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We calculate the effective gauge field action due to a single two-component fermion of mass 
m and charge e, using a cubic lattice as an ultra-violet regulator and Wilson type fermion actions 
to avoid a doubling of fermion species. In the limit where the cutoff is removed, we find that the 
answer is finite but not unique: the various lattice fermion actions belong to different universality 
classes labelled by an integer n. In all cases, the parity invariance of the classical (continuum) 
action at m = 0 is violated by quantum effects, i.e. there is an anomaly. In addition, for n :g 0, a 
Chern-Simons term is generated at large m, and this implies a non-zero photon mass, deconfine- 
ment and unusual spin and statistics of charged particles. In particular, for the class of actions 
with n = 1, we show by a straightforward semi-classical argument that the fundamental fermion 
is converted to a particle with spin 0. 

1. Introduction 

The interest in 3-dimensional gauge theories has recently been revived because 
they are apparently related, in various ways, to high-temperature superconductivity 
[1-5]. In particular, it has been suggested that abelian gauge fields A,(x) with an 
action including a term proportional to the Chern-Simons action* 

1 3 
I[A] = ~ 2  f d x%~pA,(x) O~Ao(x ) (1.1) 

can affect the spin and statistics of charged particles [6-14] and in this way lead to 
peculiar properties of the elementary excitations in models of superconducting 
materials. It is also well-known that the Chern-Simons term (1.1) makes the photon 
massive [15-17]. Independently of these developments, the possibility of a 
fermion-boson transformation in three space-time dimensions is interesting in itself 
and it is certainly very important to understand this phenomenon from different 
points of view. 

* On leave from CPT, CNRS Marseille, France. 
* The space-time metric is euchdean and the totally anti-symmetric symbol c,, 0 is normalized such 

that (123 = 1. Repeated indices ~, v . . . .  are summed over from 1 to 3. 

0550-3213/89/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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An intriguing observation in this context is that the Chern-Simons action is 
radiatively generated by charged fermions coupled minimally to the gauge field 
A~,(x) [18,19]. Thus, consider a two-component fermion field q~(x) with (con- 
tinuum) action 

S v=- fd3x~ (x ) (D- m)+(x ) ,  (1.2) 

where the Dirac operator D is given by 

D=g~,(O~,+ieA~(x)), (1.3) 

{7~,, y~} = 2~.~, 7~* = "}5,, (1.4) 

and e denotes the electric charge of +. The effective gauge field action F[A] 
generated by such a fermion field is, formally, 

F[A] = - l n d e t [ ( D -  m)/(D o- m)] ,  (1.5) 

where D o = D 1,4, = 0- 
Now there are two ways in which the Chern-Simons action can appear. First, 

there is the well-known parity anomaly [18-22], viz. 

lim I m F [ A ]  =coe2I[A] +Trh[A]. 
m - - * 0  

(1.6) 

Here, c o is a constant, to be discussed below, and h[A] is an integer, which vanishes 
when A~ is sufficiently close to zero (h[A] changes by +_ 1 when an eigenvalue of D 
crosses zero) [20-22]. Eq. (1.6) is referred to as an anomaly, because it implies that 
the reflection symmetry 

+(x) ~ ( - x ) ,  ~(x) ~ - ~ ( - x ) ,  A~(x) --* -A~(-x)  (1.7) 

of the classical fermion action (1.2) at m = 0 is broken through quantum effects. 
The second instance where the Chern-Simons action appears is in the large mass 

limit, where it has been shown that [18,19] 

lim F[A] = icooe2I[A]. (1.8) 
m--*  oo 

This is a very interesting and, at first sight, rather surprising result. It implies that a 
heavy fermion does not decouple from the theory but leaves behind a computable 
local term which has long-range effects: it makes the photon massive and it changes 
the spin and statistics of charged particles. Thus, it is important to understand how 
exactly this can happen. In particular, the coefficient coo should be calculated since 
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the photon mass and the amount of spin change of charged particles are determined 
by this number  (and the electric charges of the particles). 

Although c o and c~ have already been computed elsewhere [18-22], we do not 
quote any numbers at this point, because these coefficients are actually not well 
determined through the formal expression (1.5) for the effective action. First there is 
a sign ambiguity which arises from the fact that there are two inequivalent 
irreducible representations of the gamma matrices in three dimensions and that the 
fermion mass parameter  m can be given either sign. We fix these ambiguities once 

and for all by setting 

Y172Y3 = i and m >/O. (1.9) 

After this the numbers c o and c~ are still not uniquely determined, because the 
determinant  (1.5) is ultra-violet divergent. Regularization is thus required and it 
turns out that the values (and not only the signs) of c o and c~ depend on the details 
of the regularization procedure even if we restrict ourselves to gauge invariant 
regularizations [16]. 

In this paper  we completely determine the ambiguity which remains and in 
particular compute c o and c~ in a lattice formulation of the theory where a 
doubling of fermions is avoided by Wilson's method. In the context of high-temper- 
ature superconductivity, the introduction of a lattice as an ultraviolet regulator is 
natural. In addition we hope that our calculation will prove useful in attempts to 

find a lattice form of the fermion-boson transformation in 2 + 1 dimensions 
analogous to the Jordan-Wigner  transformation in 1 + 1 dimensions. Finally, we 
mention that anomalies in even space-time dimensions have previously been worked 
out on the lattice (see refs. [23, 24] and references quoted there), the aim being to 
demonstrate  that these subtle quantum effects are correctly reproduced by lattice 
fermions (which is not entirely obvious in view of the species doubling problem). 

The outcome of our investigation is summarized by 

c0= c~ +~r,  c~=2~rn. (1.10,1.11) 

Here, n can be any integer, depending on the lattice action chosen. We shall provide 
explicit examples with n = 0 and n = - 1 .  The quantization (1.11) of c~ is also 
found when one uses a Pauli-Villars cutoff with one or several ghost fields with 
variable mass signs. In fact we shall argue that it follows from two simple properties 
of the regularization procedure employed: gauge invariance and compatibility with 
respect to gauge group reductions. In the explicit lattice calculation the quantization 
is seen to arise from the fact that c~ is proportional to the winding number of the 
free fermion propagator viewed as a mapping from a 3-dimensional torus, the 
Brillouin zone, to the space of non-singular 2 × 2 matrices. 
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The non-universality of the effective action F[A] can be absorbed by including a 
Chern-S imons  term in the bare gauge field action with an adjustable coefficient c. 
Different regularizations can then be matched by performing a (finite) renormaliza- 
tion of c. This point of view has been taken by many authors, but the price to pay is 
that now the theory contains one more free parameter and hence becomes less 
predictive. Of course, one can always impose some condition on c, for example that 
the full photon propagator be parity invariant at large momenta,  where mass effects 
can be neglected. 

Although not unattractive, such a condition may, however, not be natural in an 
application of the model to a problem in solid state physics, where the lattice and 
the bare action may be given a priori, without Chern-Simons term. This is the point 
of view we adopt in this paper, and we shall therefore assume that the bare gauge 
field action contains no other term besides the usual Maxwell action. We shall then 
discuss the physical properties of the model in some detail for two lattice versions, 
corresponding to n = 0  and n - - - 1 .  In the latter case the already famous 
fe rmion-boson  transmutation takes place, i.e. the fundamental charged fermions 
turn into spin-zero bosons with only short-range interactions. As we shall see, this 
result is crucially dependent on the fact that c~ happens to be equal to -2~r;  any 
other value would imply a non-zero and in general fractional spin. Although it is 
hardly an accident that the radiatively induced Chern-Simons term comes with 
precisely this coefficient, we do not really understand (in terms of a physical 
picture) why this is so. 

The organization of our paper is as follows. First we discuss the lattice calculation 
in detail (sect. 2). As already mentioned, we employ Wilson fermions so that there is 
no fermion doubling. However, we allow the Wilson regulating term to have either 
sign, which is perfectly admissible since in both cases reflection positivity holds and 
the classical continuum limit is as given by eq. (1.2). Thus, there is no apparent 
reason to exclude any one of them, but as we shall show we have the conventional 
result c~ = 0 in the first case while in the other one gets c~ = -2~r.  In sect. 3 we 
argue that (1.10) and (1.11) must be true on general grounds and for any reasonable 
regularization. The implications of our results on the properties of lattice QED, 
including all degrees of freedom, are discussed in sect. 4. In particular, using a 
semi-classical argument, we show that for lattice actions in the universality class 
n = - 1 ,  the observable spin of the fundamental charged fermion vanishes. Finally, 
conclusions are drawn in sect. 5 and two appendices are included which contain the 
technical details of the semi-classical calculation mentioned above. 

2. Calculation of the effective action I'[A I in lattice QED 

In this section we compute the numbers c o and c~ using a lattice as a gauge 
invariant ultra-violet cutoff. Since the Chern-Simons action (1.1) is a polynomial in 
the gauge field A~, the computation can be done in perturbation theory, i.e. we only 
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need to evaluate the effective action to second order in e and to study what happens 
in the continuum limit. This latter task will be greatly simplified by invoking the 
Reisz power counting theorem for lattice Feynman diagrams [25, 26]. 

2.1. BASIC LATTICE NOTATIONS 

We consider a 3-dimensional cubic lattice with vertices 

X = (an1 ,  an2, an2) ,  nt, ~ 7/, (2.1)  

where a denotes the lattice spacing. In the "non-compact"  formulation of abelian 
lattice gauge theories (which we adopt here), a gauge field is an assignment of a real 
number A,(x)  to every lattice point x and direction /,. The field tensor F~(x) is 
then defined through 

F~.(x) = O~,A.(x) - O.A.(x),  (2.2) 

where the lattice derivative is given by 

cg~,f(x) = ( f ( x  + a/2) - f ( x ) ) / a ,  (2.3) 

and /2 denotes the unit vector in the positive/,-direction. F~,~(x) is invariant under 
the gauge transformation 

A. (x )  ~ A,,(x) + O.A(x),  (2.4) 

and so is the gauge field action 

S G = ¼ a 3 E ~ , , ( x ) ¢ , , ( x ) .  (2.5)  
X 

Incidentally, the Chern-Simons action (1.1) can be readily translated to the lattice 
in the present formulation. For example, the expression 

a 3 

I[A] = ~ 2  £%,oA,(  x - a/2)O,Ao(x) (2.6) 
X 

is gauge invariant and it obviously reduces to (1.1) in the classical continuum limit. 
Dirac fields ~k(x) on the lattice are two-component spinor fields as in the 

continuum. Under a gauge transformation they transform as 

+ ( X )  --+ e - ieA(x)+(X) .  (2.7)  
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Accordingly, the lattice derivatives 

= ( + - + ( x )  ) / a ,  

]7:~(X) = (l~(X)-- V ( x - a ~ , ~ )  l ~ ( x - a ~ ) } / a ,  (2.8) 

where we have introduced the link variables 

U(x ,  ~ ) = exp( ieaA~ ( x ) ) ,  (2.9) 

are gauge covariant. Following Wilson, we thus define a lattice Dirac operator and 
fermion action through 

1 . V : V . ,  D = 5yt,(V'fi + V'~,) + 

S F = - a 3 ~ / ( x ) ( D -  m ) ~ b ( x ) .  
X 

(2.10) 

(2.11) 

The term proportional to the coefficient s in eq. (2.10) which is formally of order a 
is introduced to avoid the well-known doubling of fermions on the lattice. Origi- 
nally, Wilson chose s = 1, but there is actually no very deep reason to restrict s to 
this particular value. In particular, for s = - 1  and m < l / a ,  the theory defined 
through the total action 

S = S o + S v, (2.12) 

can be shown to share all the essential properties with the original Wilson model: 
there is no fermion doubling and the free propagator in momentum space is regular 
for all momenta  p ~ 0 (mod2~r/a) ,  the lattice Feynman rules reduce to the 
cont inuum rules in the limit a ~ 0, and a self-adjoint positive transfer matrix exists 

which acts in a (positive metric) Hilbert space of physical states. It is therefore 
tempting to assume that the lattice theories with s = + 1 (to which we restrict 
ourselves in what follows) are in the same universality class, but as we shall see this 
is not true, not even in perturbation theory*. 

The effective action F[A] is now defined as in the continuum (eq. (1.5)). From the 
definition (2.10) of the Dirac operator it is easy to check that 

F[A] = F [ - A I ,  (2.13) 

/'[A]* = F [ A P ] ,  A ~ ( x )  = - A t (  - x  - a ~ ) .  (2.14) 

* A similar effect, related to the axial anomaly, occurs in even dimensional lattice gauge theories. See 

ref. [34] for a summary and further references. 
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Eq. (2.13) is nothing other than charge conjugation invariance (Furry's theorem). 
The second property (2.14) implies that % must be real. 

2.2. PROPERTIES OF THE FREE FERMION PROPAGATOR 

The free fermion propagator So(x, Y)~I~ is defined by 

1 
[ ( - D  O + m)So(x, y)] ,• = ~76~/~8xy. (2.15) 

In momentum space we have 

f,,/a d3p eip(x_y)~o(p) ' (2.16) 
So(x, Y) = y_,~/,, (2~r) 3 

& ( p ) = Q ( p ) - a ,  

where /3  and /3, are defined through 

2 sin(½a&), P =a 

Q(p)=m+½sa~2-i , / . /3 ,  (2.17) 

1 
/3t, = - sin(ap,) .  (2.18, 2.19) 

a 

We also define a scalar function R(p) through 

R(p)  = (m + ½sa/32)2 +/32, 

and it is then easy to show that 

Q ( - p ) Q ( p )  = det Q ( p )  = R ( p ) ,  

and hence 

So(P) = Q ( - p ) / R ( p ) .  

(2.20) 

Q ( p ) * = Q ( - p ) ,  (2.21) 

(2.22) 

It is obvious from these equations that the propagator S0(p) converges to the 
expected continuum expression in the limit a--+ 0, p fixed. In particular, the 
continuum limit is independent of the parameter s. 

From the definition (2.20) it follows that the denominator R (p)  of the propagator 
is non-negative and smooth. Furthermore, for s = _+ 1 we have 

R(p)  = m 2 + (1 + sam)~ z + la2 y~ p[,p, 
t*<v 

(2.23) 

and hence the bound 

R(p)  >1 C(m 2 +/32), (2.24) 
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where C = 1 for s = 1 and C = 1 - am for s = - 1. In the latter case we shall always 
assume that m < 1/a. The bound (2.24) then implies that there is no fermion 
doubling. In fact it is easy to show from eq. (2.23) that the one-particle energy 
~o(p), defined through 

R ( p )  = 0 ,  p=(+_i~(p),p),  (2.25) 

is real, single valued and vanishes only when m = 0 and p = 0 (mod 27r/a). 
2.3. P E R T U R B A T I O N  E X P A N S I O N  OF T H E  E F F E C T I V E  A C T I O N  

We here assume that A,(x) is a given external gauge potential and expand the 
effective action F[A] in powers of e. Through the link variables (2.9), the Dirac 
operator D depends on e and it thus follows that 

D = ~ ekDk, (2.26) 
k = 0  

-- xlA (x)kls 
where for k >/1 we have 

(ia) k 
Dk~(x) = 2ak! + + 

+(--1)kA,(x--aft)k(s-- y,)~(x--aft)}. (2.27) 

Inserting (2.26) into the definition (1.5) of the effective action, we obtain the 
expansion 

F [ A ] =  ~ ekFk[A]. (2.28) 
k = l  

Note that because of charge conjugation symmetry, Fk[A ] vanishes for odd k. 
As already mentioned above, to compute c o and c~ we only need to work out the 

2-point function 

If we introduce the Fourier transform A~(q) of the gauge potential through 

~/a d3q 
At~(x ) = f~_~r/a(-~)3eiq(x+~a#)A~(q), (2.30) 

eq. (2.29) may be written as 

o 

C2[AI = f ]~at 2 3-4,(-q)FI,~(q)A,(q), (2.31) 
- / \ / 
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where the vacuum polarization t enso r / ) , , ( q )  is given by 

f / . . ( q )  = f°/° d3p [ 1 -  To(q)]tr { O.Q(p)Q(p+ ½q)-i  O~Q(p)Q(p_½q)-l} 
-,~/a (2~r) 3 

(2.32) 

The symbol To(q) in this equation implies a Taylor subtraction at zero momentum. 
For any n >~ 0 and any function f(q) this operation is defined through 

Thus, we have 

1 O k tq) , = 0  
T~(q)f(q) = ~ k! fffkf( " 

k=0 
(2.33) 

f/,~(0) = 0 ,  (2.34) 

and it is also not difficult to verify that 

~ f / , ~  (q) = 0 ,  (2.35) 

which is just expressing the gauge invariance of the effective action to second order 
in e. 

2.4. SMALL MOMENTUM BEHAVIOUR OF J0~,.(q) 

In this subsection we restrict ourselves to the massive case (m > 0). The propaga- 
tor S0(p) then is a completely regular function for all momenta p in the Brillouin 
zone 

~ =  {PER3[ IPul <~r/a}. (2.36) 

The vacuum polarization tensor iO,,(q) can therefore be expanded in a power series 
around q = 0. Taking gauge invariance and the discrete lattice symmetries into 
account, the first two terms in this expansion can be shown to be of the form 

FI.~( q) = ao%~oqo + bo( q28t~_ q~q~) + O(q3),  (2.37) 

where a 0 and bo/m are some constants depending on s and am. 
An interesting observation now is that the leading order coefficient a 0 has a 

topological significance. To see this, first note that by differentiating eq. (2.32) one 
obtains 

a o =  48qr 31 fsd3p,~otr((Q_lO.Q)( Q IO~Q)(Q_lcgoQ) } (2.38) 
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Without affecting the value of the integral, we can replace the matrix Q(p) in this 
equation by 

U(p) = Q ( p ) /  R¢R~. (2.39) 

In view of eq. (2.21), this is a smooth periodic function with values in the group 
SU(2). In other words, U(p) is a mapping from the Brillouin zone M, viewed as a 
3-dimensional torus, into SU(2) and the integral (2.38) is nothing other than the 
winding number  of this mapping divided by 27r. 

For  s = 1 the winding number vanishes, because we can make m very large and 
U ( p )  is then homotopically deformed to the trivial mapping U ( p )  = 1. For s = - 1, 
we cannot do this since the mass must satisfy m < 1/a to guarantee the regularity 
of U(p) (cf. eq. (2.23)). In fact, a little thought shows that the winding number must 
be equal to + 1: it is only at p = 0 that U(p )  assumes the value 1 and since the 
mapping is locally invertible there, it follows that a whole neighborhood of 1 in 
SU(2) is covered exactly once. Thus, we have 

0 if s = 1; (2.40) 
a ° =  - 1 / 2 ~ r  if s = - l .  

Since a 0 is independent of the lattice spacing, it is already clear at this point that 
the effective action at low momenta is not universal in the continuum limit, i.e. here 
is the origin of the lattice action dependence of the coefficients c o and coo alluded to 
in sect. 1 (we come back to this issue later on). 

2.5. C O N T I N U U M  LIMIT OF/"/t,~(q) 

We now proceed to evaluate 

H~,(q) = lim iO, , (q)  
a--*0 

(2.41) 

assuming m > 0. To this end, we first rewrite eq. (2.32) in the form 

f , , / ,  dSP [ l_  Ta(q)]F~,(p,q;m,a) ' 
Fl~(q) = a o %~oqp + ~ ,r/, (2~r) 3 

(2.42) 

where a o is the coefficient calculated in subsect. 2.4 and the function F~, is defined 
through 

F~(p ,q ;m ,a )=t r {O~Q(p)Q(p+ ~q) - lO~Q(p)Q(p-  ~q)-l}.  (2.43) 

The reason for rewriting / ~ , ( q )  in this particular way is that the additional 
subtraction at q = 0 of the integrand in eq. (2.42) makes the integral better behaved 
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in the continuum limit. In fact, this limit can now be controlled with the help of the 
power counting theorem of Reisz [25] (see ref. [26] for an introduction to 
the theorem). Making equal denominators, the integrand in eq. (2.42) assumes the 
standard form 

[ 1 - T l ( q ) ] F ~ j p , q ; m , a ) = V ( p , q ; m , a ) / C ( p , q ; m , a  ), (2.44) 

where V is a polynomial in m with the coefficients depending smoothly on the 
momenta, and 

C(p,q;  m, a) = R ( p  + ½ q ) R ( p -  l q )R(p )3 .  (2.45) 

The lattice degree of divergence (as introduced by Reisz) of these two functions is 
given by 

deg V ~< 6, deg C = 10, (2.46) 

and the total degree of the integral is hence less than 0. Thus, the theorem applies 
and we conclude that 

foo d3p l im[1-T l (q ) ]F ,v (  p 'q ; rn 'a )"  (2.47) 
II,~(q) = ao%,oqp + oo (2qr) 3 a~0 

Note that apart from the subtractions at q = 0, the resulting integral on the r.h.s, of 
this equation is just the integral which one would obtain using continuum Feynman 
rules. The subtractions are however essential, because they convert an initially 
linearly divergent integral to an absolutely convergent one, as one may easily verify 
by (ordinary) power counting. 

Summarizing the discussion so far, we have shown that the lattice vacuum 
polarization /7~(q)  converges to a well-defined tensor 1 7 j q )  in the continuum 
limit. In particular, there are no divergent terms and no renormalization of the 
effective action is hence needed. However, the continuum vacuum polarization 
(2.47) is not the same for all lattice actions, because it involves the coefficient a 0 
which depends on the parameter s as we showed previously. 

We finally evaluate the integral in eq. (2.47) using Feynman parameters and 
obtain 

II,  v( q) = A( qZ)%,pqo + B( q2)( q2 ~, _ q,q,), (2.48) 

where the amplitudes A(q 2) and B(q 2) are given by 

1 f o l d t { 1 - m [ m Z + t ( 1 - t ) q 2 ] - l / 2  ) ,  (2.49) A( q2) = ao + --~ 

1 [ldtt(] -t)[rn2 + t(1 - t ) q  2] -1/2 (2.50) B(q2) = 
"0 
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2.6. RESULTS 

We first discuss the parity anomaly (1.6). From the explicit expressions above, 
one finds 

1 ) 1 2 
lim H . ~ ( q ) =  a o +  %~oqo 1 - ~  ~-*o -~ + ( q ~ -  q~q~) 

(2.51) 

In particular, we have 

c o = 47r2ao + It, (2.52) 

and the pari ty anomaly thus depends on the lattice action chosen. That the 
difference between the two cases considered is merely a sign in the anomaly 
coefficient c o is an accident as we shall discuss below. 

In the large mass limit, the vacuum polarization reduces to 

and it thus follows that 

lim H~( q) = ao %~pqp 
m ~  o o  

(2.53) 

co~ = 47r2a0 . (2.54) 

Comparing with eqs. (1.10) and (1.11), we see that s = 1 corresponds to n = 0 and 
s = - I  t o n = - 1 .  

So far we have only discussed the second-order contribution Fz[A ] to the effective 
action. As already mentioned, Fk[A ] vanishes for odd k. For even k >/4, it is 
possible to show, using the Reisz power counting theorem once more, that the 
cont inuum limit of Fk[A ] exists and that it is independent of the details of 
the lattice action, i.e. it is universal. In other words, the only non-universality in the 
effective action is contained in the coefficient a 0 which appears in the small 
momentum expansion (2.37) of the lattice vacuum polarization. 

The final formulae (2.48)-(2.50) for H~,~(q) are in complete agreement with the 
result which one obtains using Pauli-Villars regularization with a single ghost field. 
The cases s = + 1 here correspond to the possibility to switch the sign of the ghost 
field mass term. We mention at this point that the values for the coefficient coo 
quoted in the literature disagree in many cases with our result (the value most often 
quoted is one-half of our minimal value % = +2~r). The reason for this is that in 
those papers a counter-term proportional to the Chern-Simons action is added to 
the effective action in such a way that the amplitude A(q 2) in eq. (2.48) vanishes for 
large q 2 (at the same time, the parity anomaly at m = 0 is cancelled). After that the 
expression for the so renormalized effective action is unambiguously determined 
and one finds c~ = -7r. However, as discussed in sect. 1, we decided to stick to the 
definition (1.5) of the effective action (with some regularization satisfying the weak 
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requirements listed below), and eqs. (1.10) and (1.11) are then the correct result for 
the coefficients c o and c a.  

By adding further formally irrelevant operators to the fermion action (2.11), it is 
easy to construct lattice theories for which the continuum limit of the effective 
action is exactly the same as in the Wilson model except that the coefficient a 0 is 
any integer multiple of 1/2~r. For example, an action with a 0 = - 1 / ~ r  is 

S v = - a 3 ~ _ , ~ b ( x ) ( D -  rn)(1 - 2 a D ) ~ ( x ) ,  
X 

(2.55) 

where D is the Dirac operator (2.10) with s - -  - 1 .  Of course, this simple action is 
equivalent to adding a second fermion to the Wilson model with mass M = 1/2a .  
In more complicated situations, such a factorization of the action will not be 
possible in general, but it is anyway likely that in models with quantum numbers 
n ~ 0 , -  1 in eq. (1.11), there are effectively further heavy particles in the theory 
with masses of the order of the cutoff. 

3. Regularization scheme dependence of the effective action 

Although the effective action F[A] is finite in the limit where the ultra-violet 
cutoff  is removed, a divergence is only avoided, because cancellations between 
individually divergent contributions occur. This is clearly seen in the lattice calcula- 
tion, where e.g. the term proportional to D 2 in eq. (2.29) is linearly divergent. 
Moreover, the integral (2.38) has a lattice degree of divergence equal to zero so that 
a logarithmic divergence is expected to show up. That it does not is due to the 
anti-symmetric character of the integrand. In view of these remarks it is not 
altogether surprising that the effective action, though finite, is regularization depen- 
dent to a certain extent. 

We here explain why, for any reasonable regularization of the effective action, 

one is bound to obtain the result (1.10), (1.11) for the coefficients c o and c~. The 
qualification "reasonable" here means that we only admit regularization prescrip- 
tions which are gauge invariant and which are consistent with respect to gauge 
group reductions. This latter term refers to the following property. 

Suppose G is a compact Lie group and let R be any unitary representation of G 
in a complex space of finite dimension N. The associated representation of the Lie 
algebra of G by hermitian N x N matrices will also be denoted by R. We then 
consider a 2N component fermion field ~ (x )~  with Dirac index ~ =  1,2 and 
"color"  index A = 1 . . . . .  N. Under a gauge transformation g(x)  ~ G, ~ ( x )  trans- 
forms as 

~ ( x )  -~ R ( g ( x ) ) - l ~ ( x ) ,  (3.1) 

and, for any given external gauge field d . ( x )  taking values in the Lie algebra of G, 
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we can define a gauge invariant fermion action through eq. (1.2), where the Dirac 
operator D is given by* 

D =  "~( O. + iR( z¢ ( x ) ) ) .  (3.2) 

The associated effective action will be denoted by F[d]O,R.  
A regularization procedure is called consistent with respect to gauge group 

reductions if the following two conditions are satisfied. First, if R is a reducible 
representation, the addition formula 

F['-~C]O,R, eR2 = F[,ZC]O,R, + F [ d ] o , R 2  (3.3) 

should hold. Secondly, if the gauge field ,~¢,(x) takes values in the Lie algebra of a 
compact Lie subgroup H of G (so that it can be alternatively regarded as a gauge 
field with respect to the gauge group H), we have 

r [ d ] o , .  = (3.4) 

It is obvious that the lattice regularization, the Pauli-Villars cutoff procedure and 
many other regularization prescriptions satisfy these requirements. 

In what follows we choose G = SU(2) and H = U(1), the subgroup of diagonal 
matrices. Furthermore, the representation R is taken to be the fundamental 2- 
dimensional representation so that R(~C,(x)) = d , ( x )  is a traceless, hermitian 2 × 2 
matrix. If we now choose 

e A . ( x )  0 

= 0 - e A . ( x )  ' 
(3.5) 

the properties listed above imply that for any fixed regularization prescription, we 
have 

F[~c]o ,R = F[A] + F[-A].  (3.6) 

As will become clear shortly, the interest in this relation in the present context is 
that it allows us to deduce certain restrictions on the possible changes of the abelian 
effective action F[A] when we switch to a different regularization scheme. 

It is well known that the ultra-violet sensitive parts of the effective action 
F[~c]o,R can be isolated in perturbation theory, i.e. we only need to study the 
fermion loops with k >/2 external gauge field legs. For k = 2, the degree of 
divergence of the loop integral in momentum space is 1 so that a regularization 
ambiguity can at most be a polynomial of degree 1 in the external momentum. 

* For  notat ional  simplicity, we do not introduce a gauge coupling constant here. To match with the 

notat ion used in sect. 2 in the abelian case, set R(.aC,(x)) = . ~ , ( x )  = eA~,(x). 
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Similarly, for k = 3, the possible ambiguity is a constant and for k >/4 the loop 
integral is power counting convergent and hence independent of the regularization 
employed. It follows from these considerations that the difference A F [ d ] o , R  
between the effective actions calculated in two different regularization schemes is 
given by 

ZXr[dlG,R = f d3xP( s~' (x), O ~'o(x)) , (3.7) 

where P is a sum of monomials of dimension 2 or 3 ( d  r has dimension 1 and 0~d,  
dimension 2). The only expression of this type which is invariant under infinitesimal 
gauge transformations is the Chern-Simons action 

1 fd3x tr(sC'~(x) O.do(x)+ ~id.(x)~.(x)do(x)} (3.8) I [z~¢]o = 8qT 2 I[/~u0 

and thus we have 

 r[d]o.R = ici[ ]o (3.9) 

for some (possibly complex) coefficient c. 
At this point, a crucial observation (which has been made by several authors in 

recent years [16,17, 20-22, 32]) is that the Chern-Simons action (3.8) is not invari- 
ant under "large" gauge transformations, i.e. gauge transformations g(x)~  SU(2) 
which are homotopically non-trivial. Instead what happens is that I [ ~ ' ] o  changes 
by an integer equal to the winding number of g(x). Since we insisted that the 
admitted regularization procedures respect gauge invariance, the Boltzmann factor 
exp(--F[~e]O,R ) must be invariant under such gauge transformations too, and 
hence we conclude that 

¢ = 0(mod 2~r ).  (3.10) 

Combining eqs. (3.6), (3.9), and (3.10), the result of our argumentation is that under 
a change of regularization scheme, the abelian effective action changes by 

AF[A] = i27rkeeI[A], (3.11) 

where k can be any integer. It is easy to check, e.g. by working out the vacuum 
polarization with a Pauli-Villars cutoff with several ghost fields and variable mass 
signs, that k in fact does assume any arbitrary integer value. 

The quantization of the coefficients c o and co~ according to eqs. (1.10) and (1.11) 
is now immediate, since it holds on the lattice with Wilson fermions (as shown 
previously) and hence (by eq. (3.11)) for any other regularization of the effective 
action. 
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4. Physical particle properties 

The generation of a Chern-Simons term through virtual fermion pairs has a 
rather dramatic impact on the observable properties of the fundamental particles in 
lattice QED. We describe the most important of these effects here and discuss, in 
particular, how the spin of charged particles is affected. The fermion action is 
assumed throughout to be given by eqs. (2.10), (2.11) with s = + 1 and m < 1/a if 
s = -  1. Also, we will restrict ourselves to the limit where the dimensionless 
parameter e2/m is small so that perturbation theory and semi-classical arguments 
are applicable. 

4.1. PHOTON MASS GENERATION 

For  the original Wilson model s = 1, the coefficient coo vanishes and no unusual 
effects are expected to happen. In particular, the fermions are confined by the 
Coulomb potential 

e 2 
V(r) = a l n r + O ( 1 ) ,  o/=~-I-O(e4). (4.1) 

r---~ oo 

Besides the photon (which remains massless), the observable particles are heavy 
fermion anti-fermion bound states. The size of these particles is proportional to 
(e2m) -1/2 and since the bound fermions can annihilate into photons, they are 
actually narrow resonances. 

The physical picture just described follows from ordinary perturbation theory and 
the non-relativistic approximation (which should be appropriate when m is large). It 
is also corroborated by a well-known lattice technique, the hopping parameter 
expansion. To derive it, one first rewrites the fermion action (2.11) in the familiar 

form 

SF= ~x { X ( x ) g ( x ) -  K E [ X ( X ) ( 1  q - ' g t ~ ) g ( X ' ] l ) x ( X  +aft) 
iz 

+ ~ ( x  + a f t ) ( 1 -  ~/~)U(x,~I)-Ix(x)]}, (4.2) 

K= l/(6+ 2am), X(x)=a~b(x)/ 2f~K. (4.3) 

The correlation functions of gauge invariant operators such as ~(x)x(x) can then 
be expanded in powers of the "hopping" parameter K. The terms which one 
generates in this way can be readily evaluated, because the functional integral one 
has to calculate in each case is of the gaussian type. Since K goes to zero for large 
masses m, it is evident from this expansion that heavy fermions decouple. Confine- 
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ment  is also quite obvious, because the terms in the expansion which correspond to 
widely separated fermion lines are strongly suppressed by the associated gauge 
factor (Wilson loop). 

An entirely different physical picture emerges when we choose s = - 1 .  In this 
case we have c~ = -2~r  and the photon acquires a mass. To see this, first note that 
the total gauge field action in the continuum limit and at m = m is exactly given by 

( so  + F)[A] = fd3x(¼f..(x)F..(x - e2 (4.4) 

This is the action of a free field theory and it is easy to convince oneself that the 
model describes a single particle with mass/x = e2/2~r and spin-1 [15,16]. Since the 
particle comes with only one possible spin orientation, the breaking of parity (which 
is manifest  in the action) is an observable effect. 

A photon mass is also generated for any fixed value of the ultra-violet cutoff 
A = 1 / a  and for any fermion mass m in the range 0 < m < A. This is evident from 
eqs. (2.37), (2.40), which imply that the photon pole in the propagator of the gauge 
field tensor F ~ ( x )  is shifted away from zero. Furthermore, the photon mass /~ is 
given by the asymptotic formula 

/.t = eZ/2~r + O(e  4) (4.5) 

(the terms of order e 4 are calculable in perturbation theory and are unlikely to 
vanish). We note incidentally that the fermion action (2.11) with s = - 1  is also 
equivalent to the action (4.2), but here the hopping parameter  K is related to the 
fermion mass through K =  ( 6 -  2am) - t .  These values of K are above the critical 
line K = 1 / 6  + O(ae  2) in the (e  2, K )  plane and are therefore not accessible to the 
hopping parameter  expansion, i.e. there is no contradiction to what we have said 
above about  the small K region. 

An immediate consequence of the fact that the photon has become massive is that 
the Coulomb potential V ( r )  is no longer confining, but instead falls off like e ,r  for 
large distances r. One expects, therefore, that stable charged particles exist, which 
have a mass approximately equal to m and which behave as free particles when 
separated f rom each other by a distance much greater than /~ 1. 

4.2. FERMION-BOSON TRANSMUTATION 

We now concentrate on the interesting case, s = - 1 ,  and proceed to discuss the 
influence of the radiatively generated Chern-Simons action on the observable spin 
of the fundamental  charged particles in the theory. For simplicity we assume from 
now on that the continuum limit has been taken and that the fermion mass 
parameter  m is so large that the total gauge action is accurately given by eq. (4.4) 
(possible corrections of order e 2 / m  are discussed at the end of this section). 
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As explained above, the fundamental fermions are deconfined and can be studied 
in isolation. The observable spin of these particles is naively expected to be 1/2,  but 
actually this may not be true, because a charged particle is always accompanied by a 
static Coulomb field which may contribute to the total angular momentum of the 
state. Due to parity invariance, such an effect cannot occur in ordinary QED. 
However, the Chern-Simons term in eq. (4.4) violates parity and the associated 
Coulomb field, though static, circulates around the charge in such a way that the 
field angular momentum is exactly - 1 / 2 .  Thus, the observable spin of the funda- 
mental charged particles vanishes, and, assuming that the usual spin statistics 
connection holds, one is led to conclude that these particles are in fact bosons (for a 
recent discussion of spin and statistics in three dimensions, see refs. [27, 28]). 

When calculating the angular momentum of the Coulomb field, we have em- 
ployed the expression (in euclidean notation) 

(4.6) 

for the energy momentum tensor, which one obtains by studying the variation of the 
action (4.4) under an infinitesimal change of the space-time metric. While this is a 
natural definition, the fact that other choices for the energy-momentum tensor have 
been proposed has cast some doubt on the validity of the calculation [15]. In 
addition, since the Coulomb field is singular at the origin, it is not entirely obvious 
that there is no short distance contribution to the angular momentum other than the 
bare spin of the particle. 

For  these reasons we think it is useful to establish the vanishing of the observable 
spin of the fundamental charged particles along a different line, using a semi-classi- 
cal approach. The argument follows to some extent Polyakov's derivation [7, 8], but 
since we enforce a semi-classical situation, formal manipulations with path integrals 
can be avoided and the whole discussion is actually completely rigorous. 

In outline, we wish to show in what follows that the spin phase factor which is 
associated to the (semi-classical) propagation of a Dirac particle with charge e along 
a closed path cg is exactly cancelled by the Wilson loop when the average over all 
gauge fields is taken with the action (4.4). Up to a normalization factor, the 
semi-classical amplitude for the propagation along c~ then is the same as for a 
neutral spin-0 particle so that one is led to conclude that the observable spin of the 
Dirac particle must vanish. 

As a preparation, it is useful to first consider the case of a scalar particle whose 
propagator G(x, y) is determined by 

(-h2a + U(x)}G(x ,  y)  a = a O.. (4.7) 

Here, we have introduced Planck's constant h, to ease the study of the semi-classical 
limit, and an external potential U(x) > 0, which we assume is smooth and equal to 
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m 2 for large x. Physically, this potential should be thought to represent the effect of 
some apparatus which forces the particle to move along certain curved trajectories 
in the limit h --* 0. The device is needed in the present discussion, because the spin 
factor alluded to above is trivial for straight paths, i.e. the spin of a particle can only 
be observed through its response to an external force. 

It is well known that the scalar propagator G(x, y) can be represented by a 
Feynman-Kac  path integral with a positive weight (we are in euclidean space). In 
this representation, the semi-classical nature of the limit h ~ 0 is obvious, because 
only those paths contribute in this limit which are infinitesimally close to a certain 
classical trajectory r~(t) (t is an arbitrary curve parameter with 0 ~< t ~< 1 and 
r(1) = x, r ( 0 ) = y ) .  The classical equations of motion, which r(t) has to satisfy, 
imply that this trajectory is a geodesic with respect to the riemannian metric 

h,,(x) = U(x) 8~. (4.8) 

Furthermore, for the semi-classical expansion of the propagator G(x, y) (which is 
just a saddle point expansion of the path integral about this curve), one obtains 

G(x ,  y )  =e-9(x 'Y)/h(  go(x, y )  + hgl(x,  y )  + ' ' '  } ,  (4.9) 

where ~?(x, y)  denotes the geodesic distance between x and y and the leading order 
amplitude go(X, y) is given by 

go(x, y) = U(x)-l/2 Idet M(x, y)11/2 
4~r~2(x, y) U(y) ,/2, (4.10) 

1 0 2 
M(x, y) ,~-  2 [~2(x, y)]2 (4.11) 

A derivation of this result, and also of all the other semi-classical formulae which 
follow, is sketched in appendix A. 

We now proceed to discuss the propagation of a Dirac particle of charge e in a 
background gauge field A~(x). The associated propagator S(x, y)~¢ is defined 
through 

{-hD + ~ } S(x, y) = h 28(x -y ) ,  (4.121 

where D is the Dirac operator (1.3) and U(x) the potential introduced above. The 
semi-classical expansion of S(x, y) reads 

S(x, y) = e-a(x'Y)/h{So(X, y) + hsl(x, y)  + . - .  } (4.13) 
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with I2(x, y)  as before and 

So(X, y)~¢ = 2U(x)l/4go(X, y)U(y) ' /nz~(1)exp(  -i(q)g + ~s)}ZB(O). (4.14) 

Besides a positive factor which is essentially the same as in the scalar case, this 
formula involves two phases ~g, ~s and a complex two-component spinor z~(t) 
which are defined as follows. First, the gauge phase ~g is given by the familiar 
expression 

• g = e foldt i~( t )A~(r( t ) )  , (4.15) 

where the dot indicates a derivative with respect to t. The spinor z~(t) is best 
thought to be a C P  1 field on the classical trajectory r(t). Up to an arbitrary 
t-dependent phase it is determined by 

( /~( t ) ' /~+l?( t ) [ ) z ( t )=O,  Iz(t)[ = 1 .  (4.16) 

An associated CP a gauge field d ( t )  may then be introduced through 

1 
d ( t )  = T ~ ( t ) - d ( t ) ,  5 =  (z~,  z~) ,  (4.17) 

and the spin phase ~s is finally given by 

~s = fol dt '~c( t )  • (4.18) 

Note that the combination (4.14) is invariant under the "gauge" transformation 
z ( t ) -~  ei~(Oz(t), and the phase ambiguity involved in the definition of z~(t) is 
hence irrelevant. 

We now consider the semi-classical propagation of a Dirac particle along a closed 
curve W parametrized by r~(t) (0 ~< t ~< 1, r(0) = r(1); we are also free to choose z(t) 
such that z(0) = z(1)). If we take the trace over Dirac indices, the total phase factor 
associated with the propagation is exp - i(~s + @g)- After integrating over all gauge 
fields At(x) ,  using eq. (4.4) for the gauge field action, the amplitude becomes 

W(Cg)exp ( - i~  s }, (4.19) 

where 

(4.20) 

denotes the Wilson looD. 
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C 

Fig. 1. Picture of a closed classical trajectory ~ of a Dirac particle, together with the associated surface 
6 p and the moving frame e ~. 

W ( Z )  has recently been calculated by Polyakov [7, 8] in the limit where the curve 

:g is large compared  to the screening length/~-a.  In the derivation one also has to 
assume that  <g is at least twice continuously differentiable and that it is the 

b o u n d a r y  of  a smooth surface 5 :  which is not self-intersecting. Since the shape of 

is control led by the potential U ( x ) ,  we are free to arrange an "experimental"  set-up 
such that the classical particle trajectory has all these properties. To state the result 
of  Polyakov ' s  calculation, we introduce a moving frame e a ( t ) ,  a = 1,2,3,  along 

with 

e a " e b = 6,b,  e 1. (e  2 x e 3) = 1, (4.21) 

= ,~,,,/1:1 (cf. fig. 1). Furthermore,  we choose e 2 such that it is tangential to and e,  
the surface 50 and inward pointing, e 3 is then normal  to 50. 

As one runs along ~ ,  the moving frame rotates in the plane or thogonal  to e I with 

an angular  velocity 

= ~2 .e3 .  (4.22) 

Polyakov 's  formula  for the Wilson loop now simply reads* 

W ( V ) = e x p  - c L + ~  dt~o( t )  , (4.23) 

where c is some constant  and L the length of  the loop. Thus, in the limit of  a large 
loop cg, the phase of  W(<g) is exactly one-half  of the total (projected) angle of  
ro ta t ion  of  the basis v e c t o r s  e 2, e 3. Note  that the phase vanishes for a planar curve; 

it is only non-trivial when the torsion of  cg is non-zero. 

* The coefficient multiplying the integral over co(t) in eq. (4.23) is inversely proportional to the 
coefficient of the Chern-Simons term in the gauge field action. The value quoted is appropriate for 
the action (4.4). Unfortunately, our result for this number does not quite agree with ref. [7]. 
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The phase factor in eq. (4.23) can be written in various equivalent forms. As we 
show in appendix B, one possibility is to express it in terms of the CP a field z,(t) 
introduced earlier. In fact what we prove is that 

½ foIdt  ~o(t) = foldt  d ( t  ) + Tr (mod 27r). (4.24) 

Recalling eqs. (4.18) and (4.19), we now see that the spin phase associated with the 
propagation of the Dirac particle is exactly cancelled by the gauge factor. Thus, in 
the experimental situation considered, there is apparently no visible spin effect left 
(apart from normalization factors) and so we are led to conclude that the observable 
spin of the fundamental charge particles vanishes. 

Although we have reached this conclusion neglecting higher order corrections to 
the total gauge field action (4.4), we believe that it actually remains unaffected to 
any order of e2/m and thus, barring non-perturbative effects, is most likely an 
exact property of the model. To understand why this is so, recall that the semi- 
classical motion of the particle is completely controlled by the potential U(x) and 
thus does not depend on e2/m. The only place where this parameter enters the 
argumentation above is when we calculate the Wilson loop W(Cg). Here we should 
really use the complete gauge field action and this leads to a number of additional 
contributions. 

The crucial input at this point is the observation that the full vacuum polarization 
tensor H~,(q)  has the Lorentz structure (2.48) and A(0) = A(0)] 1-1oop, i.e. all higher 
loop contributions to A(0) vanish. This result has been established by explicit 
calculation to two loops [29, 30], and later, using Ward identities, to any number of 
loops [31]. Since the parity odd term in H~,(q)  dominates at small q, the full 
propagator at large distances in position space is equal to the one-loop propagator 
and it follows that the sum of all those contributions to the Wilson loop, which only 
involve the full propagator, gives exactly the phase (4.23) (for a large loop ~£). Thus, 
it remains to be shown that all other contributions of W(Cg) are negligible. We have 
not attempted to give a completely rigorous proof that this is indeed the case, but 
considering a few examples we convinced ourselves that for dimensional reasons, 
these terms must vanish with an inverse power of the loop size. 

Thus, as far as we can see, there are no corrections to the phase of the Wilson 
loop and our semi-classical argument hence remains valid, so that the observable 
spin of the fermion is really zero to all orders of e 2/m. 

5. Conclusions 

The basic result obtained in this paper is that the effective gauge field action F[A] 
due to a single, massive two-component fermion is, though finite, not uniquely 
determined by the classical fermion action (1.3), but depends to a certain extent on 
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the ultra-violet regularization scheme employed. Making some weak assumptions on 
the properties of the admitted schemes, we have shown that in the limit where the 
cutoff  is removed, the various regularizations fall into universality classes labelled 
by an integer n. The difference AF[A] between the effective actions corresponding 

to the classes n 1 and n z is given by 

A t [ A ]  = i2~r(nl - .2 )e2I[  A] ,  (5.a) 

where I[A] is the Chern-Simons action (1.1). In particular, the Wilson lattice 
fermions studied in detail in sect. 2 correspond to n = 0 and n = - 1, respectively, 
depending on the sign of the (formally irrelevant) Wilson term in the action. We 
mention in passing that universality is restored, if one introduces several (massive) 
fermions in the model in such a way that they form parity doublets, and if the 
regularization employed respects parity. This is the case, for example, for staggered 
fermions [33]. 

For  all values of n, the parity invariance of the classical fermion action (1.2) at 
m = 0 is broken by quantum effects, i.e. there is always an anomaly. The anomaly 
coefficient c o depends on n and is given by eqs. (1.10), (1.11). The physical 
properties of lattice QED (with no Chern-Simons term in the bare gauge field 
action) are largely determined by the radiatively generated Chern-Simons action, 
which comes with a coefficient proportional to n. Thus, while there are no special 
effects for n = 0, the radiative corrections to the gauge field action induce a photon 
mass for n 4: 0. Furthermore, the fundamental charged particles in the theory, which 
would naively be expected to be spin 1 /2  fermions, are deconfined and assume 
fractional spin and statistics. We have studied this effect in detail for the special 
case n = - 1 ,  which is realized by one of the lattice models considered. Using a 
semi-classical argument, we found that the fermions acquire an additional spin of 
exactly - 1 / 2  so that the total observable spin is equal to 0. This result is in 
quantitative agreement with the simple physical picture that the additional spin of a 
charged particle arises from the attached Coulomb field, which, due to the 
Chern -S imons  term in the total gauge field action, carries angular momentum. 

That  the fermion in QED can turn into a boson through its own radiative effects, 
is a curious phenomenon for which we have no simple physical explanation. That is, 
what we do not really understand is why, for n = - 1 ,  the coefficient c a assumes 
precisely the value needed to convert the fermions into spinless bosons. At present, 
it is just the result of a Feynman diagram calculation (with some topological 
flavour), which is apparently unrelated to the spin changing mechanism. 

Although we have not studied the cases with n ~ 0, - 1  in any detail, it is quite 
clear from the above that the total spin carried by the fundamental charged particles 
will be fractional in general, because the Coulomb field attached to the particle 
carries an angular momentum equal to 1/2n and the total angular momentum is 
hence (n + 1) /2n .  For the same reasons we have argued that the total spin vanishes 
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exactly for n = - 1 ,  we do not expect that this result will receive any corrections of 
order e 2//m. However, we would like to stress at this point that it would certainly be 
desirable to clarify the question of such corrections on a more rigorous level, 
perhaps by performing partial summations of perturbation theory in a systematic 
way. Such improved techniques would also be required if one wants to calculate the 
scattering matrix of the fundamental charged particles. 

We finally mention that all our calculations concerning the effective action can 
immediately be carried over to the case of non-abelian gauge theories. In particular, 
the regularization dependence, the associated universality classes and the parity 
anomaly are as in the abelian case, with the obvious changes. The physical 
implications of the radiatively generated Chem-Simons term at large fermion 
masses are, however, not entirely obvious, because the gauge field is itself charged in 
this case and the gauge particles thus may change their properties in an even more 
radical way than the photon in QED. Still, some interesting progress has recently 
been made in the theory with pure Chern-Simons action (and no fermions) [32]. 

A.C. is indebted to C.P. Korthals-Altes and O. Napoly for prior work on 
anomalies, and to A. Luther and P. Di Vecchia for kind hospitality in Copenhagen. 

Note added in proof 

We were kindly informed by S. Aoki that the parity anomaly in 3-dimensional 
lattice gauge theories has previously been studied by H. So [35]. 

Appendix A 

We here derive the semi-classical expansion (4.13), (4.14) of the Dirac propagator 
S(x, y). To this end, we first consider the analogous expansion of the scalar 
propagator G(x, y). Inserting eq. (4.9) in the differential equation (4.7) and equat- 
ing the terms of the same order of h, one obtains 

p~,p~ = U(x ) ,  (A.1) 

p~, O~,go(X , y) = - ½a~2(x, y)go(x,  y ) ,  (A.2) 

where we have introduced the abbreviation 

p, = O,~2(x, y ) .  (A.3) 

In addition, ~2(x, y) and g0(x, y) must satisfy the boundary conditions 

~2(x,x) = 0, ~2(x,y)>~O, (1.4) 

1 
go(x, y) (1.5) 

x~y 4~r [x -y l  
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With the help of the space-time metric (4.8), eq. (A.1) can be written as 

h~p~p~ = 1. (A.6) 

This is a first-order partial differential equation for $2(x, y). The associated charac- 
teristic curves are precisely the geodesics in the metric h,~ and, taking into account 
the boundary condition (A.4), it thus follows that f2(x, y) is the geodesic distance 
between x and y. Furthermore, p, is tangential to the geodesic r(t), connecting x 
and y, at the end point x = r(1). 

To solve eq. (A.2), first note that it can be rewritten in the form 

- -  g 0  ' h "" 0~2 0~g o - -~ ~ -  O.v~h 0~2 (A.7) 

where h denotes the determinant of h , ,  and 

g[~(x, y) = U(x) a/4go(x , y ) .  (A.8) 

Treating Y2 and g6 as scalar functions, eq. (A.7) is invariant under general coordi- 
nate transformations and we may take advantage of this fact by passing to Riemann 
normal coordinates s~(x), choosing y for the origin of the coordinate system. 
Explicitly, for any fixed y, s,(x) is defined by 

0 
s , (x )  = -~2(x,  y ) U ( y )  -1/2 ~?(x, y ) .  (a .9)  

Oy. 
In these coordinates, we have ~2 = Is I, and the metric 

Ox o Oxo (A.10) 

satisfies 

h.~s~ = s . .  (A.11) 

Furthermore, eq. (A.7) reduces to 

s.(  O~ + ¼ 0. In/~)gg = - g g  (A.12) 

(the derivatives here are with respect to s~). Taking the boundary condition (A.5) 
for s --* 0 into account, this differential equation is easy to integrate and one obtains 

go( X , Y)  = f / ( S )  - l f 1 4  ( U ( x ) U ( Y ) )  1/4 

4~r~?(x, y)  
(A.13) 

The final result (4.10), (4.11) now follows from eqs. (A.9), (A.10). 
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To derive the semi-classical expansion of the Dirac propagator S(x, y), we 
proceed in exactly the same way as in the scalar case. From the differential equation 
(4.12) it follows that 

{ P~Y~ + ~ } S l ( X ,  y) = Dso(x, Y).  

(A.14) 

(A.15) 

In addition, to reproduce the &function singularity on the r.h.s, of eq. (4.12), the 
boundary condition 

3,~, (x~, -y~,) (A.16) 
sa(x'Y) x--,y 4rrlx - y l  3 

must hold. For eq. (A.14) to admit non-vanishing solutions it is necessary that the 
determinant of the matrix in the curly bracket vanishes. This condition is equivalent 
to eq. (A.1) and I2(x, y)  is hence the same function as above. 

We now introduce a CP 1 field G(x, y) through 

(P,3', + I P l ) z = 0 ,  Izl = 1 .  (A.17) 

If we restrict z~(x, y) to the geodesic x = r(t),  the CP 1 field z~(t), as defined in 
subsect. 4.2, is recovered. We may therefore use the same symbol z~ for the two 
fields without creating any confusion. Through eq. (A.17), z~ is determined up to a 
phase. The general solution of eq. (A.14) is thus given by 

So(X, y)o , = zo(x,  y), (A.18) 

where ~B(x, y)  is an arbitrary complex spinor. 
To compute ~¢(x, y), we must refer to eq. (A.15). Contracting with £~, we have 

~. "f~( au + ieA,(x))so=O (A.19) 

and hence 

p~( O~ + ieA~(x))~ = Ipl( 5.y~ O~z)~. (A.20) 

Next, we make use of the identity %,00~Po = 0 to show that 

[P[ (5"7,  O~,z) = - ~A~2 +p,,(½ 3,, lnIp [ - i .  9~,z). (A.21) 

Inserting this result in eq. (A.20) and recalling the solution of eq. (A.2), one obtains 

w B ( x , y ) = U ( x ) l / 4 g o ( x , y ) e x p { - i ( ~ g + ~ s ) } K B ( x , y ) ,  (A.22) 
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where the phases ~s and ~s are given by eqs. (4.15) and (4.18). The spinor fa is 
constant along the classical trajectory, viz. 

d 
d--Tf~(r(t), y )  = 0, (A.23) 

but is otherwise arbitrary at this point. However, via eq. (A.15), the boundary 
condition (A.16) implies a certain behaviour of So(X,  y )  in the limit x -~  y and this 
then is sufficient to fix fib completely. As a result one obtains the desired expression 
(4.14) for the amplitude So(X,  y ) .  

Appendix B 

In this appendix we establish the relation (4.24). For notational convenience, the 
dependence on the curve parameter t of the quantities involved is not explicitly 
indicated in what follows. Starting from the defining equation 

(el  .'y + 1)z = 0 ,  (B.1) 

a solution to the associated equation 

(e I " r -  1 ) w = 0  (B.2) 

is given by 

w 1 = z2*, w 2 = - Za*. (B.3) 

It is easy to check that z and w form an orthonormal basis in the space of all 
complex two-component spinors. 

Consider now the (complex) vector o r = ~ .  ~/~z. Contracting with e I and using eq. 
(B.1), it follows immediately that this vector is orthogonal to e 1 and hence given by 

v = a e  2 + be  3 , (B.4) 

where a and b are some complex numbers. Next, using the identity 

V,V~ = 6,~ + i%~o7o,  (B.5) 

one obtains 

i %~po p = ~ . "/r,'/~z , (B.6) 

1 yields e 1 which, when contracted with G, × v = iv. Inserting eq. (B.4), we conclude 
that 

v =  a ( e  2 -  i e 3 ) .  (B.7) 
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Now we employ another identity for the y-matrices, 

(3,~) ~B(7,) v8 = 28~3er - 8~BSr~, (S.8) 

to show that 

v ~ v u =  2 l a t 2 =  2 .  (B.9) 

In other words, a is a pure phase which we may parametrize by 

a = e ia , a(1) = a(0) + 2~rv, v ~ 7/. (B.]0) 

Finally, recalling the definition (4.22) of the angular velocity ~ and using the 
identity (B.8) once more, it follows that 

v~*t~ = 2i(& + o~) = 42. ~, (B.11) 

and hence 

lf01dt ~(t)= f01 dt..~c(t)_ ~'7r. (B.12) 

That the winding number p is odd follows from a topological consideration (deform 
c# to a circle). 
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