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Abstract. We present the results of a comprehensive 
investigation of possibilities to extract structure 
functions and momentum distributions of individual 
quark flavours from cross-section measurements at ep 
colliders. Approximate determinations based on single 
cross-sections are examined and compared with an 
exact unfolding procedure which, however, requires 
the combination of neutral and charged current data 
for both electron and positron beams. Using Monte 
Carlo methods we evaluate the precision that can be 
expected from the forthcoming HERA experiments in 
measuring the shape in Bjorken-x of structure 
functions and quark distributions. 

1 Introduction 

Deep-inelastic lepton-nucleon scattering is the most 
direct way of exploring the substructure of hadronic 
matter. With the new electron-proton collider HERA 
one will possess a powerful tool to penetrate to 
distances as small as 10- 3 fm. Moreover, it will become 
possible to examine structure functions at very small 
values of the Bjorken-variable x in the range 10 .4 to 
10- 2. This promises exciting opportunities to improve 
and extend the present knowledge of deep-inelastic 
physics [1], to put the standard model to further tests, 
and to trace a possible substructure of quarks and 
leptons. The outcome of such studies will also have 
implications on the phenomenology of future hadron 
colliders by checking the necessary extrapolations 
from present-day energies into the multi-TeV range. 

From the experience with fixed target experiments, 
extraction of nucleon structure functions and deter- 
mination of quark distributions from differential 
cross-sections measurable at ep colliders are not 
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expected to be easy experimental tasks. Previous 
phenomenological studies [2-6] have elucidated the 
main difficulties and emphasized the specific problems 
of collider experiments. Motivated by the importance 
of the subject we continue and extend these 
investigations in the present paper. It is systematically 
and comprehensively examined which distribution 
functions can be obtained from ep collisions and the 
achievable precision is estimated for each case. We 
consider unfolding methods, which require the 
combination of different cross-sections, as well as 
approximate methods that hold in limited kinematical 
regions but, on the other hand, only use a single 
cross-section. The advantages and disadvantages of 
these methods are discussed. Which procedure is more 
suitable depends on the data available and on the aim 
of the study, such as measuring the momentum 
distribution of a particular constituent quark or testing 
scaling violations predicted by QCD. Here, we 
concentrate on the determination of the shape in 
Bjorken-x, and present quantitative results which 
illustrate the potential of neutral current (NC) and 
charged current (CC) measurements at HERA. 

As usual, the kinematics of inclusive ep scattering is 
characterized by the ep centre-of-mass energyx/s , 
s = (Pc + p)2, the squared momentum transfer Q2_ 
_ q2 = _ (Pe --  Pl) 2, the Bjorken-variable x = Q2/2P-q  
and the variable y - P . q / P . p e = Q 2 / x s .  In these 
definitions p~, Pz and P denote the four-momenta of 
the incoming and scattered lepton and the incoming 
proton, respectively. The statistics of realistic event 
samples is simulated by Monte Carlo techniques, while 
detector effects are mainly taken into account by cuts 
in x, y and QZ within which systematic effects on the 
cross-sections are expected to be less than 10% [7]. 
In order to exploit the available statistics, we average 
the resulting x-distributions of structure functions and 
quark densities over y. Because of the Q2 evolution in 
QCD, x-distribution averaged over the y (or Qz) range 
of HERA experiments are expected to differ in shape 
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from the corresponding distributions at lower values 
of Q2. We indicate the size of these effects and point 
out the cases in which a comparison of HERA results 
with data from present-day fixed target experiments 
should reveal these changes. Prospects of more 
stringent quantitative QCD tests including a measure- 
ment of AQCD. are discussed in [4, 8]. 

The paper is organized as follows. In Sect. 2 we set 
up the theoretical framework and provide the 
necessary formalism. Section 3 examines different 
strategies to extract structure functions and quark 
distributions from ep cross-sections. Important details 
of the Monte Carlo event simulation and numerical 
illustrations, of structure function measurements at 
HERA are presented in Sect. 4. Finally, in Sect. 5, we 
make some concluding remarks. 

2 Theoretical cross-sections 

For our analysis we adopt the parton model 
expressions for the inclusive NC and CC cross-sections 
obtained in lowest order of the electroweak couplings 
and leading order QCD. Taking Q2 > 100 GeV 2, one 
can safely neglect the proton mass and primordial 
transverse momenta of the partons as well as higher 
twist operators. Contributions of this kind are 
suppressed by inverse powers of Qz. We also do not 
have to worry about heavy quark thresholds. It has 
been shown that, at Qz >100GeV 2 and x>0.01, 
contributions from c6 production have a leading- 
logarithmic behaviour similar to that of light quarks, 
while contaminations from bb, tf and presumably also 
from tb production are negligible [9]. Therefore, it is 
perfectly appropriate for the present study to assume 
four massless quark flavours (u, d, s, c). 

Writing the differential cross-sections for unpolar- 
ized NC scattering, ep ~ eX, in the general form 

daNc(e~-) _ 47za2S y2xFl(x, Q2) + (1 - y)F2(x, Q2) 
dxdy Q4 

_y2 (1) 

where ~ is the electromagnetic flnestructure constant, 
and using the above approximations one finds the 
following relations of the NC structure functions 
Fi(x,Q 2) to the quark and antiquark density 
distributions qy (x, Qz) and ~y(X, Q2): 

F2(x, Q2) = 2xFI(x, Q2) 

= ~ Af(QZ)[xqy(x, Q2)+X?li(x, Q2)] 
f=u,d,s,c 

xF3(x, Q2) = ~ By(Q2)[xqy(x, QZ)- x?ly(x, Q2)] �9 
f=u,d,s,c 

(2) 

The flavour-dependent coefficients As and By are given 

by 
2 2 2 2 Af(Q 2) = e~ - 2efVevfP z + (v 2 + ae)(V f + af)P z (3) 

By(Q 2) = - 2efaeafPz + 4VeVyaeayP 2 

where ey is the electric charge of a fermion f ,  while 
vf = (T3y - 2ef sin 2 Ow)/sin 2 Ow and af = T3Hsin 2 Ow 
are the vector and axial vector couplings to the Z ~ 
boson expressed in terms of the third component of 
the weak isospin T3y and the Weinberg angle Ow. The 
convention is such that e u = 2, T3 e = __ �89 T 3  u = 1, etc. 
Moreover, by the appearance in (3) of the factors 
Pz = QE/(Q2 + m2z) denoting the ratio of the Z and y 
propagators, one can easily recognize the individual 
contributions from 7 exchange, Z exchange and y - Z 
interference. In a similar notation, the differential 
cross-sections for unpolarized CC scattering, ep ~ vX, 
take the form 

dacc(e- ) 
dxdy 

~0~2S 

4 sin 40w(Q 2 + mE) 2 

y~_,,~ xqy(x, Q2) + (1 - y)2 y=a,~ ~ xqy(x, Q2) 

dacc(e +) 
dxdy 

7Z9~2 S 

4 sin 40w(Q 2 + m~r) 2 

"[y~,c xi-ty(x'Q2) + ( 1 -  y)2 ~y=a,s xqf(x'Q2)l" 

(4) 
To the order considered here, one can replace the W and 
Z couplings in the above formulas by the Fermi cons- 
tant GF, using the relations GF = 7ca/[~/2 sin 20wm~r 
and mz = raw/cos Ow. Furthermore, the quark distribu- 
tion functions introduced above obey the Altarelli- 
Parisi evolution equations of QCD in leading- 
logarithmic approximation [10]. 

Concerning higher order effects, we want to add the 
following remarks. As Q2 > 100 GeV 2, the neglect of 
non-leading QCD corrections [10] can be justified to 
some extent by asymptotic freedom. Moreover, for 
studies of x-distributions averaged over y or Q2, 
next-to-leading corrections to the evolution equations 
should certainly be less relevant than for a detailed 
analysis of scaling violations. This anticipation is 
confirmed by the numerical results shown later. 
Regarding as(Q2) corrections to the parton model 
formulas, we have studied the influence of the 
longitudinal structure function 

F L =- F 2 - -  2xF1 (5) 

on the NC cross-sections in the absence of contribu- 
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Fig. 1. Relative shift, (8), of the differential ep cross-section dar/dxdy 
due to the (9 (c%) longitudinal structure function FL predicted in QCD 

tions from the Z boson. In that case, (1) reduces to 

da, 47t~2s em [ Ye 1 l 
dxdy-  Q" F2 (x, Q2) l - y +  2 I + R  (6) 

with 

F e m ( x  n2~ Z 2 2 , , ~ , = el [xqs(x ' Qz) + XF:li(X, Q2)] (7) 
f = u,d,s,c 

and R = F L / ( F  2 - Fr.). Evaluating R from F L to order 
e~ as described in [11] we have calculated the relative 
shift 

da~ da~ 

A=dXdy R=0 dxdy_ y2 R (8) 
da ,  1 +(1 _y)21 + R  

dxdy R=o 

to the above cross-section and display in Fig. 1 the 
y-dependence of A at fixed values of x. Although the 
effect of R ~ 0 reaches a few percent at large y, and 
even exceeds 10% at y > 0.8 and x < 0.01, the resulting 
structure functions and quark densities are shifted 
insignificantly when averaged over suitable ranges in 
y as done in the later applications. Thus, as far as 
QCD is concerned the leading-logarithmic approxi- 
mation is certainly sufficient for our purposes. 

In contrast, higher order electroweak corrections, 
particularly the electromagnetic radiative effects, are 
known to be important and must carefully be taken 
into account. Complete one-loop calculations have 
been performed by different groups and, although 
some differences are still being discussed, there is a 
general consensus on the results [12]. Notwithstand- 
ing the difficulties in implementing these corrections 
in the experimental analysis, we take the attitude that 
the problem can be solved, and assume that our lowest 
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order analysis is applied to the data after correction 
for the electroweak radiative effects. 

Returning to the master formulas (1-4), we note 
that due to the rising strength of the weak neutral 
current interactions with increasing QZ a new structure 
function, xF3, appears in the cross-sections for 
ep--+ eX, and the F2 structure function deviates from 
the familiar expression, (7), valid at present-day 
energies. Moreover, the Z boson propagator induces 
scaling violations by powers of Q2/rn~ which cannot 
simply be factored out, in contrast to the W 
propagator which enters the CC cross-section as an 
overall factor. In the upper Q2 region accessible at 
HERA energies, these scale dependences become much 
stronger than the logarithmic scaling violations 
predicted by QCD, and therefore complicate QCD 
tests as discussed in [4, 8]. Also the shape in x of 
structure functions averaged over y is affected. As a 
consequence, one must be quite careful when 
comparing measurements from future ep collider 
experiments with existing (low-Q 2) data. Finally, it is 
rather clear from (1-4) that the separation of different 
quark flavours and of valence and sea components is 
generally not straightforward, but requires more 
involved approaches. The new features appearing in 
high energy ep collisions have been one of the main 
motivations for the work reported here. 

3 Strategies for extracting quark distributions 

Having discussed the NC and CC cross-sections 
provided by theory, we shall now investigate the 
problem of extracting individual quark distributions 
or simple combinations thereof from these basic 
observables. The aim is to systematically clarify which 
distributions can in principle be obtained from 
measurements with electron and positron beams at 
fixed ep c.m. energy. There are essentially two different 
procedures [4,6]. One can start from a single 
cross-section and consider restricted kinematical 
regions where certain structure functions or quark 
distributions dominate. This method is relatively 
straightforward, but rather selective in the distribu- 
tions which can be obtained. Moreover, it only yields 
approximate results. As a first sophistication, one can 
apply this procedure to sums and differences of e-p 
and e+p cross-sections and, in this way, obtain 
additional combinations of quark distributions. More 
ambitiously, one can try to strictly unfold a desired 
quark distribution or structure function by using the 
NC and CC cross-sections for e-p and e+p scattering. 
Although the gain in flexibility is considerable, the 
necessity to combine four different cross-sections 
makes this procedure subject to larger statistical 
uncertainties and relative normalization errors. It is 
therefore not a priori clear whether such a complete 
unfolding procedure really gives better results than 
simpler approximate extraction methods. 

In the following, we derive and examine approxi- 
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Fig. 2a-e. Deviation of the rescaled 
differential NC cross-sections, (9) and 
(11), from the electromagnetic structure 
function F~ m. The various curves in b 
and e correspond to the same values of 
x as indicated in a. Because of the over- 
all cut Q2 > 100 GeV 2, y > 0.1 (0.02) for 
x = 0.01 (0.05) 

mate as well exact relations for distribution functions 
of single quark flavours and various combinations of 
flavours in terms of rescaled cross-sections. The results 
of this formal study will be used in the Monte Carlo 
simulation of a real data analysis discussed in the next 
section. For numerical purposes, we take the 
parametrization EHLQ1 [13] for the quark densities, 
and the values ~ =  1/137, sin20w=0.226, m w =  
81.4GeV and mz=92.5GeV for the electroweak 
parameters. The epc.m, energy is assumed to be 

= 314 GeV. 

3.1 Approximate methods 

3.1.1 Use of NC cross-sections. It is convenient to 
factor out the dominant Q2 dependence from the 
differential NC cross-sections given in (1) and to define 

, _ Q4 daNc(e-V) 
aNc(e+)- 2na2sy+ dxdy 

= F2(x, Q2) +_ Y -  xF3(x, Q2) (9) 
Y+ 

where Y+ - 1 _+ (1 - y)2. For sufficiently small values 
of Q2, Z-exchange can be neglected relative to 
7-exchange and consequently xF  3 vanishes, while F2 
approaches the electromagnetic structure function F~ m 
as can be seen from (2, 3, 7). Figure 2a, b show the 
departure of ffNc(e ~-) from F~ m at fixed x as a function 
of y. We see that ~Nc(e +) is better suited for a 
determination of F~ m than 6Nc(e-) because of a partial 
cancellation between the Z contributions to F2 and the 
xF3 term in (1) as already noted in [4]. Quantita- 
tively, for x < 0.7 and y < 0.3, the approximation 

F~2 m = ~, e~(xq y + XCl y) ,~ aNc(e +) (10) 
f 

is accurate to better than 5~o. 

By combining e -p  and e+p cross-sections one can 
separate the structure functions F2 and xF  3 given in 
(2): 

aNC+ = �89 + aNc(e+)) = Fz (11) 

Y+ ( f f sc (e- ) -  5Nc(e+)) = xF3. (12) 
ffNC- -- 2 Y_ 

Such a separation is useful for studies of electroweak 
issues, in particular, since x F  3 is a direct probe of 
7 - Z  interference. Here, the interesting question is 
whether or not one can gain further information on 
quark distributions from the above combinations. This 
is not really the case for the sum ~Nc+ which still 
involves a superposition of quark densities with 
coefficients containing electroweak couplings and 
propagators. Although 5NC + is a better approximation 
of F~ m than ~NC(e-), the best opportunity to determine 
F~ m is provided by positron-proton collisions. This 
fact can be clearly seen by comparing Fig. 2c with 
Fig. 2a, b. On the other hand, the difference of the e- p 
and e+p cross-sections or, equivalently, xF  3 can serve 
as an interesting and independent probe of the valence 
quark structure of the proton. Using (3) and dropping 
the quadratic Z contributions proportional to p2 
which are negligible in the kinematical region under 
consideration, one finds 

2 sin 2 2 0 w .  
x(e,,Uo -ead,,) ,,~ O'NC- (13) 

Pz 

where uo = u - fi and do = d - d denote the valence up 
and down quark distributions, respectively. The 
quality of this approximation is better than 1~ up to 
Q2 = 10 3 GeV 2 and then worsens to about 4~o at the 
HERA kinematic limit in Q2. Apart from euuv- eado 
and F~ m there are no other, comparatively simple 
structure functions which can be obtained from NC 
cross-sections alone. 



0.85 

0,80 

0,15 

0.10 

0.05 

0.0 

-0.05 

-0AO 

-0.15 

-0.20 

-0.25 

. . . . . . . .  i 

a) 1- xu,+xS/2 

. . . . . . . .  i , , 

. ,  . xd~+xS/2 ~) ~- 

. 7  

\ ", Vr 
. . . . . . . . . .  . . . . . . . .  i"-,."i-\, 

10-~ 10-1 10-~ 10-1 

Y 

i iJ  II- 
/ / /  I t  

i : ' i  ti_ 
i i i  I :  /," / / 

/ / /  / i- 
: / i- T/, ; ;  ] : .  

...... / / / I 
. . . . - /  , .  

..s::':;; ......... .1 i l  / 

c) 1- xd,,+xS/2 
~cc(e+)/(1-y) z 

10-2 10-t  10 o 

y y 

295 

Fig. 3a-c. Deviation of rescaled CC 
cross-sections, (14), from the quark 
momentum distributions x(u, + S/2) a 
and x(dv + S/2) b and e. The explana- 
tions on the curves given in Fig. 2 apply 
here correspondingly 

3.1.2 Use of CC cross-sections. Similarly as in the NC 
case we divide the CC cross-sections given in (4) by 
an overall factor and define the quantities 

4 sin40w(Q 2 + m2) 2 dacc(e- ) 
~cc(e-) -= 

x~2s dxdy 

= x(u + c + (1 -- y)2(d+ g)) 

4 sin* Ow(Q 2 + rn~v) 2 dacc(e +) 
ecc(e +) - 

XOt2S dxdy 

= x(ti + ~ + (1 - y)2 (d + s)). (14) 

Here, an obvious and more convenient notation has 
been used for the quark densities qi(x, Q2). Evidently, 
at sufficiently large x one can neglect the sea quarks 
and make use of the valence quark approximation to 
(14). Then, 

xu~ ~ ~cc(e-) (15) 

ecc(e +) 
xdv ~ (1 - y)~" (16) 

Another interesting and feasible limit is y-+ 0. In this 
case, (14) approximately yields 

x(u~ + �89 ,~ ~cc(e-) (17) 

x(d~ + ~S) ~ ecc(e +) (18) 

where S denotes the total quark sea defined as 

S = ~ (qy + qy) - u~ - d~. (19) 
f 

We assume S to be symmetric in quarks and 
antiquarks of a given flavour. The deviations of the 
above approximations from the exact relations (14) 
are displayed in Fig. 3a, b. While (17) is applicable in 
a sufficiently large region of y such that a reasonable 
determination of u~+S/2  can be expected, this 

procedure seems to be of little use for do + S/2. The 
reason is easy to understand. In the former case, only 
sea contributions are neglected, whereas in the latter 
case the deviations also come from a valence quark. 
More precisely, in (17, 18) we have disregarded the 
terms - Y_ (d+ g) and - Y_ (d + s), respectively. 
The problem can be partly cured by taking instead of 
(18) the approximation 

x(dv + �89 ) ~ acc(e+) (20) 
(1 _y)2 

such that only the sea quark contribution Y_/(1 - y)2 
(ti + ~) is neglected when going from (14) to (20). The 
validity of this choice is illustrated in Fig. 3c. We find 
that for x ~ 0.05 and y < 0.15 the left- and right-hand 
sides of (17, 20) deviate from each other by less than 
about 109/o. 

Furthermore, from the sum and difference of the 
CC cross-sections for e-p  and e +p scattering one gets 

acc+=  6cc(e-) +acc(e+) = x(U + (1 - y)2O) (21) 

ace- -= Occ(e-) - ecc(e +) = x(uv - (1 - y)2dv) (22) 

with 

U = u + f t + c + g  

D---d + d + s  + g. (23) 

Equation (21) suggests to study the possibility of 
extracting the structure function 

F~ -~ xU  + xD = ~ x(qy + @) (24) 
f 

which, being a total singlet under flavour transform- 
ations, plays an important role in QCD studies [10]. 
Similarly as discussed above, one can again consider 
different approximations of Fs in terms of ffcc+ or, 
more generally, ~cc(e =~) which all coincide with Fs as 
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y ~ 0. The three most obvious choices are: 

l 
ace+ 

2 
Fs ~ ~-+ flee+ (25) 

~cc(e- ) + ~cc(e+)/(1 _ y)2. 

Here, the approximations involve the neglect of the 
terms - Y_D,  + Y _ / Y + ( U -  D) and - Y_(d+ s-) + 
Y _ / ( 1 -  y)Z(fi + 6), respectively. The important point 
is that these approximations break down more or less 
rapidly as y increases and one should, of course, use 
the one with the largest region of validity. Figure 4 
illustrates the accuracy of the approximations, (25). As 
expected from the previous examination of the 

relations (17) and (18) the most promising way to 
determine F~ from CC measurements is via the last 
relation in (25). In this case, Fs is reproduced perfectly 
for y < 0.1, and still with an accuracy of better than 
7% for y < 0.3. 

Finally, also the difference of the CC cross-sections, 
(22), is rather interesting since it involves only valence 
quarks. Unfortunately, it is difficult to separate uo from 
do in (22), at least at fixed ep c.m. energy. What one 
can probe is the difference of uv and do. For that 
purpose, one has to restrict y to small enough values 
such that it becomes reasonable to take 

x(uo - do) ,,~ t e e - .  (26) 

On the other hand, one cannot be too restrictive 
without paying in statistics. A feasible compromise is 
a cut at y = 0.15. For this choice, the approximation 
is better than 20% at x > 0.05 as shown in Fig. 5, an 
accuracy which turns out to be sufficient compared 
with the expected statistical errors. 

To conclude, the theoretical considerations present- 
ed in this section suggest that it should be possible to 
extract from the CC cross-sections alone acceptable 
approximations of the following structure functions: 
u o + S/2, do + S/2, uo - do abd the singlet F~. At large 
x, this correspond to measurements of the valence 
quark distributions uv, do and x(uv +_ do). 

3.2 Exact  unfolding procedure 

A more complete separation and determination of 
structure functions requires the use of all four NC and 
CC cross-sections measurable in e-Vp scattering [-4, 5]. 
At least formally, one can solve the four equations (1) 
and (4) for four particular quark distributions. A 
convenient basis is provided by the valence quark 
densities u~ and dr, and the structure functions U and 
D defined in (23). For this choice, the solutions read 
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unfolding relation (32) for the total singlet 
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curves correspond to fixed values of x as indicated 
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as follows: 

- -  U v ~ B y  Uv _fNcaNC - + f c c a c c  - (27) 

( 1  - y)Z Ba 
2 ; f ~ c =  f ~ c  = (l - y) B u + B n  ( 1 - y ) 2 B u + B d  

d v dv =fNcO'Nc_ + f ~ c 6 c c  - (28) 
1 . - -  B .  

f ~ c  - (1 - y)2B. + Ba' fac~c - (1 - y)2B. + Bd 

x U  v -  =fNcaNC+ +fgc6CC+ (29) 

fNUc (1 -- y)2 v - An 
= ; f c c  = 

( 1  - -  y)2 A u - A n (1 - y)2 A u - A a 

xD o - =fNcaSC+ +fgcffCC + (30) 

- -  I A ~  

f ~  = (1 -- y)2A.  - Ad' fc~ = (1 -- y)2A.  -- An" 

Here, ~? are the quantit ies derived f rom the differential 
N C  and C C  cross-sections as specified in (9, 14), and 

A.,d and B.,n are the coefficients given in (3). The 
arguments  of  these functions are obvious  and have, 
therefore, been omit ted  in (27-30), 

F r o m  the above  solutions one can construct  other 
interesting distributions, for example,  the non-singlet  
structure function 

x(uo+dv)_cuv+d~:~ . r  - - J N C  o N C -  7 J C C  v C C -  

Y+ ffv+av _ 

Nc (1 --  y)2 Bu + Bd 

(31) 

CC (1 - y)2B. + B a' 

the singlet structure function 

D) = f N c  aNC+ (32) F~ - x ( U  + v+o ~ - -  ~ ' U + D  ~ t J c  c a c c +  

f v + D =  - Y- . f v + D =  Au - A d  
, J c c  ( 1 -  y)2A u -  A d JNC (1 -- y)2 Au _ Ad 
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and quark sea distributions such as 

x Us~ a = x ( U  - u,,), xDs~ . = x(D - d,,), 

xS  = XUs~" + XDse a. (33) 

The relations (27-32) provide explicit examples for the 
manipulations which must be applied to the measured 
cross-sections in order to unfold the weak propagators 
and flavour-dependent electroweak couplings and to 
extract a desired quark distribution. 

The practicability of the method proposed here 
depends among other things, on the properties of the 
coefficient functions fNc and fcc appearing in the 
relations (27-32). This point has been discussed briefly 
in our previous paper [5]. For completeness of the 
present study, and since here we use x and y as 
independent variables rather than x and Q2 as in [5], 
we display these functions in Figs. 6 and 7 for two 
typical cases and recall the main features. The 
coefficients f v  c and fcVc of the unfolding relations for 
the valence quark distributions V = u~, d~ and u~ + d~ 
are well behaved functions of x and y. For different 
V the coefficientsfVc differ only by simple kinematical 
factors such as (1 -y)2 or Y+, and also the functions 
f v  are comparable with each other in shape and 
absolute magnitude. However, except at large y and/or 

V x, IfNc[>>lfVcl as can be seen for V = u , ,  in Fig. 6. 
This fact is explained by B,,.,~.-~Pz = Q2/(Q2 + m 2) 
being rather small unless Q2>(9(m2). As a con- 
sequence, the NC cross-sections play a very significant 
role in determining valence quark densities despite the 
smallness of the difference 6~c- ~ #Nc(e-) - 6Nc(e+). 
This difference is mainly due to 7 - Z interference and, 
hence, becomes sizeable only at large values of 
Q 2= xys. In summary, the reconstruction of valence 
quark distributions from data with the help of 
(27, 28, 31) should improve with increasing y until the 
event rates, which decrease with y, become too low. 
A feasible region is y > 0.15 as demonstrated later. 

In contrast, the coefficients f~c and f~c (F = U, D, 
U + D) are quite similar to each other, apart from 
different overall signs, as evident from the expressions 
(29,30,32). Other characteristic features can be 
inferred from Fig. 7 where we have p l o t t e d f ~  ~ and 
fv+D Most noteworthy are the divergencies caused CC " 
by the vanishing of the denominator (1 - y)2 A,(Q2) _ 

a [(12~ "~ e 2 A~(Q 2) off~c,cc. For sufficiently low Q2, u,d~ J - ,,,e 
so that the problem occurs at y = 1 - ~ _~ 1 - 
l ed/e~[ = 1/2. This case is exemplified by the low-x 
curves in Fig. 7. As x increases at fixed y, Q2 increases 
and the divergencies are shifted to lower values of y 
due to the Z-boson contribution to A,,~(Q 2) given in 
(3). Thus, the unfolding procedure for U,/9 and Fs is 
not applicable in the region at and just below Y--- 1/2. 
However, this subtlety is not a real problem since one 
can simply exclude this problematic region when 
averaging over y, and thereby avoid the divergencies 
without significant loss in statistical precision. Only if 
one wants to determine distributions in x and Q2 one 
has to be more careful [8]. Away from the divergencies, 

the coefficients fr~c,cc are comparatively small in size 
and, moreover, multiply sums of NC and CC 
cross-sections. The latter observation together with 
Fig. 7 suggests to use data in the region y < 0.3 for 
extracting distributions such as U,/9 and F~. 

Finally, the unfolding relations for sea quark 
distributions involve coefficients of the type f v  c cc 
(V = uv, dv, uv + dv) and fr~c,cc(F = U,D, U + D). 'In 
more practical terms, one subtracts valence quark 
distributions from the structure functions U,D or 
U + D as indicated in (33). Hence, firstly one has to 
avoid the region in y where the coefficients fv  NC,CC 

diverge, and secondly one has to go to large y in order 
to reconstruct valence quark densities. The only 
remaining region in y where sea quark densities can 
be unfolded is therefore y > 1/2. This means that one 
cannot expect high statistical precision. Yet, for y > 0.6 
useful results can be obtained as shown in the next 
section. 

4 Prospects of structure function measurements 
at HERA 

In order to evaluate the prospects for the determina- 
tion of structure functions and quark distributions 
from ep collisions using the strategies described 
in the last section, we apply these procedures to Monte 
Carlo (MC) data samples that may simulate real data 
obtainable in a few years of experimentation at HERA. 
As stated in the beginning, the present study is 
concerned with the problem of measuring the shape 
in x of quark distribution functions. 

4.1 Monte  Carlo procedure 

The Monte Carlo program LEPTO [14] simulates ep 
collision events based on the theoretical cross-sections 
given in Sect. 2. For the input quark distributions we 
use the EHLQ1 parametrization [13] and for the 
electroweak parameters we take the values specified 
in Sect. 3. We only consider the deep inelastic region 
Q2~ 100GeV 2 where mass and higher twist effects 
should be negligible, and also restrict the x-region to 
x = 0.01 where the usual log Q2 evolution equations 
in QCD should be valid [10, 153. 

Sets of NC and CC events are generated 
corresponding to collisions of 30 GeV electrons and 
positrons with 820GeV protons for an integrated 
luminosity of 200pb -~ per lepton beam. For the 
kinematic region just defined, and with the additional 
cut y >= 0.01, the total statistics for an e- (e +) beam is 
632k (626k) NC and 10.6k (4.9k) CC events. The 
number of events as wcU as the corresponding 
cross-sections are recorded in suitable bins of x and 
y. We note that for a given bin of y, the full range in 
x is kinematically allowed. Since we aim at the 
determination of x-distributions (and are not interest- 
ed here in a detailed study of Q2 dependences) it is 
thus advantageous to choose y, and not Q2, as the 



second independent variable. In order to assure 
samples with reasonable statistics, the bin-size is 
increased as x and y increases. For  y we have chosen 
six bins per decade which are equally large on a 
logarithmic scale, i.e. A logy=0.167.  In x we have 
taken bins with A x = 0 . 0 5  for x<0 .5 ,  A x = 0 . 1  for 
0.5 < x < 0.8, and the bin 0.8 _< x < 1. For  NC events 
we have in some cases exploited the high statistics 
available at low x and made a finer binning in the 
region 0.01 < x < 0.1 (four equal bins on a log scale). 

Systematic errors arising from the energy calibra- 
tion and resolution, granularity and beam hole of the 
detectors as well as other possible sources have not 
been included in our Monte Carlo simulation. 
However, these effects have been investigated in some 
detail in [-7]. There are, in principle, two ways to 
determine the values of x, y and Q 2  for a given event: 
either from an energy and angle measurement of the 
scattered electron or from the total hadron flow. The 
ranges of the above variables for which the systematic 
shifts of the differential cross-sections can be kept 
below 10~ have been identified in [7]. The 'safe' 
regions are: 

for electron measurements: 5 x 10-5 < x _< 0.6, 
Q Z ~ 5 G e V  z, y=>0.1 

(34) 

for hadron measurements: 0.01 -< x < 0.5, 
Q2 > 100 GeV 2, y > 0.03. 

(35) 

CC events only allow measurements through the 
hadron flow. For  NC events, on the other hand, one 
can use either measurement such that the accessible 
phase space is larger than in the CC case and the 
reconstructed values of x,y and Q2 can be 
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cross-checked. In order to make sure that our results 
based on statistical considerations are no~ spoiled by 
too large systematic uncertainties, we apply the cuts 
detailed in (34, 35) in our analysis. In addition, we 
indicate MC results at x > 0.5 or 0.6 in order to 
illustrate the statistical power which would be 
available also in the high-x region. 

To gain statistics in the x-shape measurements we 
average the values at fixed x of a structure function 
F(x,y~), obtained through one of the relations given 
in Sect. 3, over suitable y-bins using the errors _+ e~ on 
F(x, Yi) as weights: 

F(x, yi)/e 2 
F(x ) -  i ; e(x)= r - - 1  (36) 

Z; 1/4 ./Y 1/e 2 
i 

The averaged result F(x)+_ e(x) refers to an average 
value of y, 

Y y J4 
i 

- - - ,  (37) 

Z 1/4 
i 

which in general varies with x. The errors e~ are 
obtained from the statistical errors on the number of 
NC and CC events in a given bin in x and y, after 
propagation through the relevant unfolding relation. 
Schematically, 

ei = ~ k  fZk N k  ff~ (38) 

where the sum runs over the included data samples 
(e~; NC, CC) and fig, Nk andfk denote the correspond- 

Tab le  1. S u m m a r y  o f  s t r u c t u r e  f u n c t i o n  e x t r a c t i o n  

S t r u c t u r e  F i g u r e  a p p r o x i m a t i o n  a exac t  a i m p o r t a n t  

f u n c t i o n  no.  s ing le  b c o m b 5  u n f o l d i n g  y - r e g i o n  m e a s u r a b i l i t y  

xuv 8a, b 15 - -  27 l o w / h i g h  ** 

xd. - -  16 - -  28 - -  - -  

x(uv + dr) 9a, b - -  21 31 l o w / h i g h  ** 

x(uv - dr) 10 - -  26 - -  ve ry  l ow  * 

x(euu~ - eddy, ) 11 - -  13 - -  h i g h  * 

x(u. + S/2) 12a 17 - -  - -  very  l ow  *** 

x(d~ + S/2) 12b 20 - -  - -  ve ry  l o w  *** 

F ,  13a, b - -  25c 32 low *** 

xU 14a - -  - -  29 l ow  *** 

xD 14b - -  - -  30 l ow  * 

xU~e . 15a - -  - -  33 ve ry  h i g h  * 
x D ~  - -  - -  - -  33 - -  - -  

xS 15b - -  - -  33 ve ry  h i g h  * 
F~ m 16 10 - -  - -  l ow  **** 

~ N u m b e r s  refer to  e q u a t i o n  n u m b e r s  in  the  text  

b E x t r a c t i o n  f r o m  a s ing le  c ro s s - s ec t i on  ( N C  o r  C C ,  e-p or  e+p) 
CExt rac t ion  f r o m  a c o m b i n a t i o n  o f  e-p a n d  e+p c ross - sec t ions  ( N C  or  CC)  
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ing scaled cross-sections, numbers of events and 
coefficient functions in the reconstruction relations. 
For bins with a few events only, we use Poisson 
statistics instead of Gaussian to obtain proper error 
estimates. 

Finally, we remark on a technical problem arising 
from the finite bin size. The differential cross-sections 
#k in a certain bin are to be multiplied by known 
functions fk to be evaluated at an (x,y) point 
representative for that bin. The choice of this point is 
actually quite essential since some of the functions fk 
vary significantly with x and y even within the rather 
small bins we employ. We have observed that using 
a bin edge can produce catastropic shifts, but also the 
bin center or the mean value of (x, y) determined from 
the data is not an appropriate choice. In order to 
completely avoid this problem we formally consider 
the cross-section in a bin as a sum over the events in 
that bin. The relevant coefficient functionsfk can then 
be applied to each event, using the generated (x, y) 
value of the event. Experimentally, this may not be 
very practical and one would instead fit the measured 
cross-sections to the centers of the (x, y) bins which 
are then used for evaluating the functionsfk. The final 
result should be the same and, hence, we have 
employed the former method in our simulation for 
simplicity. 

4.2 Results 

We are now ready to present and discuss the main 
results of our studies. Table I summarizes the structure 
functions which, following the formal considerations 
of Sect. 3, can be reconstructed from cross-section 
measurements for NC and CC ep scattering at fixed 
c.m. energy. The list is rather complete as we think. 
Indicated in Table 1 are the relations used to 
reconstruct a particular structure function from the 
Monte Carlo generated data samples described in the 
last subsection. It can furthermore be inferred from 

Table 1 whether a given extraction method yields the 
desired structure function as a strict result or in a 
certain approximation, and whether the extraction 
requires only a single cross-section or the combination 
of different cross-sections. The resulting distributions 
are plotted in all cases where the statistical uncertain- 
ties allow a meaningful determination of the 
shape in x. The figure numbers are also given in 
Table 1, for convenience. 

Column six of Table 1 characterizes the regions in 
y which have turned out most suitable for reconstruc- 
tion. Of course, the boundaries of these regions are 
not uniquely defined. Taking into account the results 
of Sect. 3, the statistical errors and properties of the 
weighted averaging specified in (36), we find the 
following choice optimal: 

(i) 0.03 < y < 0.15 'very low' y 
(ii) 0.03 < y < 0.3 'low' y 

(iii) 0.15 < y < 1 'high' y 
(iv) 0.65 < y < 1 'very high' y. 

The labels in quotation marks refer to the classification 
used in Table 1. The lower boundary y = 0.03 in (i) 
and (ii) is set by the experimental reconstruction of 
the kinematic variables from the hadron flow 
measurement as discussed in [7] and stated in (35). 
The upper boundaries in (iii) and (iv) should lie as 
near to the phase space limit y =  1 as possible. 
However, a cut y < 0.9 which partly avoids the very 
large radiative corrections predicted for y--* 1 [4, 12-1 
would also be acceptable. Less trivial is the choice of 
the remaining boundaries. The upper boundary in (i) 
is a compromise: lowering it would decrease the 
statistical accuracy of the results shown in Figs. 10 
and 12; raising it would restrict the applicability of 
the approximations, (17, 20, 26), to larger values of x. 
This can be seen, for example, in Fig. 2 of [6] where 
the result of an extraction of x(uv + S/2) is displayed 
similarly as in Fig. 12a of the present paper but using 
the range 0.03 < y < 1. In contrast, the upper boundary 

0,6 

05 

0 4  

> 
X o 3  

0.2 

0.1 

0.0 

0.0 

a) 

0.2 

\ 

'~.. \\ 

" '~\ ,, \\\ 

0.4 
X 

WA25  ~ W A 2 5  
' . \ \  

;~ CDHS ~ CDHS 

0.6 0.8 .0 0.2 0.4; 

X 
0.8 0.8 1 .0  

Fig. 8a, b. The valence up-quark distribution xuv(x):'a Approxi- 
mate determination from the CC e-p cross-section, (15), 
averaged over 0.03 < y < 0.3; b Extraction from the NC and CC 
e~p cross-sections, (27), averaged over 0.15 < y < 1. The Monte 
Carlo results corresponds to an integrated luminosity of 
200pb -1 for e-p and equally for e§ collisions, and are drawn 
as full circles in case the phase space restrictions (34, 35) are 
satisfied. The curves represent xuv(x,Q 2) evaluated from the 
input distributions [13] for Q2=10 (long-dashed), 102 
(dash-dotted), 103 (dashed), 104 (dotted) GeV 2 and Q2= xys 
(full), y being the average value of y associated with the MC data. 
Also plotted are existing measurements of xuv in neutrino scat- 
tering at Q2= 11 GeV 2 [17] (open squares) and Q2= 15GeV 2 
[18] (open triangles) with statistical and systematicerrors added 
in quadrature 
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in (ii) is not so significant. If y < i were chosen instead 
ofy < 0.3 the changes to Figs. 8a, 9a, 13a and 16 would 
hardly be visible. The reason is simply that in these 
cases the statistical uncertainties of the resulting 
distributions increase with y and hence the high-y 
region contributes little to the weighted averages, (36). 
This is also true for the remaining cases of this class 
displayed in Figs. 13b, 14a and 14b, except that one 
should obviously omit the region around y _~ 1/2 
where the coefficients appearing in the relevant 
unfolding relations (29,30,32) are divergent. For a 
similar reason one may include data at y < 0.15 in the 
analysis of class (iii), although the results shown in 
Figs. 8b, 9b and 11 cannot be significantly improved 
by extending the analysis to low values of y because 

of increasing statistical errors. This holds correspond- 
ingly for class (iv) and the region in y below y ~- 1/2, 
the bin where some of the coefficients in the relations 
(33) for the sea quark distributions are divergent. 

At this point we should stress that the departure of 
an approximately reconstructed distribution from the 
actually desired structure function is not determined 
by how much a relation such as (10) is maximally 
violated in the range of y used for the reconstruction. 
It is rather the deviation at the average value ~ given 
by (37) which counts. A good example is provided by 
F~ m. As can be seen from Figs. 2b and 16, 6NC(e +) 
deviates from F~ m by about 5~o at x -~ 0.5 and y ~- 0.3, 
whereas after averaging over y in the range 
0.03 < y < 0.3 the deviation is typically below the 1~o 
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combined CC e-p  and e+p cross-sections, (25c), averaged 
over 0 . 0 3 < y < 0 . 3 ;  b Extraction from the NC and CC e~p 
cross-sections, (32), averaged over 0.03 < y < 0.3. Further 
explanations on the MC result and the curves are given in Fig. 8. 
Also plotted are existing (approximate) measurements of Fs in 
neutrino scattering at Q2= 11 GeV 2 [17] (open squares) and 
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systematic errors added in quadrature 
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Fig. 16. Determination of the electromagnetic structure function 
F~ m from the NC e+p cross-section, (10), averaged over 0.03 < y ~< 
0.3. Further explanations on the MC result and the curves are given 
in Fig. 8. Also plotted is an existing measurement of F~ ~" in muon 
scattering at Q2= 11.5 GeV ~ [20] (open triangles) with statistical 
and systematic errors added in quadrature 
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Fig. 17. Systematic uncertainty on F~ m (shaded band) due to errors 
of __+ 1% and + 2 %  in the calibration of electromagnetic and 
hadronic calorimeters, respectively. The dashed curve represents 

e m  2 2 F z at Q = 10GeV and indicates the distribution of existing data 
(see also Fig. 16) 

level as expected for y ~- 0.07. It should also be pointed 
out that the selection (i) to (iv) of regions in y can be 
improved and optimized in several ways. One obvious 
possibility are x-dependent cuts in y as suggested by 
the studies illustrated in Figs. 2 to 7. Since such 
sophistications do not change our main conclusions, 
we have kept the procedure as simple as possible. 

Finally, in the last column of Table 1, it is roughly 
indicated how well the listed functions can be extracted 
from the data. We repeat that in this evaluation 
systematic uncertainties are only considered through 
cuts on the kinematical variables. In this sense, our 
numerical results may be somewhat on the optimistic 
side. 

Before commenting in turn on Figs. 8 to 16, it may 
be helpful to clarify a few general points. Each figure 
is labeled by the symbol of the structure function (see 
Table 1) which one wants to extract. If an approximate 
method is used the actual quantity represented by the 
Monte Carlo data is specified in the figure, e.g. ~cc(e-) 
in Fig. 8a dealing with the structure function xuv. If a 
distribution is unfolded from the cross-sections 
according to the procedure described in Sect. 3.2, the 
Monte Carlo data are supposed to be identical to the 
desired structure function. The Monte Carlo results 
are shown with full symbols when they lie within the 
'safe' kinematical regions, (34, 35), whereas results for 
.x > 0.5 or 0.6 are drawn as open symbols to indicate 
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that measurements are still possible from the statistical 
point of view, but are presumably affected by larger 
systematic errors [7]. Furthermore, the broken curves 
in each figure show theoretical distributions in x for 
fixed Q2= 10,102, 103, 104 G e V  2 calculated from the 
input quark distributions [13-1 in the Monte Carlo 
generation. The full curve, drawn in each figure, 
represents the same structure function as the broken 
curves in that figure, but is calculated for the average 
value Q2 = ~xs given by (37) which is associated with 
the MC result and which varies bin-by-bin in x. In 
other words, a difference between the full curve and 
the MC data points (except for statistical fluctuations) 
indicate the breakdown of a particular approximation. 
In contrast, differences between the full and the broken 
curves arise from different Q2-scales used in the 
evaluation. These auxiliary curves are useful for 
answering the following questions: What is the region 
of validity of a certain approximation? What is the 
typical range of Q2 associated with a reconstructed 
quark distribution? Is it possible to observe a 
significant difference in shape due to the evolution 
from low Q2 to the Q2 range of HERA experiments? 
Finally, wherever possible we have also plotted real 
data from fixed-target experiments, preferentially for 
Q2~ 10GeV 2 and with statistical and systematic 
errors added in quadrature. Comparison of these data 
with the MC results illustrates the potential of HERA 
and allows for a judgement of the observability of 
global evolution effects. 

The most important observations can be sum- 
marized as follows: 

(I) The valence up-quark density can be obtained at 
x >~ 0.25, i.e. in the valence quark region, directly from 
the CC e-p cross-section (Fig. 8a), while for smaller 
values of x the more demanding unfolding procedure 
based on (27) has to be used (Fig. 8b). As expected, the 
statistical accuracy of the latter is somewhat worse 
than the accuracy of the approximate, but direct 
extraction (in spite of the twice as long running time 
needed for the exact unfolding). Note that both 
methods yield u, at high values of Q2, typically around 
104 GeV 2, i.e. two to three orders of magnitude above 
presently accessible scales. As illustrated in Fig. 8, it 
should be possible to check the evolution of xu, 
predicted by QCD at least in a rough way. 
(II) A separate determination of the valence down 
quark density is more difficult. The unfolding method 
defined by relation (28) does not seem to yield a 
statistically significant measurement of xd~. However, 
useful constraints can be derived from the CC e+p 
cross-section in the valence quark region x > 0.25. In 
this region, the measurement illustrated in Fig. 12b 
can be considered a determination of xdv 
(III) The sum and difference of the valence up and 
down quark distributions, x(u~ ++_ d,), can be extracted 
in various ways as demonstrated in Figs. 9 and 10. 
Because of the problem with the determination of the 
valence down-quark density from (28), the achievable 

statistical accuracy on x(uv + dv) in Fig. 9b is not as 
good as for xuv (Fig. 8a) but still satisfactory. 
Nevertheless, a comparison of HERA results with 
existing data should allow the observation of the 
evolution predicted by QCD, in particular in the 
valence quark region (Fig. 9a). 
(IV) Additional information on the valence quark 
distributions can be obtained from the NC structure 
function xF3. Fig. 11 shows the expected measurement 
of the distribution x (e,u, -end,) using the relation (13). 
(V) The e-p and e+p CC cross-sections yield nice 
measurements of the distributions xu~ + xS/2 and 
xd~ + xS/2, respectively, where S is the total sea quark 
density in the proton. With the restriction y <0.15 
good results can be obtained for all x > 0.01 as shown 
in Fig. 12. The average scale associated with such a 
measurement varies from Q 2 ~  10 2 - 103GeV 2 at 
small x t o  Q2 ~ 10 3 _ 10 4 G e V  2 at large x. 
(VI) In (I) to (IV) we have considered pure non-singlet 
distributions. It is also interesting to see how well one 
can expect to determine the total flavour singlet 
structure function Fs = ~ x(q s + ~ll). The two best 

f 
possibilities which we have found are illustrated in 
Fig. 13. An approximate measurement of Fs is 
provided by the CC cross-section for e+p and e-p 
using relation (25c). The MC result is shown in 
Fig. 13a. If one also uses measurements of the NC 
cross-sections one can unfold F~ without any 
approximation as specified in (32), and obtain the 
result shown in Fig. 13b. By comparing Figs. 13a and 
b one clearly sees that the approximate method using 
CC cross-sections alone is favourable from the 
statistical point of view. In fact, it seems to provide a 
very good measurement of F~ at average values of Q2 
similar to the ones mentioned in (V). Also shown in 
Fig. 13 are existing data on F~ at lower Q2. More 
accurately, these data are also approximations of F~ 
to the extent that the difference of the strange and 
charm quark sea is neglected. Figure 13 shows that 
one can hope to observe a clear change in the shape 
of Fs due to the evolution in QCD. 
(VII) Not only is it possible to extract Fs, one can 
also separate the charge 2/3 from the charge 1/3 quark 
distributions, xU and xD, respectively, using the 
unfolding relations (29) and (30). As can be seen from 
Fig. 14, the momentum distribution for the up-type 
quarks can be determined with a better statistical 
precision than the down-type quark distribution in 
reminiscence of what we have observed in the case of 
the valence quarks uv and d~. The average Q2 scale 
associated with these measurements again varies with 
x as described in (V). 
(VIII) On the other hand, a separation of sea quarks 
from valence quarks is more difficult. As explained in 
Sect. 3, such a separation appears possible only at 
large y. Nevertheless, the charge 2/3 quark sea 
distribution x Use a and the total quark sea distribution 
xS can be obtained with satisfactory statistical 
accuracy as shown in Fig. 15a, b. However, we have 
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found no way to a meaningful determination of the 
charge 1/3 quark sea distribution xDs~ ". Furthermore, 
it is interesting to note the high scale Qa ~_ 104 GeV 2 
associated with measurements such as the ones 
exemplified in Fig. 15. 
(IX) Finally, F~ m is the structure function that can be 
determined most accurately. The statistical errors for 
a run of 200pb-1 are, in fact, so small that the 
corresponding error bars lie inside the MC data 
symbols drawn in Fig. 16. Moreover, the departure of 
F~ m from the actually measured distribution 6Nc(e +) 
is smaller than the statistical errors as long as 
Q2 < 3000 GeV 2 or y < 0.3. This can be seen from the 
precise agreement between the theoretical expectation 
on F*m(x2 , , ~ ,  n2~ represented by the full curve in Fig. 16 
and the MC data on 6Nc(e+). The clear change in 
shape of the MC result as compared to the existing 
EMC data on F~ m at Qa~ 10GeV 2 shows rather 
impressively the observability of the QCD evolution. 
We should emphasize that F~ m plays the most 
important role for more quantitative QCD tests [4, 8]. 
In addition, F~ m can also be measured very well in the 
region 10 -'~ < x < 10 -2 as discussed in [-4, 61, and thus 
may serve as a sensitive probe of low-x physics. 

Finally, we note that in cases where our study 
overlaps with the investigation in I-4.1 the results 
generally agree. 

5 Summary and conclusions 

In this paper we have studied strategies and prospects 
for extracting stucture functions and individual quark 
distributions from NC and CC cross-sections 
measurable at ep colliders such as HERA. We have 
concentrated on possibilities which exist at fixed ep 
centre-of-mass energy. The available methods can be 
characterized as follows: 

(i) approximate determination from a single cross- 
section (NC or CC, e-p or e+p), 

(ii) approximate determination from combinations of 
cross-sections (NC or CC, e-p and e+p), 

(iii) exact unfolding using the four independent NC 
and CC cross-sections for e Tp scattering. 

The main objective of our study has been the 
determination of the shape of structure functions in 
the Bjorken-variable x, and not so much a detailed 
analysis of the Qz dependence expected in QCD. It is 
thus useful to average the resulting x-distributions 
over suitable ranges in y taking the inverse statistical 
errors as weights. This improves the statistical 
accuracy, but washes out details of scaling violations. 
Nevertheless, it is still possible to check the 
gross effect of the Q2 evolution. Fistly, the average 
value 37 defined in (37), varies relatively little with x so 
that the average scale parameter Q2 = xys is roughly 
proportional to x, a correlation that can easily be 
taken into account when confronting data with theory. 
Secondly, the values of QZ typical for HERA 

experiments lie one to two orders of magnitude above 
the presently accessible range in Q2. Hence, one 
expects sizeable differences in the corresponding quark 
momentum distributions due to QCD evolution. For 
a number of structure functions these differences 
should be clearly observable as demonstrated by 
Monte Carlo simulatiens in Sect. 4. Most promising 
in this respect are the valence quark distributions uv 
and uv + dr, the singlet structure function Fs and the 
electromagnetic structure function F~ m. 

Furthermore, we have (a) systematically investigat- 
ed which structure functions and quark distributions 
can be extracted from ep collisions, (b) clarified the 
advantages and disadvantages of different approaches 
to extract the same structure function, and (c) 
compared results which can be expected from HERA 
measurements with existing fixed-target measure- 
ments. Realistic estimates of the statistical accuracy of 
structure function measurements at HERA are 
obtained by Monte Carlo event simulation assuming 
an integrated luminosity of 200 pb- 1 for e-p and the 
same for e+p scattering. This should correspond to 
one or two years running time per beam configuration. 
The kinematical variables x, y and Qz are restricted 
to a region that has been found safe in the sense that 
the systematic errors on the cross-section measure- 
ments are expected to be less than 10%. Table 1 
represents a summary of our results. It should be 
pointed out that the possibility to measure differential 
cross-sections down to low values of y is essential for 
the extraction of several structure functions as 
emphasized in Table 1. The experimentally favoured 
range given in [7-1 is y > 0.1 or 0.03 depending on 
whether the kinematical variables are reconstructed 
from the scattered lepton or the total hadron flow. 
Thus, the latter method is of great importance, not 
only in charged current events. Apart from phase space 
cuts, systematic errors have been neglected since their 
inclusion would require a detailed detector simulation. 
Moreover, we have assumed the correction of the data 
for radiative effects to be a solvable problem that will 
not drastically change the conclusions presented here. 

In order to get a rough idea about systematic 
uncertainties on structure funtions that remain even 
after restricting the kinematical regions used for 
extraction we have estimated the influence of errors 
in the energy calibration of the calorimeters which is 
expected to be the most severe problem. Since F~ TM is 
the structure function with the smallest statistical 
errors, it is most vulnerable to systematic problems. 
Therefore, we have choosen F~ m as a test case. 
Following [16] we introduce shifts in F~ m arising from 
systematic calibration errors of +1% in the 
electromagnetic and _+ 2% in the hadronic energy 
measurements as considered realistic for the H1 
detector. The procedure and results are worked out 
in more detail in [8], since this question is particularly 
important for quantitative QCD tests studied there. 
Here, we simply indicate the resulting uncertainty in 
F~ m by the shaded band in Fig. 17. Although the 
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systematic uncertainty is clearly larger than the very 
small statistical errors in F~ m, barely visible in Fig. 16, 
it would not upset the x-shape measurement. 

Thus, we can conclude in summary, that the 
prospects for determining the shape in x of structure 
functions and quark distributions at ep colliders such 
as HERA look rather promising. Even with 
x-distributions that are averaged over y (or Q2), a 
global check of the Q2 evolution expected in QCD 
appears possible by comparison with existing data 
from fixed target experiments which have a sub- 
stantially lower mean Q2 scale than the typical scales 
associated with HERA experiments. For a detailed 
analysis of QCD scaling violations the data must, of 
course, be binned in Q2. In agreement with [4] we 
find that the most promising structure function for 
this purpose is F~ TM. A quantitative analysis involving 
a proper fit to determine A QcD is in progress and will 
be presented in a forthcoming paper [8]. 
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