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We complementa recently discovered collective Monte Carlo algorithm with a cluster
variancereduction techniquefor the two-point function of a-models. It is usedto determineboth
the nonpcrturbativemass and the asymptotic freedom scale ~ty~gfrom simulations of the
0(3)-modelwith correlation lengths up to 121 on large lattices.We also estimateA~gin lattice
units by studying the massgap in physically small volumes.Asymptotic scalingwith the hare
coupling still does not occur. We proposean approximatelattice /1-function that goes beyond
finite-order perturbation theory and leads to better scalingbehavior.The various methodsgive
rn/Am= 2.5—3.0 for the0(3)-model.

1. Introduction

In two dimensions the globally 0(n) invariant nonlinear a-models share the
propertyof asymptoticfreedomwith four-dimensionalgaugetheoriesif the symme.-
try group is nonabelian(n 2~3) [1]. As a consequenceone hopesthat the short
distancephysics can be reliably controlled by renormalizedperturbation theory
which looks structurallysimilar in the two cases,althoughit is complicatedby gauge

invariance. Most of the celebratedphenomenologicalsuccessesof QCD to dateare
basedon this assumption.At largedistanceeithertheory is expectedto nonpertur-
batively generatea physical scale, namely the massgap in the a-model and the
string tension between static quarks in QCD. At present, the nonperturbative
physics can only directly be accessedby numerical simulationsin a formulation
employinga lattice cutoff. We are then dealingwith classicalstatisticalsystemsin
two or four euclideandimensionsandapply Monte Carlo techniquesto them. It is
highly nontrivial to convince oneselfthat in this way onereally computesuniversal
featuresof the sametheory that is partially evaluatedin perturbationtheory by
ratherdifferent techniques(e.g.dimensionalregularization).The notoriousdifficul-
ties to verify the presenceor absenceof scaling are closely relatedto this kind of
questions of consistency.The main problem is that the nonperturbativescale
correspondsto the correlation length ~ of the statisticalsystem.As suchit has to
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satisfy several physical constraintsin a realistic field theoreticsimulation: The
overall extensionof the systemhasto be several~ in all directionsto avoid strong
finite-sizeeffects.At the sametime ~ hasto be largecomparedto the latticespacing
(=r I in lattice units) to separatethe ultravioletcutoff scalefrom physicalscales.The

perturbative regime is now expectedto lie at lattice distancesx which fulfill
I ~ix x ~z ~. Unfortunately,it hasbeenvery hardso far to perform simulationsat

largeenoughcorrelationlengthto satisfy all the aboveconstraintsandleaveenough
room to probe perturbativeandnonperturbativephysics in the sameMonte Carlo
run.

The main reason for this dilemma, at least in the two-dimensionalspin models,

was the phenomenonof critical slowing down: Oncethe correlationlength exceedsa
few lattice spacings, it takes an excessivenumber of iterations with standard
algorithmsto generateindependentunbiasedestimatesof physicalquantities.Elab-
orating on the Swendsen-~Wangalgorithm for Potts models [2], a new kind of
collective Monte Carlo algorithm has recently been developed[3] and shown to
eliminate slowing down in the x—y model [4] in the following sense: As we
simultaneouslyscaledup correlation length and sample size, the autocorrelation
time in CPU units (operationsper spin) remainedconstant.The algorithm also
performs favorably in the nonabeliancase. We use it in the present study to
determinethe ratio of the massgap to the perturbativelyintroducedA-parameter
solely from the correlation at appropriateseparationsin the scaling regimeof the
theory. This is achievedby high precision simulations with ~ up to 121 in the
0(3)-model.

Another possibtlity to relate the lattice scaleto the perturbativescalehas been
pointed out by Lüscher [51.The mass gap in a physically small volume with
extension of order ~ or less can be computedin perturbationtheory. If it is
determinedin a simulation at a bare coupling where one also knows the large
volume massgap,and if the perturbativecalculationis sufficiently accurate,then

the desired ratio of short-to-long distance scales follows, too. With standard
algorithmssuch a calculationsuffers from similar problemsas discussedbefore. It
has beenattemptedin ref. [6]. Due to the algorithmic limitations the evidencefor
scaling and universality in the 0(3)-model has not been overwhelming, and the
numericalestimatesfor the massin A-units scatterby a factor of aboutthreein the
literature.(Some earliersimulationsof the 0(3) model are given in ref. [7].)

We also report on a further algorithmic improvementin connectionwith the new
algorithm in the form of variancereductionor improved estimators.It booststhe
efficiencyof the simulation in the interestingparameterrangeby at least another
order of magnitude.

The paperis organizedas follows: In sect. 2 the variancereductiontechniqueis
presented.In sect.3 we analyzethe correctionfunction by fitting it to its theoretical
scaling forms at large and small distances.In sect. 4 data on the mass gap for
physically small volumesare reportedand discussed.The issue of scaling with the
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bare lattice coupling is discussedin sect. 5, and conclusionsfollow in sect. 6. In

appendicesA andB theuniversalshort distancebehaviorof the two-pointfunction
is derived by continuum perturbation theory and by using the renormalization
group.

2. Improved estimators and collective algorithms

In this sectionwe shall demonstratethat the percolationclustersappearingin the
collective updatingprocesscan further be used to define improved estimatorsfor

physicalobservables.They arequantitiesthatare rigorously shownto havethe same
meanas somecorrelation functionswith a variancethat is smaller than the oneof
the naiveexpressionin termsof elementaryfields. To bring out the generalideawe
consideran abstractobservable(9(a) averagedover field configurationsa with
someaction S(a),

<(9) = — IDae~~~(9(a) (2.1)zJ

where the normalizationfactor Z is the partition function. Any set of transition
probabilities W(a —s a’) that leadto a valid Monte Carlo processfor (2.1) obey

fDae~~W(a a’) = e_S(0’) (2.2)

i.e. they leave the Boltzmanndistribution invariant. Apart from updating we may
also employ W to definean observable

(9(a)= fDa’ W(aa’)(9(a’), (2.3)

and £9 and (9 trivially have the same mean due to eq. (2.2). Relation (2.3) can
becomepowerful if the summationover a’ canat leastpartly becarriedout exactly.
Then, for each a that is sampled, the whole class of a’ that is summedover
contributesto the expectationvalue. Note that W in eq. (2.3) doesnot haveto be
identical with the probabilities used for updating, and, if different, it does not
necessarilyhave to be ergodic for the presentpurpose.The well-known variance
reductiontechnique[8], for example,is obtainedby usingthe heatbathform for W
with local changesof fields just at the lattice sites where correlationsare to be
evaluated.Thus the observableis “delocalized” by oneor a few lattice spacings,and
one is rewardedby the reducedvariancefor collecting more information in the
measurement.In ref. [9] it was found that a truly nonlocal transformationcanlead
to very significantgains,and this will be exploited now in connectionwith the new

collectivealgorithm[3,41.
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From hereon we specializethe discussionto the 0(n) a-models,

z=flJ daxexP($~ax.ax+n)~ (2.4)
s,,_1

with the samenotationas in ref. [4]. For nonlocal updating we choosea random
direction r E ~ andactivatelinks <xy) with probability

Pr(1x,Gv)1~(Pfmh1[0,213~Jx1’0y~’]}. (2.5)

The resulting auxiliary bond percolationproblemnow definesa decompositionof

the A I = L
2 sitesof the periodicsquarelattice A into N~disconnectedcomponents

or clusters

i—Ne

A= U c
1. (2.6)

t=1

A classof algorithmsincludingthe onedescribedin refs. [3,4] is constructedby next
choosingoneclusterC c A, which is a unionof someof the componentsin {c1 } by
someprobabilisticprocessgovernedby probabilities M((c, }, C). We then flip the
r-componentof spins on C and havean overall transition probability to a new
configurationa’ given by

W(ao~)=fdr~Kr(a,tcj})~M((cj},C)~(aI,Rca). (2.7)
(c,} C

In eq. (2.7) K, is the probability to build a certain clusterstructure{c1 }, and the
first sum is over all possibledecompositions.The secondsumis over singleclusters,
and the s-functionandflip operationRC on C,

(RCa)x= t’~2~’~~c, (2.8)
ax ifa~~C,

havebeendefinedin ref. [4].Thealgorithmin refs. [3,4] amountsto choosingoneof
the componentsc, with probabilityproportionalto their sizes,

M
1(fc,},C)= ~~8CC, (2.9)

and we shall refer to it as the one cluster (1C) method. A generalization(to
continuousmany componentspins)of the Swendsen—Wang(SW) algorithm [2] is
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given by Msw({c1},C), which is obtainedby including in C each componentc,
independentlywith probability 1/2.

For M1 we proveddetailedbalancein ref. [4]. Herewe shall alsoneed Msw, and,
in fact, detailedbalancewill now be demonstratedfor arbitraryM. As discussedin
ref. [4], a transitionbetweengiven a and a’ = RCacanproceedonly throughunique
C and ±r apartfrom a set of configurationsof measurezero.Therefore

W(a —s a’) — ~(c,}’~r(a,{ci})M({Ci},C) 0

W(a’ a) — ~{c)Kr(a,fci})M((ci},C) (2.1 )

holds. Also, C definesa unique set of surfacebonds d C, and in the percolation
processesleading to any of the (c~}contributingin (2.10) these surfacebonds
cannotbe activated.Moreover, the activationprobabilities for bondsin 3 C are the
only onesdiffering asonestartsfrom a or from a’. If we cancelthe “nonactivation”
probabilitieson 3C, we get the equality

Kr(a,{ci}) — Kr(G’,{Cj)) 211

fl~XV>GaC(1 —pr(ax,ar)) — fl<XV)EBC(1 —p(G’a’)) ( . )

for all (c1} contributingin eq. (2.10). If one insertseq. (2.11) with eq. (2.5) into eq.
(2.10), the detailedbalanceequationfollows. Onecould use the freedomof selecting
M to influence the size distribution of flipped clusters if this should become
necessary(in more than two dimensions,for example).The 1C methodhashowever
the specialvirtue that one canconstructC without analyzingall c1.

We now considerthe observable

(2.12)

correspondingto the two-point function andimprove it as in eq. (2.3) usingthe SW
process,

{c,) C

(2.13)

Here we introducedthe spin projector in the r-direction, Pp~= r(r. az), and used
the fact that the perpendicularcomponentsof all spins remainunchanged.The
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averageof that part is by 0(n) symmetry

(fdra~.(1 Pr)~v) = (1— 1/n)(a~. a) (2.14)

as onesimply drops oneof the n componentsin the scalarproduct.In the sum over
C in eq.(2.13)eachof the componentsc, belongsto C “half of the time”. It is easy
to see now that wheneverx and y lie in different c,, the C-sumvanishesas the
productof the r-componentsin (RCa)~and(RCa),,are asoften positiveasnegative
andhaveconstantmagnitude.Thetwo-point function is thus alsogiven by ((9) with

(9(a)= nf drK,(a,(c, })~e(c,,x)e(c~,y)(r. a~)(r.~). (2.15)

The sumoverC hasbeencarriedout by the normalizationof ~ as a probability,
and the characteristicfunction e is definedas

(1 ifxEc.
e(c., x) = •1 (2.16)

0 otherwise.

Finally we adapteq. (2.15) to the iC-processby introducing M1,

~(a) = nf drKr(a,(cj})~Mi({cj},C)~e(C, x)O(C, y)(r. a~)(r.a,,).

(2.17)

Referringnow underthe average(...) to the clustersC anddirectionsr appearing
in the 1C-updateprocess,we may summarizeour constructionas

hAl
(er. °~)= n —~--(ra~)(r.a5,)e(C,x)O(C, y) . (2.18)

Eq. (2.18) constitutesa rather remarkablesimplification for estimatingthe funda-
mentalcorrelationfunction in the a-model.All quantitieson the right-handsideare
accessibleat almost no extra cost in CPU time as they appear in the cluster
construction[3].Theclusterprobabilities(2.5) imply that r~a~hasonly onesign for
all x E C, i.e. our observableis positive. Theexponentialdecayof the correlationis
thusproducedby the clustersizedistributionrather thanby sign cancellations,and
we shall find a strongly reducedvariancefor the simplereasonsgiven in ref. [9]. It
fits nicely with this picturethat we observedthat

(lCI)=k(n)x (2.19)
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gives the averagecluster size for 0(n)-models in terms of the susceptibility x
anywherein the scaling region. For k(n) we found k(1) = I (exact), k(2) 0.81
([4]), and k(3) 0.75 (this paper).Consequencesof summationsoverx, y in (2.18)

are

1/n= ~ (r.a,)~ (2.20)
CI xEC /

giving the averager-componentof spins aggregatingto a cluster, and

(2.21)

relating the magneticsusceptibilityto an averager-componentsusceptibilityin the
flipped cluster.

We concludethis sectionby forestallingsomepractical experienceswith measur-
ing correlationsby eq. (2.18). We simulatedthe 0(3) model on a 1282 lattice at

ii (/3 = 1.5). For the samenumberof clusterupdatestepswe determinedthe
massgapby fits to zero momentumcorrelationsbetweenseparations10 and60 with

standardestimatorsand with eq. (2.18). In the latter casethe error turns out to he
aboutfour timessmaller.With the time neededfor measuringbeing small compared
to updating,wehave thusgaineda factor16 in the CPUtime it takesto measurethe
correlationlength to a given accuracy.As the gain growswith separation[91we are
enabledto move to relatively largedistancesfor fitting masseswithout unreasonably
increasingerrors.This is highly welcomeas, with the improvedstatisticalqualityof

the new algorithm, we can now also reducesystematicerrors in masses,which
otherwise could become a new limitation. On the largest lattice in this study
(512 X 800), the errors (from binning) when determining~ 121 from correlations
at distances121 to 400 or from 363 to 400 differ by a factor of less than two. As for
autocorrelationswe shall find that measuring (2.18) after each cluster in the
simulation effectively representsan almost independentestimate. This means

that — once we have equilibrated the lattice we produce an independentlow
varianceestimate for the two-point correlation at all distanceswith an average
CPU-workof O(x) (n correlationvolume) operations.This refers to an implemen-

tation of the IC algorithmas presentedin ref. [31.

3. Correlation function at long and short distance

The 0(n)-invariant spin—spin two-point correlation function can be used in a
lattice simulation to deriveboth the nonperturbativemassgapand the asymptotic
freedomscale.We estimatethe massgap m in the 0(3)-modelby fitting the zero
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TABLE 1
Largevolumeresultsfor themassgap m andsusceptibilityx of the0(3) a-model.The numberof

generatedclustersis ~ C, and ~andI characterizeautocorrelations

/3 T L ~C/10
6 m1 x

1.4 64 64 4.1 6.90(1) 78.9(1) — —

1.5 128 128 6.1 11.09(2) 176.3(2) 120 0.4
1.6 256 256 2.6 19.07(6) 451.2(8) 100 0.2
1.7 256 256 2.6 34.57(7) 1262(3) 70 0.3
1.8 512 512 2.6 64.78(15) 3832(7) 80 0.3
1.9 800 512 0.64 121.2(6) 11561(48) 40 0.4

spatialmomentumcorrelationfunction to the form

~ (az, a~)=A(etm + eTt)m). (3.1)
x=(x

1.x2)
= (v1 ~2 + 1)

Here the spacecomponents(i) of x andy are summedindependentlyover all space
of length L to project on zero momentum.The time coordinates(2) are kept at
variable separation0 ~ t ~ T/2, and time periodicity T is properly taken into
account.For the fit only large enought-valuesmustbe used,where the contribu-
tions of statesof higher energy than the lowest zero momentumstateabove the
vacuum are negligible. We performedall massfits by selfconsistentlystarting the
fits at about t = m

1,2m’, and3m’ up to T/2. Theexpectedsystematictrendto
smallerrn-valuesisjust visible, but it is neverlarger thanour small statisticalerrors

which are determinedby the usualbinning procedure.We decidedto quoteall mass
valuesin this paperfrom fits startingat 2m ~.Resultsfor a numberof /3-valuesare
found in the first columnsof table1 togetherwith the lattice size andthenumberof
clusters ~ C generated,which equalsthe numberof estimatesof the two-function.

Also in this studywe madean effort to analyzethe structureof autocorrelations
betweenthe improved estimatesrelatedto successiveupdateclusters.We definethe

autocorrelationfunction

F(t) = (~S~S+t) - (~)2 (3.2)

where~ is the improved estimatorfor the susceptibility(2.21) from the s th cluster
in the simulation. We choosex here as a representativelong-rangequantity. We
found that typically F(t) dropsby a factorof orderiOO from t = 0 to t = 1, andthat
only for t ~ 1 it behavesroughly exponentiallywith a scale i>> 1. For this reason
we try to estimatenot only the usual integratedautocorrelationtime [10], but
separately

r=F(1)/F(0) (3.3)
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and

T=~j~F(t). (3.4)

The infinite sum in (3.4) is of coursetruncatedto somewindow W as discussedin

refs. [4,10]. The error ax, correctedfor autocorriations,is thengiven by

F(0)
a~~=—~-(1+2r~). (3.5)

A glanceat table1 showsthat the factor in bracketsin eq. (3.5), which correctsthe
naiveerror estimate,doesnot grow largein our simulations.This errorestimatewas
also found consistentwith errorsfrom binning, which we monitoredin additionfor
each observable.Due to the small amplitude of the tail of the autocorrelation,it
would be verywastefulnot to measureeachclusterin spiteof the fact that theyare
asymptoticallycorrelatedon a time scalelargecomparedto unity. Justbecauseof
the smallnessof F it is rather hard— andunnecessaryfor the error estimate— to
determine~ accurately.Typically the window W could only be taken2f. . . 3~wide
becauseof noise.One shouldsafelyallow for about20% error for ~ in table 1. In
improvedestimatesof short-distancequantitieslike the nearest-neighborcorrelation
no autocorrelationsare detectableat all. This is rather different from standard
estimatorsin conjunction with the cluster algorithm [3,4]. There, short-distance
quantitieswereharderthan long-distancecorrelations.

It may seemthat the autocorrelationtime F is not so small. Betweensuccessive
measurements,however,we perform only of order (IC I) O.7S~operations.As in
ref. [4], we haveto convert~ to

(ICI) x
(3.6)

LT LT

before it is comparableto “sweeps”. We then derive valuesbelow one as in refs.
[3,4]. We concludethat we presumablyseethe samefundamentalautocorrelation
time as with standardestimatorsfor the 1C algorithm. Only the amplitudeis very
small — which is just as important from a practical point of view as far as
equilibrium measurementsare concerned.If a precise determinationof the relax-
ation time is the main objective,thenstandardestimatorsare preferable.A physical
picture behind the smallnessof e is as follows: Sinceeachestimateentirely results

from the one cluster that is flipped, it takes— roughly speaking— overlapping
successiveclusters to get strongly correlatedestimates.Eachclusterstarts from a
random site, grows to a typical size (IC I.)~and thus the overlap probability is
controlled by (IC I )/LT, which is of the sameorder as r.
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(a)

500—

300T

/
0 ~ ~1v~ ~J~

30 30 50 30 90
rime [~i ip/ ~Hn~

Fig. 1. (a) Equilibrationof the magneticsusceptibilityon 1282 at /3 = 1.5 (correlationlength 11) from
a “hot” start.The time unit is comparableto sweeps.The dashedline is the equilibrium averagetaken

from a long run.

With short autocorrelationtimes at equilibrium we also found equilibrationeasy

to achieve.During an equilibrationrun of for instance1000T all observablessettle
to fluctuatearoundequilibrium values, andthis takesa negligiblefraction of the run
time. In fig. I we seeas an examplethe equilibrationof the 1282 lattice at /3 = 1.5
from disorderedand orderedstarts.The standardmagneticsusceptibility(left part
of eq. (2.21)) is displayed as a typical observablehere, and the evolution time is
madecomparableto “sweeps”by addingup the occurringcluster sizesanddividing
by the volume as discussedafter eq. (3.6).

At short distancebut still in the scalingregime,i.e. for i << xl << m1,we fit the
two-point function to (B.21) of appendixB. Specializingit to n = 3 and inserting
numericalconstantswethusdetermineA ~ in lattice units by fitting

logt 0.1159 2

(o~a~_B(t+logt+1.I159+~+ ~ ), (3.7)
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(b)
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20 60 ~00 140 180
rime [ ~l ip / spin]

Fig. 1. (h) Sameas(a) from a “cold” start.The scaleof theverticalaxis changesat t = 60.

where

t= —log(A~xj). (3.8)

As input for thesefits we measuredthe correlation function parallel to the spatial
lattice axis at the nearestintegerdistancesto xl = 21/2,21 2h1/2,26. Also mea-
sured, but not used in the fit, were correlationsalong the lattice diagonal over
distancesthat are larger by a factor V~.For the somewhatlargerseparationswe get
pairs of points in this way which havealmost identical euclideandistancesbut
maximally different orientation relative to the lattice axes. Their comparison is
indicative for the degreeof restorationof rotational invariance.For /3 = 1.9 we list
thesecorrelationdata in table 2. Fit and data are plotted in fig. 2. For best fit
parametersB, and A~ taken from a least-squarefit, the differencebetweendata
and fit is given in multiplesof the statisticalerror of the dataat eachdistancelxi.
Oneunit on the vertical axiscorrespondsto a relativediscrepancyof 1 X I0~—2><

iO~dependingon the distance(seetable2). We seethatweobtain a rathergood fit
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TABLE 2

The correlationfunctionat short distancefor/I = 1.9

On axis Diagonal

Ixl Kaoa~) Kaoo~)

1 0.7072(7)
2 0.5862(6) 1.41 0.6331(7)
3 0.5188(6) 2.83 0.5246(6)
4 0.4735(6) 4.24 0.4630(6)
6 0.4127(5) 5.66 0.4206(5)
8 0.3714(5) 8.49 0.3628(5)

11 0.3272(5) 11.3 0.3232(5)
16 0.2772(4) 15.6 0.2808(4)
23 0.2307(4) 22.6 0.2328(4)
32 0.1902(3) 32.5 0.1884(3)
45 0.1507(3) 45.3 0.1501(3)
64 0.1129(2) 63.6 0.1135(2)

from lxi = 45 (~ 1/3 of the nonperturbativecorrelation length) down to a few
lattice spacingsalong the axis.For xi ~ 8 coincidencebetweenrotationally invari-

ant fit and both on-axis and diagonaldatais betterthan iO~.The clearly visible
discrepanciesat very short distanceare actually rather small on the scale 1/1x12
expectedfor lattice artifacts.The matchingof the fit below the one-a level in the
mediumrangeof fig. 2 shows that, of course,dataat various separationscoming
from the sameconfigurations(clusters)are not independent.Beyond x~= 45 the
dataabruptly breakaway from the perturbativeformula with on-axisanddiagonal
points stayingtogether. This, of course,has to be the case,as the correlationcan

10

3rium — GP~t

—10 ~‘

3 1. 8 lxi 16 32 64

Fig. 2. Difference betweenthe numericaltwo-point function for /3 = 1.9 (seetable 2) anda fit to the
perturbativeform (3.7) in units of thestatisticalerrorswhich correspondto an accuracyof 1 X iO~—

2 X 10 ‘. The dots areon-axiscorrelations,andcrossesdenotecorrelationsalongthelatticediagonal.
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TABLE 3
PerturbativeenergyscaleAg~gin latticeunitswith statisticalerrors,rangeofon-axis separations
whereit is fitted, andratio of long-to-shortdistancescalewith anestimateof systematicerrors

/3 Range Am m/Am

1.9 8—. 32 0.00321(1) 2.55(10)
1.8 6—.23 0.00611(1) 2.53
1.7 4—. 11 0.01169(2) 2.48

becomenonperturbative,but it has to stay rotationally symmetric until it feels the
rectangular shape of the torus. The breakaway is clearly caused by t in the

perturbativeformula (3.7) not being large anymore.The bare correlation (a,,.a~)
decayssmoothlywith x~.In table3 resultsfrom similar fits for various/3-valuesare
listed. The secondcolumn gives the rangeof on-axis correlationsused in the fit, and
in the next column the resulting A~ in lattice units follows. There the quoted

errors are purely statistical, i.e. we pretendedthat (3.7) is exact andonly analyzed
by binning how well AM-s is fixed by the data. Since in the fitted range I is not
really very large(2 . . . 4), it is likely, however,that the systematicerror coming from

our ignorance of higher-orderperturbative terms is much more important. To
estimateit we report on a numberof additional experimentswith the /3 = 1.9 data
and indicate the level of changesof AM-s in parentheses.We first moved the fit
window by one (measured)point in either direction (1/2%). Then, according to

(B.21), we optimized the schemeparameterc leading to c = 0.28 and reconverted
the obtainedvalue for A,, toA~ (1%). Finally, we addeda term —log2(t)/(212)
underthe bracketin (3.7). Thisis the next term in (B.18), andwe hopethat it gives

us a feeling for possibleeffectsof the next order in perturbationtheory (3%). This
type of uncertaintyis used as an error estimatefor the ratio rn/A~ in the last
column of table 3. For QCD practitionerswe addthat the MS-schemecorresponds
to c = — 0.97. Thisvalue leadsto a rathervigorousresummationof the perturbation
seriesin a direction oppositeto schemeoptimization.A fit in the MS-schemeleads
to a 10% larger valuefor A~.For a pessimisticestimateoneshouldperhapsalso
allow for errors of this size. At smaller /3 the window, where a fit of the short-dis-
tancecontinuumbehavioris possible,shrinks. However, usingour experiencefrom
/3 = 1.9 that on-axis correlationsshow little lattice artifacts, we may shift the fit
window downwardand obtain the remaininglines of table 3. We regard this as
reasonablescaling behavioras the correlation length changesby a factor of 4.

Oneshould,of course,be awareof the fact that systematicerrorsfrom higher-order
terms scale, too, under this procedure.Thus stability does not necessarilyimply
accuracy.Also, for the desiredratio rn/A ~, one in principle has to extrapolatethe
massesof table 1 from finite to infinite L. For the 0(3)-model at hand this is

possiblewithout further parameterson the basis of Lüscher’s formula [11]. For
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/3 = 1.9 and L = 512 we find a 1% changeto ~ = 122.5,which is includedin table
3, and changesfor the other simulations are negligible. Clearly, in view of the
uncertaintiesin A ~, statisticalandsystematicerrorsin rn are immaterial.

4. The massgap in a small volume

Lüscher[5] haspioneeredthemethod of usingfinite volume effectsas probesfor

universalphysicsin asymptoticallyfree theories.In particular, if the length scaleL
given by the spatial volume is smaller than or perhapscomparableto the inverse
mass gap of the transfer matrix rn’(L), a relation between the three scales
rn, L, A~ can be derived by renormalizedperturbation theory. For the 0(n)
a-modelsthe relationreads

—1(1)
rn(L) = e( n —2 ) (ze~)1”~”21(I + a

1z+ 0(z2)), (4.1)

AMS 4~ ~r(n 1)

where the dimensionlessexpansionparameteris

z=Lrn(L). (4.2)

The leading terms in eq. (4.1) have been calculatedas infinite cut-off limits in

dimensionalregularization[5] and on the lattice [12]. Floratos and Petcher[131
report the value

a1 0.32/(n — 1) (4.3)

for the order z correction. Their calculation is at two-loop order but requires
knowledgeof the three-loop/3-function [14].

We shall useeq. (4.1) togetherwith a lattice simulationto find the lattice spacing
in physicalunits that correspondsto certainvalues /3 of the bareinversecoupling.
More precisely,for n = 3, we solve eq. (4.1) for the A-parameter

e’~’~
—1 ____ 2/~2

AM-S~rn(L) 8~2 e -z (I+a1z), (4.4)

with rn and A ~ in lattice units. For largeenough /3 (/3 = 1.9 for instance),one
hopes to find a range of L where the right-hand side of (4.4) is approximately
L-independentandyields a good estimateof A~. This range is restrictedby two
different effects. If L grows at fixed /3 we leave the small volume domain and z
grows beyondorder one. Eventually it will evendivergeas rn ( L) saturatesat the
infinite volume value. Since we know only a few terms of an asymptoticsmall z

expansion,we cannotexpecta decentapproximationbeyondz ~ 0(i), and it may
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TABLE 4
Inversemassgapsm in small volumes

1. /1 = 1.7 /3 = 1.8 /3 1.9

8 9.80(2)
12 10.84(2) 12.38(3) 13.80(3)
16 13.38(3) 15.52(4) 17.60(4)
18 14.55(4)
20 15.68(4) 18.54(5) 21.02(5)
22 16.71(5)
24 17.68(5) 21.13(5) 24.34(6)
26 18.58(8)
28 19.54(5) 23.69(6) 27.44(7)
32 21.13(6) 26.14(6) 30.49(7)
64 41.3(2) 51.1(3)

even have to be rather small. At small L the cutoff given by the lattice spacing
becomescomparableto our physical scales,andlattice artifactsare important.

Resultsfor the inversemassgap rn’(L) for some L and threedifferent /3 are
listed in table 4. Most of theseresults stemfrom runs with T= 512. Only in some
casesolder runswith T= 128 or 256 werealso taken into accountafter ascertaining
the absenceof systematicdifferences.Again, only time separationslarger than
2m’(L) enteredinto fits. The plot in fig. 3 exhibits the finite volume data in a
direct fashion without further theoretical input. It shows good scaling behavioras
data from /3 = 1.7,1.8,1.9havebeencombined.

£

‘C

0.5 ‘C

A f3 symbol
17 ‘Cm(L)
1.8 -

1.9

0.0 ‘ Lm(~) ‘ 0.5 1.0

Fig. 3. Finite volume massgap scalingbehavior(seetable4).
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30

2.5 k

4 ~

4

2.0

0.7 1.0 z 1.5

Fig. 4. Infinite volume massgap in units of theperturbativescaleAm whichin turn is derivedfrom the
finite volume massgap. Errorsare 2a.

In fig. 4 we combinethe small volume data,(4.4) without the a1z term,and the
largevolume massesfrom table I (extrapolatedto L = o,z [ii]) to plot rn(cc)/A~
versusz. It is perhapsnot superfluousto emphasizethe distinct natureof this plot
from those foundin refs. [5,6,13], wherethe authorstry to extrapolatern(L)/A~
to z —~ oc. The basically smallerrors of m(L) are stronglyamplified in fig. 4 by z
enteringas exponentinto the theoreticalformula, and much more fine structureis
exhibitedthanin fig. 3, where symbolsare largerthanerrors.Datapointsbelonging
to the same/3-value can be joined by smoothcurves if the errors are taken into
account.These curves, however, seem to systematically come down with /3 by
marginsaboveour errors.This tendencyis strongerat small z which meanssmaller
L. This suggestsnon-universalfinite lattice spacingeffects as a possible origin.

Close to z = i, for example,there are two nearby data points from /3 = 1.9 and
L = 28, and from /3 = 1.8 and L = 16. From the finite lattice calculationin ref. [12],
the one-loop lattice perturbationtheory contributionto the finite L effects canbe
extracted.It lifts the L = 12 pointsby 1.3%, and the correctionfor otherL follows
from its being proportional to L

2. For /3 = 1.9, L = 8, the dotted bar shows the
data point correctedby 3%. We must conclude that the one-loop finite lattice
spacingcorrectionhasthe wrong sign to explain the non-universalitythat we see.
The inadequacyof one-loop lattice perturbationtheory may perhapsnot be too

surprising.The leadingterm rn — ‘(L) /3L has to be loweredby almosta factor two
by the i//3 corrections.While one expects that the resummationin terms of
renormalizedquantitieslike in eq. (4.1) leadsto betterconvergence,it is not clear in

generalhow well non-universalcorrectionsare representedby the lowest order.
In the absenceof a quantitativehandleon the finite L corrections,we couldnot

think of an entirely convincing way to extrapolateto z = 0. The line in fig. 4
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extrapolatesthe point (1.0,2.5)that is suggestedby the /3 = 1.9 dataat not too small
L, usingthevalue a1= 0.16 of ref. [13]. It endsat rn/A~_~3. The slope is roughly

consistentwith the data.

5. Scalingwith the bare lattice coupling

For large valuesof the inversebare lattice coupling /3 all physical quantitiesin
asymptotically free theoriescan be related to a renormalizationgroup invariant
energyscaleA(/3) definedas a solution of

/3
I+B(/3)~ A(/3)=0. (5.1)

Here A is in lattice units, and the lattice beta function B(/3) has a perturbative

expansion

B(/3)= ~B,$’. (5.2)

The first two universal coefficients are identical to those in any perturbative
renormalizationscheme(seeeq. (B.3)),

B0= (n — 2)/2~, B1 = (n — 2)/(2~)2, (5.3)

and the non-universalthree-loop coefficient for the standard lattice action is
reportedin ref. [15] to be

B2 = [(n — 2)/(2~r)~}h, h = 0.516— 0.086(n—2). (5.4)

The solution to eq. (5.1) with the standardchoicefor the integrationconstantis

A=ALX, (5.5)

with

AL=eBo(/3/Bo)81~ (5.6)

and

1 1 B1~
A=exp/ I du ——+——— ~. (5.7)

B(u) B0 B~u )

In the three-loopapproximationwe thushavefor the 0(3)-model

A = e2TT42~/3[11+ (1— h)/2ir/3 + 0(1/132)]. (5.8)
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TABLE 5
Resultsfor nearestneighborcorrelationE. andratio of scalesrn/Am convertedafterevaluation
with thelatticeA-parameterin variousapproximations.Errorsin the last column reflect theeffect

of theuncertaintyin E whenusedin eq. (5.21)

/3 E Two-loop Three-loop (5.19)

1.4 0.5620(1) 4.00 3.76 2.03
1.5 0.6016(2) 4.36 4.11 2.42
1.6 0.6359(3) 4.45 4.22 2.71
1.7 0.6634(3) 4.33 4.12 2.80
1.8 0.6878(3) 4.09 3.90 2.82(1)
1.9 0.7072(7) 3.84 3.67 2.74(3)

A physical energy,asfor instancethe massgap rn, is expectedto tend to a constant
multiple of A for /3 —~ cc. This behaviorshouldbe acceleratedby inclusion of the
three-loop term in X * 1. The A-parametersof different renormalizationschemes
canbe relatedin the cut-off limit. In particular,it is known that

AL/A~=32’~2exp—-—-f (5.9)
2(n—2)

holds for the 0(n) a-model[5]. We combineeqs.(5.8) and (5.9) with our dataon
mass gaps for infinite volumes to compile table 5 with estimatesrn/A~. It is
evidentthat thesevaluesare by no means/3-independent,not evenmonotonicif we
include /3 ~ 1.6. This may explain someof the confusionabout this quantity. The
suspicionthat somecoefficientsof higherordersin I//3 in eq. (5.8) cannotbe small
is confirmed.Moreover,the values rn/AM-S in table5 are about30—50% higherthan
thosederivedfrom morephysicalquantitiesin tables3 and4. It may,however,also
be noted that the tendencybeyond /3 = 1.6 and also the 1/132 term in X work at
least in the right direction. Nevertheless,asymptoticscaling in the bare coupling
with the standardlattice action is far away evenat correlation lengthsaround100.

We now presenta semi-phenomenologicalform of the lattice /3-function that is
moresuccessfulwith regard to scaling. In ref. [16] an observablewas introduced
which is closely related to coupling constantrenormalizationin the background
field definition. It makesuse of the generatorsJ”, i <j=i n of the S0(n)
symmetryof the a-model,that acton the sameHubert spaceas the transfermatrix
exp(—H)and generateglobal rotationsin the i—j planeof spin space.In ref. [161
(see also ref. [4] for n = 2) it was shown that the thermal expectationvalueof the
S0(n )-Casimiroperatoris given by simpleeuclideanobservables,

/ \ Tr(e - rilE . ( j ij )2)

~ (JIJ)2~ = T ‘p” = (n - I)(/3E - C). (5.10)
re
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Here E is the nearestneighborcorrelationin time direction,

E=(L/T)(a~.a~±i), (5.11)

and C [16] is thesusceptibilityof the Noethercurrent

(n —i)T2 ,~ ((~G. t’~~X+~)). (5.12)

In eq. (5.12) t’-’ are the real antisymmetricn >< n matrix generatorsof S0(n). The
hamiltonian H and Casimir-operatorE(J”)2 may be diagonalizedsimultaneously
in a basis 1k) with eigenvalues8k and q~.We then have

E e_TEk 2 (5.13)

which shows that Q2 is a dimensionlessphysical quantity: A combination of
energiesof low-lying statesand the inversephysical temperaturein lattice units T
with group-theoreticallyfixed coefficients.We may thuscontrol the scalinglimit by
keepingQ2 fixed when /3 and L, T (L/T also fixed) diverge.We now specializeto
L = T. If Q2 is not small but kept fixed at a valueof 0(1), then it is clear from eq.
(5.13) that we are taking a scaling limit at physically small volume with size and
temperaturecomparableto the massgap. This is quite similar to Lüscher’s small
volume massgap [5]. We just do not have to isolate the lowest excitation, and
thereforeQ2 is an “easier” quantity. It will be interestingto studyit numericallyin
more detail (with the new algorithm) than it waspossiblein ref. [15].

Herewe just want to use to derivethe lattice 13-function from

a a
L-~----+B(/3)~Q2=0. (5.14)

Usingeq. (5.10) it is given by

B(/3)=L~,,~
7/(~(/3E)_.~‘-). (5.15)

wherewe usedthe factthat E becomesL-independentfor largeL. Theperturbative

expansionof E is easily derivedto secondorder.

E=l _(n_1)/4/3_(n_l)/32/32+0(1//33), (5.16)
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andfor C we introduce

C= C0(L) + C1(L)/f3 + 0(1/132). (5.17)

If we expand eq.(5.15) in 1/13, we find the universaltermsof the /3-functiongiven
by the logarithmic divergenciesin C0 and C1,

3C 1

B01 = lim L °‘ , (5.18)
L—oc

and the one-loop term has been computed in this way in ref. [16]. It matched
numericalresultsfor C ratherwell at larger13. We now make the crucial observation

that in the two-loopapproximationunderlyingthe searchfor asymptoticscaling,the
term /3/d/3(13E) is replacedby 1 as it is formally of order 1/132. If on the other
hand,we estimateit between/3 = 1.8 and1.9 from the datafor E in table5, wefind
it quite comparableto the two-loop 1/13 term from C1. We are thus motivated to
keeppart of thehigher-orderterms in eq. (5.15) and usethe approximation

- a -1

B(/3)=(B0+B1/13) ~/3E . (5.19)

Inserting B in eq. (5.7) leadsto

~ a 1 B
logX= J du —uE(u)— 1 — — —~--- , (5.20)

/3 au B0 B0u

The integrationcanpartly be carriedout,

1 n—i B1 E(u)+uE’(u)—1~
logX=— __-__+/3(1_E(/3))__f du ~. (5.21)

B0 4 B0/3 U

The first terms lead to X = 1.42 at /3 = 1.9, a rather sizeablecorrection.The term
with the remainingintegral requiresknowledgeof E(u) at large/3. Herewe usedthe
mean-field approximationof ref. [16] which reproducesthe numerical value at
/3 = 1.8 with an accuracyof better than 1%. Moreover, if one expandsthe saddle
point equationfor large/3, one recoversthe perturbativeterms in eq. (5.16). The
leading mean-field approximationfor E can easily be refined, but we found it
sufficient to evaluatenumerically the secondterm in eq. (5.21). It lowers X at
/3 = 1.9 by about5% andthuspreservesthe maineffect. The lastcolumn in table 5
quotes rn/AM-S with the /3-function B including both terms in eq. (5.21). We find
thesevaluesmuch morestableandmoreconsistentwith our otherresults.
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Although the precedingresult,that the nearestneighborcorrelationcontainsa lot

of information aboutlattice artifactsthat canbe correctedfor, is pleasant,we must
point out a consistencyproblemhere. Our approximationB in eq. (5.19) contains
the correctuniversalterms andalso a certainthree-loopterm —B0(n — 1)/(32/32).

It differs from eq. (5.4) by the sign and a factor of 5 in magnitudefor n = 3. The

successof .~ would be more plausible, if it approximatelycontainedthe correct
three-(andhigher) loop terms.Any attemptto simply add a 1/132 term to B to fix
the discrepancyled to bad scaling behavior. In our opinion, it would be very
desirable to perform a secondindependentcalculationof B2. Starting from eq.
(5.15) this may even be possibledirectly on the lattice, as we do not need any
wavefunctionrenormalizationfactors.This is the typical efficiency of background
field techniques[17]. To conclude,we suggest,evenin the absenceof a foundation
like eq. (5.10), to try to use the mean plaquettein lattice gaugetheory to phe-
nomenologicallyimprove scaling in a similar way as in the presentstudy of the
0(3)-model.

Noteadded

After completion of this work the author learnedof ref. [22], wherethe internal
energyis used to improve asymptoticscalingin a similar spirit.

6. Conclusions

In our new applicationwe found the collectiveMonte Carlo algorithmto work as
well in the nonabelian0(3) a-model as it did in the x—y model. Critical slowing
down did not poseany problemsin thesestudies.Variancereductionby improved
estimatorsled to a further significant gain in efficiency, at least for the two-point

function. Apart from equilibration,the lattice maybe enlargedat no costother than
memory if the correlation length stays fixed. This is due to the fact that with
improved estimators and collective updating it is the correlation volume which

determinesthe averagenumber of operationsnecessaryfor an estimate of the
correlationfunction at all distances.With morefast computermemoryavailableone
could envisagethe simulation of spin systemsyet closer to criticality than in this
studyor in ref. [4].

We concentratedon the ratio rn/A ~ in investigatingthe physics of the 0(3)-

model.Threedifferent methodsled us to valuesbetween2.5 and3. In particular,we
saw the two-point function assumeits universal perturbative form in x-ranges
simultaneouslysmaller than the correlationlength but much larger than the lattice
spacing.As a byproductthe rotational invarianceof the two-point functionshowed
up in a very directfashion.The smallvolume methodremainedsomewhatinconclu-
sive, sinceevenbelow z= I the extrapolationto z = 0 is noteasy,andthemethodas
applied here becomesextremely sensitive to errors in rn(L). A more or less
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horizontal extrapolationof the smallestz datain fig. 4 would be more consistent
with our remaining results but in conflict with ref. [13]. Intriguingly good results
were obtainedwith an approximatelattice /3-function that usesinformation on the
nearestneighborcorrelationto correctfor higher-ordernon-universalterms.

We think that we haveconfirmed with the study in this paper and ref. [4] how
importantit is to developimprovedalgorithmsandtoolsratherthanjust relying on
ever faster and bigger computers. In two-dimensionalmodels we probed a new
domainof couplingswhere the spin systemsare much closer to criticality or field
theoreticbehaviorthan in past studies. Further qualitatively new questionscanbe
tackled in the future. The lessonconcerningfour-dimensionalnonabeliangauge
theoryis in our opinion thatpresentday datashouldbejudgedwith greatcare.One

shouldfrom time to time ask oneselfwhat onecould andwould concludeaboutthe
a-modelat similar lattice size, correlationlength andstatistics.Clearly the develop-
mentof a comparablecollectivealgorithmfor gaugefields is an importantgoal now.
As fast computermemorywill becomemoreamply availablein the near future we

could then very significantly boostour understandingof realistic quantum field
theoriesbeyondperturbationtheory.

I would like to thank Martin Lüscherfor discussionsandadviceat everystageof

thiswork andfor making ref. [12] availableto me. The simulationswerecarriedout
on the Cray X-MP/216 at Kiel University.

Appendix A

CORRELATION FUNCTION IN PERTURBATION THEORY

In this appendixwe compute the renormalizedtwo-point function of the 0(n)
a-model in the two-loop approximation. Using the position space dimensional
regularization technique(DR) of ref. [18], we take particular care to correctly
identify the x-independentconstantsin the correlation function which set the scale
of the logarithms.For the same reasonwe introducea magneticfield as infrared
regulatorwhich is sentto zeroonly afterrenormalizationin the minimal subtraction
scheme.An analogouscomputationfor the SU(n) X SU(n) matrix model, from
which the presentcalculationis largely plagiarized,can be found in ref. [121.The
standardparametrizationfor the perturbativeexpansionof the a-modelis

a(x) = ((I - ~2(x))1/2 ~(x)), (A.1)

wherethe bare field ir(x) hasn — 1 realcomponentswhich are alwaysappropriately
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contracted.The expansionis generatedby the action

I (a~2)2 1 2
S(7r) = —~fd’3x (air)2+ 2 —2h

0(1 ~2) / , (A.2)
2g0 4(l—tr )

where x = (x1, x2, y1,..., YD2) is the D-dimensional extension of the position
x = (x1, x2), and a in eq. (A.2) is the correspondingderivative. Contact terms

arising from the measureon the sphere are regularized to zero in DR. We
implementthe renormalizationprogramby eliminatingbareparametersby

g~=~sgZ1 (A.3)

and

h0=hZ1Z~~
2, (A.4)

with e = 2 — D, and the renormalizedtwo-point function then reads

G(x) = fdD_2yZ_1((I — ~2(o))1/2(I — ~2(x))t/2 + ~(0)~(x)). (A.5)

The unphysical componentsy of x are integratedover which correspondsto
vanishingunphysicalmomenta[18]. The correlationG will be finite for r —~0 with
appropriateMS renormalizationconstants

Z = I + g2Z”> + g4Z~2>+ ... (A.6)

and

Z
1 = 1 + g

2Z~’>+.... (A.7)

After rescaling ~r—~g
0~rwe expandthe actionas S = S~+ g

2S
1+ ... with

so=~fd~~T(_a2+h)~r (A.8)

and

Si = ~fdDx {h (z~°— ~z(’))~2 + ~h~(~2)
2 + ~( a~)2}. (A.9)

We further obtain

G(x) 1 +g2G
1(x) +g

4G
2(x)

=Z_ifd~2y(1 +g
20

1(x) +g
40

2(x)), (A.10)
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with

01(x) = ~(~r(x)7T(0)— ¶2(0)) (A.ii)

02(x) = Z~’~O1(x)+ 2~{~2(x)~2(0)— (~2(o))2} (A.12)

The averagewith the full action reducesto (...)~ with S0 only in

G(x) Z
1 fdD_2y fi + g2(0

1)0+ g
4((0

2)0— (01S1)c0)). (A.13)

We now evaluate

G1(x) = JdD_2y [_Z(1)+ (01(x))0}

= fdD_2y[ —Z~
1~+ ~F(~ — 1)(D(x) — D(0))} (A.i4)

with the D-dimensionalpropagator

dDp
D(x) = f dtJ Dc

0 (2’ir)

- D/2
= f dt (4lTt) e~’~2”~~ (A.15)

0

solving

(—a2+h)D(x)=~(x). (A.i6)

With fdD_2y = 1 + 0(z) [18]we get

F n—i 1

G
1(x) = JdD_2y I —Z

11~— (4~jz2/h) F(z/2)I
L 4~ i

n—i
+ p~K

0(h
1/2~x~)

~ n —1 {Ko(h1/2Ixi) — ~log(4~~z2/h) 1
____ — _F’(i)}~ (A.17)

2~ 2
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provided we insert the well-known result

n—il
= — _____ — . (A.18)

2vr z

Usingan expansionfor the Besselfunction K0(z) —log(z/2)+ F’(i) as z —*0 we
can now turn off the magneticfield h andwe are left with

G1(x)= ~{_log(~Ixl)+ ~F’(1)- ~log~}. (A.19)

In the next order we obtain

G2(x) = [(Zm)2 — Z(2)Jfd~
2y+ (z~’— Z0)){Gi(x) + Z(1)fdD_2y~

+ fdD~y ((0
2(x))0 — Z~(O1(x))0— (O1(x)S1)~). (A.20)

The gaussianexpectationslead to

(02(x))0 - Z
111(0

1(x))0= ~2~(n -1) f [D(x)]
2 - [D(o)]2} (A.21)

and

(O~(x)S~)~= ~2F(n - i)D(0)(D(x) - D(0))

+(n_1)h[~(Z~1)_ ~Z11~)+~t2~D(0)(n_3)/2]

X JdDz { D(z - x)D(z) - [D(z)]2}, (A.22)

wherewe also usedeq.(A.16) andput Y3(0) = 0 (DR). With eq.(A.15) we integrate

fdD_2xfdDzD(z — x)D(z) = ~ ~
2Ki(h~2ixl) (A.23)

and

fdDz [D(z)}
2= ~(4~/hy/’2F(I + z/2). (A.24)

Cancellingall divergenciesby the choices

= (n — l)(n — ~)/(2i~)2z2, Z~’1= —(n— 2)/2i~z, (A.25)
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the second-ordertermcanbe written for z —s 0 as

G2(x) = [G~(x)}
2 - (nI) (n - 3)[~F’(i) + ~log(4~2/h)~

x[h1/2lxlKt(ht/~2ixi)_i]. (A.26)

As expectedthe limit h —s U exists and leavesus with the simpleform

G
2(x) = [Gt(x)]

2/2(n - 1), (A.27)

and

G(x) = 1 + ~(n - i)[ -log(~~x~)+ a] + ~2(n - i)[ -log(~~x~)+ a]2 + 0(g6)

(A.28)

with

a=~(F’(1)—log~). (A.29)

We wish to remark that eq. (A.28) has also beenderived with a finite volume as

infrared regulator [19]. In ref. [20] no explicit infrared cutoff is introduced. The
absorption of the surfaceof the sphere SD into the bare coupling in ref. [20]
correspondsto a finite renormalizationof j.t. If one takesthis into account,then the
resultagreeswith ours,too.

Appendix B

INTEGRATION OF THE RENORMALIZATION GROUPEQUATION

In appendixA wecomputedtherenormalizedtwo-pointcorrelationG = G(p.x, g2)
of the 0(n) a-modelin the minimal subtractionschemeup to order g4. It has to
fulfill the renormalizationgroup (RG) equation

[~+/3(g2)~ +y(g2)]G(~x,g2)=0. (B.1)

The /3- and y-functions are known to the threeleading ordersin the MS-scheme
[14],

/3(g2) = —g~(b
0+ b1g

2+ b
2g

4)+ 0(g10) (B.2)
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with

n—2 n—2 (n—2)(n+2)
b0 = —~ , b1 = —~ , = (B.3)

217 (217)2 4(21T)~

and
y(g

2) = g2(y

0 + y2g) + 0(g
5) (B.4)

with

n—I 3(n—I)(n—2)
Yo, Y2 3 . (B.5)

217 4(2ir)

We useeq.(B.I) asusual to relatechangesin the scalejs to changesin the coupling
constantg2,

G(~x,g2) = exp{j/ ~}G(i, ~2) (B.6)

where ~2 is implicitly fixed by

-2 du
fg = —log(~tx). (B.7)

g2 /3(u)

In eq. (B.7) asymptoticfreedommanifestsitself by ~2 0 asx —~0. The integration
in eq.(B.6) is performedwith eqs. (B.2)—(B.5) inserted,giving

/ \ (n—1)/(n—2)
-2 )‘~U) 1 n—4 I

exp~f~du~} ~S+2 )24) (i+0(i/s~)) (B.8)

with

1/s=b
0~

2. (B.9)

From eq. (A.28) we seethat the MS two-point function may also be written as

G(l, ~2) = (1 + a/s) ‘~~2)(i + 0(1/s3)) (B.i0)

such that

(n—1)/(n—2)

G(~x,g2) ~ + n—12 1 + a(n —2) + (a — 4(2))]} (B.ll)

holds up to correctionsof 0(~6).
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Finally we introducethe RG invariant scaleA,

{p.-- +$(g2)-~—-~A=0, (B.i2)

with A of the form

A = ~ exp{ — J~du13(u) } (B.13)

and the (nonsingular)standardconventionfor fixing the integrationconstantis

A=~exp(_~)(bog2Yb1~X(g2) (B.i4)

with

A(g2)=exp{_fz2du((i) +~-_~_~_}. (B.15)

Wecombineeqs. (B.14) and(B.7) to derive

= —log(Ax) = ~-2 + ~log(bo~2) — log(X(~2)). (B.16)

This is invertedfor larges, I,

logt 1 1 log2t
s=t+~(l+ (n_2)t) 4(n—2)t +o( ~2 (B.17)

With eq. (B.17) insertedin (B.ii) we havefound the universal perturbativeshort
distancebehavior,

1 logt
Gc~t+ logt+i+(n—2)a+

~ n—2 (n—2)t

n — 3 i (n—1)/(n—2) log2 t
2(n-2) (i +~(~)).(B.i8)

Since all non-universalfeaturesof the precedingconstructionreferredto the MS
scheme,the scaleA in t = — log (Ax) is actually A MS~ It is related to the more
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standardA ~ [5] by

A~=2~e’~’~~2AMs. (B.i9)

To the order up to which we are expandingthe scheme-changeis implementedby
the substitutions

t—*t’= —log(A~x),

a—~a’=a+ ~(F’(1) +log(417)) =F’(l) +log(2) (B.20)

in (B.18).
We may evenconsiderthe whole family of schemeswith A~= exp( c) A~ and

re-expandin t~= — log(A ,j. Thenthe two-point function at short distanceis

1 1 logt
Gcx~t,,+ logt~+1+(n—2)(a’+c)+ C

n—2 (n—2)t~

(n—1)/(n—2) 2
n—3 I log!

+(a~+c_ 2(n2))t } ~+o( C)).

If theperturbationseriescould be summed,then the functionon theright-handside
in (B.21) shouldnot dependon c for fixed A~.This is, however,not true as we

truncatethe series. In fitting datawith (B.21) we may treat c as a free parameter
that is optimized, and we thus hope to minimize or at least develop a feeling for the
effects of the remainderof the series.Similar ideashavebeendiscussedfor QCD in
ref [21].
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