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We complement a recently discovered collective Monte Carlo algorithm with a cluster
variance reduction technique for the two-point function of e-models. It is used to determine both
the nonperturbative mass and the asymptotic freedom scale Apg from simulations of the
O(3)-model with correlation lengths up to 121 on large lattices. We also estimate Agpg in lattice
units by studying the mass gap in physically small volumes. Asymptotic scaling with the bare
coupling still does not occur. We propose an approximate lattice S-function that goes bevond
finite-order perturbation theory and leads to better scaling behavior. The various methods give
m/Agg = 2.5-3.0 for the O(3)-model.

1. Introduction

In two dimensions the globally O(#) invariant nonlinear ¢-models share the
property of asymptotic freedom with four-dimensional gauge theories if the symme-
try group is nonabelian (r = 3) [1]. As a consequence one hopes that the short
distance physics can be reliably controlled by renormalized perturbation theory
which looks structurally similar in the two cases, although it is complicated by gauge
invariance. Most of the celebrated phenomenological successes of QCD to date are
based on this assumption. At large distance either theory is expected to nonpertur-
batively generate a physical scale, namely the mass gap in the o-model and the
string tension between static quarks in QCD. At present, the nonperturbative
physics can only directly be accessed by numerical simulations in a formulation
employing a lattice cutoff. We are then dealing with classical statistical systems in
two or four euclidean dimensions and apply Monte Carlo techniques to them. It is
highly nontrivial to convince oneself that in this way one really computes universal
features of the same theory that is partially evaluated in perturbation theory by
rather different techniques (e.g. dimensional regularization). The notorious difficul-
ties to verify the presence or absence of scaling are closely related to this kind of
questions of consistency. The main problem is that the nonperturbative scale
corresponds to the correlation length & of the statistical system. As such it has to
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satisfy several physical constraints in a realistic field theoretic simulation: The
overall extension of the system has to be several £ in all directions to avoid strong
finite-size effects. At the same time £ has to be large compared to the lattice spacing
(=1 in lattice units) to separate the ultraviolet cutoff scale from physical scales. The
perturbative regime is now expected to lie at lattice distances x which fulfill
1 < |x| < £. Unfortunately, it has been very hard so far to perform simulations at
large enough correlation length to satisfy all the above constraints and leave enough
room to probe perturbative and nonperturbative physics in the same Monte Carlo
run.

The main reason for this dilemma, at least in the two-dimensional spin models,
was the phenomenon of critical slowing down: Once the correlation length exceeds a
few lattice spacings, it takes an excessive number of iterations with standard
algorithms to generate independent unbiased estimates of physical quantities. Elab-
orating on the Swendsen—Wang algorithm for Potts models [2], a new kind of
collective Monte Carlo algorithm has recently been developed [3] and shown to
eliminate slowing down in the x-y model {4] in the following sense: As we
simultaneously scaled up correlation length and sample size, the autocorrelation
time in CPU units (operations per spin) remained constant. The algorithm also
performs favorably in the nonabelian case. We use it in the present study to
determine the ratio of the mass gap to the perturbatively introduced A-parameter
solely from the correlation at appropriate separations in the scaling regime of the
theory. This is achieved by high precision simulations with § up to 121 in the
O(3)-model.

Another possibility to relate the lattice scale to the perturbative scale has been
pointed out by Lischer [5]. The mass gap in a physicaily small volume with
extension of order § or less can be computed in perturbation theory. If it is
determined in a simulation at a bare coupling where one also knows the large
volume mass gap, and if the perturbative calculation is sufficiently accurate, then
the desired ratio of short-to-long distance scales follows, too. With standard
algorithms such a calculation suffers from similar problems as discussed before. It
has been attempted in ref. [6]. Due to the algorithmic limitations the evidence for
scaling and universality in the O(3)-model has not been overwhelming, and the
numerical estimates for the mass in A-units scatter by a factor of about three in the
literature. (Some earlier simulations of the O(3) model are given in ref. [7].)

We also report on a further algorithmic improvement in connection with the new
algorithm in the form of variance reduction or improved estimators. It boosts the
efficiency of the simulation in the interesting parameter range by at least another
order of magnitude.

The paper is organized as follows: In sect. 2 the variance reduction technique is
presented. In sect. 3 we analyze the correction function by fitting it to its theoretical
scaling forms at large and small distances. In sect. 4 data on the mass gap for
physically small volumes are reported and discussed. The issue of scaling with the
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bare lattice coupling is discussed in sect. 5, and conclusions follow in sect. 6. In
appendices A and B the universal short distance behavior of the two-point function
is derived by continuum perturbation theory and by using the renormalization
group.

2. Improved estimators and collective algorithms

In this section we shall demonstrate that the percolation clusters appearing in the
collective updating process can further be used to define improved estimators for
physical observables. They are quantities that are rigorously shown to have the same
mean as some correlation functions with a variance that is smaller than the one of
the naive expression in terms of elementary fields. To bring out the general idea we
consider an abstract observable ((o) averaged over field configurations o with
some action S(o),

(0) = l/Doe—5<<’>@(a), (2.1)
z

where the normalization factor Z is the partition function. Any set of transition
probabilities W (o — ¢’) that lead to a valid Monte Carlo process for (2.1) obey

/Dae*“”)W(o—»o')=e*5<°”, (2.2)

i.e. they leave the Boltzmann distribution invariant. Apart from updating we may
also employ W to define an observable

(9(0)=fDo’W(o—>o’)0(o’), (2.3)

and @ and O trivially have the same mean due to eq. (2.2). Relation (2.3) can
become powerful if the summation over o’ can at least partly be carried out exactly.
Then, for each o that is sampled, the whole class of ¢’ that is summed over
contributes to the expectation value. Note that W in eq. (2.3) does not have to be
identical with the probabilities used for updating, and, if different, it does not
necessarily have to be ergodic for the present purpose. The well-known variance
reduction technique [8], for example, is obtained by using the heatbath form for W
with local changes of fields just at the lattice sites where correlations are to be
evaluated. Thus the observable is “delocalized” by one or a few lattice spacings, and
one 1s rewarded by the reduced variance for collecting more information in the
measurement. In ref. [9] it was found that a truly nonlocal transformation can lead
to very significant gains, and this will be exploited now in connection with the new
collective algorithm [3,4].
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From here on we specialize the discussion to the O(n) o-models,
7= 1_[/ doxexp(,BZox-oHu), (2.4)
x VS, XH

with the same notation as in ref. [4]. For nonlocal updating we choose a random
direction r € S, _; and activate links {xy) with probability

p,(ox,oy)=1—exp{min[O,—Z,BaX-roy-r]}. (2.5)

The resulting auxiliary bond percolation problem now defines a decomposition of
the |A| = L? sites of the periodic square lattice A into N, disconnected components
or clusters

A=. c. (2.6)

A class of algorithms including the one described in refs. [3, 4] is constructed by next
choosing one cluster C C A, which is a union of some of the components in {c,} by
some probabilistic process governed by probabilities M({c,},C). We then flip the
r-component of spins on C and have an overall transition probability to a new
configuration ¢’ given by

W(o—)a’)='/dr zKr(o,{c,.})EC;M({ci},c)S(oxRCo). (2.7)

{c}

In eq. (2.7) K, is the probability to build a certain cluster structure {c;}, and the
first sum is over all possible decompositions. The second sum is over single clusters,
and the §-function and flip operation R on C,

o.—2(o,-r)r ifo,eC,
o ifo,&C,

x

(R%) = { (2.8)

have been defined in ref. [4]. The algorithm in refs. [3, 4] amounts to choosing one of
the components c¢; with probability proportional to their sizes,

NC

M({c,}.C) = >

i=1

il

— , 2.9
|Al ¢, C ( )
and we shall refer to it as the one cluster (1C) method. A generalization (to
continuous many component spins) of the Swendsen—-Wang (SW) algorithm [2] is
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given by Mgy ({c;},C), which is obtained by including in C each component c,
independently with probability 1 /2.

For M, we proved detailed balance in ref. [4]. Here we shall also need My, and,
in fact, detailed balance will now be demonstrated for arbitrary M. As discussed in
ref. [4], a transition between given ¢ and o’ = R can proceed only through unique
C and % r apart from a set of configurations of measure zero. Therefore

W(o— ') _ z{c,}Kr(o’{Ci})M({Ci}’C)
W(s' - o) Z(c,}Kr(ol’{Ci})M({ci}’c)

(2.10)

holds. Also, C defines a unique set of surface bonds dC, and in the percolation
processes leading to any of the {c,} contributing in (2.10) these surface bonds
cannot be activated. Moreover, the activation probabilities for bonds in d C are the
only ones differing as one starts from o or from o’. If we cancel the “nonactivation”
probabilities on dC, we get the equality

Kr(o’{ci}) _ Kr(o/’{ci})
H(x_v}EZJC(l _pr(ox’ GL)) H(x»v}EBC(l —pr(ox/’ U;)j

(2.11)

for all {c;} contributing in eq. (2.10). If one inserts eq. (2.11) with eq. (2.5) into eq.
(2.10), the detailed balance equation follows. One could use the freedom of selecting
M to influence the size distribution of flipped clusters if this should become
necessary (in more than two dimensions, for example). The 1C method has however
the special virtue that one can construct C without analyzing all c,.

We now consider the observable

0(o)=o0,a,, (2.12)

corresponding to the two-point function and improve it as in eq. (2.3) using the SW
process,

6(a) = [ar L K. (o)) EMow (] C(RD) - (R),

= Jar( o0 R)o T Kofe)) EMw((e].CKD) AR, |
(2.13)

Here we introduced the spin projector in the r-direction, Po, = r(r-o,), and used
the fact that the perpendicular components of all spins remain unchanged. The
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average of that part is by O(») symmetry
[ faro-(1=2), ) ==1/n)(o. 0, (214)

as one simply drops one of the n components in the scalar product. In the sum over
C in eq. (2.13) each of the components c; belongs to C “half of the time”. 1t is easy
to see now that whenever x and y lie in different c¢,, the C-sum vanishes as the
product of the r-components in (R%s), and (R%0) , are as often positive as negative
and have constant magnitude. The two-point function is thus also given by ((9~ » with

0(o) =n[drK, (o.(c,}) L O(c, x)O(c,, )(r-0)(r-0,).  (2.15)

The sum over C has been carried out by the normalization of M, as a probability,
and the characteristic function @ is defined as

@(c,-,x)={1 fxee, (2.16)

0 otherwise.

Finally we adapt eq. (2.15) to the 1C-process by introducing M,

(o) =n[drK,(o {c})zM({c} c)| |@(c x)0(C, y)(r-a,)(r-a,).

C

(2.17)

Referring now under the average (... ) to the clusters C and directions r appearing
in the 1C-update process, we may summarize our construction as

Al
<o.\.-oy>=n<'|c| (r-0,)(r5,)0(C, x)O(C, y>> (2.18)

Eq. (2.18) constitutes a rather remarkable simplification for estimating the funda-
mental correlation function in the s-model. All quantities on the right-hand side are
accessible at almost no extra cost in CPU time as they appear in the cluster
construction [3]. The cluster probabilities (2.5) imply that 7 - . has only one sign for
all x € C, i.e. our observable is positive. The exponential decay of the correlation is
thus produced by the cluster size distribution rather than by sign cancellations, and
we shall find a strongly reduced variance for the simple reasons given in ref. [9]. It
fits nicely with this picture that we observed that

(IC]) =k(n) x (2.19)
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gives the average cluster size for O(n)-models in terms of the susceptibility x
anywhere in the scaling region. For k(n) we found k(1) =1 (exact), k(2)=0.81
([4D), and k(3) = 0.75 (this paper). Consequences of summations over x, y in (2.18)
are

1 2
1/n= <la‘\‘§c(r-o_\.) > (2.20)

giving the average r-component of spins aggregating to a cluster, and

(e )=l el ) 2

X

relating the magnetic susceptibility to an average r-component susceptibility in the
flipped cluster.

We conclude this section by forestalling some practical experiences with measur-
ing correlations by eq. (2.18). We simulated the O(3) model on a 1282 lattice at
£=11 (B =1.5). For the same number of cluster update steps we determined the
mass gap by fits to zero momentum correlations between separations 10 and 60 with
standard estimators and with eq. (2.18). In the latter case the error turns out to be
about four times smaller. With the time needed for measuring being small compared
to updating, we have thus gained a factor 16 in the CPU time it takes to measure the
correlation length to a given accuracy. As the gain grows with separation [9] we are
enabled to move to relatively large distances for fitting masses without unreasonably
increasing errors. This is highly welcome as, with the improved statistical quality of
the new algorithm, we can now also reduce systematic errors in masses, which
otherwise could become a new limitation. On the largest lattice in this study
(512 x 800), the errors (from binning) when determining & = 121 from correlations
at distances 121 to 400 or from 363 to 400 differ by a factor of less than two. As for
autocorrelations we shall find that measuring (2.18) after each cluster in the
simulation effectively represents an almost independent estimate. This means
that - once we have equilibrated the lattice — we produce an independent low
variance estimate for the two-point correlation at all distances with an average
CPU-work of O(x) (= correlation volume) operations. This refers to an implemen-
tation of the 1C algorithm as presented in ref. [3].

3. Correlation function at long and short distance

The O(n)-invariant spin-spin two-point correlation function can be used in a
lattice simulation to derive both the nonperturbative mass gap and the asymptotic
freedom scale. We estimate the mass gap m in the O(3)-model by fitting the zero
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TABLE 1
Large volume results for the mass gap m and susceptibility x of the O(3) o-model. The number of
generated clusters is #C, and ¢ and 7 characterize autocorrelations

B T L #C/10° m~! X T T
1.4 64 64 41 6.90(1) 78.9(1) - -
1.5 128 128 6.1 11.09(2) 176.3(2) 120 0.4
1.6 256 256 2.6 19.07(6) 451.2(8) 100 0.2
1.7 256 256 2.6 34.57(T) 1262(3) 70 0.3
1.8 512 512 2.6 64.78(15) 3832(7) 80 0.3
1.9 800 512 0.64 121.2(6) 11561(48) 40 0.4
spatial momentum correlation function to the form
Y (o-o)=d(em+e T0my, (3.1)

x=(x1.X3)
y=(n,x+1)

Here the space components (1) of x and y are summed independently over all space
of length L to project on zero momentum. The time coordinates (2) are kept at
variable separation 0<?<T/2, and time periodicity T is properly taken into
account. For the fit only large enough t-values must be used, where the contribu-
tions of states of higher energy than the lowest zero momentum state above the
vacuum are negligible. We performed all mass fits by selfconsistently starting the
fits at about 1 =m !, 2m !, and 3m ! up to T/2. The expected systematic trend to
smaller m-values is just visible, but it is never larger than our small statistical errors
which are determined by the usual binning procedure. We decided to quote all mass
values in this paper from fits starting at 2~ !. Results for a number of S-values are
found in the first columns of table 1 together with the lattice size and the number of
clusters #C generated, which equals the number of estimates of the two-function.

Also in this study we made an effort to analyze the structure of autocorrelations
between the improved estimates related to successive update clusters. We define the
autocorrelation function

T(1) = (XKsu ) — (X% (32)

where X is the improved estimator for the susceptibility (2.21) from the sth cluster
in the simulation. We choose x here as a representative long-range quantity. We
found that typically I'(¢) drops by a factor of order 100 from =0 to r = 1, and that
only for 7> 1 it behaves roughly exponentially with a scale 7> 1. For this reason
we try to estimate not only the usual integrated autocorrelation time [10], but
separately

¢ =I(1)/T(0) (3.3)
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and
T=mt§1F(l). (34)

The infinite sum in (3.4) is of course truncated to some window W as discussed in
refs. [4,10]. The error o, corrected for autocorrlations, is then given by

62— %(1 +267). (3.5)

A glance at table 1 shows that the factor in brackets in eq. (3.5), which corrects the
naive error estimate, does not grow large in our simulations. This error estimate was
also found consistent with errors from binning, which we monitored in addition for
each observable. Due to the small amplitude of the tail of the autocorrelation, it
would be very wasteful not to measure each cluster in spite of the fact that they are
asymptotically correlated on a time scale large compared to unity. Just because of
the smallness of I' it is rather hard — and unnecessary for the error estimate — to
determine 7 accurately. Typically the window W could only be taken 27...37 wide
because of noise. One should safely aliow for about 20% error for 7 in table 1. In
improved estimates of short-distance quantities like the nearest-neighbor correlation
no autocorrelations are detectable at all. This is rather different from standard
estimators in conjunction with the cluster algorithm [3,4]. There, short-distance
quantities were harder than long-distance correlations.

It may seem that the autocorrelation time 7 is not so small. Between successive
measurements, however, we perform only of order {|C|) = 0.75x operations. As in
ref. [4], we have to convert T to

a<n
LT

T=

X
7=0.75—17 3.
7=0 SLTT (3.6)

3

before it is comparable to “sweeps”. We then derive values below one as in refs.
[3,4). We conclude that we presumably see the same fundamental autocorrelation
time as with standard estimators for the 1C algorithm. Only the amplitude is very
small — which is just as important from a practical point of view as far as
equilibrium measurements are concerned. If a precise determination of the relax-
ation time is the main objective, then standard estimators are preferable. A physical
picture behind the smallness of ¢ is as follows: Since each estimate entirely results
from the one cluster that is flipped, it takes — roughly speaking — overlapping
successive clusters to get strongly correlated estimates. Each cluster starts from a
random site, grows to a typical size (|C|), and thus the overlap probability is
controlled by (|C|} /LT, which is of the same order as .
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Fig. 1. (a) Equilibration of the magnetic susceptibility on 1287 at 8= 1.5 (correlation length = 11) from
a “hot” start. The time unit is comparable to sweeps. The dashed line is the equilibrium average taken
from a long run.

With short autocorrelation times at equilibrium we also found equilibration easy
to achieve. During an equilibration run of for instance 10007 all observables settle
to fluctuate around equilibrium values, and this takes a negligible fraction of the run
time. In fig. 1 we see as an example the equilibration of the 1282 lattice at 8 =1.5
from disordered and ordered starts. The standard magnetic susceptibility (left part
of eq. (2.21)) is displayed as a typical observable here, and the evolution time is
made comparable to “sweeps” by adding up the occurring cluster sizes and dividing
by the volume as discussed after eq. (3.6).

At short distance but still in the scaling regime, i.e. for 1 < |x| < m ™!, we fit the
two-point function to (B.21) of appendix B. Specializing it to » = 3 and inserting
numerical constants we thus determine Ay in lattice units by fitting

logt  0.11592
(0,-00) = Bt +log 1 +11159 + —— + )

(3.7)

t
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Fig. 1. (b) Same as (a) from a “cold” start. The scale of the vertical axis changes at ¢ = 60.

where
= —~log(Aus|x|) - (3.8)

As input for these fits we measured the correlation function parallel to the spatial
lattice axis at the nearest integer distances to |x| =21/22 ..., 2'/2 2% Also mea-
sured, but not used in the fit, were correlations along the lattice diagonal over
distances that are larger by a factor y2 . For the somewhat larger separations we get
pairs of points in this way which have almost identical euclidean distances but
maximally different orientation relative to the lattice axes. Their comparison is
indicative for the degree of restoration of rotational invariance. For 8 =1.9 we list
these correlation data in table 2. Fit and data are plotted in fig. 2. For best fit
parameters B, and Ay taken from a least-square fit, the difference between data
and fit is given in multiples of the statistical error of the data at each distance |x|.
One unit on the vertical axis corresponds to a relative discrepancy of 1 X 1073-2 X
10~ ? depending on the distance (see table 2). We see that we obtain a rather good fit
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TABLE 2
The correlation function at short distance for 8 =1.9

On axis Diagonal
x| (0" 0¢) x| (%" 0o,)

1 0.70727

2 0.5862(6) 1.41 0.6331(7)

3 0.5188(6) 2.83 0.5246(6)

4 0.4735(6) 424 0.4630(6)

6 0.4127(5) 5.66 0.4206(5)

8 0.3714(5) 8.49 0.3628(5)
11 0.3272(5) 113 0.3232(5)
16 0.2772(4) 15.6 0.2808(4)
23 0.2307(4) 22.6 0.2328(4)
32 0.1902(3) 32.5 0.1884(3)
45 0.1507(3) 453 0.1501(3)
64 0.1129(2) 63.6 0.1135(2)

from |x| =45 (=1/3 of the nonperturbative correlation length) down to a few
lattice spacings along the axis. For |x| > 8 coincidence between rotationally invari-
ant fit and both on-axis and diagonal data is better than 107> The clearly visible
discrepancies at very short distance are actually rather small on the scale 1/|x|?
expected for lattice artifacts. The matching of the fit below the one-o level in the
medium range of fig. 2 shows that, of course, data at various separations coming
from the same configurations (clusters) are not independent. Beyond |x| =45 the
data abruptly break away from the perturbative formula with on-axis and diagonal
points staying together. This, of course, has to be the case, as the correlation can

10
Gnum_ggeﬁ
[
1 e o
_1 x *
-10 Lr— -
3 4 8 IX 16 32 64

Fig. 2. Difference between the numerical two-point function for 8 =1.9 (see table 2) and a fit to the
perturbative form (3.7) in units of the statistical errors which correspond to an accuracy of 1 X 1073
2 % 10 "3, The dots are on-axis correlations, and crosses denote correlations along the lattice diagonal.
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TaBLE 3
Perturbative energy scale Aggg in lattice units with statistical errors, range of on-axis separations
where it is fitted, and ratio of long-to-short distance scale with an estimate of systematic errors

ﬂ Range Am m/AWS
L9 8§ —32 0.00321(1) 2.55(10)
1.8 6—23 0.00611(1) 2.53
1.7 411 0.01169(2) 2.48

become nonperturbative, but it has to stay rotationally symmetric until it feels the
rectangular shape of the torus. The breakaway is clearly caused by 7 in the
perturbative formula (3.7) not being large anymore. The bare correlation (o, - 0;)
decays smoothly with |x|. In table 3 results from similar fits for various S-values are
listed. The second column gives the range of on-axis correlations used in the fit, and
in the next column the resulting Ay in lattice units follows. There the quoted
errors are purely statistical, 1.e. we pretended that (3.7) is exact and only analyzed
by binning how well Ayg is fixed by the data. Since in the fitted range ¢ is not
really very large (2...4), it is likely, however, that the systematic error coming from
our ignorance of higher-order perturbative terms is much more important. To
estimate it we report on a number of additional experiments with the 8 =1.9 data
and indicate the level of changes of Ay in parentheses. We first moved the fit
window by one (measured) point in either direction (1,/2%). Then, according to
(B.21), we optimized the scheme parameter ¢ leading to ¢ = 0.28 and reconverted
the obtained value for A_ to Ayg (1%). Finally, we added a term —log?(¢)/(2¢%)
under the bracket in (3.7). This is the next term in (B.18), and we hope that it gives
us a feeling for possible effects of the next order in perturbation theory (3%). This
type of uncertainty is used as an error estimate for the ratio m/Ayg in the last
column of table 3. For QCD practitioners we add that the MS-scheme corresponds
to ¢ = —0.97. This value leads to a rather vigorous resummation of the perturbation
series in a direction opposite to scheme optimization. A fit in the MS-scheme leads
to a 10% larger value for A . For a pessimistic estimate one should perhaps also
allow for errors of this size. At smaller 8 the window, where a fit of the short-dis-
tance continuum behavior is possible, shrinks. However, using our experience from
B =1.9 that on-axis correlations show little lattice artifacts, we may shift the fit
window downward and obtain the remaining lines of table 3. We regard this as
reasonable scaling behavior as the correlation length changes by a factor of = 4.
One should, of course, be aware of the fact that systematic errors from higher-order
terms scale, too, under this procedure. Thus stability does not necessarily imply
accuracy. Also, for the desired ratio m/A g5, one in principle has to extrapolate the
masses of table 1 from finite to infinite L. For the O(3)-model at hand this is
possible without further parameters on the basis of Liischer’s formula [11]. For
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B=19and L =>512we find a 1% change to m_' = 122.5, which is included in table
3, and changes for the other simulations are negligible. Clearly, in view of the
uncertainties in Ay, statistical and systematic errors in m are immaterial.

4. The mass gap in a small volume

Liischer [5] has pioneered the method of using finite volume effects as probes for
universal physics in asymptotically free theories. In particular, if the length scale L
given by the spatial volume is smaller than or perhaps comparable to the inverse
mass gap of the transfer matrix m !(L), a relation between the three scales
m, L, Ay can be derived by renormalized perturbation theory. For the O(n)
o-models the relation reads

m(L) e ' n—2 \V0? (=) /(n=2)
J T pp— (ze™?) (1+a,z+0(z2%)), (4.1)
Ms

where the dimensionless expansion parameter is
z=Lm(L). (4.2)

The leading terms in eq. (4.1) have been calculated as infinite cut-off limits in
dimensional regularization [5] and on the lattice [12]. Floratos and Petcher [13]
report the value

a,=032/(n-1) (4.3)

for the order z correction. Their calculation is at two-loop order but requires
knowledge of the three-loop B-function [14].

We shall use eq. (4.1) together with a lattice simulation to find the lattice spacing
in physical units that corresponds to certain values 8 of the bare inverse coupling.
More precisely, for n =3, we solve eq. (4.1) for the A-parameter

— 1"
A:%EM(L)71W62"/122(1+alz), (4.4)

with m and A in lattice units. For large enough § (8= 1.9 for instance), one
hopes to find a range of L where the right-hand side of (4.4) is approximately
L-independent and yields a good estimate of Ay This range is restricted by two
different effects. If L grows at fixed 8 we leave the small volume domain and :z
grows beyond order one. Eventually it will even diverge as m(L) saturates at the
infinite volume value. Since we know only a few terms of an asymptotic small z
expansion, we cannot expect a decent approximation beyond z < O(1), and it may
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Inverse mass gaps m

TaBLE 4
1

in small volumes

595

L B=17 B=18 B=19
8 9.80(2)

12 10.84(2) 12.38(3) 13.80(3)

16 13.38(3) 15.52(4) 17.60(4)

18 14.55(4)

20 15.68(4) 18.54(5) 21.0%5)

22 16.71(5)

24 17.68(5) 21.13(5) 24.34(6)

26 18.58(8)

28 19.54(5) 23.69(6) 27.44(7)

32 21.13(6) 26.14(6) 30.49(7)

64 41.3(2) 51.1(3)

even have to be rather small. At small L the cutoff given by the lattice spacing
becomes comparable to our physical scales, and lattice artifacts are important.

Results for the inverse mass gap m (L) for some L and three different 8 are
listed in table 4. Most of these results stem from runs with 7= 512. Only in some
cases older runs with 7= 128 or 256 were also taken into account after ascertaining
the absence of systematic differences. Again, only time separations larger than
2m~Y(L) entered into fits. The plot in fig. 3 exhibits the finite volume data in a
direct fashion without further theoretical input. It shows good scaling behavior as
data from B8 =1.7,1.8,1.9 have been combined.

05+ .
1 R B symbol
mico) o 7
mi{L) | Ll '
. 18 .
19 .
00 " Lmlco) 05 10

Fig. 3. Finite volume mass gap scaling behavior (sce table 4).
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Fig. 4. Infinite volume mass gap in units of the perturbative scale Ayg which in turn is derived from the
finite volume mass gap. Errors are 2.

In fig. 4 we combine the small volume data, (4.4) without the 4,z term, and the
large volume masses from table 1 (extrapolated to L = oo [11]) to plot m(o0)/A s
versus z. It is perhaps not superfluous to emphasize the distinct nature of this plot
from those found in refs. [5,6,13], where the authors try to extrapolate m(L)/Axg
to z — oo. The basically small errors of m( L) are strongly amplified in fig. 4 by z
entering as exponent into the theoretical formula, and much more fine structure is
exhibited than in fig. 3, where symbols are larger than errors. Data points belonging
to the same B-value can be joined by smooth curves if the errors are taken into
account. These curves, however, seem to systematically come down with § by
margins above our errors. This tendency is stronger at small z which means smaller
L. This suggests non-universal finite lattice spacing effects as a possible origin.
Close to z =1, for example, there are two nearby data points from 8=1.9 and
L =28, and from B=1.8 and L = 16. From the finite lattice calculation in ref. [12],
the one-loop lattice perturbation theory contribution to the finite L effects can be
extracted. It lifts the L = 12 points by 1.3%, and the correction for other L follows
from its being proportional to L™ 2 For §=1.9, L =38, the dotted bar shows the
data point corrected by 3%. We must conclude that the one-loop finite lattice
spacing correction has the wrong sign to explain the non-universality that we see.
The inadequacy of one-loop lattice perturbation theory may perhaps not be too
surprising. The leading term m~!}(L) = BL has to be lowered by almost a factor two
by the 1/8 corrections. While one expects that the resummation in terms of
renormalized quantities like in eq. (4.1) leads to better convergence, it is not clear in
general how well non-universal corrections are represented by the lowest order.

In the absence of a quantitative handle on the finite L corrections, we could not
think of an entirely convincing way to extrapolate to z=0. The line in fig. 4
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extrapolates the point (1.0,2.5) that is suggested by the 8 = 1.9 data at not too small
L, using the value g, = 0.16 of ref. [13]. It ends at m /A gg= 3. The slope is roughly
consistent with the data.

5. Scaling with the bare lattice coupling

For large values of the inverse bare lattice coupling 8 all physical quantities in
asymptotically free theories can be related to a renormalization group invariant
energy scale A(B) defined as a solution of

1+B(,8)£I§)A(B)=O. (5.1)

Here A is in lattice units, and the lattice beta function B(B) has a perturbative
expansion

B(B)= i BB~ (5.2)

The first two universal coefficients are identical to those in any perturbative
renormalization scheme (see eq. (B.3)),

By=(n—2)/27, B,=(n-2)/(27), (5.3)

and the non-universal three-loop coefficient for the standard lattice action is
reported in ref. [15] to be

By=[(n—2)/(27)’|h,  h=0516—-0.086(n—2). (5.4)
The solution to eq. (5.1) with the standard choice for the integration constant is

A=A\, (5.5)
with
Ay =e P/Bo(B/By) /P (5.6)

and

2 (57

oo 1 1 B,
}\=exp/du — -5+t =
8 B(u) B, Bju
In the three-loop approximation we thus have for the O(3)-model

A=e 2B [11+ (1 —h) /278 + O(1/8%)]. (5.8)
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TABLE 5
Results {or nearest neighbor correlation E, and ratio of scales m/ Ay converted after evaluation
with the lattice A-parameter in various approximations. Errors in the last column reflect the effect
of the uncertainty in E when used in eq. (5.21)

B E Two-loop Threc-loop (5.19)
14 0.5620(1) 4.00 3.76 2.03
1.5 0.6016(2) 436 411 2.42
1.6 0.6359(3) 4.45 422 2.7
1.7 0.6634(3) 433 412 2.80
1.8 0.6878(3) 4.09 3.90 2.841)
1.9 0.7072(7) 3.84 3.67 2.74(3)

A physical energy, as for instance the mass gap m, is expected to tend to a constant
multiple of A for 8 — co. This behavior should be accelerated by inclusion of the
three-loop term in A # 1. The A-parameters of different renormalization schemes
can be related in the cut-off limit. In particular, it is known that

m

AL/AMS=321/2expl—m] (5.9)
holds for the O(n) o-model [5]. We combine egs. (5.8) and (5.9) with our data on
mass gaps for infinite volumes to compile table 5 with estimates m/Ayg. It is
evident that these values are by no means S-independent, not even monotonic if we
include 8 < 1.6. This may explain some of the confusion about this quantity. The
suspicion that some coefficients of higher orders in 1/8 in eq. (5.8) cannot be small
is confirmed. Moreover, the values m /A yg in table 5 are about 30-50% higher than
those derived from more physical quantities in tables 3 and 4. It may, however, also
be noted that the tendency beyond B = 1.6 and also the 1/82 term in A work at
least in the right direction. Nevertheless, asymptotic scaling in the bare coupling
with the standard lattice action is far away even at correlation lengths around 100.
We now present a semi-phenomenological form of the lattice S-function that is
more successful with regard to scaling. In ref. [16] an observable was introduced
which is closely related to coupling constant renormalization in the background
field definition. It makes use of the generators J, i<j=1,...,n of the SO(n)
symmetry of the o-model, that act on the same Hilbert space as the transfer matrix
exp(— H) and generate global rotations in the i—j plane of spin space. In ref. [16]
(see also ref. [4] for n = 2) it was shown that the thermal expectation value of the

SO(n)-Casimir operator is given by simple euclidean observables,

,% jg»z
<Z(J"">2>=ﬁ€° = ))=(n—1)(BE—C)~ (5.10)

Tre~ TH

i<j
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Here E is the nearest neighbor correlation in time direction,

E=(L/T)(0, 0,,3). (5.11)

and C [16] is the susceptibility of the Noether current

C= M—Lj)ﬂ ) <(;0X-tijox+i)2>. (5.12)

I</

In eq. (5.12) tV/ are the real antisymmetric n X n matrix generators of SO(n). The
hamiltonian H and Casimir-operator Y(J/)* may be diagonalized simultaneously
in a basis |k) with eigenvalues ¢, and g2. We then have

< 5 ()}

i<j

e Tugp
)= e 1

which shows that Q? is a dimensionless physical quantity: A combination of
energies of low-lying states and the inverse physical temperature in lattice units 7
with group-theoretically fixed coefficients. We may thus control the scaling limit by
keeping Q2 fixed when B and L, T (L/T also fixed) diverge. We now specialize to
L=T.If Q% is not small but kept fixed at a value of O(1), then it is clear from eq.
(5.13) that we are taking a scaling limit at physically small volume with size and
temperature comparable to the mass gap. This is quite similar to Lischer’s small
volume mass gap [5]. We just do not have to isolate the lowest excitation, and
therefore Q2 is an “easier” quantity. It will be interesting to study it numerically in
more detail (with the new algorithm) than it was possible in ref. [15].

Here we just want to use Q2 to derive the lattice 8-function from

d d 5

Using eq. (5.10) it is given by

ac

ac a
w150 [ 500 55 ) (5.15)

where we used the fact that E becomes L-independent for large L. The perturbative
expansion of F is easily derived to second order.

E=1-(n—-1)/48—(n—1)/3282+0O(1/8%). (5.16)
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and for C we introduce

C=Cy(L)+Cy(L)/B+0O(1/B%). (5.17)

If we expand eq. (5.15) in 1/8, we find the universal terms of the S-function given
by the logarithmic divergencies in C;, and C,

¢,
B,,= lim L—/———, 5.18
0,1 Ll_r’noo 9L ( )

and the one-loop term has been computed in this way in ref. [16]. It matched
numerical results for C rather well at larger 8. We now make the crucial observation
that in the two-loop approximation underlying the search for asymptotic scaling, the
term d/dB(BE) is replaced by 1 as it is formally of order 1/82% If on the other
hand, we estimate it between 8 = 1.8 and 1.9 from the data for E in table 5, we find
it quite comparable to the two-loop 1/8 term from C,. We are thus motivated to
keep part of the higher-order terms in eq. (5.15) and use the approximation

é(ﬁ)=(Bo+Bl/B>(%/sE)4 | (5.19)

Inserting B in eq. (5.7) leads to

tog X = [du| —ub(u) 1| = - 2 5.20
8 _/B ! ﬁuu () - BO_Bozu ’ (5:20)
The integration can partly be carried out,
| n—1 B, ;« E(u)+uE(u)—1)
loghA=—({———+B(1—-E -— 1 d . (521
og BO{ 7 TBU—ER) - 5 [ du - - 6

The first terms lead to A =1.42 at 8 =1.9, a rather sizeable correction. The term
with the remaining integral requires knowledge of E(u) at large B. Here we used the
mean-field approximation of ref. [16] which reproduces the numerical value at
B = 1.8 with an accuracy of better than 1%. Moreover, if one expands the saddle
point equation for large B, one recovers the perturbative terms in eq. (5.16). The
leading mean-field approximation for E can easily be refined, but we found it
sufficient to evaluate numerically the second term in eq. (5.21). It lowers A at
B =1.9 by about 5% and thus preserves the main effect. The last column in table 5
quotes m/A g with the B-function B including both terms in eq. (5.21). We find
these values much more stable and more consistent with our other results.
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Although the preceding result, that the nearest neighbor correlation contains a lot
of information about lattice artifacts that can be corrected for, is pleasant, we must
point out a consistency problem here. Our approximation B in eq. (5.19) contains
the correct universal terms and also a certain three-loop term — By(n — 1) /(3287).
It differs from eq. (5.4) by the sign and a factor of 5 in magnitude for n = 3. The
success of B would be more plausible, if it approximately contained the correct
three-(and higher) loop terms. Any attempt to simply add a 1/82 term to B to fix
the discrepancy led to bad scaling behavior. In our opinion, it would be very
desirable to perform a second independent calculation of B,. Starting from eq.
(5.15) this may even be possible directly on the lattice, as we do not need any
wavefunction renormalization factors. This is the typical efficiency of background
field techniques [17]. To conclude, we suggest, even in the absence of a foundation
like eq. (5.10), to try to use the mean plaquette in lattice gauge theory to phe-
nomenologically improve scaling in a similar way as in the present study of the
0O(3)-model.

Note added

After completion of this work the author learned of ref. [22], where the internal
energy is used to improve asymptotic scaling in a similar spirit.

6. Conclusions

In our new application we found the collective Monte Carlo algorithm to work as
well in the nonabelian O(3) o-model as it did in the x—y model. Critical slowing
down did not pose any problems in these studies. Variance reduction by improved
estimators led to a further significant gain in efficiency, at least for the two-point
function. Apart from equilibration, the lattice may be enlarged at no cost other than
memory if the correlation length stays fixed. This is due to the fact that with
improved estimators and collective updating it is the correlation volume which
determines the average number of operations necessary for an estimate of the
correlation function at all distances. With more fast computer memory available one
could envisage the simulation of spin systems yet closer to criticality than in this
study or in ref. [4].

We concentrated on the ratio m/A g in investigating the physics of the O(3)-
model. Three different methods led us to values between 2.5 and 3. In particular, we
saw the two-point function assume its universal perturbative form in x-ranges
simultaneously smaller than the correlation length but much larger than the lattice
spacing. As a byproduct the rotational invariance of the two-point function showed
up in a very direct fashion. The small volume method remained somewhat inconclu-
sive, since even below z = 1 the extrapolation to z = 0 is not easy, and the method as
applied here becomes extremely sensitive to errors in m(L). A more or less
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horizontal extrapolation of the smallest z data in fig. 4 would be more consistent
with our remaining results but in conflict with ref. [13]. Intriguingly good results
were obtained with an approximate lattice S-function that uses information on the
nearest neighbor correlation to correct for higher-order non-universal terms.

We think that we have confirmed with the study in this paper and ref. [4] how
important it is to develop improved algorithms and tools rather than just relying on
ever faster and bigger computers. In two-dimensional models we probed a new
domain of couplings where the spin systems are much closer to criticality or field
theoretic behavior than in past studies. Further qualitatively new questions can be
tackled in the future. The lesson concerning four-dimensional nonabelian gauge
theory is in our opinion that present day data should be judged with great care. One
should from time to time ask oneself what one could and would conclude about the
o-model at similar lattice size, correlation length and statistics. Clearly the develop-
ment of a comparable collective algorithm for gauge fields is an important goal now.
As fast computer memory will become more amply available in the near future we
could then very significantly boost our understanding of realistic quantum field
theories beyond perturbation theory.

I would like to thank Martin Liischer for discussions and advice at every stage of
this work and for making ref. [12] available to me. The simulations were carried out
on the Cray X-MP /216 at Kiel University.

Appendix A

CORRELATION FUNCTION IN PERTURBATION THEORY

In this appendix we compute the renormalized two-point function of the O(n)
o-model in the two-loop approximation. Using the position space dimensional
regularization technique (DR) of ref. [18], we take particular care to correctly
identify the x-independent constants in the correlation function which set the scale
of the logarithms. For the same reason we introduce a magnetic field as infrared
regulator which is sent to zero only after renormalization in the minimal subtraction
scheme. An analogous computation for the SU(n) X SU(n) matrix model, from
which the present calculation is largely plagiarized, can be found in ref. [12]. The
standard parametrization for the perturbative expansion of the o-model is

o(x)=((l—wz(x))l/z,fr(x)), (A1)

where the bare field 7(x) has n — 1 real components which are always appropriately
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contracted. The expansion is generated by the action
(922)

93172
0 e (A

S(x7 )——de (97) +

where x = (x. x5, y,-.-, ¥p_,) 1s the D-dimensional extension of the position
x=(xy,x,), and Jd in eq. (A.2) is the corresponding derivative. Contact terms
arising from the measure on the sphere are regularized to zero in DR. We
implement the renormalization program by eliminating bare parameters by

gSIMEgZZl (A-3)
and

hy=hZ,Z" /%, (A4)

with £ =2 — D, and the renormalized two-point function then reads

G(x)= [d" 2z K(1=7(0)) *(1=7*(x)) " +7(0)7(x)). (AS5)

The unphysical components y of x are integrated over which corresponds to
vanishing unphysical momenta [18]. The correlation G will be finite for ¢ = 0 with
appropriate MS renormalization constants

Z=1+gZV+g*z@+ . (A.6)
and

Z=1+gZ"M+ ... (A7)

After rescaling m — ggm we expand the action as S =S, + g°S, + ... with

=4 fdPa(=a%+n)a (A.8)

and
Si=14 [d2% (h(Z{M = 120)a? + Lhpe(72) + Lu(072)’) . (A9)
We further obtain

x)=1 +82G1(X) +8462(X)

=Z*]/d"‘2y<1+8201(x)+g402(x)>, (A.10)
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with
0,(x) = p(7(x)7(0) — 72(0)),

0,(x) = 790, (x) + 1 7*(x) 7*(0) — (72(0))’}

The average with the full action reduces to (... ), with S; only in

G(X) = Zﬁldefzy {1 + 82<01>0+ g4(<02>0 - <0131>8)} .

We now evaluate
Gi(x) = [dP2 [~ 2D+ (0,(x))]

= [d? 2 [=ZD 4 u(n - 1)(D(x) - D(0))]

with the D-dimensional propagator

— i p? ip.
e W{p " +h)+ip-x

D(x) = fomdt/(;ijfl)

o0
= f A (4mr) P2 e th-x /4
0

solving

(—d*+h)D(x)=8"(x).
With [d?72y =1+ O(e) [18] we get

G,(x)= degzy [—Z(l) - 114_—;(4ﬂp2/h)£/2f(8/2)]

n—1
£ 1/2
+ o NKo(h |x|)

e—0 n—1

1 1
2 {Ko(h1/2|x|) - ElOg(4W“2/h) — 51-”(1)} y

(A11)

(A.12)

(A13)

(A.14)

(A.15)

(A.16)

(A.17)
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provided we insert the well-known result

n—11
—. (A.18)

27 €

ZO = _

Using an expansion for the Bessel function Ky(z) = —log(z/2) +I"(1) as z > 0 we
can now turn off the magnetic field # and we are left with

n 1 1
Gl(x)=Tﬂ{—log(u|x|)+EF’(I)—Elogw}. (A.19)

In the next order we obtain

Gy(x) = [(29) = 2] [aP=2y + (200 - Z“’){Gl(x) ¥ Z(l)/dD’zy}

+ /dDizy (<02(X)>0 - Z(1)<01(x)>0 - <01(X)S1>?)) . (A.20)
The gaussian expectations lead to

(0y(x))o = ZM(0y (X))o = tu(n = D{[D(x)]* = [D(O)]*}  (A21)

and
<01(X)S1>(C) = .“28(’7 - 1)D(0)(D(x) - D(O))

+(n— 1) h[p(ZO—1ZD) + u2D(0)(n - 3) /2]

xdez{D(z—x)D(z)— [D(2)]*). (A.22)

where we also used eq. (A.16) and put §2(0) = 0 (DR). With eq. (A.15) we integrate

R
g

/dezxdezD(z—x)D(z) K (h'7?)x|) (A.23)

and
1
[a2z[D(2)]*= S (47/m) T (14 e/2). (A.24)
T
Cancelling all divergencies by the choices

Z0=(n-1)(n-3)/@n) . Z0=—(n-2)/2me.  (A25)
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the second-order term can be written for ¢ = 0 as

x [WV2 x| K (B2 x)) — 1] (A.26)

1
G,(x) = m [Gl(x)]2 -

As expected the limit & — 0 exists and leaves us with the simple form

Go(x) = [Gy(x)]/2(n = 1). (A.27)

and
G(x) =1+ 3= (n = D[ ~log(ulx]) +a] + 35 (n = D[ ~log(ulx)) +a]’ + O g")
(A.28)

with
a=L(I"(1)—logm). (A.29)

We wish to remark that eq. (A.28) has also been derived with a finite volume as
infrared regulator {19]. In ref. [20] no explicit infrared cutoff is introduced. The
absorption of the surface of the sphere S,, into the bare coupling in ref. [20]
corresponds to a finite renormalization of p. If one takes this into account, then the
result agrees with ours, too.

Appendix B

INTEGRATION OF THE RENORMALIZATION GROUP EQUATION

In appendix A we computed the renormalized two-point correlation G = G(px, g%)
of the O(n) o-model in the minimal subtraction scheme up to order g*. It has to
fulfill the renormalization group (RG) equation

d

u5;+/3(g2)8g v(g?)|G(px.g%)=0. (B.1)

The B- and y-functions are known to the three leading orders in the MS-scheme
[14],

B(g2)= —g4(b0+b1g2+bzg4)+0(glo) (B.2)
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with
n—72 n—2 (n—2)(n+2)
by = , by= "3, 2T T TN (B.3)
2 (27) 4(27)
and
v(8?) =g (v + 18*) + O(g") (B.4)
with
n—1 3(n—1)(n—-2)
— , = 7 B.5
Yo 277 Yz 4(277_)3 ( )

We use eq. (B.1) as usual to relate changes in the scale p to changes in the coupling
constant g2,

G(,ux,gz)=exp{f;2du ZEZ; } G(1,3%). (B.6)

where g? is implicitly fixed by
2 du

f; e ~log(px). (B.7)

In eq. (B.7) asymptotic freedom manifests itself by g2 — 0 as x — 0. The integration
in eq. (B.6) is performed with egs. (B.2)-(B.5) inserted, giving

32 'Y(Ll) 1 n—4 1 (n=1)/(n-2) 3
exp{ du ,B(”)} & {s+ n—2 (n—2)2 Z} (1+O(1/s )) (B.8)

with
1/s=b,g*>. (B.9)

From eq. (A.28) we see that the MS two-point function may also be written as

G(1.8%) = (1+a/s)" (14 0(1/57)) (B-10)

such that

1 n—4 1 (n=1)/(n~=2)
G(}Lx,gz)d{s—i- E[l+a(n—2)+(a—m);J} (B.ll)

holds up to corrections of O(g®).
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Finally we introduce the RG invariant scale A,

d d
— 4+ )—|A=0, B.12
with A of the form
A=,uexp{—fg2du ! } (B.13)
B(u)
and the (nonsingular) standard convention for fixing the integration constant is
1 2\ ~h/Bly (2
A=pexp| — - (bog®) " "A(g?) (B.14)
08
with
2 1 1 b
Ag?) =expl - [¥d T B.15
(g ) exp{ _/(.) u(ﬁ(u) bou’  biu ( )
We combine eqgs. (B.14) and (B.7) to derive
bl —
1= —log(Ax) = -— + —log(h,8*) —log(A(8?))- (B.16)
byg by
This is inverted for large s, ¢,
log 1 1 log?¢
s=t+ & 1+ - +0 _gz_ . (B.17)
n—2 (n—2)z 4(n—2)1 t

With eq. (B.17) inserted in (B.11) we have found the universal perturbative short
distance behavior,

Gair+
{t n—2

log ¢
logt+1+(n—2)a+——
[ogt 1+ (n—2)a TR

n—3 1Ty
{e-sima)il

Since all non-universal features of the preceding construction referred to the MS
scheme, the scale A in ¢= —log(Ax) is actually A It is related to the more

1+0

[3

1og2’))_ (B.18)
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standard A g5 [5] by
Asgs = 2Vm el D2A o . (B.19)

To the order up to which we are expanding the scheme-change is implemented by
the substitutions

t— 1= ~log( Asgx),

a—a’ =a+3(I"(1) +log(4m)) =1"(1) + log(2) (B.20)

in (B.18).
We may even consider the whole family of schemes with A_ = exp(c) Ay and
re-expand in 7, = —log(A ). Then the two-point function at short distance is

log 1,
(n—2)z,

n—3 1 Ten? o logt 8ol
+la' +e- —]|— + . (B.
are 2(n—-2) )¢ ‘2 (B.21)

< I

GOC{IC-F

[logtc+1+(n—2)(a’+c) +
n—2

If the perturbation series could be summed, then the function on the right-hand side
in (B.21) should not depend on ¢ for fixed Az This is, however, not true as we
truncate the series. In fitting data with (B.21) we may treat ¢ as a free parameter
that is optimized, and we thus hope to minimize or at least develop a feeling for the
effects of the remainder of the series. Similar ideas have been discussed for QCD in
ref [21].
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