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The concepts of Bopp-Haag multiple-valued quantization and Dirac-Finkel- 
stein-Rubinstein rubber bands are refined and abstracted in order to develop a 
topological theory of the connection between spin and statistics in a general 
framework of quantum field theory. 

1. I N T R O D U C T I O N  

It is generally believed that spin-odd-half  particles are fermions  and 
spin-integer-particles are bosons. In many textbooks on atomic physics it is 
stated that the Pauli principle for electrons (resp. protons and n e u t r o n s ) -  
though postulated in quantum mechanics - -can  be rigorously proven as a 
part  of  the discussion of  the connection between spin and statistics in 
relativistic quantum field theory. Unfortunately, the well-known proof  and 
its generalizations, which are based on analyticity properties of  many-point  
vacuum expectation values of  field operator products (see, e.g., Streater 
and Wightman, 1964), do not cover theories including massless gauge 
particles such as quantum electrodynamics (however, see Buchholz and 
Epstein, 1985). Hence we may conclude that the Pauli principle is not yet 
well understood. On the other hand spin and statistics may be defined in 
topological t e rms- -a t  least in certain models, e.g., configuration space 
models, kink models, monopole  models, etc. (Finkelstein, 1955, 1966, 1969; 
Finkelstein and Misner, 1959; Finkelstein and Rubinstein, 1968; Finkelstein 
and Williams, 1984; Polyakov, 1974; ' tHooft ,  1974; Goldhaber,  1976; 
Hasenfratz and ' tHooft ,  1976; Jackiw and Rebbi, 1976; Leinaas and 
Myrheim, 1977). For example,  the newly discovered strange spin and 
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statistics quantum numbers of two-dimensional solid state physics (frac- 
tional quantum Hall effect, vortices in thin films of liquid helium, quasipar- 
ticle excitations in two dimensional quantum antiferromagnets related to 
systems exhibiting high-temperature superconductivity) can be interpreted 
and related as topological invariants (Halperin, 1984; Schrieffer, 1986; 
Anderson, 1987; Kalmeyer and Laughlin, 1987; Kivelson et aL, 1988; 
Laughlin, 1988; Polyakov, 1987). Therefore it is an exciting adventure to 
start up a research program with the aim to prove a more general topological 
spin and statistics theorem covering all branches. 

The topological interpretation of spin and statistics quantum numbers 
has some history and is based on an idea now called multiple-valued 
quantization. It is useful to reconsider this concept, which first was discussed 
by Bopp and Haag in the setup of spin models, later extended by Finkelstein 
et al. to the framework of kink theories (Bopp and Haag, 1950; Haag, 1952; 
Finkelstein, 1955, 1966, 1969; Finkelstein and Misner, 1959; Finkelstein 
and Rubinstein, 1968; Finkelstein and Williams, 1984; Aharonov and Bohm, 
1959; Schulman, 1968; Williams, 1970; Williams and Zvengrowski, 1977; 
Laidlaw and De Witt, 1971; Dowker, 1972; Wu and Yang, 1975; Leinaas 
and Myrheim, 1977; Friedman and Sorkin, 1980; Tarski, 1980; Sorkin, 1983; 
Berry, 1984; Wu, 1984). 

In this paper we start by investigating quantum mechanics in 
Schr6dinger representation, adopting a philosophy only admitting position 
to be viewed as an observable quantity. We strictly distinguish between the 
kinematical and the dynamical approach. In the first one wevdo not need 
any reference to continuity or differentiability of the wave function and 
nevertheless have topological obstructions against a description by a globally 
defined wave function. Some of these survive even in the second one, which 
is well known and suitably formulated in a fiber-bundle-theoretic language. 
We demonstrate that those rigid kinematical superselection quantum num- 
bers may also appear in quantum field theory, where continuity and differen- 
tiability of wave functions are ill defined. These correspond to occurrence 
of multiplicative quantum numbers such as spin and statistics. The main 
goal of our research program is the implementation of the Finkelstein- 
Rubinstein mechanism in a general quantum field-theoretic context. We 
propose a replacement of the topological rubber band techniques familiar 
from kink models by certain algebraic operations and prove that skyrmions 
can be treated this way. We argue that the a priori exclusion of the diagonals 
in quantum mechanical toy models of indistinguishable point particles may 
be replaced by the noncommutativity of charge-carrying fields with partially 
coinciding supports at fixed time. We emphasize the meaning of the existence 
of conjugated charges for the connection between spin and statistics 
(Feynman, 1986). 
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2. MULTIPLE-VALUEDNESS IN QUANTUM MECHANICS:  
SPIN, STATISTICS, AND PARTICLE-ANTIPARTICLE MODELS 

The formulation of  quantum mechanics in Schr6dinger representation 
on a topological nontrivial configuration manifold Q has a long history. 
The standard approach of  today uses the mathematical theory of  fiber 
bundles, but it is not immediately clear what mathematical structures are 
natural, i.e., related to the measuring process. Evidently, this is due to a 
lack of a clear distinction between kinematical and dynamical classifications. 
It is the aim of  the following subsection to clarify this issue. 

2.1. The Measurement of  Localization in Configuration Space 

It is a good standpoint to assume that in quantum mechanics only 
position is a measurable quantity. Though in principle thought to be 
observable, momentum is only measured indirectly, namely in time-of-flight 
velocity measurements or in interference setups. In reality, the former and 
the latter are nothing but position measurements. 

Once we have accepted the distinguished role of position, we also must 
accept that the reconstruction of states, wave functions, and potentials is 
done from the knowledge of the time-dependent probability density and 
field strengths alone. One immediately encounters the following question: 
How does one have to describe effects of potentials or path-dependent 
phase factors such as the Aharonov-Bohm or (adiabatic) Berry phase effects 
(Aharonov and Bohm, 1959; Berry, 1984)? 

2.1.1. Kinematical Obstructions 

In a SchrSdinger picture and representation a pure state at a fixed time 
is assumed to be represented by a space-dependent wave function ~b: Q-> C 
defined on the configuration manifold Q. Two wave functions ~b and ~ are 
physically equivalent if and only if they differ by a nonvanishing complex 
factor: 

t#( q) = gq~( q) (1) 

Since localization measurements are performed only in neighborhoods 
U c Q of points q e Q, it is natural to generalize this notion of a pure state: 
Given an open contractible cover U = { Ui} of Q (i.e., a covering by open 
contractible sets, whose intersections are also contractible) we attach to 
each Ui a local wave function ~Oi: Ui -> C obeying the compatibility conditions 

~bi [u ,~u j (q  ) = h~j~j u,,~uj(q) (2) 

where q ~ U~ c~ Uj, U~ c~ Uj is nonempty, and h U c C\{O}, the latter expression 
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denoting the multiplicative Abelian group of nonvanishing complex num- 
bers. The transition constants h o obey a 1-Cech-cocycle condition: 

hohjk = hik (3) 

It is easy to see that for contractible configuration manifolds this extended 
"localized" notion of a pure state coincides with the original one, but in 
case of  topological nontrivial manifolds we get new classes of states which 
are suitably characterized by the nontrivial elements of the 1-Cech- 
cohomology group Hi(Q, C\{0}) with constant coefficients in C\{0} (see, e.g., 
Hirzebruch, 1966). In our case this means that the equivalence classes of 
states are labeled by the characters of the fundamental group: 

Hi(Q,  C\{0}) = ~'I(Q) (4) 

What does "equivalence" mean physically? States belonging to different 
topological classes cannot interfere. 

In such a case we cannot find system {(U i, 0~)}, {(U/, r of wave 
functions representing the states ~o~, ~or for which the linear combinations 
yield consistent compatibility conditions. Then only mixtures are definable, 
and as an interesting aside we note that a topology change of the configur- 
ation space possibly develops pure states into mixtures and vice versa, i.e., 
gives rise to a "loss of quantum coherence ''2 (Anderson, 1987). 

A local system {(U~, ~0~)} of wave functions on Q belonging to the 
cohomology class X ~ Hi(Q,  C\{0}) may be represented by a globally defined 
wave function 0x defined on the universal covering space Q, equivariant 
with respect to the character X of the fundamental group ~q(Q): 

= (S )  

where a e ~1(Q). Given a system {( Ui, si)} of continuous sections si: Q ~ Q, 
we are able to reconstruct the local system by setting 

tp,( q) = ~x(s,( q) ) (6) 

2.1.2. Kinematical  Obstructions and Generalized Pure States 

As Greenberg and Messiah (1964, 1965) pointed out, there is no reason 
to define a pure state as a ray or one-dimensional subspace of the Hilbert 
space. There may exist physical systems whose pure states are described 
by finite-dimensional, say n-dimensional, subspaces. In Schr/Sdinger rep- 
resentation these may be represented by tuples of n linear independent 
wave functions. A general linear transformation transforms one n-tuple into 

21f you cut a part out of a physical system, you will get a loss of information transmuting a 
wave function into a density matrix. What has been discussed recently is the possibility that 
this can occur dynamically in quantum gravity. 
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another  physically equivalent one. As a consequence we have to deal with 
systems of  constant transition matrices ~ GL(n, C), when we wish to localize 
our notion of  a pure state as done in the previous case. The classes of  states 
are given by the non-Abelian 1-Cech-cohomology coinciding, according to 
a well-known theorem of  algebraic topology, with the set of  equivalence 
classes of  representations of  the fundamental  group 3 ir~(Q), 

HI(Q, GL(n, C)) -- Hom(1rl(Q),  GL(n, C)) /GL(n,  C) (7) 

In analogy to the one-dimensional case, we are allowed to represent 
a system of mul t icomponent  wave functions by a globally defined multicom- 
ponent  wave function obeying an equivariance condition: 

(8) 
v = l  

with [D]  e E(Tr~(Q)) and E is the dual object of  the group considered (i.e., 
the set of  equivalence classes of  all unitary irreducible representations). 
According to the decomposit ion of  the regular representation of ~rl(Q) into 
irreducible components,  the Hilbert space 

H = ~2(Q, C) (9) 

of  the "covering wave functions" decomposes into invariant subspaces: 

H : (~9 mDHD (10) 
[ D]c-E,(Trl (Q))  

where m D denotes the multiplicity of  the representation D. I summarize: 
A generalized pure state in a Hilbert space HD associated to an n- 
dimensional irreducible representation D of rrl(Q) is nothing but an n- 
dimensional subspace of H D. 

Remark. Here I have assumed implicitly that ~rl(Q) is compact.  In the 
case of  a noncompact  Abelian fundamental  group, we replace (10) by a 
direct integral (or a direct sum of direct integrals), whereas the classification 
of  the multidimensional representations of  noncompact ,  non-Abelian funda- 
mental groups (e.g.,braid groups) is a highly active research topic of  
mathematics (cf. below). 

2.1.3. Dynamical Obstructions 

I f  one adopts the point of  view that in quantum mechanics localization 
plays a preferred role, then the relevant information about a state will be 

3Hom(A, B) denotes the set of homomorphisms from A to B. 



1274 Tscheusehner 

the probability density p in configuration space Q as a function of time R.  4 

In this sense two wave functions which differ by a space-time-dependent 
phase factor may be considered as equivalent. 5 

In the local formulation taking a covering of configuration space-time 
Q x R by contractible open sets Ui it will be natural to allow that each h o 
appearing in the compatibility condition is a transition function, i.e., a smooth 
function from Q x R to the complex numbers of modulus 1 or, if we drop 
the normalization of  the probability density, to the nonvanishing complex 
numbers C\{0}. Physically, the smoothness conditions is a consequence of 
a selection of "good states"--states in which the momentum is bounded. 

The characterization of different classes of wave function systems 
understood in this sense immediately leads to 1-Cech-cohornology group 
HI(Q x R, C\{O}) with smooth C\{O}-valued functions as coefficients. 

The computation of the cohomology group 

H'(Q xR,  C\{0}) = Hi(Q, C\{0}) = HZ(Q, Z) (11) 

leads to a standard result of algebraic topology (see, e.g., Switzer, 1975): 

H2(Q, Z) = Zb2GTors 7rl(Q) (12) 
[~I(Q), ~,(Q)] 

where b p is the pth Betti number of Q and Tors(. �9 .) denotes the torsion 
subgroup (the subgroup of all finite-order elements) of the Abelization of 
the fundamental group ([a, b] = aba-lb-l). 

Relation (11) classifies topologically inequivalent principal C\{0}-fiber 
bundles E- - -~  Q • 6 In analogy to the kinematical discussion, we are 
allowed to represent a local system of wave function by a globally defined 
equivariant wave function defined on the bundle: 

tp(gq) = g~(t~) (13) 

where q c U(1) and ~ ~ E. Sorkin (1983) calls such a bundle a gauge space. 

4p(q, t) can be thought  of  as a state sub specie aeternitatis, i.e., a quan tum mechanical  state 
combined with the associated evolution law. Note that a separation of the kinematical and 
dynamical  parts of  information is only possible in some very special cases. 

5This has much  to do with the question of how one gets information about the phase of the 
wave function by localization measurements  at different times, or, more formally, how one 
gets a reconstruction algorithm yielding both the phase of the t ime-dependent  wave function 
and the t ime-dependent  potentials from the complete knowledge of the t ime-dependent  
probability density p(q, t) and t ime-dependent  field strengths alone. It is important  to note 
that only certain p(q, t) 's are allowed in quan tum mechanics,  namely those from which we 
are able to reconstruct wave functions and potentials, locally defined in configuration space- 
time Q • R and obeying local Schr/Sdinger equations. 

6To formulate a dynamical law, it is necessary to introduce a connection in the bundle.  
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Note that a generalization of the dynamics ~ la Greenberg-Messiah is 
possible and leads to the discussion of the topological invariants (Chern 
classes) of  more general principal fiber bundles. 

2.1.4. Kinematical Obstructions versus Dynamical Obstructions 

The group of kinematical classes of states Hi(Q, U(1)) is mapped into 
the group of  dynamical classes H2(Q, Z) via the long exact cohomology 
sequence (see, e.g., Switzer, 1975) 

�9 " "->HI(Q,R)-~HI(Q,U(1))->H2(Q,Z)->H2(Q,R)->.. .  (14) 

induced by the exact sequence 7 

0->Z ,-> R o U ( 1 ) - > 0  (15) 

Explicitly, the sequence (14) looks like 

A ~ ~r,(Q) 
""  " - - > l b ' - - > ' l r l ( Q ) - - > Z  b OTors  -->R b2-->" " �9 (16) 

[~rl(Q), ~-,(Q)] 

Comparing both groups in question, we are able to determine what kinemati- 
cal selection rules are also dynamical ones. This leads to the following 
interesting results: 

1. All kinematical superselection rules corresponding to discrete finite- 
order elements of  the character group of the fundamental group 
survive dynamically, since the image of  a finite Try(Q) ̂  equals 
Tors 1rl(Q)/[~rl(Q), ~'I(Q)]. Examples are presented below. 

2. It is possible to interpolate dynamically between all kinematical 
superselection sectors belonging to a continuous family. This may 
be interpreted as a realization of  what Mielnik (1980) calls the 
mobility of a physical system. Typical examples are the idealized 
Aharonov-Bohm effect and models depending on a 0 parameter. 

3. In certain systems we have dynamical superselection sectors which 
cannot be seen kinematically. An example is the Wu-Yang magnetic 
monopole (Wu and Yang, 1975). 

2.2. Bopp-Haag Spin Models and the Corresponding Statistics Models 

2.2.1. Spin Model and Spinors 

Invented nearly 40 years ago, the Bopp-Haag spin model (Bopp and 
Haag, 1950; Haag, 1952) may be thought of  as a model representing a 

7In an e x a c t  s e q u e n c e  of homomorphisms the image of the preceding one is the kernel of the 
succeeding one. 
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structureless object fixed in space and carrying spin degrees of freedom. It 
is the prototype of a quantum theory describing a sufficiently asymmetric 
rigid body and given by 

Q = S O ( 3 )  (17) 

Computing the kinematical and dynamical classes, we get 

Hi(Q, C\{0}) = Z 2 (18) 

HE(Q, Z) = Z2 (19) 

These relations follow from the fact that the fundamental group of SO(3) 
is Z2 and the second Betti numbers of classical Lie groups vanish (Samelson, 
1952). 

Thus, there are two quantum mechanical classes, kinematically and 
dynamically stable, which may be represented by x-equivariant wave func- 
tions g'x on the universal covering space SU(2). The decomposition of the 
Hilbert space H = ~2(SU(2),  C) into invariant subspaces 

+ s  i + s  

H= @ @ H=,,,e @ @ Hs,,, (20) 
s = O , l , , . ,  n = - - s  s ~ 1 / 2 , 3 / 2 , . . ,  n = - - s  

H §  H x -  

where 

dim Hs,~ = 2s + 1 (21) 

reproduces the conventional Pauli spinors. The associated orthonormal 
basis in H is chosen in terms of generalized spherical and hypergeometrical 
harmonics (Miller, 1968; Wawrzyficzyk, 1984), such that each 3-bein wave 
function system is decomposable into conventional spinors. Conversely, we 
are allowed to represent every Pauli spinor as a certain 3-bein wave function 
system which is uniquely given if the quantum number n is fixed (Bopp 
and Haag, 1950; Haag, 1952). 

One may ask what will happen if we go down to two-dimensional 
physics. The situation is homotopically equivalent to the Aharonov-Bohm 
case: Since " n ' 1 ( 5 0 ( 2 ) )  = Z and b 2 ( 8 0 ( 2 ) )  = 0, we get a continuous spectrum 
of kinematical state classes 

H~(Q, C\{0}) = U(1) (22) 

which may be interpolated between dynamically, since 

H2(Q, Z) = 0 (23) 

The situation is homotopically equivalent to the Aharonov-Bohm case. 
Because of 

Z2 = (1, -1} c U(1)=  {exp ir (24) 
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both class of  the three-dimensional case are contained in the two- 
dimensional case. 

What are the Pauli spinors of $ 0 ( 2 ) ?  They are simply complex numbers 
interpreted as elements of the one-dimensional Hilbert spaces appearing in 
the decomposition 

�9 $ 

H x 

2.2.2. Statistics Models 

As Finkelstein and Rubinstein have shown implicitly, it is possible to 
describe the selection rule between Bose-Einstein and Fermi-Dirac statistics 
with the help of  a configuration space model analogous to the Bopp-Haag 
spin model. Today these models are put into the framework of braid theory, 
initiated by Artin over 60 years ago (Artin, 1925, 1947, 1959; Fadell, 1962; 
Fox and Neuwirth, 1962; van Buskirk, 1966; Birman, 1969, 1975; Segal, 
1973; McDuff, 1975, 1977; Bloore, 1980). 

Let M be a manifold, dim M -> 2, and let M N be the associated N-fold 
product  manifold; then the diagonal set of M N is defined to be 

AN(M):={(ml,...,mN)CMNI31<i,j<_Nmi=ms} (26) 

The configuration space of N noncoinciding pointlike particles is defined as 

DN(M ) := MN\AN(M) (27) 

The configuration space of N noncoinciding indistinguishable pointlike particles 
is defined as 

CN(M) := DN(M)/~  (28) 

where the equivalence of two elements of DN(M) is fixed through 

( m l , . . . , m N ) ~ ( m ~ , . . . , m ~ ) : C : > { m l , . . . , m N } = { m ' l , . . . , m ' N }  (29) 

with 

m l , . . . ,  mN, re ' i , . . . ,  m~vc M (30) 

Denoting by card s the cardinal number of the finite subset s c M (discrete 
subset of points), we may write 

CN(M) := { s c  M[ca rd  s = N} (31) 
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The fundamental groups of DN(M) and CN(M) are called the pure resp. 
full braid group of M. Both groups are related by 

3T1 (CN (M))/7rl(DN (M))  = ZN (32) 

where EN denotes the N-dimensional symmetric group. In case of dim 
M > 2 we have 

�9 r1(DN(M)) = ~rl(M) N (33) 

Physics in a three-dimensional space of perception is modeled by setting 
M = R 3. Setting Q = DN(R3), we obtain a quantum mechanical model of 
the classical Maxwell-Boltzmann statistics (statistics of labeled particles). 
This toy model is of interest, since because of 7rl(ON(R3))= 0 it admits 
only one kinematical state class, but different dynamical classes. Especially 
for N = 2 we get a mechanistic caricature of  a dyon : Since Dz(R 3) and S 2 
are homotopically equivalent, we have H2(D2(R3))= Z. 

Yet the fundamental assumption in the quantum statistical description 
of elementary particles is that they are indistinguishable. Therefore we do 
better to work on the configuration space 

Q = CN(R 3) (34) 

The fundamental group of CN(R 3) is given by 

~-I(CN (R3))=EN (35) 

Hence DN(R 3) is the universal covering space of CN(R3). Evidently, the 
elements of  CN(R 3) are nothing but sets { x l , . . . ,  xN}, whereas the elements 
of  DN(R 3) are ordered sets or N-tuples ( X l , . . . ,  xN). On CN(R 3) we only 
encounter two kinematical state classes in correspondence to the fact that 
2u ,  N->2,  has only two characters: 

E N = Z 2 (36) 

There are no additional dynamical classes, since the second Betti number 
of CN(R 3) vanishes (Bloore, 1980). 

The decomposition of the Hilbert space ~2(On(R3)) of covering wave 
functions s includes all the invariant subspaces associated to the irreducible 
multidimensional representations of the symmetric group ZN. Therefore, if 
we introduce a generalized notion of a pure state, we have a description of 
parastatistics based on braid theory. It is also possible to consider families 
of configuration spaces localized in certain regions in the space of perception 
R 3 enabling us to reformulate the famous cluster law, such that we are able 
to reproduce the discussion of  Hartle and Stolt, concluding that paraparticles 

8Remember  that for Q = CN(R 3) we have t~ = DN(R3). 
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are ordinary particles just carrying an auxiliary quantum number  (Hartle 
and Taylor, 1969; Stolt and Taylor, 1970a, b). 9 

An important  question is the inclusion or exclusion of diagonal ele- 
ments. To interpret the statistics signum of  a many-particle wave function 
as a homotopical  invariant would be wrong if we included the diagonal 
elements. It is a very important  point that a configuration space of indistin- 
guishable particles on an (n>2) -d imens iona l  manifold including the 
diagonal set does not admit  the structure of  a topological (resp, differenti- 
able) manifold, so that there are at least technical reasons to exclude the 
diagonal set. The physical justification for the exclusion comes from the 
fact that the configuration spaces C N ( M )  are embedded naturally into 
certain field-theoretic configuration spaces (namely those of the kink 
theories; cf. below), where the homotopical  interpretation of statistics will 
be preserved and diagonals nevertheless are included. 

What will happen if we reduce the dimensionality of  the space of 
perception to two ? The case of  indistinguishable particles has been discussed 
in the f ramework of Feynman path integrals by Wu (1984). In order to keep 
this article readable, I briefly review the discussion. 

It is true that the structure of  the pure and full braid group of the 
Euclidean plane R 2 is rather compl ica ted- - they  are discrete, infinite non- 
Abelian g roups - - t he i r  characters, however, are easily computed from their 
presentation and defining relations. This group ~'I(CN(R2)) has N gen- 
erators ~ r l , . . . ,  ~N-1, where o'i may be interpreted as an  oriented exchange 
of the ith and ( i +  1)th particle. The defining relations are given by 

orio-i+lO'i = ori+lOriO'i+l, 1 <- i , j  <-- N - 2  (37) 

o'i~rj=~rjtri l < - i , j < - - S - 1 ,  l i - j l > - 2  (38) 

Assuming that X(" ) is a one-dimensional representation, we have from the 
first relation 

/3((O"1) . . . . .  X(O'N-1) (39) 

whereas the second relation yields an identity. The corresponding character 
formula reads 

X(tri) = e -i~ (40) 

with 0 c [0, 2~'], such that 

7rl(CN (RE)) ̂  = U(1) (41) 

9In this context it would be interesting to consider the generalized dynamics and the associated 
important question of how quantum mechanical phase factors (resp. their non-Abelian 
generalizations) are related to quantum field-theoretic gauge groups (see also Drfihl et aL, 
1970). 
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To conc lude ,  the  s imple  exchange  o f  two ind i s t ingu i shab le  par t ic les  al ters  
the  wave func t ion  by a phase  fac tor  fixed t h rough  the given k inemat i ca l  
state c lass .  This  p h e n o m e n o n  is ca l led  exotic, anomalous, interpolating, or 
fractional statics, 1~ and  its is genera l ly  accep t ed  that  such a type  oi ~ stat ist ics 
is expe r imen ta l l y  rea l ized  for  quas ipar t ic les  in sol id  state phys ics ,  e.g., 
f rac t iona l  quan t i zed  Hal l  effect (S t6rmer  et al., 1983; see also von Kl i tz ing 
et al., 1980) and  has some mean ing  in the  theore t ica l  s tudy  o f  ( 2 +  
1 ) -d imens iona l  field theor ies  re la ted  to high-Tc supe rconduc to r s  (Ande r son ,  
1987; Po lyakov ,  1987). 11 

C o n t r a r y  to this,  I am now going to p r o p o s e  a stat ist ics m o d e l  tha t  is 
d i s t ingu i shed  by  a F e r m i - B o s e  a l ternat ive  even in two space d imens ions .  

2.2.3. Particle-Antiparticle Models 

The conf igura t ion  space  o f  nonco inc id ing  ind i s t ingu i shab le  pos i t ive  
and  nonco inc id ing  ind i s t i ngu i shab le  negat ive  po in t l ike  par t ic les  o f  to ta l  
charge  N is def ined by  12 

C ~ ( M ) : = { ( s , t ) c M x M I c a r d s - c a r d t = N } / ~  (42) 

where  the equ iva lence  o f  two e lements  o f  {. �9 .} is given by  

(s, t) ~ (s', t') :r s \ t  = s ' \ t '  and  t \ s  = t ' \s '  (43) 

Hence  the conf igura t ion  space  C ~ ( M )  is t opo log i zed  in such a way  tha t  
par t ic les  o f  the  same charge  sign never  col l ide ,  while  pai rs  o f  par t ic les  
car ry ing  oppos i t e  charges  may  be crea ted  or  ann ih i l a ted .  In  case o f  an open  
M the h o m o t o p y  type  o f  C ~ ( M )  is i n d e p e n d e n t  o f  N. 

We are in teres ted  in cases where  

M = R ~, n >- 2 (44) 

An  e lement  o f  CTv(R n) is wri t ten  as 

q = ( { x l , . . . , x ~ } ,  {Yl , . . . ,Y N } )  (45) 

1~ using the generalized notion of a pure state ~ la Greenberg and Messiah we arrive at the 
concept of exotic parastatistics. Its analysis requires a detailed study of the multidimensional 
representations of the braid group of the Euclidean plane, for which we do not have a 
complete theory yet. The associated problems are intimately related to classification problems 
of type II von Neumann algebra factors and to the study of the algebras introduced by Jones 
(1985, 1987). 

11In two space dimensions we also have a quantum analogue to the Maxwell-Boltzmann 
statistics defined by the configuration space ~r~(MN(R2)). For N =2 we have a situation 
homotopic equivalent to Aharonov-Bohm. 

~2These spaces were investigated for the first time by McDuff (1975) in a purely mathematical 
framework without any reference to physical applications. 
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with 

and 

N = ~ -  ~ (46) 

xi r  V i = I , . . . , ~ ; j = I , . . . , N  (47) 

Let us compute the fundamental  group of C~(R2): Consider a loop with 
base point q parameterized by t 6 [0, 1]. This loop describes a process in 
which ~ particles and 2( antiparticles are exchanged and an equal number  
(say ~ )  of  pair creations and annihilations take place. This loop may be 
deformed in such a way that all pair creations take place at 

t = 0 (48) 

and all pair annihilations at 

t =  1 (49) 

at the points z l , . . . ,  z~, which are not allowed to coincide with x l , . . . ,  x~ 
and Yl, �9 �9  Y:~. Hence we have a loop describing a process in which ~ + 
particles, localized at x l , . . . ,  x~, Zl, . . . ,  z~ and N +  ~ antiparticles, local- 
ized at y ~ , . . . ,  y:~, Zl, �9 �9 �9 z~, are exchanged. By using standard arguments 
of  braid theory we are able to decompose this loop into "subloops,"  each 
one describing a two-particle exchange or a two-antiparticle exchange. Now 
with help of  pair creation and annihilation each two-particle exchange 
(resp. two-antiparticle exchange) is deformable into an exchange of partners, 
a process in which the two particles (resp. antiparticles) are left unex- 
changed, whereas at another  location two particle-antiparticle pairs are 
created, whose particle members  (resp. antiparticle members)  are 
exchanged, and finally the newly configurated pairs are annihilated (see 
Figure 1). 

I 
Fig. 1. 

X • N 
2 3 & 

Deformation of a simple exchange into an exchange of partners. 
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1 2 3 4. 
Fig. 2. Triviality of the juxtaposition of two exchanges of partners. 

Hence, all nontrivial two-particle exchanges (resp. 2-antiparticle 
exchanges) are homotopic to each other. Since the juxtaposition of two 
such exchanges may be deformed into a trivial loop, they define an element 
of order two in 7q(C~(Rn)) (see Figure 2). 

Moreover, every nontrivial two-antiparticle exchange is equivalent to 
a two-particle exchange (Figure 3), such that we may conclude as follows. 

Theorem 2.1. On the configuration space of noncoinciding, indistin- 
guishable positive and noncoinciding, indistinguishable negative pointlike 
particles of total charge N moving in space of perception R n, n - 2, there 
are exactly two state classes corresponding to the fact that 

• n A 

~ ' I (CN(R )) = Z2 = Z2 (50) 

In case of two space dimensions the analytic verification is immediately 
given by the figures and is mechanical, but lengthy. The relation remains 
true in more than two dimensions, because the exchange of two identical 
particles always defines a loop of order two. 

1 2 3 & 
Fig. 3. Homotopy of particle exchange and antiparticle exchange. 
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To conclude: The introduction of particle-antiparticle pairs reduces 
the fundamental group of  the configuration space in such a way that it is 
becoming Abelian. Now parastatistics is impossible. Evidently this is due 
to the existence of an integer-valued charge quantum number. 

Note that the points of  the universal covering space D~(R"  ) of C~(R  ") 
may be written as 

t~ = [ ( ( X l ,  . . . , X ~ ) ,  ( Y l , " ' ' ,  Y N ) ) ] ,  N = ~ -JV ( 5 1 )  

The square brackets label a class of  (~,  ?()-tuples with respect to the 
equivalence relation generated by 

((Xl, . . �9 ~, X~), ( Y I , ' ' ' ,  y/C))-- ((Xo-(1), �9 �9 �9 X,~(~)), (Y~'(l), �9 " ", Y~'(~;))) (52) 

if and only if 

and 

(sign o-)(sign z) = 1 (53) 

( ( X l , . . . , X k , . . - , X ~ ) ,  ( Y l , ' ' ' , Y k , ' ' ' , Y ~ ) )  

~( (x l  . . . .  ,Xk , . . . ,X~) ,  (y l , . . . ,~Ck, . . . ,y~r  

if and only if 

(54) 

Xk =Yk (55) 

2.2.4. Spin-Statistics Models 

Since both the alternative between integer and half-odd spin and the 
alternative between Bose-Einstein and Fermi-Dirac statistics are described 
by simple mechanistic toy models, one could ask the question whether this 
may be accomplished in the case of the connection between spin and statistics. 
For this purpose we have to consider configuration spaces which incorporate 
eigenrotation degrees of freedom as translation degrees of freedom. 

A very simple mechanistic model for spin and statistics is defined by 
the movement of N noncoinciding indistinguishable pointlike particles in 
space of perception R 3 to which there is attached one 3-bein ~ SO(3) each. 
In this case "noncoinciding" means that two 3-beins are not allowed to be 
attached to the same point. 

The associated configuration space is given by 

CNSO(3)(R 3) := J//mso(3)(R3)/~ (56) 

:= {(SO(3) • R a ) N \ A N S O ( 3 ) ( R 3 ) } \  ~ (57) 
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where the "modi f i ed  d iagonal  set" is defined to be 

ANSO(3)(R 3) := {((el, Xl), �9 �9 �9 , (eN, XN)) E (SO(3)  x R3) N [:1 l<__i,j<NX i : Xj} 

(58) 

and the equivalence  relat ion is given by 

((el ,  x , ) , . . . ,  (eN, xN))  -- ((e~, x '0 ,  �9 �9 �9 (e~ ,  x ~ ) )  (59) 

:~::~ {(el, Xl), �9 �9 �9 , (eu,  Xu)} = {(e',, x'O, �9 �9 (e~ ,  x~)}  (60) 

with 

x l , . . . , x N ,  x ~ , . . . , x ~ z R  3 (61) 

t e l , . . . , e N ,  e l , . . . , e ~ c S O ( 3 )  (62) 

A cont inuous  exchange  o f  the N 3-beins, which are assumed  to be fixed 
in or ientat ion,  is descr ibed by means  of  a pa th  pa ramet r i zed  by t ~ [0, 1], 
which looks as follows: 

q(t) = {(e,, x , ( t ) ) , . . .  (eN, xN(t) )}  (63) 

The initial and final points  are given by 

q(0) = {(e,,  x l ( O ) ) , . . . ,  (eN, xN(0))} (64) 

q(1) = {(e,,  x ~ ( 1 ) ) , . . . ,  (eN, Xu(1))} (65) 

= {(el, x ~ , ) ( 0 ) ) , . . . ,  (eu,  x~(N)(0))} (66) 

By choosing a basepo in t  fulfilling the condi t ion 

e l  . . . . .  e N  ( 6 7 )  

this pa th  is a loop represent ing a ere  7r'I(CNso~3)(R3)). This o" is writ ten as 
a p roduc t  o f  generators  obeying the relat ions of  the genera tors  of  the 
symmet r ic  group  2 u .  In  contrast  to this, a 27r rota t ion of  the 3-bein ei at 
xi defines an e lement  o f  order  two ~ "rrl(fNso(3)(R3)), which m a y  be writ ten 
as - 1 , .  A comple te  representa t ion  of  the group  will be ob ta ined  if the 
relat ions 

( - l i ) ( o , )  = (o-)(-L,r (68) 

( - 1 , )  2=  1 (69) 

are added.  The  result ing finite g roup  has a very compl ica ted  structure and 
is by no means  identical  to Z2 N XEu.  For  example ,  in the case N = 2  we 



Topological Spin-Statistics Relation 1285 

get the dihedral group D 4 of  order 8, also called octic group (Thomas and 
Wood, 1980): 

"/7"l(C2so(3)(a3))  = D4  (70) 

This is the symmetry group of a square in ordinary 3-space. Its Abelization 
may be identified with the Kleinian group of order 4. Hence the character 
group is given by 

A ~ spin statistics 
D 4 = V 4 =  Z 2 x  Z 2 = :  Z 2 ) < Z  2 (71) 

These arguments are easily generalized for arbitrary N. From the relation 
(68) we get the conditions 

x ( - l i )  = x ( - l j )  (72) 

Thus, we have 
__ ,-/spin statistics 

7 r l ( C N s o ( 3 ) ( R 3 ) )  ^ - ~ 2  • 2 2  ( 7 3 )  

It is an interesting point that a 27r rotation of  each 3-bein induces the same 
phase rotation. The usual relation between spin and statistics may be 
expressed in such a way that nature admits only those quantizations which 
are trivial or totally double-valued. Of course, this ad hoc restriction does 
not explain the observed connection between spin and statistics. It would 
be superfluous if we replaced Q by another configuration space Q' in which 
a 2~r rotation of one particle and a simple exchange of two particles are 
represented by homotopic loops. 13 

A reduction of the fundamental group is given by the introduction of 
antiparticles: McDuff made the proposal to generalize the concept of the 
configuration space of  charged particles by assuming that each particle has 
an inner structure described by some parameter taking values in a parameter 
manifold (McDuff, 1975). Two oppositely charged particles can be annihi- 
lated only if their parameters take equal values. If the parameter manifold 
is identified with SO(3), then we see immediately that 

• 3 
3 T I ( C N s o ( 3 ) ( R  )) = Z 2 X  2 2 (74) 

The fundamental group is Abelized again by the introduction of antiparti- 
cles. It is true that the character group remains the same, but now generalized 
quantizations (i.e., those which are characterized by multidimensional sub- 
spaces) are impossible. 14 Nevertheless, even in the model of positive and 

13In two space dimensions  anomalous  spin and statistics occur and match together in a rather 
complicated way. Moreover, introducing the generalized notion of  a state ~ la Greenberg 
and Messiah, we get a highly complex interweaving of  anomalous  spin, statistics, and 
parastatistics. 

14E.g., in the case without conjugated charges a generalized quantization leads to a new concept 
which may be called "para-spin-statistics." 
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negative 3-beins spin and statistics are fully independent. In kink field- 
theoretic configuration spaces this is no longer the case. Why this is so will 
be discussed in Section 3. 

2.2.5. Statistics of Ball-Like Objects versus Statistics of Conelike Objects 

In concurrence to the investigation of configuration spaces of pointlike 
particles, we may consider configuration spaces of  small, rigid balls. The 
homotopic properties of these spaces are insensitive against this 
modification, such that the results derived above are preserved. 

Configuration spaces of ball-like objects may be viewed as a caricature 
of certain field-theoretic quasi-configuration spaces, namely those that are 
generated by charge-carrying localized fields. It is not a good approach to 
interpret the "particles" of  the configuration models as the real particles of 
quantum field theory. Therefore, it is better to speak of Objects. In this sense 
kinks, strings, or p-branes are also objects. Remember that particles are 
nothing but eigenstates of the mass operator M 2. 

In general, charge-carrying fields are not localized strictly in the sense 
that the field operator at a fixed time has its support in a ball-like region. 
This is only true for charges of the first kind, i.e., charges associated with 
a global gauge symmetry. In case of charges associated with local gauge 
symmetries we have to deal with conelike supports and therefore it is useful 
to inspect the statistics of  conelike objects (Buchholz and Fredenhagen, 
1982). 

It is easy to see that the statistical analysis of conelike objects in space 
of perception R ~ can be "retracted" to the statistics of ball-like or pointlike 
objects moving on the boundary sphere S n-1. In three space dimensions 
the associated toy models are given by C N ( S  2 )  [resp. C)(S2)] .  The rep- 
resentation of  ~-I(CN(S2)) is given by the representation of ~-1(CN(R2)) 
adding the relation 

O'10r2  " " " O ' N - - I O ' N - - 1  ~ 1 7 6 1 7 6  0"20"  1 = 1 (75) 

This relation yields an auxiliary condition for the characters, namely 

X(0"1)X(0"2) �9 " �9 X(0"N-1)X(0"N-0 " " " X(0"2)X(0-t) =X(0"i) 2~N-1)= 1 (76) 

Therefore we have 

X(O'i)=e i'~m/~N-l~, m = 0 , . . . , 2 ( N - 1 )  (77) 

i .e. ,  

~I(CN (S2)) ̂  = Z2~N-,) (78) 
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The case defined by C~v(S 2) describes the situation of Abelian gauge charges 
[with gauge group U(1) dual to Z].15 Applying partner exchange techniques, 
we immediately see that 

~-,(C~($2)) A = ~ 2  = Z2 (79) 

i.e., exotic statistics for "electrical charges" in three dimensions is forbidden 
(!). In contrast to this, exotic statistics for charges of the second kind in 
two space dimensions is possible in analogy to the situation discussed by 
Streater and Wilde (1970), who observed anomalous statistics for charges 
of the first kind in one space dimension. 

Summarizing, one can state that introducing conjugated charges has 
the same effect as incrementing the number of space dimensions, while 
swinging over from ball-like to conelike objects is like decrementing the 
number of  space dimensions. This implies that in two space dimensions 
anomalous statistics may be realized in two different ways, namely either 
with the aid of ball-like objects excluding conjugated charges or with the 
aid of conelike objects including conjugated charges. 

3. MULTIPLE-VALUEDNESS IN QUANTUM FIELD THEORY: 
DIRAC'S STRING GAME, FINKELSTEIN-RUBINSTEIN 
MECHANISM,  AND BEYOND 

The main question of this research program is the following: How are 
the concepts introduced above generalized to fit well into the framework 
of quantum field theory? Formally this is done in Finkelstein's kink theories 
by using configuration spaces consisting of classical continuous field 
configurations topologized by means of the compact open topology 
(Finkelstein and Misner, 1959, Finketstein and Rubinstein, 1968; 
Finkelstein, 1966) In kink theories the occurrence of spin and statistics 
quantum numbers is due to the multiple connectivity of these field-theoretic 
configuration spaces. Evidently, this is a rather special approach, since it 
covers only models in which the charge quantum numbers appear as 
homotopic invariants. In quantum field theory one often deals with Noether 
charges, i.e., charges associated with a gauge symmetry. Duality transforma- 
tions, disorder-order  puzzling, etc., indicate that there is no fundamental 
difference between both types of  charges. Therefore one is asked to formulate 
the main principles in a framework in which both homotopic and Noether 
charges are treated on the same footing. Such a framework exists: It is the 

15The investigation of the case generalized fi la Messiah and Greenberg requires a detailed 
study of the mult idimensional  representations of the braid groups of  the 2-sphere and would 
be very interesting, since it is related to the confinement problem. 
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algebraic quantum field theory (AQFT) proposed by Haag and Kastler; a 
introductory review is given in Haag (1970). The discussion of superselection 
rules initiated by Borchers (1965), improved by Doplicher et al. (1969a, b, 
1971, 1974; Doplicher and Roberts, 1972; see also Roberts, 1975), later 
refined by Buchholz and Fredenhagen, 1982), 16 clarifies the foundations of 
how charge and statistics quantum numbers come in using only the first 
principles of quantum theory, relativity, and locality. 

3.1. Replacing the Configuration Space: Quasi-Configuration Spaces, 
the Kinematical Phase, and Berry's Phase 

In algebraic quantum field theory one never refers to a classical 
configuration space. AQFT is a true relativistic quantum theory, mathemati- 
cally well defined. The main disadvantage, however, is a complete lack of 
a dynamical description of elementary particle interactions. At the moment, 
it only provides a framework for the discussion of superselection rules, 
thermodynamic properties, and the general covariance structure of quantum 
field theory. 

We are interested in the global topological structure of field theory in 
a certain sense. The Dirac string model to be explained later indicates that 
the connection between spin and statistics can be seen through a very simple 
topological mechanism unfortunately not realized in the familiar analytic 
proofs. However, the string mechanism is naturally contained in the dis- 
cussion of  kink models. The generalization of the Dirac, resp. Finkelstein- 
Rubinstein, mechanism inevitably leads to the AQFT framework, because 
it probably contains the topological structure we need. 

The first step toward a topological spin-statistics theorem is the refor- 
mulation of  multiple-valued quantization without using a classical configur- 
ation space. How can this be achieved? 

Quantum mechanics is usually formulated in an infinite-dimensional 
Hilbert space H. The manifold of pure states ]xIr)('t t] is identified with the 
1-Grassmann manifold GI(H) ,  i.e., the manifold of rays in H, whereas 
the manifold of state vectors I~) is the 1-Stiefel manifold VI(H),  
i.e., the manifold of complex 1-beins in H (see, e.g., Simms, 1968; 
Varadarajan, 1968, 1970). 

The 1-Grassmann manifold or pure states is the quantum analogue of 
what is called a configuration space in classical mechanics. If we wish to 
associate to every state a state vector, we have to specify a section in the 
U(1) bundle VI(H) ~ G1(H). This section need not be continuous-- the 
phase choice is completely arbitrary. Replacing the global section by a 

t6Recently a new paper by Fredenhagen et al. (1988) appeared dealing with braidlike statistics 
in the DHR framework. The relation to the configuration models is not entirely clear yet. 
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system of locally defined sections obeying constant compatibility conditions, 
we obtain no additional structure. 

Why are different quantum systems different? Why are they different 
although their Hilbert spaces and associated manifolds are isomorphic? To 
put it bluntly, they are different because kinematics and dynamics select 
states giving them a distinguished role. It is like the effect of constraining 
forces in analytical mechanics: they are introduced to define the physical 
manifold. 

How are we able to construct a submanifold of G1(H), called a 
quasi-configuration space, resembling the homotopical structure of Q? For- 
mally, we take the continuous basis of configuration eigenvectors {Iq)}, 
divide out the phase, and construct a manifold Quasi={lq)(ql} formally 
homeomorphic  to Q. If  we do not want to work in the rigged Hilbert space, 
we have to smear out the eigenvectors and eigenstates, respectively, such 
that Quasi is naturally imbedded in G1(H). It is easily seen that systems of  
locally defined sections obeying constant compatibility conditions lead to 
superselection sectors of  superponable state vectors. 

The discussion may be extended including the consideration of 
dynamics. Let us assume that the localized eigenstates are confined in a 
box and transported adiabatically. The adiabatic dynamics is governed by 
a slowly varying Hamiltonian, which controls the transport of the localized 
eigenstates along a specified path on the manifold. If  we introduce local 
systems of smooth sections fulfilling smooth compatibility conditions and 
the associated local potentials, we get a recapitulation of the dynamical 
discussion on the configuration space. 

The formalism exposed so far may be interpreted as a certain generaliz- 
ation of Berry's (1984) phase formulated on a quasi-configuration space 
homeomorphic  to a classical configuration space. In most cases the quasi- 
configuration spaces under investigation are defined by the parameter- 
dependent Hamiltonian appearing in the energy eigenvalue equation. To 
discuss discrete finite-order superselection rules it suffices to work only with 
kinematicalphases. They do not need any reference to smoothness properties 
and therefore are suited to be used in quantum field-theoretic considerations. 

3.2. Quantum Field Theory and Quasi-Configuration Spaces: The 
Doplicher-Haag-Roberts Statistics and Spin Parameters as 
Topological Quantum Numbers 

In this subsection I give a short sketch of how the concept of multiple- 
valued quantization may be generalized to the framework of algebraic 
quantum field theory. For a self-contained introduction to AQFT see the 
easy-to-read lectures of  Haag (1970). 
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A concrete motivation is given by the following observation: In the 
discussion of  the structure of superselection rules by Doplicher, Haag, and 
Roberts the statistics of a charge sector (of the first kind) is characterized 
by a so-called e parameter, which essentially is interpreted as a signum of 
a permutation; for details see Doplicher et al., 1969a, b, 1971, 1974; Doplicher 
and Roberts, 1972; Roberts, 1975). Doplicher et al. show that in space 
dimensions greater than or equal to two this parameter can take only the 
values +1 (Bose) or -1  (Fermi). It is true that in two space dimensions this 
fact is astonishing when we think of the possibility of fractional statistics 

la Wu (1984), but it is by no means surprising when we compare this 
formalism with the particle-antiparticle configuration space models. 

What structures of these configuration space models can be recovered 
in algebraic quantum field theory? Is it true that the e parameter labels 
something like a kinematical state class? I think it is. Hence, we have a 
technique which may have much use in upcoming research. 

The main goal of  our research program is a definition of  suitable 
quantum field-theoretic configuration spaces which enable us to prove a 
topological spin-statistics theorem. 

The first step toward such a theorem is as follows. 
We restrict our attention to states of spacelike disjoint localized charges 

of  the first kind, which are generated by localized automorphisms of a 
C*-algebra M of quasilocal observables in Minkowski space (Haag, 1970). 
Let us especially consider the case characterized by a group Z of  charge 
sectors [dual to an Abelian global gauge group U(1)]. 

Let us summarize two main points of the discussion of Doplicher 
et al. (1969): 

1. An important consequence of local commutatively is the fact that 
spacelike disjoint localized automorphisms are commuting: 

"Yl~2 = ')/2")/1 ( 8 0 )  

2. The D H R  statistics parameter is defined by the observation that 
spacelike disjoint localized automorphisms leading from the vacuum to the 
same sector are transformed in to each other by an inner morphism of the 
C*-algebra of observables: 

with 

obeying 

~2 = ~ u 2 ~  (81) 

~ 2 , ( "  ) = u2 , ( .  ) u~,'  (82) 

Yl(U2,) = ec" U2, (83) 
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where e c is a parameter  depending only on the sector ~ and can only take 
the values + 1 in n -> 2 space dimensions. 

Since the field algebra is an extension of the algebra of observables, 
an automorphism of the latter may be written as 

"Y,(" ) = 01(" )011 (84) 

where 01 is an unitary element of  the former one. Consequently, we are 
allowed to set 

u~, = 0~0; '  (85) 

Inserting equation (84) and equation (85) into equation (83) and multiplying 
both sides with 4h0~ onto the f ight ,  we obtain the familiar spacelike 
commutat ion relations of  field operators: 

~/.t, 0 2  = E~ '0201  ( 8 6 )  

Evidently this discussion suggests a natural choice for a quasi-configuration 
space: Let G , . . . ,  ON be the localization regions (localized in a fixed time 
slice in Minkowski space for simplicity) of  spacelike disjoint localized 
automorphisms Y l , . . . ,  Y N  leading from the vacuum to the sector 

( =  1 (87) 

where 

e := ql~=l (88) 

denotes the associated D H R  statistics parameter;  then, with 

we define 

and 

X 1 E C 1 , . . . , X N C C N  

(.0{xt,...,xN} : =  tO 0 o Yl " " " 'YN 

(89) 

(90) 

1~I~ ....... )) := 0 ,"  "" 0Nl~O) (91) 

where ~Oo is the vacuum state and 'Po a representing vector in a Hilbert 
space H constructed by making use of  the GNS procedure (Haag, 1970). 
The family of  w's considered generates a quasi-configuration space Quasi c 
G1(H) homotopical ly equivalent to CN(R' ) .  While because of equation 
(80) we have 

to~ . . . . . . . . .  } = w ~ w , , ,  ....... ,N,} (92) 

we get from equation (86) 

~ff(e) \ -  Esign(cr) ,tI/,(e) \ ( . . . . . . . . .  ) / -  " (x~,~ ....... ~N~)/ (93) 
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The equivalence classes o f  systems of  local section on Quasi, i.e., the possible 
classes o f  equivariant  state vectors 

Ixtr~cx~ o ....... ~N,)) = X(O-) - [xtr(X ........ )) (94) 

are in 1-to-1 cor respondence  to the elements o f  

1(Quasi) "~ = ~1 (CN(R 3) )A = 22 (95) 

and cor respond  for n - 3 to the admissible values o f  the D N R  statistics 
parameter .  This means that  for  every character  X we are able to find an e 
such that with 

X ( o ' )  = 8 sign(c') (96) 

we have the cor respondence  

[ ( ........ N)>- (97) (Xb...,xN)/ 

This is no longer  true in two space dimensions.  Because o f  

~h(CN(R2))  ̂ =  U(1) (98) 

we now have systems of  local sections for which we cannot  find an e 
parameter ,  i.e., no sector with the cor responding  anomalous  statistics. 
Admit ted  are only state vectors for which the character  in 

tIrX _ -,p.x [ (x~(1) . . . . . . .  (N))[braid](  . . . . . . . . .  ,))) - -  ,}((~3r) " [ ( . . . . . . . .  ) [ tr ivial braid] ( . . . . . . . .  )> ( 9 9 )  

is chosen in such a way  that  

�9 (~) \ -  e sign(~) ',P(~) \ (100) (X~(~ >,...,X~( ~ ) ) /  - -  " ( XI,.. . ,X~r ) / 

holds. The notat ion [braid]  indicates that the points  o f  the universal covering 
of  CN(R 2) are not s imply N-tuples  (Xl, �9 �9 �9 xN), x~ ~ ~, but  in addit ion are 
characterized by a specification o f  a h o m o t o p y  class of  braids defined in 
reference to a fixed base point. 

There is a certain ambigui ty  in the choice o f  a quasi-configurat ion 
space: Its points parametr ize all physical operat ions  which are o f  interest 
for  the "comprehens ive  analysis"  o f  the problem. This choice fixes all 
possible topological  quan tum numbers.  I f  we do not restrict ourselves to 
the t ransformat ions  o f  spacelike disjoint au tomorphisms  leaving the localiz- 
at ion supports  disjoint and include all inner  morphisms of  a certain 
(homotopica l ly  trivial) region, then we will have a parametr izat ion o f  the 
inner morphisms by themselves, so that we get no nontrivial characters.  On  
the other  hand,  the choice o f  CN(R 2) is too restrictive: We get a too rich 
" spec t rum"  of  toplogogical  quan tum numbers ,  for which we cannot  find 
an acceptable  physical  interpretation. 
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The analysis of  the preceding section suggests we choose a quasi- 
configuration space of positive and negative objects, namely with 

X l C  ~ 1 ,  �9 �9 �9 , X g '  E ~ ,  yl~ ~'1, �9 �9 �9 y~v- ~ 6 ~ ,  N = N - ~  (101) 

where xl c G ~ , . . . ,  x~ ~ C~ and Yl c ~'1, �9 �9 �9 y~r ~ G~r are mutually disjoint, 
we set 

O.)({ . . . . . . . .  ~ } , { y l , . . . , y ~ } )  = W o  ~ 7 1  " " " 7 ~ Y l  " " ' Y x  (102) 

where Y l , - . . ,  Yx leads to the conjugated sector, and 

[~I't[(( . . . . . . . .  ~),(Y ...... y~-))]) : /]/1 " " " [/t~tffl " " " (103) 

where the automorphisms are chosen in such a way, that 

~/i~/i = 1 (104) 

I f  states and state vectors are defined in an analogous way, we will get, 
because of 

~ 1 ( C ~ ( R 2 ) )  ^ = Z 2  (105) 

a 1-to-1 correspondence between the characters of  the fundamental  group 
of the quasi-configuration space and the admitted values of  the e parameter.  

The latter argument is of  a purely heuristic nature. The central problem 
remaining to be solved is to find a convenient topologization of the "pai r  
annihilation homotopy."  In the remaining part  of  the paper  I show that 
herein lies the key to the topological spin-statistics relation. ~7 

Before coming to this point, I define a spin parameter  ~7 analogous to 
the topologically interpreted D H R  statistics parameter  e. Let aA be an 
automorphism of the observable algebra representing a spacelike rotation 
A (viewed as a Lorentz transformation);  then there is an inner automorphism 
o'u~ obeying 

--1 
a A y a  A = cruA y =: YA (106) 

with 

ouA(" ) = UA(. ) UA (107) 

The set {~Oo o 3/6} may be interpreted as a quasi-configuration space homeo- 
morphic  to the configuration space SO(3) of  the B o p p - H a a g  spin model. 
The role of  the local wave function system is now played by a system of 
local unitary-valued sections fulfilling "constant  phase"  compatibili ty con- 
ditions. The right choice of  the cohomology class is determined by the 
correct t ransformation law of the corresponding field operator,  symbolically 

17The d i scuss ion  of  the case desc r ib ing  charges  of  the second  k ind  [cf. the ana lys i s  in Buchho lz  
and  F redenhagen ,  1982)] wil l  be p resen ted  e lsewhere .  
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written as 

U2~b = -q~b (108) 

where V must be +1 (integer spin) or -1  (half-odd spin). 
Thus we are able to construct and lift quasi-configuration spaces of 

• 3 rigidly moving automorphisms labeled by the elements of C NSO(3)(R ). An 
element of  such a space is written as 

q = 3'( ..... ) ' ' "  ")/( . . . . . . . . .  ) ' Y ( y l , e l )  " " " ~ / ( y ~ , e ~ )  (109) 

3.3. Dirac's String Game Visualizes Spin, Statistics, and the Connection 
between Them 

In his famous lectures Dirac used to demonstrate the doubly connected- 
ness of the 3-space rotation group SO(3) by a simple model: Two pairs of 
scissors are connected to each other by at least three rubber bands. Rotating 
one pair through 2~-, the threads become tangled, such that there is no way 
to disentangle them. Rotating the same pair through a further 2~-, the rubber 
bands become even more tangled, but now it is possible to disentangle 
them, so that we recover the original situation (cf. Figure 4). 

There are many variations of the theme, i.e., of  Dirac's string game; a 
very popular  treatment due to McDonald can be found in Misner et  al., 
1973). The reader is also referred to Newman (1942), Bolker (1973), Rieflin 
(1979), Guerra and Marra, (1983, 1984), and Mickelsson, (1984). That Dirac 
strings are related to the double connectedness of SO(3) is by no means 
trivial and was only clarified by Fadell (1962) by using the theory of braids. 
In topological terms Dirac's string game visualizes the canonical 1-to-1 
homomorphism of ~1(SO(3)) into ~h(DN(S2)), N->3. 

It is often overlooked that this fascinating model not only provides a 
topological representation of spin, but also visualizes statistics and the 
connection between the former and the latter. In fact, a 2~- rotation may 

1 

Fig. 4. 

2 3 

An easy-to-visualize version of Dirac's string model for spin. 
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2 3 

Fig. 5. Dirac's string model for the connection of spin and statistics. 

be compensated by an orientation-preserving exchange of the two pairs of 
scissors. By the way, the pairs of  scissors may be replaced by balls and the 
N-> 3 rubber  bands by one fat rubber band (e.g., with a squarelike cross 
section connecting the balls). Figure 5 shows this simple mechanism that 
relates 2~r rotation and exchange, i.e., spin and statistics. 

One question now arises: What physical objects are represented by 
these strings or this one fat rubber  band? 

3.4. The Finkelste in-Rubinstein Mechanism 

In kink models invented by Finkelstein and Misner one has indeed a 
"real izat ion" of  Dirac's string game. In this f ramework the rubber bands 
do not play the role of  fat, nonobservable strings in the space of perception 
(through structures of this type may have some relevance in quantum field 
theory), but they represent the trajectories of  certain extended objects, 
namely, the kinks. 

Here I briefly review the fundamental  notions of  kink theory (Finkel- 
stein, 1966, 1969; 1968). In general one considers configuration spaces of  
single-valued continuous classical field configurations taking values in a 
finite-dimensional field manifold c~ and defined, e.g., on space of perception 
R 3 subject to certain boundary  conditions. This function space is topologized 
by means of the compact open topology. 18 

In kink theories of the first kind such a configuration space is written as 

~ ( (R  3, ~ ) ,  (q), ~0)) 

:--{~: R3->q~l~c ~(R3, q~); lira ~ ( x ) =  ~bo; ~b0~q)} (111) 
Ixr~ 

18For every compact subset K c R 3 and every open subset U~ ~P the sets 

W(K, U)={fc C~(R3, 6p):f(K)c U} (110) 

form a basis of a topology. 
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By using stereographic projection, we have the homeomorphisms 

cg((R3, m), (s $o)) ------ g( (  s3, X), ( r  $o)) -~ cg((I3,013), (qb, 050)) (112) 

where dV is the north pole of the 3-sphere S 3, 13 the 3-cube, and the 0I 3 its 
boundary surface. Configuration spaces of this kind are distinguished by 
the fact that they fall into connected components standing in 1-to-1 corre- 
spondence to the homotopy classes of fields 

,,B-o(g~((R 3, co), (~, 050))) = 7"/'3 ( Iff~, 050) -~- 7?3(Iff~) (113) 

There is a theorem by Whitehead (1953) stating that all connected com- 
ponents cg(g)(...) of cg( . . . )  have the same homotopy type. Thus, we have 

7rl(Cg(g)((I 3, 013), (~, 050))) = 7r,(cg(~ 013), (qb, 050))) (114) 

= 7T1((~(O)((I 3, 013), (qb, 05o)), r ) -= 050) (115) 

= 'B'4((I), 050) (116)  

= 7r4(~P) (117) 

In case of a nontrivial 7r4(~) we expect multiple-valued quantizations. 
In case of a kink model of the second kind we deal with configuration 

spaces 

cg((R3, S~), (dp, ~o)) 

{ A ( ~ )  ~: SL~dpa} (118) = go:R3~]q~eCg(R3,~) ;  lim ~(x)=q~ ; 
I,Foo 

Taking the new type of boundary condition into account, we obtain the 
following homeomorphisms: 

c~((l{3, $2), (qb, dp~ c~((D3, 0D3), (qb, qb~ ~ c~((I3, 013), (alp, (I)~ (1 19) 

where D 3 is the 3-ball with boundary 0D 3. In addition, we have 

~.0(cg((R3, $2), ( r  . a ) ) )  = r aP ~ (120) 

In case of a contractible �9 we get 

zr3(*, . 0 ) =  ~.o(Cg(S2, . 0 ) ) =  zr2(s ) (121) 

Kinks of the first (resp. second) kind may be interpreted as classical 
realizations of charges of the first (resp. second) kind. An example for the 
first type is the Skyrme soliton (Skyrme, 1955, 1958, 1959, 1961a, b, 1962; 
Perring and Skyrme, 1962), and for the second type the ' tHooft-Polyakov 
monopole ('tHooft, 1974; Polyakov, 1974). 19 

19The computation of the fundamental group of the configuration space is more difficult in 
the case of kinks of the second kind, since here we have no theorem ~ la Whitehead. Ringwood 
and Woodward (1981, 1982) did some computations for the 'tHooft-Polyakov monopole. 
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Field configurations are called null-homotopic if and only if they lie in 
the homotopy class of the constant field 

{P . . . . . .  (X) ~- 4~0 (122) 

also known as the vacuum configuration. They are so-called localizing 
homotopies, which allow one to deform a kink field configuration in such 
a way that it has its support 2~ in a ball-like region in the case of the first 
kind and in a conelike region in the case of  the second kind. In this context 
we talk about simply localized kinks. Analogously, one can also define 
multiply localized kinks. A simply localized kink of charge one may be 
interpreted as an extended object that carries exactly one unit of  charge. 

Note that the definition of homotopy allows the continuous creation 
and annihilation of kink-antikink pairs. Details are found below. In the 
following let us restrict ourselves to the investigation of  kinks of the first 
kind. Problems incorporating kinks of the second kind may be reduced to 
a "first-kind problem" by decrementing the number of dimensions of the 
space of perception. 

3.4.1. Kink Trajectories as Fat Strings 

A simply localized kink may be rigidly translated and rotated. In 
addition, "multikinks" may be exchanged, and that is exactly the way to 
study the spin and statistics of these objects. 

A trajectory 

t~-~x(t) (123) 

in the space of perception R 3 may be viewed as a certain string 

t~-+(t,x(t)) (124) 

in space-time 21 of perception 

R 4 = R x R  3 (125) 

This string may be homotopically deformed to any line parametrized as 

r~-~ (t(r),  x(r) )  (126) 

For instance, it is possible for the line to go backward in time. 
To a field configuration describing a multiple-valued quantizable local- 

ized kink in space of perception R 3 we naturally attach a 3-bein 

e (3)=  (nl, n2, n3) (127) 

2~ support of a kink we mean this region in the space of perception which essentially looks 
different from the vacuum configuration. 

2~Indeed, the homotopy parameter controlling rotation and exchange may be viewed as a time 
parameter parametrizing an adiabatic process. 
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representing its orientation. It is useful to think of a 3-bein attached to the 
localization center of  the kink. I f  we only consider rigid motions, we will 
be able to discuss all features on the 3-bein level. 

Next consider a kink trajectory interpreted as a fat string in space-time 
of perception R 4. With the help of  a homotopic  deformation it is possible 
to deform the trajectory in such a way that the kink center trajectory is 
smooth and the intersections of the normal hyperplanes of  the latter with 
the full kink trajectory are copies of  the field configuration describing "a  
kink in rest," but rotated in R 4. The orientation of such a copy is conveniently 
described by a 4-bein 

e (4) = (no, nl, nl,  n2,113) (128) 

where no is tangentially aligned to the kink center trajectory, while nl, n2, 
n 3 are living in the normal hyperplane. 

Expressed in other words, the essential structure is given by a trajectory 
t~--~(t, x(t))  and an associated family 

e(4)(t) = (n0(t), nl(t), n2(t), n3(t)) (129) 

of  tangentially aligned 4-beins obeying 

no(t) ~tt ( t ,x( t ) )  (130) 

A smoothed kink-ant ikink pair creation or a smoothed kink-ant ikink 
pair annihilation process may be viewed as a kink trajectory reversing its 
time direction. On the level of  moving 4-beins it l ooks  as follows: We 
consider any strings in space-time ( t ( r ) ,  x(r ) ) ,  to which 4-beins e(4)(t) are 
attached according to. 

d 
no(r) ~ ( t ( r ) ,  x( r ) )  (131) 

A ~" rotation in the space-time of perception reversing the direction of 
the "time basis vector" no of the 4-bein e ~4~ acts on the 3-bein spanned by 
the "space basis vectors" nl, n2, n 3 like a reflection: e.g., it leaves 112, n 3 
invariant and changes the sign of nl.22 From a homotopic  standpoint this 
3-bein reflection is nothing but a homotopic  conjugation, namely a switch 
to a field configuration belonging to the inverse homotopy class. Foliating 
the space-time of perception by spaces of  perceptions, we get snapshots of  
a process in which, e.g., for a kink-antikink annihilation it seems that the 
former and the latter eat each other. Hence, processes incorporating 

22In the famous analytic proof of the spin-statistics theorem one also makes use of the fact 
that in the Euclidean 4-space rotation group (resp. in the complexified Lorentz group) there 
exists a continuous path from 1 to PT. We also can say that a noncontractible 27r rotation 
loop 1-~ ~r~ 2~" = 1 can be continuously deformed into a noncontractible loop 1 ~ PT-~ 1. 
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rotations, exchanges, and pair creations that start and end with a vacuum 
configuration are described by an assembly of  closed fat strings in space-time 
of perception R 4. These fat strings can be replaced by linelike strings to 
which a family of tangentially aligned 4-beins is associated. The tangential 
alignment of the 4-beins along the closed string in R 4 defines a loop in 
SO(4). Accordingly, there are only two classes of twists for fat strings in 
four dimensions. Alternatively, we are allowed to consider one or more 
open fat string with fixed ends. Also in this case we have only two homotopy 
classes of paths. The tangentially aligned moving 4-beins canonically define 
a four-string braid, giving a generalization of Dirac's string game to four 
dimensions incorporating at least four strings. 

3.4.2. The Homotopy Extension Proof 

The homotopy spin-statistics theorem as formulated by Finkelstein 
and Rubenstein (1968) reads as follows. 

Theorem 3.1. In kink models odd-half spin is possible if and only if 
Fermi-Dirac statistics is possible. 

There is a homotopy ~rottotriv(X, t, U) deforming a loop ~Orot(X, t), in 
which one kink is rotated through 2~-, into a trivial loop r ~r~v(X, t), in which 
the kink is left in rest, if and only if there is a homotopy ~exch~otrJv(X, S, t) 
deforming a loop ~e• t, u), in which two identical kinks are ex- 
changed, into a trivial loop ~92triv(X , t ) ,  in which the two kinks are left at 
rest. The processes considered may be localized in a 3-cube 13 and hence 
the homotopies in question, if they exist, define continuous functions on 
the 5-cube 13 • [0, 1] x [0, 1] whose boundary values on 015 are given by 

~rottotriv(X, S, 0) = ~rot(X, S) 

~rottotriv(X, S, 1) = q~ltriv(X, S) 

~rottotriv(X, 0, t) = ~Dltriv(X , t) 

~rottotriv(X, 1, t) = ~,tFiv(X, t) 

~rottotriv(OI 3, S, t) = ~0 

~exchtotriv(X, S, 0) = q~exch(X, S) 

~exc.to~Fiv(X, s, 1) = ~2~riv(X, s) 

~exchtotriv(X, O, f) = ~D2triv(X , t) 

~exchtotriv(X, 1, t) = ~D2triv(X , t) 

~Pexchtotriv(0I 3, S, t) = th0 

(132) 
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The homotopy extension theorem states that if the homotopic restrictions 
~rottotrivlal5 and ~exchtotrlvla~5 are given, the existence of an extension of 
~t)rottotriv[Ol 5 onto 15 is equivalent to the existence of an extension of 
~e• onto 15. The homotopy of both functions defined on the boun- 
dary is verified by rubber band techniques and easily visualized: Neglecting 
one dimension of the space of perception, we draw the boundary of 
the 4-cube 12x[0, 1]•  1] with the corresponding fat strings inserted 
(cf. Figure 6). 

3.4.3. A Different View: Deforming a Rotation into an Exchange by Use of 
Pair Creation 

Alternatively, one can interpret the closed, fat strings of Figure 6 as 
trajectories of kinks: The one string describes a process in which a kink- 
antikink pair is created and, after a 27r-rotation of the kink, is annihilated; 
the other describes a partner exchange process. It is easily seen that they 
are homotopic. A simplified version of the partner exchange loop is the 
twisted pair loop, a simple kink-antikink creation-annihilation loop, in which 
the relative orientations of the partners during the creation and annihilation 
are changed (Figure 7). 

Since kink and antikink trajectories can mutually extinguish each other, 
one is able to get an elegant visualization of a deformation of a one-kink 
rotation into a two-kink exchange (Figure 8). 

By using the same techniques, one immediately sees that the complete 
problem may be reduced to the homotopy between the twisted pair loop 
and a rotation loop (Figure 7). It is possible to find a natural analog of  this 
simple homotopy in a general quantum field-theoretic context? 

Fig. 6. ~rotto~rivloj 5 versus  ~t~exchtotriv]01'. 
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Fig. 7. 

f 

3 
~twisted pair loop homotopic t o  ~ rotation loop" 

3.5. Skyrmions: The Replacement of Homotopic by Algebraic Pair 
Creations 

The close analogy between the mechanistic configuration spaces of 
rigid, noncoinciding objects and the configuration space & la Doplicher- 
Haag-Roberts is due to the commutativity of disjoint spacelike supported 
automorphisms. It becomes rather tricky when we wish to incorporate pair 
creation and annihilation processes that are necessary to deform rotation 
loops into exchange loops. Unfortunately, the replacement of the particle 

1 2 

5 6 

3 
1 

4 

7 8 

Fig. 8. ~otto~.~h. 
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configuration models by kink field configuration models does not suffice, 
since the pair annihilation (resp. creation) by the homotopic process of 
"mutual eating" (resp. "mutual uneating") has no counterpart in algebraic 
quantum field theory. However, in certain kink models, where the classical 
fields take their values in a group manifold, field configurations may be 
multiplied pointwise and we can show that the purely algebraic property 
of the noncommutativity of this multiplication eventually gives rise to 
nontriviality of certain loops. This justifies the following conjecture, not yet 
proven. 

Conjecture 3.1. There exists a quasi-configuration space containing all 
products of rigidly moving spacelike disjoint automorphisms of class one 
and their conjugate 

'~( . . . .  ) ' ' "  ~/(x~,ego)'Y(y>e~) " " " ~(y~,e})  (133) 

and all overlapping configurations of the type 

" ' ' Y (  ..... )'Y(yj,ej) " " " (134) 

and 
" " " Y(rj,j)T( ..... ) ' ' "  (135) 

having Z2 as its fundamental group. In particular, the homotopically defined 
statistics parameter coincides with the homotopically defined spin param- 
eter. 

Incorporating the coinciding configurations into configuration models 
of pointlike objects destroys their manifold structure. This can be cured by 
counting diagonal configurations doubly and distinguish them clearly from 
each other. 

The SU(2)-Skyrme model provides a nice realization of this principle, 
which here can be tested easily, since algebraically and homotopically 
defined processes are possible at the same time. 

Let Ck~nk denote a localized one-kink field configuration obeying 

~Okink(X ~ I) = I (136)  

w h e r e  I is the  s p a c e - c e n t e r e d  3 - c u b e  g i v e n  b y  

I =  - , +  x - , +  x - , +  ( 1 3 7 )  

There are two ways to transform this kink configuration into an antikink 
configuration. One way is given by the homotopic conjugation, 

~homotop ican t ik ink(X)  = ~ k i n k ( X l  , X2,  - -X3)  (138) 

= q~ki.k[exp(iTrn3 x )(--x)] (139) 

:= exp(i~-L3)P~kink(X) (140) 
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the other  is defined by the algebraic conjugation, 23 

~algebraicantikink(X) : [~kink(X)] -1 (141) 

=: C ~Pkink(X ) (142) 

Consider  now the simplest noncontrac t ib le  loop in the vacuum sector, 
the twisted pair loop. It is given by (t ~ [0, 3]) 

~ ~t) homotopic LR . . . .  tion(X, t), 
~twistedpairloop(X, t )"= -~ ~tVantikinkkinkexchange(X , t--  1), 

1~. ~homotopic RLannihilation( x ,  t -- 2 ) ,  

whereby  (t 6 [0, 1]) 
1 1/2 

@homotopicLR ... .  tion(X, t ) :=  ~h~176176 ( t - -2)2 En3)' 
~ kink(X -- ( t  -- �89  

resp. 

~homotopicRL . . . .  don(X, t ) :=  - ~kink(XW(t--i)21/2en3)'l 1/2 
t ~ homotopic antikink(X -- ( t  -- ~)2 En3), 

t~[O,  1] 

t e [ 1 , 2 ]  

t ~ [ 2 , 3 ]  

(143) 

x 3 ~ O  

X3~0  

(144) 

x3 -< 0 

x3 --~0 

(145) 

t e l 0 , 1 ]  

t ~ [ 1 , 2 ]  

(146) 

and the cor responding  annihi lat ion processes are obtained f rom the creation 
processes by replacing t th rough  1 - t .  The h o m o t o p y  q~antikinkkiokexchange 
describes a process where the mutual ly  disjoint localized antikink and kink 
are exchanged  by per forming rigid translations. 

We now are able to prove the nontriviali ty o f  the algebraic analogue 
to the homotop ica l ly  defined twisted pair  loop ( r e  [0, 2]): 

aIgebraicanytw~stod pa~rJoop(X, t)  := / tion(X~ t) ,  ~algebraic LR 

k@algebraicRLannihilation(X, t -  1), 

whereby ( t~  [0, 1]) 

@ algebraic LR . . . .  tion(X, t) (147) 

-'= @algebraicantikink(X-{-2 21/2En3)" ~Pkink(X--2 21/2en3) (148) 

23We have seen that a continuous kink-antikink pair creation can be interpreted as a process 
in which one kink, moving in space-time, continuously reverses its time direction (and hence 
at least one space direction). This process may be viewed as a continuous path leading from 
the identity to exp(izrL3)T or more correctly to exp(iTrL3)PCT. It is no accident that 
the latter is to be identified with the well-known modular conjugation J (Bisognano and 
Wichmann, 1976). 



1304 Tscheuschner 

resp. 
q:~algebraic R L  .... don(X, t) (149) 

t 1/2 := qgkink(X--2 21/2E113)" qOalgebraicantikink(X+~ 2 en3) (150) 

and again the corresponding annihilation processes are obtained by the 
replacement t~--~ 1 - t. Since 

xq_ v~ 

it is easy to see that the algebraic twisted pair loop may be homotopically 
deformed to a six-stage loop consisting of three stages (parametrized by 
[0, 3]), 

1, t = 0  

~algebraicLR .... tion(X, t), t c [0, 1] 

@algebraicantikink(X"~-2 ~2 8113) . @kink( x %/22 e113)' t-- 1 

~/~homoto [X-~/2 E113)" @kink(X--@ E113) t~ picantikink~ k T , 2 

~ghomotopicLRannihilation(X , t -- 2), t E [2, 3] 
1, t=3  

(153) 
and further three stages (for reasons of simplicity parametrized not by 
t c [3, 6], but t c [3, 0]) 

1, t=3  

q)homotopicLRannihilation(X, t -2 ) ,  t6 [3,2] 

~ homotopic antikink (X "+"-~ E n3) " ~kink( X --~-en3),  t = 2  

Calgebraicamiki.k(exp[i(t--1)rrn3 x]x+~e113)  " q~kink(X V~en3) ' 2  t~ [2,1] 

Wkink~, - ~ -  t=  1 

~.,~ebr.~cRL .... .odX, t). t~[1,0]  
1, t = 0  

(154) 
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Note that the fourth and fifth stages are exactly the inverse of the third and 
second stages, respectively~ If the second up to the fifth stages, during which 
antikink and kink commute, are omitted, we just get the original algebraically 
twisted pair loop. 

The homotopy class of the latter three-stage loop is not changed if we 
apply a global PT operation, which, after superponing a complementary 1r 
rotation of the antikink and kink during the second stage, yields a loop 
described by 

1, t = 0  

~algebraicLR . . . .  tion(X, t), t ~ [0, 1] 

q9 algebraic antikink (X-}- ~ en3) ~9 kink(X �9 - f e n 3 ) ,  t = l  

q~ algebraic antikink(exp[ i( t -  1)Trn3X]x+-~ en3) �9 q~kink(X-- T en3) , t E [1,2] 

h.moto /X--~ ~/~ 8n3). ~/~kink(X--~ -- ell3), ~D ~ pic antikink~ T 

~0homotopi c RLannihilation(X, t -- 2), 

1, 

t = 2  

t c [2, 3] 

t=3  

(155) 

which differs from the first loop in that the homotopic L R  annihilation 
is replaced by a homotopic R L  annihilation�9 From the nontriviality 
of the twisted pair loop we conclude that each three-stage loop com- 
posing the six-stage loop considered lies in a different homotopy class and 
hence the complete loop is not trivial�9 Thus we close with a skyrmion model 
version of Conjecture 3.1. 

L e m m a  3.1. There exists a configuration space containing all products 
of rigidly moving disjoint, singly charged skyrmions and antiskyrmions and 
all doubly counted, overlapping configurations having Z2 as its fundamental 
group. In particular, exchange loops and 2~r rotation loops are homotopic. 

4. DISCUSSION 

While our argument is on a heuristical level, the idea of introducing 
configuration spaces in algebraic field theory may lead to new insights into 
the relations between space-time operations and inner symmetries. 
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On one hand, the topology of a infinite-dimensional Hilbert space is 
too simple in the sense of the Kuiper theorem (Kuiper, 1965; Araki et aL, 
1971) to provide us with homotopic invariants which can be related to 
superselection quantum numbers. On the other hand, the restriction of the 
quantum configuration space of  rigidly moving automorphisms is not very 
natural, so we have to search for something in between, which may be 
called a manifold of  physically admitted or physically good states or 
morphisms. 

There are two complementary approaches, namely the "refinement" 
of the Hilbert space or operator algebra description toward finite- 
dimensional spaces as formulated in the compactness criterion of Haag and 
Swieca (1965) and extended to the nuclearity idea of Buchholz et al. (1986), 
which has much to do with a selection of localized states obeying a physical 
high-energy behavior), and, "alternatively," the "digitization of quantum 
mechanics" by Finkelstein and von Weizs/icker (cf. Finkelstein, 1969; Castell 
et al. 1975), namely the approximation of infinite-dimensional Hilbert spaces 
by huge tensor products of  two-dimensional Hilbert spaces describing 
quantum mechanics over a binary alternative U~r.24 Intuitively, there is no 
doubt that homotopic invariants as well as Euclidean continuation 
argumentations are recovered if we do some (approximate) "finitization." 
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