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If four-dimensional q~4-theory in the broken symmetry phase is enclosed in a finite spatial 
volume L 3 the double degeneracy of states is lifted due to tunneling. The energy splitting between 
the two lowest states vanishes exponentially with the volume, the coefficient of L 3 being the 
"surface tension". This finite volume effect is important for numerical studies of q~4-theory or the 
Ising model. In this article the energy splitting and the associated surface tension are calculated by 
semiclassical methods including one-loop corrections. 

I. Introduction 

In  quan tum field theoretical models with spontaneously broken symmetry  the 
pure  phases may  coexist in a mixed phase. As a pro to type  model  consider euclidean 

one -componen t  q~4-theory. In  an infinite volume the system has two ground states in 

the b roken  symmetry  phase, which I call [0+ }, and 10_). They are characterized by 
a nonvanish ing  vacuum expectation value of the field: 

<O+lq,(x)lO+> = ~ v ,  v > o .  (1) 

In  the pa th  integral formulation this corresponds to the fact that configurations 
domina te  where the value of the field is near v ( or - v respectively) everywhere. On 
the other  hand  one may also prepare mixtures by a suitable choice of boundary  
condit ions.  Then  configurations show up which contain large domains with different 
signs of  the field. These are separated by domain walls with a characteristic width. 
A n  associated "surface tension" can be defined in terms of the free energy of  a 
domain  wall per unit area (or volume). 

This p h e n o m e n o n  plays an important  role for finite volume effects [1]. As 
nonper turba t ive  studies of q~4-theory or the Ising model  with the Monte  Carlo 

method  are necessarily performed in a finite number  volume it is crucial to consider 
finite volume effects in order to be able to extract information on the infinite 
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volume limit. This is associated with particular problems in the case of the broken 
symmetry phase due to the occurrence of tunneling [2, 3] as will be discussed in the 
following. 

I consider the theory in four dimensions with a finite spatial volume L 3 and time 
extent T and periodic boundary conditions. The notion "finite volume" always 
refers to the finiteness of L, whereas T may also be taken to be infinite. The 
discussion below applies both to a theory in the continuum and a lattice regularized 
theory. Since we are studying infrared phenomena the theory on a lattice can be 
treated as a theory in the continuum if it is in the scaling region and if we use 
renormalized quantities for describing the physics. Furthermore the results also 
cover the case of an Ising model because this is a particular limit of ff4-theory where 
the bare quartic coupling is sent to infinity. 

It is well known that spontaneous symmetry breaking does not occur in a finite 
volume [4]. There is a unique ground state 10s) symmetric under the reflection 
¢~ ~ - ~  and the vacuum expectation value of the field vanishes. This means that 
the degeneracy of the infinite volume ground states 10+) is lifted. Separated from 
the ground state 10s) by a small energy splitting E0a there is an antisymmetric state 
10~) and if one decomposes these states as 

1 1 
1 0 s ) ~ - ( 1 0 + ) +  10 ) ) ,  1 0 a ) ~ - ~ - ( 1 0 + ) -  10 )) (2) 

then 10+) and 10_) are states which go over into the degenerate vacua in the 
infinite volume limit. 

The energy splitting E0a is due to tunneling between 10+) and l0 ) in a finite 
volume. Its volume dependence was studied in refs. [1, 5]. Their analysis is based on 
a picture of domains which extend over the spatial volume and cover intervals in 
time. Neighbouring domains with a different sign of the field are separated by 
domain walls, which can be considered as tunneling events. From this picture a 
prediction about the energy splitting of the form 

EOa - exp ( - oL 3 } (3) 

is obtained, where o is the surface tension mentioned above. One sees that tunneling 
effects vanish very rapidly with increasing volume. 

For  a quantitative analysis in connection with Monte Carlo calculations it is 
important  to have a more precise formula and to have an expression for o in terms 
of the parameters of the theory. In this article the energy splitting is obtained from a 
semiclassical calculation including one-loop effects. The result is 

EOa = CL exp(  - oL } ,  (4)  



632 G. Mi~nster / ¢p4-theory 

where the prefactor C and the surface tension o are given in eqs. (66)-(68) below. 
The factor L 1/2 differs from the usual WKB factor L 3/2 coming from zero modes by 
an additional factor L-1 due to one-loop corrections. The existence of this factor 
has also been observed by Br6zin and Zinn-Justin [6] in the context of a one-loop 
calculation. I perform the semiclassical calculation in the continuum and use 
dimensional regularization for treating the ultraviolet divergencies. 

2. Semielassieal tunneling amplitude 

The bare lagrangian of four-dimensional euclidean ~4-theory in the broken 
symmetry phase is written as 

where the potential 

~ =  + O:~o o % + V(+o),  (5) 

m 2 
0 2 gO 4 3rag  

V(~,o) = - -T'~° + ~-. ~'o + 8 go 
go ( , g  _ o8)2 
4! 

(6) 

has its minima at 

epo = +_ Vo = + 1 3 m Z / g o  . (7) 

The parameters are defined such that the value of the potential at its minima is zero 
and m o is the bare mass. Let the hamiltonian H be normalized such that the 
vacuum lOs) has zero energy. The energy splitting Eoa can be obtained from the 
amplitudes 

(0+ le-rHI 0 +) = 1(1 _+ e- rE° ' ) .  (8) 

The semiclassical calculation is based on expressing these amplitudes for large T as 
path integrals with boundary conditions 

~ ( x ) - ~  
VO, X 0"--> O0 

(9) 
+VO, X 0---} - - 0 0  

and evaluating these integrals by means of the saddle point approximation as 
introduced in ref. [7] and reviewed in ref. [8]. In the case where [ 0  ) appears in the 
tunneling amplitude (8) the path integral is dominated by a classical solution, the 
so-called "kink":  

(~c(x) = i ( 3 m 2 / g o )  t a n h [ ½ m o ( x ° - a ) ]  (10) 



with classical action 

(7. Miinster / q~4-theory 633 

m 3 
S c = 2 ' " °L3 .  (11) 

go 

a is a free parameter specifying the location of the kink. In the one-loop approxima- 
tion the quadratic fluctuations around the classical solution are taken into account 
as a gaussian integral. For fluctuations 

¢=¢c+n 

the quadratic part of the action is given by 

S = S c + ~ f d4x ~l(x)M~l(x)  + O(r/3), (12) 

with the fluctuation operator 

M =  -Oj, 0" + m g -  {mg cosh- 2[ ½mo( x ° - a ) ] .  (13) 

M has a zero-mode corresponding to translations of the kink or shifts of the 
parameter a. The normalized zero-mode solution is 

eOl(x ) = S~ -1/2 OogO~(x ) . (14) 

The zero mode has to be treated separately by the method of collective coordinates 
[9]. The gaussian integral then yields a factor 

(2~rS~-lldet'MI) -1/2, (15) 

where det' is the determinant without zero modes. For the other contribution in eq. 
(8) the corresponding result is Idet 3/01-1/2 with 

M o =  - O .  O"+ m 2. (161 

Taking into account also all contributions from noninteracting multi-kink configu- 
rations, which exponentiate, the result for the energy splitting is [8] 

[ S \1/2[ I -1 /2  
Eoa= 2e_Sct ~5~ ) de t 'M 

I (171 

The L-dependence of the prefactor S 1/2 is L 3/2 as mentioned in sect. 1. The 
determinants provide another factor of L-1  as will be shown below. 
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3. Regularized determinant 

The determinants appearing in eq. (17) contain ultraviolet divergencies and have 
to be regularized. I use dimensional regularization and consider the theory in 
d = 4 - c  dimensions of which the spatial d - 1  dimensions belong to a finite 
volume L d- 1. The fluctuation operators are decomposed as 

with 

M =  - 0 2 +  Q, Mo= - 0 2 +  Qo (18) 

d - 1  

02= ~., 0i 9i ,  (19) 
i = l  

Q = - O ~ + m 2 o  ~ 2cosh-2[~m0(x° a)] - -  2 m o  - -  , (20) 

Qo= - 0 o  2 + m2. (21) 

It is convenient to use heat kernel methods for the calculation of determinants. I 
denote the trace of the heat kernel of an operator A by 

Kt(A  ) = Tre -/A " 

In intermediate steps of the calculation I introduce an infrared regulating mass /~ 
and consider M + #2 instead of M, thus replacing the zero mode by an eigenvalue 
/~2. The heat kernels factorize as 

where 

Kt( M + g2) = e-t,2Kt ( _ 02)Kt(Q ), 

gt( - -O2)~(n~zexp[-- (2qTn/ t )2 t] )d-1  

(22) 

( ))d-1 = L(n~rt) -1/2 Y'~ exp ( -n2L2 /a t  (23) 
nEZ 

The last identity is due to Poisson's summation formula. Because I only need the 
difference between the heat kernels of M and M o later I define 

/ ( , ( M  + g 2 ) =  Kt ( M + g 2 ) _  Kt ( Mo + #2) 

where 

= e- , ,2K, ( -  02)I(t(Q), (24) 

I( , (Q) = Kt(Q)  - Kt(Qo ) . (25) 
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This function can be calculated explicitly due to the fact that the spectrum of Q is 
known [10]. It consists of two discrete eigenvalues 

3 2 (26) el = O, e 2 = ~m o 

and a continuous part 

ep=p2  + m~, p ~ R (27) 

with spectral density 

{ 1 2 ) 1 p2 + ~m ° 
g o ( p ) = - ~ -  T-3mo(p2+~mZ)(p2+m2) + O ( T - 1 ) .  (28) 

Since the spectrum of Qo is given by eq. (27) with spectral density T/2~r, we have in 
the limit T ~ oo 

2 f ~  gt(Q) = 1 + e-'m°t + dpg(p)e -t(p2+mg) (29) 
oo 

= dP(mov~ ) + e-~,m2otc~({mov/t), (30) 

where 

too( 2 1 )  (31) 
g(P) 2~ p2 + m ~  + p2 + ¼m~ 

and • is the error integral. The regularized determinants can now be expressed in 
the usual way as 

[ M + / z  2 ~ -oodt  . 
Trlog[ Mo ~#2) =- )o tKt(M+ t~2). (32) 

The behaviour of this quantity for small/~2 is determined by the large t behaviour 
o f / ( ¢ ( M  +/z2), namely 

Trlog M0 + #2 = l °g t  t2 + const .+ O(/~-2),  (33) 

which signals the zero mode of M. Thus I define as usual the determinant without 
zero mode by 

Wr,o ( o) M l o g i c )  ~oo + ~ - 5 ) l o g / z 2 ) .  (34) 
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The ultraviolet divergencies which show up as singularities for c ~ 0 can be isolated 
by considering the asymptotic behaviour of the heat kernels for t ~ 0. From eq. (22) 
one gets 

zd-l(47rt)-(d-4)/2[l a l tl ) I~t( M + ~2)t- --" + ao + a_lt + "'" (35) 

with 

3mo 3mo t" 1 2 - -  

a l =  8~r2, a o ~ 2  L~mo t #2). (36) 

The first two terms involving a 1 and a o lead to divergencies at the lower bound of 
the integration range. Separating the divergent piece from the integral yields 

Trlog Mo+/~2 = - ) o  t l  Kt(M+l~2)la=4-O(1- 

- L a ( a 0  2 +aolog(4~r/L 2) - a  I + O ( , ) )  . (37) 

For later purposes the finite part of this quantity is conveniently expressed in terms 
of an operator zeta function. Let 

1 foC~dttZ_li~t(M_l_l~2)ld=4 for Rez  > 1 (38) 

be the difference of the zeta functions of M + #2 and M 0 +/~2 and 

1 oo ~ 

( ' ( z ,M) -F(z ) fo  dttZ-X(Kt(M)ld=4-1) f o r R e z > l  (39) 

be the corresponding function for/~ = 0 with the zero mode removed. They can be 
continued analytically to z = 0 by separating the first terms in the small t expansion 
o f / ( ,  as in eq. (3.7), e.g. 

l fo~dttz-l(I(t(M+~a)ld=4-O(1-t)L3(-~-+ao) } 

( a0 al ) (40) 
+ L3 r ( z  + 1----5 + (z  - 1 ) r ( z )  " 
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Comparing with eq. (37) one finally finds 

ozd t Tr'log = - -7-~ (0, M) + log(4~rL -2) +/ ' ' (1)  + + O(c). 
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This expression will be renormalized in sect. 4. 

4. Renormalization 

In renormalized perturbation theory all physical quantities are expressed in terms 
of the renormalized mass m R and renormalized coupling gR- I adopt the same 
renormalization scheme which was defined and used in refs. [3,11]. The renormal- 
ized mass is determined through the inverse propagator -F(2)(p) in infinite volume 
by 

/0~2-~)} 0 ) p  (42, m~t = F(2)(O)/ . 

A standard Feynman rule calculation at one-loop order yields 

- d a k  2 )2 m20)11 - F ( 2 ) ( p ) = r n g + p Z - g o j ~ ( k  + m g ) - l [ l q - 3 m g ( ( k - p  + + O ( g  2 ) 

=rng +p2-go(4~r ) a/2(rng) a/2-, 

[ So( " 22 x r(1-1e)+~r(2-1.) l ax  l + x ( 1 - x ) ~  ° (43) 

From this expression one obtains 

{ go [l_½1og(m2o/4~r)+lF,(l)_3+O(c)l+O(gX)}. (44) m~=mo ~ 1 - ~  ~- 

The renormalized coupling gR is defined in terms of the renormalized vacuum 
expectation value VR of the field: 

gR = 3m2/v2 (45) 

and the one-loop result is 

gR = g0~ - ' (1  ~ g 0  3[ l [~_Txlog(mg/4~)+½F, (1)+~+O(e) ]+O(g~)} l  . 

(46) 

(41) 
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Here/~ is an arbitrary renormalization scale which usually appears in dimensional 
regularization and cancels out in the final results. Inverting the relations above one 
gets m 0 and go in terms of m R and gR- Using 

m 3 
S¢ = 2 '"o L3_, (47) 

go 

and the regularized determinant (41) the energy splitting (17) can now be expressed 
in terms of the renormalized parameters. As a result the divergencies cancel 
properly and the expression has a finite limit as e ~ 0: 

2( tlJ2 (m3 l d = L 3/2 exp - 2 " " ~ L  3 + ~ --~z((O, M )  
gR "n" ] gR 

+ 16~r 2m3 L3(~__ 3 1 0 g m 2 ) + O ( g R ) )  (48) 

In this formula the parameter m 0 in M has of course to be replaced by m R. It 
remains to evaluate ~' as a function of m R and L. 

For  completeness I would like to add that the physical mass m, which is given by 
the location of the pole of the propagator, is related to m R through 

( gR(11 
m l = m  2 1 - ~  4 --~-¢r + O ( g  2 . (49) 

Furthermore the 4-point-coupling 

g ( 4 )  = - 

where F~ 4) is the renormalized vertex function, obeys 

9 gR + O ( g 2 ) )  (50) 
g(4) = gR  1 + -~ 16qr ~ 

These formulae may serve for a translation of my equations into other renormaliza- 
tion schemes. 

5. Evaluation of the zeta function 

The final task is to calculate the zeta function (39) as a function of m R and L. 
For  this purpose it is helpful to separate the asymptotic piece for t--, 0 from the 
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heat kernel K~(-02). The zeta function is thus divided into three parts: 

where 

with 

( ' ( z ,  M )  = ~ l ( z )  + ~ ( z )  + ~ 3 ( z ) ,  

~ ' I ( Z )  = - -  

~ ( z )  = - -  

~ 3 ( z )  = - -  

(51) 

A ( s )  = ~_, e - " ' 2 S = s - 1 / 2 A ( 1 / s ) .  (55) 
n ~ Z  

Now the three pieces are discussed separately, fx is proportional to the volume Z 3 

and therefore contributes to the surface tension o. Explicitly it reads 

' /0 d,,Z ,-{e f ~.i(Z) = L3(4~) - 3 / 2  F( Z'----") + - oo dp g( p )e -t(p2 +m~) } 

=L3(4~r)-3/zF(-~(z)3) { (~m2)~-z+ f - 2 d p g ( P ) ( p 2 + r n 2 ) ~  z}. (56) 

The integral over p does not converge for z = 0. An analytic continuation to z = 0 is 
achieved by splitting g(p) in the following way: 

g(P) ~_~R{ 3_2 t_2 m2) -2 3(p2+m2)-l+~,tRt p + 

+(3m2)2(p2+m2)-2(p2+m~/4)-1}. (57) 

The integration over the first two terms can be performed using 

f ~  dp (p2 + m ~ ) - ' =  ink2 r , 1 ) r ,  s _ (  ( 1 )  (58) 
-~_  r ( s )  

6 3 9  

1 
fo~dttZ-1L3(47rt)-3/2( I~,(Q) - 1) (52) 

r ( z )  

1 foOOdttz_a(A3(aTrt/L2)_l} (53) 
r(z) 

1 o~ 
/ ' (z)  fo dttz-l{A3(4~rt/L2)-(4~rt/LZ)-3/2){I£'(Q)- 1}, (54) 
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and the remaining integral converges for  z = 0. The result is 

~' ,(z) = L3(4~ ") -3/2m3-2~ 

113 
(z- 1)(z--~) 

3 : ] 
+~(z-~)(z-~) 

11312 r(z - ~) F -,-1,,2(p2 + ~)-,}. 
2 ~ 1  :r-(Tj _ d p ( / + l )  (59) 

The  derivative at z = 0 is now obtained straightforwardly: 

d (mRL)3  --6 + + 31ogre 2 (60) 
dz  ~:(0) - 16~r----y- ~ -  • 

Mak ing  use of  identity (55) the range of integration in ~'2 is split into two parts  in 
the following way: 

L2 ldssZ_l(A3(s)_s_3/2)  

1 1} 
+ fl d s s Z - l ( A 3 ( s ) - l ) + - -  - (61) 

Z -3 Z ' 

such that  the integrals converge near z = 0. This leads to 

d ~ ds 
dz  ~'2(0) ~- f l  --(1S q- s 3 / 2 ) ( A 3 ( s )  - 1) - 2 + F ' (1)  - log(L2/4vr )  

= B - log(L2/4~r)  (62) 

X {e-b"~t+ fl dpg(p)e-tO'2-mb} " (63) 

with 

B = - 1.07718. 

It is this very term - l o g ( L 2 / 4 v r ) ,  which changes the power of L in the prefactor  in 
eq. (4) f rom 3 / 2  to 1 /2 .  

Final ly ~'3 gives a contr ibution to o which vanishes exponential ly with L. Using 
eq. (55) again it can be written 

d L3(4qr)-3/2fo°°dtt-s/2{A3(L2/4~rt ) 1} G~.3 (o )  = 
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The factor involving A 3 in the integrand is a sum of terms each of which decays 
exponentially with L 2 according to the definition (55). Doing a saddlepoint integra- 
tion for large L leads to 

d 3 f3  
~-~g ~3(0) = --~mRL exp(-- ½¢'3mRL) + faster decreasing terms. (64) 

Inserting these results into eq. (48) the announced formula for the energy splitting is 
finally obtained: 

with 

/0a-~ c t l / 2  exp( - o ( L  )L 3 ) (65) 

C =  2 ¢ ~ - e " / 2 ~  = 1 . 6 5 0 5 8 ~  (66) 

and an L-dependent surface tension 

= o ~ ( 1 - -  gR 3v/-5~r " ½vr3mRL)+O(e - 'RL)  + O ( g 2 ) ]  (67) o(L)  161r 2 (mRL) 2 e x p ( -  ] 

ooo = 2 - -  1 - + + O(g2R) 
gR 16~r2 ~ 8 ~ 

(68) 

The surface tension o~ has been considered previously by Br&in and Feng [12]. 
They calculated it in the framework of the c-expansion of statistical mechanics in 
the one-loop approximation, i.e. up to second order in ~. 

6. Conclusion 

The energy splitting of the lowest states and the associated surface tension in the 
broken symmetry phase of four-dimensional q~4-theory are obtained in the one-loop 
approximation as a function of the renormalized mass m R and the renormalized 
coupling gR- For the particular case of the Ising model the energy splitting was also 
calculated numerically for various values of L in a recent high-precision Monte 
Carlo simulation [2, 3]. The observed L-dependence is as predicted in eq. (4). The 
values of the surface tension o and the constant C in eq. (4) have been determined 
from a fit of E0a up to L = 10 in ref. [2]. Combined with the Monte Carlo value 
m R -- 0.395(1) in lattice units the results are 

o/m 3 = 0.0581(5), C = 0.101 (4). (69) 

The measurements were done at a point where the coupling is gR = 30.2(4). On the 
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o the r  h a n d  for  this value of  gR the theoret ical  p red ic t ions  are  

, ~ / m  3 = 0 .0589(8) ,  C = 0 .105(1) .  (70) 

Inc lud ing  also the L-dependence  in (67) yields a small  correct ion:  

o / m  3 = 0.0585(8) for L = 10. (71) 

The  ag reemen t  with the numbers  above  is r emarkab ly  good.  This  shows that  the 

semiclass ica l  one- loop  app rox ima t ion  is re l iable  for the value of  gR above.  Fur the r -  

m o r e  i t  suppor t s  the evidence that  at  this po in t  the mode l  is in the scal ing region,  

which  was also found  from a s tudy of the scaling behav iour  of gR and  m R. 

I t hank  M a r t i n  Liischer for discussions and  E. Brdzin for cor respondence  abou t  

his work.  
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