

,~q(s):= H [1 - Zqoe-(~+")i~ (q = o, 1, Re(s) > 1). (45) 
n = 0  
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For  the entire zeta-functions one has 

Zq(s) = I-~eq(s)] g~l~ l-I l~/[1  - Z~oe-t~+k)'Q, (Re (s) > 1), (46) 
~EF k=O 

Y:/: 7o 
where g(lo) denotes the multiplicity of Io. A discussion for the bosonic string is 
due to Wolpert  [61] who showed that  for Io-o0 one has (set q = 0 in Eq. (45) and 
interpret all quantities in terms of the bosonie ease) 

__ 7~2 

This asymptotic behaviour has the immediate consequence that the bosonic string 
has a divergence due to geodesics of zero-length. We can generalize this result to 
the fermionic string. To see this let us start by taking the logarithm of partial 
zero-function: 

f - In ~q(s) = . ln(1 - ,woVq _~-(~+"}l~ 
n=O 

= ~ ~ l ' ke-k(s+n) '~  ~, Xko e-kst~ 
n=0 k= i k~YO - -k=l  k(1 - e -kt~ 

.k  - -ks ,o  1 ~ ~ o  e-k~'~ , l o 1 ~ Zroe ' k ~ k ~ o  

2., 
/ (48) = -- - -  Z~,o e -1- 

to =l k ' "  

where the denominator  was expanded as 

1 1 1 kl o 
1 - e -k'~ - k~o + 2 + ~ + 0(k212)" (49) 

The logarithm in Eq. (48) was expanded by considering the integrand from a 
geometric power series. For  the various sums we get 

1 oo ~ka-kslo 1 
,~o- zq~(z, 2, 1), (z = v e-,Zo~ 

lokL1 ~ -  < - t o  

1 //X2 ) 
= Io~6-  + In Zro - slo + (slo - In Zro)In (slo - In X~o) + O(lo), (50) 

r 
where ~(z, s, a):= - -  is Lerch's transcendent [39, p. 32] with the expan- 
sion: .=o (a+  n) ~ 

{ ~ (lnz)" ( l n z ) m - l [ I P ( m ) - ~ ( a ) - l n ( l n ! ) ] }  
~ ( z , m , a ) = z - "  ,~=o ( ( m - - n , a ) ~ - - .  4 ( m - 1 ) ! l _  

hem-- 1 

(Note [(s, 1) = ((s),~(2) = rc2 /6  and ~(2) - ~u(1) = 1.) Further  

1 ~ k -kslo 
- Z, ;(r~ = --�89 --Z~o e-st~ 
2k=1 k 

= - �89 + O(lo), (Zro = 1), 

(51) 

(52) 
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cO ~ k ~ l k - - s k l o l o ~ o  e-sl~ 
~;~ = ~ 1 - X~oe -~l~ 

1 1 
- slo 2 + O(l~ (Zro = 1). (53)  

The last two expansions are valid for (S/0)Body > 0. Furthermore no singularities 
appear for Z~o = -- 1. Therefore we have in the case of Zro = 1 the expansion 

7~ 2 
- In Lro(S ) = ~oo + (s - �89 to + const. + O(lo), (54) 

which is equivalent with Eq. (51). For Xro = - 1 things are changed and we get: 

1 fTr 2 in~ in in in 
-- ln'~ex (s)'z~o=-' = lo t 6 -  + / - ~ o l n ( l ~ 1 7 6  +c~176 

(55) 

Therefore we have to discriminate between Z~o = 1 and ;(~o = - 1. Let us first assume 
that the character Zro corresponding to the smallest geodesic is positive or that 
this can be achieved by an appropriate redefinition of the 4g generators 7i, 771 
(i = 1 . . . . .  2g). In the relevant combinations for sdet ( -  []2) we get 

~ r l l ' s + m + l ~  /" 1 m'~ ~176 (meZ ' even ' /~  

(56) 

~rl s -  1 s + l +  

.Lro(S m + l \  { 1 - m  + ~ ) 0 ~ o  t s  + _ _ f _ ) ~ :  const., (meZ, odd, lo ~0) ,  

\ 

where the const, may depend on s. Therefore in this case the determinants are 
proportional to a constant (meZ) and thus the fermionic string integrand is finite. 

In the case of X~o = - 1 things are changed and we get in the limit l o ~ 0, e.g. 
for m--O, 

~o(S)~o(SLr~(s+�89 + 1) \( in "]2=- 1 -~2i=/~o~ oce21't/'~ 2s lo--~-~ ] 

~ ( S ) ~ I ( S  + 1) _2i~/tol2=( i~tyi'~/l~ in ~,,~lZo)-=-i (57) 
.~el(s + �89 oc e l~ - - s  ,] \ o -- s ~ , ]  ' 

where again the const, may depend on s. In this case the fermionic string integrand 
diverges for t o --, 0 as in the bosonic case. 

Finally let us consider the product of the superdeterminants o f  - ~2  and 
- -  E ] 2 1 :  

sde t ' ( -  R2).sdet'( - D 2 1 ) =  1, (58) 

which follows directly from Eqs. (37)and (42). Generalizing this interesting result 
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we get (omitting zero-modes if necessary): 

s d e t ' ( -  [-]2m)'sdet' ( -  2 I - I r a _ l ) = (  - 1)~ - 1) 2-20,  (meN). (59) 

Let be f ro- - f i  ( - k 2 )  g-l- Redefining the superdeterminants according to 
k=O 

s d e t ' ( -  []2):= sdet' ( -  2 []m)/fm (m>0)_-- and sdet' ( - [ ] 2 m ) : =  sdet' ( - []2_m).fm_2 
(m > 1) I obtain the relation 

sdet' ( -  []2m)'sdet' ( 2 - I-q,._1)= 1, (m6N). (60) 

An equation like this was already stated by Baranov and Schwarz [8] by more 
general considerations. I close with this result, which nicely confirms my own 
considerations. 

VI. Summary 

In this paper the Selberg supertrace formula on super Riemann surfaces has been 
discussed and some of its most important consequences. The Selberg super operator 
L on 6 e ~  was defined and it was found that the operator L multiplies an arbitrary 
Eigenfunction of I--],~ by the function h, where h is only defined by the Eigenvalue 
s of this Eigenfunction with respect to Rm and the integral kernel of L. It was 
found that the Selberg supertrace formula reads 

I-hm(pff) - hm(p~r)] 
n = 0  

= ( 1 - g )  S g (u ! -g ( -u )  h m X 
ekl~/2 e ~ klr[2 

0 sinh {r}p k = 1 - -  

u cos ~- du + 

,(=, 

�9 Ig(kl~)+g(-kl~)-z~k(g(kl~)e-U/2+g(-kl~)ekl,/2)]. (1) 

The inversion formula which is needed in the supertrace formula to calculate the 
term Ato m) = i"rr(g - 1)tPm(0 ) which corresponds to the identity transformation was 
calculated to be given by 

x y ~ - 4 - - ~ o  ~ / y + 4 +  + 

h u Ato m ) where Q(u)= 2cot  ~ [ g ( u ) -  g ( - u ) ] ,  and the inversion formula for ~m(X) 

completed the work of Baranov et al. by explicitly stating the Atom)-term and 
the inversion formula, respectively. 

Chapter IV was devoted to the discussion of the analytic properties of the two 
Selberg super zeta-functions Z o and Z1. By considering specific test functions the 
analytic properties of Z o and Z1, respectively, could be discussed. There is 
no zero of Zo(s) at s = 1 which is quite different in comparison to the usual 
Selberg zeta-function. The crucial importance of Anto ~ = #even(zero- modes)- 
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#odd(zero - modes) of the operator [] has become clear. I could derive a functional 
equation for Zo: 

Zo(s) Zo( S) 
Z ~ ) "  ' (sin ns) 4~g- 1~ (3) 

Ro(s)Ro( - s) = Zo(S + 1)Zo(1 _ s) Zorn) 

The corresponding functional relation for Z 1 turned out to be: 

Z~(s)Z~(- s) z~(0) 
R I ( s ) R I ( -  s) - Z t ( s  + 1)ZI(1 _ s) - ZI(1 ) (cos z~s) 4(~- I). (4) 

For both functions we obtain an infinite set of critical lines located for Zo at 
Re (s) = �89 - k (keNo) and for Z 1 at Re (s) = - k (keNo). Unfortunately no functional 
equation for Zo or Z1 as for the ordinary Selberg zeta-function could be found. 
However, I have argued the unlikelihood that such a relation exists, based on the 
existence of the infinite number of critical lines. This appearance of an infinite 
number of critical lines for the two functions Zo and Z~ is surprising, because 
there is not any classical analogy for this feature. However, in view of the functional 
relations for Ro(Zo) and R~(Z1) this is a consistent result. The functional relations 
are of no use for the explicit determination of the spectrum of the Laplace- 
Dirac operator [3. This in turn is the same situation as in the classical case. There 
is up to now no way into the critical domain of the (super) zeta-functions in the 
complex plane, where the nontrivial zeros (and/or poles) are located. 

By an appropriate test function h I could deduce a functional relation connecting 
Z o and ZI: 

Z l  (�89 - s)Zo(s) Z1 (0) (sin 7cs) 2~g- 1~. (5) 
21( 1 "[- s)Z0(1 - s) Z1(1 ) 

Having discussed the properties of Z o and Z~ I treated in the final chapter the 
spectrum and superdeterminants of the Laplacian-Dirac operators [~m and [3m, 
respectively. Denoting by Ah~ m~ the difference of the even and odd trivial-modes 
2 of the operator ~,~ I discussed two scenarios for Ah~o ~ i.e. d~o ~ = 0 and 
A~o ~ = 1 -- g, respectively. For the nontrivial Eigenvalues of ~m I found that they 
are determined by the nontrivial Eigenvalues of Do as ~n,~ = 2n.o (heN, meN). The 
calculation of the determinants was performed with the well-known zeta-regulariz- 
ation method. The representations showed clearly that the superdeterminants are 
well-defined quantities. Since the superdeterminants were regular, it could be shown 
that the fermionic string integrand in the Polyakov approach is well-defined. The 
remaining integral over the super moduli space reads 

l •  s Zo(2) (Zl(0)V 
(6) 

Unfortunately no statement about the growing properties of this expression for 
increasing genus 9 like the analysis of Gross and Periwal could be made. 

However, I could discuss what happens for the fermionic string integrand if a 
pinching takes place. Here I found that divergence as well as convergence can 
happen, depending on the spin structure. 
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An interesting feature of the determinants is that there is a typical factor of 
ZI(O)/ZI(1). This factor does not appear in the work of Aoki, who started from 
quite analogous expressions but used the functional relation of the ordinary 
Selberg zeta-function instead of the functional relations for the Selberg super 
zeta-functions. But this factor is an unambiguous consequence of the functional 
relations which I derived in Chap. IV. I do not see any way to simplify this 
characteristic factor any further by exploiting all these functional relations. 
Therefore this factor gives an additional contribution in the super moduli 
dependence of the superdeterminants and thus also for the fermionic string 
integrand. 

An interesting relation for the determinants was deduced reading 

s d e t ' ( -  D2_,.).sdet'( - 2 D , , _ I ) = ( -  1)~ - 1) z-2~ (meN). (7) 

These results which are all direct consequences of the Selberg super trace formula 
demonstrate in an impressive way the power of the trace formula. 

The fact that the fermionic string theory is, formulated in the super analysis 
formulation, well-defined, is a step forward in the understanding of the whole string 
theory. However, one must keep in mind that the fermionic string is as well as the 
bosonic string nothing but a toy-model. To incorporate supersymmetry or to get 
the standard-model gauge symmetries, the superstring or the heterotic string theory 
is needed. (The higher-loop partition function for the latter has been constructed 
by Moore, Nelson and Polchinski [44].) Whereas the incorporation of the 
superstring can be done by the GSO-projection, it is not obvious to formulate a 
Selberg trace formula for the heterotic string case and to study its consequences. 
Again new surprising features may occur. I think that we must face the possibility 
that we do not know up to now enough mathematics to understand this new 
physics, and once again physics may be too hard for the physicists. 
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