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If four-dimensional ¢*-theory in the broken symmetry phase is enclosed in a finite spatial
volume L3 the double degeneracy of states is lifted due to tunneling, The energy splitting between
the two lowest states vanishes exponentially with the volume, the coefficient of I° being the
“surface tension”. This finite volume effect is important for numerical studies of ¢*-theory or the
Ising model. In this article the energy splitting and the associated surface tension are calculated by
semiclassical methods including one-loop corrections.

1. Introduction

In quantum field theoretical models with spontaneously broken symmetry the
pure phases may coexist in a mixed phase. As a prototype model consider euclidean
one-component ¢*-theory. In an infinite volume the system has two ground states in
the broken symmetry phase, which I call |0 ), and |0_). They are characterized by
a nonvanishing vacuum expectation value of the field:

0,]16(x)0,)= v, v>0. (1)

In the path integral formulation this corresponds to the fact that configurations
dominate where the value of the field is near v ( or — v respectively) everywhere. On
the other hand one may also prepare mixtures by a suitable choice of boundary
conditions. Then configurations show up which contain large domains with different
signs of the field. These are separated by domain walls with a characteristic width.
An associated “surface tension” can be defined in terms of the free energy of a
domain wall per unit area (or volume).

This phenomenon plays an important role for finite volume effects [1]. As
nonperturbative studies of ¢*theory or the Ising model with the Monte Carlo
method are necessarily performed in a finite number volume it is crucial to consider
finite volume effects in order to be able to extract information on the infinite
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volume limit. This is associated with particular problems in the case of the broken
symmetry phase due to the occurrence of tunneling [2, 3] as will be discussed in the
following.

I consider the theory in four dimensions with a finite spatial volume L3 and time
extent T and periodic boundary conditions. The notion “finite volume” always
refers to the finiteness of L, whereas T may also be taken to be infinite. The
discussion below applies both to a theory in the continuum and a lattice regularized
theory. Since we are studying infrared phenomena the theory on a lattice can be
treated as a theory in the continuum if it is in the scaling region and if we use
renormalized quantities for describing the physics. Furthermore the results also
cover the case of an Ising model because this is a particular limit of ¢*-theory where
the bare quartic coupling is sent to infinity.

It is well known that spontaneous symmetry breaking does not occur in a finite
volume [4]. There is a unique ground state |0,) symmetric under the reflection
¢ — —¢ and the vacuum expectation value of the field vanishes. This means that
the degeneracy of the infinite volume ground states |0 , ) is lifted. Separated from
the ground state |0,) by a small energy splitting E,, there is an antisymmetric state
{0, and if one decomposes these states as

1 1
IOS>EW(IO+>+ 10-)), |Oa>zﬁ(|0+>_ 10_)) 2)

then |0,) and |0_) are states which go over into the degenerate vacua in the
infinite volume limit.

The energy splitting E,, is due to tunneling between |0, ) and J0_) in a finite
volume. Its volume dependence was studied in refs. [1, 5]. Their analysis is based on
a picture of domains which extend over the spatial volume and cover intervals in
time. Neighbouring domains with a different sign of the field are separated by
domain walls, which can be considered as tunneling events. From this picture a
prediction about the energy splitting of the form

Eq,~ exp{ —oL’} 3)

is obtained, where ¢ is the surface tension mentioned above. One sees that tunneling
effects vanish very rapidly with increasing volume.

For a quantitative analysis in connection with Monte Carlo calculations it is
important to have a more precise formula and to have an expression for o in terms
of the parameters of the theory. In this article the energy splitting is obtained from a
semiclassical calculation including one-loop effects. The result is

Ey,=CL'?exp{—oL®}, (4)
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where the prefactor C and the surface tension o are given in eqs. (66)—(68) below.
The factor L'/ differs from the usual WKB factor L3/? coming from zero modes by
an additional factor L™! due to one-loop corrections. The existence of this factor
has also been observed by Brézin and Zinn-Justin [6] in the context of a one-loop
calculation. I perform the semiclassical calculation in the continuum and use
dimensional regularization for treating the ultraviolet divergencies.

2. Semiclassical tunneling amplitude

The bare lagrangian of four-dimensional euclidean ¢*theory in the broken
symmetry phase is written as

$=%au¢oaﬂ¢0+ V(%) (5)
where the potential
2 4
My , . 80 4 3 my 8o, 5 o\2
= - — + — _——_ = — —
V() 4 ors al o+ 8 g, & (¢o Uo) (6)

has its minima at
¢o=iU0=iV3m(2)/go- (7)

The parameters are defined such that the value of the potential at its minima is zero
and m, is the bare mass. Let the hamiltonian H be normalized such that the
vacuum |0,) has zero energy. The energy splitting E,, can be obtained from the
amplitudes

<0+|C_TH|Oi>=%(lie_TE°a)- (8)

The semiclassical calculation is based on expressing these amplitudes for large T as
path integrals with boundary conditions

vy, x%—> 0
$(x) = . (9)

+u,, X" — o0

and evaluating these integrals by means of the saddle point approximation as
introduced in ref. [7] and reviewed in ref. [8]. In the case where |0_) appears in the
tunneling amplitude (8) the path integral is dominated by a classical solution, the
so-called “kink”:

¢.(x) = (3m3/g,) tanh[imy(x° - a)] (10)
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with classical action

3
m

S, =2—213. (11)
8o

a is a free parameter specifying the location of the kink. In the one-loop approxima-
tion the quadratic fluctuations around the classical solution are taken into account
as a gaussian integral. For fluctuations

P=¢.+17

the quadratic part of the action is given by
S=Sc+%fd4xn(x)Mn(x)+O(n3), (12)

with the fluctuation operator
= —3, 0"+ m}— imicosh™?[imy(x°—a)]. (13)

M has a zero-mode corresponding to translations of the kink or shifts of the
parameter a. The normalized zero-mode solution is

$1(x) = S dgp.(x) . (14)

The zero mode has to be treated separately by the method of collective coordinates
[9]. The gaussian integral then yields a factor

(2787 Y det M|) 7, (15)

where det’ is the determinant without zero modes. For the other contribution in eq.
(8) the corresponding result is |det M,| ~'/2 with

My=—3,9"+mj. (16)

Taking into account also all contributions from noninteracting multi-kink configu-
rations, which exponentiate, the result for the energy splitting is [8]

det' M |12

det M,

> )m (a7)

E0a=2e_5°(

The L-dependence of the prefactor S$}/? is L*? as mentioned in sect. 1. The
determinants provide another factor of L' as will be shown below.
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3. Regularized determinant

The determinants appearing in eq. (17) contain ultraviolet divergencies and have
to be regularized. I use dimensional regularization and consider the theory in
d =4 - ¢ dimensions of which the spatial d—1 dimensions belong to a finite
volume L}, The fluctuation operators are decomposed as

M=-93>+0Q0, M,=-9%+0Q, (18)
with
d-1
3*=Y a,8', (19)
i=1
Q=—-02+mj— %m%cosh‘z[imo(xo— a)] , (20)
Qo= _ag_l_m(z)' (21)

It is convenient to use heat kernel methods for the calculation of determinants. I
denote the trace of the heat kernel of an operator A by

K, (A)=Tre ",

In intermediate steps of the calculation I introduce an infrared regulating mass p
and consider M + p? instead of M, thus replacing the zero mode by an eigenvalue
p2. The heat kernels factorize as

K(M+p*)=e*K(-3%)K,(0), (22)
where

K(-23%)= ( Y exp[—(2'lrn/L)2t])dA1

nel
d—-1
=(L(4m)‘1/2 ¥ exp(—n2L2/4z)) . (23)
nel

The last identity is due to Poisson’s summation formula. Because 1 only need the
difference between the heat kernels of M and M, later I define

K(M+p?)=K,(M+p?) - K(M,+p?)
=e K, (-3%)K,(Q), (24)

where

K(Q)=K,(Q)-K,(Q,)- (25)



G. Minster / ¢*-theory 635

This function can be calculated explicitly due to the fact that the spectrum of Q is
known [10]. It consists of two discrete eigenvalues

g =0, €= 3m} (26)
and a continuous part
e,=p*+mi, pER (27)
with spectral density

P>+ 3ms
p*+img)(p + mj)

go(p)=51;{T—3m0( }+O(T”1). (28)

Since the spectrum of Q, is given by eq. (27) with spectral density T/2#, we have in
the limit 7 — o0

(@) =1+e7it [~ apg(persmd (29)
=&(mg/t) +e 5@ (imyt ), (30)
where
Mof_ 2, 1 (31)
g(P)— 27 p2+m% p2+%m(2,

and @ is the error integral. The regularized determinants can now be expressed in
the usual way as

M+ p?
My + p?

- [T R M), ()

Trlog

The behaviour of this quantity for small p? is determined by the large ¢ behaviour
of K,(M + u?), namely

2
Trlog

——— | =logp? + +0(p?
M0+u2) og p® + const.+ O(p"2), (33)

which signals the zero mode of M. Thus I define as usual the determinant without
zero mode by

2

s ) —loguz). (34)

M0+u2

= lim
p—0

det’' M
Trlog

M
Tr'log| — | =1
f Og(MO) Og(detM0




636 G. Miinster / &*-theory

The ultraviolet divergencies which show up as singularities for e — 0 can be isolated
by considering the asymptotic behaviour of the heat kernels for 1 — 0. From eq. (22)
one gets

- o 1
K(M+p?) ~ LY 4gy) 47972 o~ +agtayt - (35)
>0
with
3m, 3m,
=57, =gz (imi+e’). (36)

The first two terms involving a, and a, lead to divergencies at the lower bound of
the integration range. Separating the divergent piece from the integral yields

2

t+u wodt . , S
M0+”2) = _fo T{Kz(M-Hu Nuca—0(1—1)L (7+a0)}

Trlog

2
—L3(a0: + aglog(4m/L?) — a, +O(c)). (37)

For later purposes the finite part of this quantity is conveniently expressed in terms
of an operator zeta function. Let

o 1 o o
{(z,M+u2)=F(Z)j(; derr K (M +p2) 4oq forRez>1  (38)

be the difference of the zeta functions of M + p? and M, + p* and
] 1 *® z=1{ ¢
g(z,M)=F—(z—)fo derr"Y (K, (M),_y—1) forRez>1 (39)

be the corresponding function for p = 0 with the zero mode removed. They can be
continued analytically to z = 0 by separating the first terms in the small ¢ expansion
of K, asin eq. (3.7), e.g.

1
o b

$(z, M+ p?) = wdttz‘l{lz,(M+ B2 gea—0(1 t)L3(% + a0)>

+L3(r<z+1) * (z—l)F(z))' (40)
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Comparing with eq. (37) one finally finds

3

Tr'1 M d"OM L33m°
= ——{'(0, +
G YA 34O M)+ P

log(4nL~?) +I"(1) + % +0(e).

(41)
This expression will be renormalized in sect. 4.

4. Renormalization

In renormalized perturbation theory all physical quantities are expressed in terms
of the renormalized mass mjp and renormalized coupling gg. I adopt the same
renormalization scheme which was defined and used in refs. [3,11]. The renormal-
ized mass is determined through the inverse propagator —I'?( p) in infinite volume

by

A standard Feynman rule calculation at one-loop order yields

d9k _ -1
—F‘z’(p)=rn%+pz—gof(27r)d +m3) 1+ 2m3((k—p)*+ m3) | +0(g3)
=my+p*—go(4m) d/z( o)d/z_1
. 2 d/2-2
x[r(1—§d)+%r(2—§d)/ dx(1+x(1—x)—2) ] (43)
0 mg

From this expression one obtains

= i1 = 120 X~ toglmiam) + 4r(1) - 1+ 0(0)] + olsd)) . (44

The renormalized coupling gg is defined in terms of the renormalized vacuum
expectation value vy of the field:

gr = 3my/vk (45)
and the one-loop result is

&o
1672

1
3[— — Llog(mi/4m) + LI"(1) + 1 + O(e)
€

+0(53)].

(46)

ErR = go.“_({l -
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Here p is an arbitrary renormalization scale which usually appears in dimensional
regularization and cancels out in the final results. Inverting the relations above one
gets m, and g, in terms of my and gg. Using

3
m
S, =213« (47)
&o

and the regularized determinant (41) the energy splitting (17) can now be expressed
in terms of the renormalized parameters. As a result the divergencies cancel
properly and the expression has a finite limit as ¢ — 0:

md \'"? my 1d
an=2(_ L3/2exp{—2—L3+——§"(0,M)
8r7 8r 2d:
mz 3(1_3 2
+ 16772L (T - Elong) + O(gR) . (48)

In this formula the parameter m, in M has of course to be replaced by my. It
remains to evaluate { as a function of my and L.

For completeness I would like to add that the physical mass m, which is given by
the location of the pole of the propagator, is related to my through

o) @

Furthermore the 4-point-coupling
g¥W=-r§(0,0,0,0),
where T'{Y is the renormalized vertex function, obeys

9
g1+~ 8r

) ﬁ'lr_z + O(gli) . (50)

g

These formulae may serve for a translation of my equations into other renormaliza-
tion schemes.

5. Evaluation of the zeta function

The final task is to calculate the zeta function (39) as a function of my and L.
For this purpose it is helpful to separate the asymptotic piece for ¢+ — 0 from the
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heat kernel K,(— d?). The zeta function is thus divided into three parts:

(2, M) =§(2) + &(2) + 5(2), (51)
where
1 ® 4 z-173 —3/2(
gl(z)=r(z)f0 dee= L3 (4mt) V(K (Q) - 1), (52)
&H(z)= F(lz) /(;oodtt"_l{A3(4'lrt/L2)—l}, (53)
1

6(z) = F(Z)fowdttz‘l{A3(47rt/L2)—(4wt/L2)_3/2}{If,(Q)—1}, (54)

with

A(s)= Y e ™ s =5 124(1/s). (55)

nelz

Now the three pieces are discussed separately. {; is proportional to the volume L3
and therefore contributes to the surface tension o. Explicitly it reads

1 N ,
$i(2) =L3(47’)73/2‘F(—Z)‘foodttzﬁs/z{e_%’"k’+ /-w dpg(p)e™"” +'”%1)}
0 — 00

3 -3 2F(Z_%) 3. 2\3-z ® ) N
= £am) e (k) [ dpe(p) (e ) ) (56)

The integral over p does not converge for z = 0. An analytic continuation to z = 0 is
achieved by splitting g( p) in the following way:

m — —
8(p) =~ {3(p2+m}) "+ imi (P4 my)

2 -2 —-1
+(%m§) (p*+md) (p2+m%{/4) } (57)
The integration over the first two terms can be performed using

f: dp(p*+m}) "= mh“zs——r(i);(ss)_ d (58)
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and the remaining integral converges for z = 0. The result is

G(z) =L (4m) ™ Pmy %

x{(%)w zr(r(z)g) B W:_w [(2—1)3(z—%) +%(z—%)1(z—%)]

1 (3)2F(z——

2=1/2¢ 5 1y-1
- +1 3 .
|2 F()fdpp ) (p+4)}(59)
The derivative at z =0 is now obtained straightforwardly:

(mR)(

__gl( )= 6+—‘/%_~+310gm§). (60)

Making use of identity (55) the range of integration in ¢{, is split into two parts in
the following way:

()= )

S { s -5)

+f°°dss"1(A3(S)—1)+ : 3 ;} (61)

1 z—3

such that the integrals converge near z = 0. This leads to
d o ds
5560 = [T — 1 +57)(42(s) =1) - 3+ T'(1) — log(L?/4n)
z 1 s

—log( L*/4m) (62)
with
B=-1.07718.

It is this very term —log( L?/4w), which changes the power of L in the prefactor in
eq. (4) from 3/2to 1/2.

Finally {, gives a contribution to ¢ which vanishes exponentially with L. Using
eq. (55) again it can be written

d -
5560 = 1,3(4”)‘3/2/0 et~ A3 (L2/4mt) —1)

x{e‘%m'l*’-i-fw dpg(p)e"“’z‘"‘%‘)}. (63)
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The factor involving A in the integrand is a sum of terms each of which decays
exponentially with L? according to the definition (55). Doing a saddlepoint integra-
tion for large L leads to

\/3_

g 5,(0) = mRL exp(~ 1V3myL) + faster decreasing terms.  (64)

Inserting these results into eq. (48) the announced formula for the energy splitting is
finally obtained:

Ey,= CLV?exp{ —o(L)L?} (65)
with
C=2/2e%*2m}/gx = 1.65058/2m}/gx (66)

and an L-dependent surface tension

gr  3V3w

-167 mexp( - %\/'3—mRL) + O(e_mRL) + O( glz{) , (67)

o(L) =ow(l -

ow=z’:—i‘(1—%(l o) rolsi). (©8)

The surface tension o,, has been considered previously by Brézin and Feng [12].
They calculated it in the framework of the e-expansion of statistical mechanics in
the one-loop approximation, i.e. up to second order in e.

6. Conclusion

The energy splitting of the lowest states and the associated surface tension in the
broken symmetry phase of four-dimensional ¢*-theory are obtained in the one-loop
approximation as a function of the renormalized mass my and the renormalized
coupling gg. For the particular case of the Ising model the energy splitting was also
calculated numerically for various values of L in a recent high-precision Monte
Carlo simulation [2,3]. The observed L-dependence is as predicted in eq. (4). The
values of the surface tension o and the constant C in eq. (4) have been determined
from a fit of Ej, up to L=10 in ref. [2]. Combined with the Monte Carlo value
mpy = 0.395(1) in lattice units the results are

o/my=0.0581(5), C=0.101(4). (69)

The measurements were done at a point where the coupling is gz = 30.2(4). On the
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other hand for this value of g the theoretical predictions are
o./my =0.0589(8), C=10.105(1). (70)
Including also the L-dependence in (67) yields a small correction:
o/m% =0.0585(8) for L=10. (71)

The agreement with the numbers above is remarkably good. This shows that the
semiclassical one-loop approximation is reliable for the value of g above. Further-
more it supports the evidence that at this point the model is in the scaling region,
which was also found from a study of the scaling behaviour of gp and my.

I thank Martin Liischer for discussions and E. Brézin for correspondence about
his work.
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