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We describe the calculation of the five-parton production processes e+e - ,  qq3g and 
e + e ---, 2q2qg in lowest order QCD perturbation theory. Results for the integrated cross section 
as a function of the mass resolution cut are presented. We study this cross section also for an 
abelian vector gluon model. Distributions in various jet variables for standard QCD and for the 
abelian gluon model are given to see differences between the two models. 

1. Introduction 

Studies  of  j e t  p roduc t ion  in e l e c t r o n - p o s i t r o n  annih i la t ion  at high energies have 

given us much  in format ion  about  the proper t ies  of quarks  and gluons and the 

na tu re  of  their  in teract ions  as descr ibed by  qua n tum ch romodynamics  (see the 

fo l lowing recent  reviews as in ref. [1]). Exper imenta l  results  for the p roduc t ion  of up 

to five j e t s  have been presented  by  two DESY and one K E K  co l labora t ion  [2]. In 

Q C D  the exis tence of hadron  je ts  in e+e  annih i la t ion  results from the p r imord ia l  

p r o d u c t i o n  of  quarks  and gluons and their subsequent  f ragmenta t ion  into hadrons .  

The  first step,  the annih i la t ion  of e + and e into quarks  and gluons is ca lcula ted  in 

Q C D  p e r t u r b a t i o n  theory.  So in lowest order  (O(a° ) )  only  qq states can occur,  in 

0 ( % )  the f inal  s tate is qclg and in O(c~ 2) we have the p roduc t ion  of q~2g and 2q2cl 

s tates.  The  cross  sections for the p roduc t ion  of these states have been ca lcula ted  in 

the pas t  inc luding  higher order  Q C D  correct ions  (O(c~2)) for no ( total  inclusive), 

two, three and  four jets.  Results  in O(a2)  exist for Oto t [3]. In third order  pe r tu rba-  

t ion theory  (O(a~))  tree d iagrams  cont r ibu te  to 5-jet p roduct ion .  The O(c~)  virtual  
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corrections give, together with O(c~) tree level contributions in unresolved regions, 
the higher order QCD corrections to two, three, and four jets. The calculation of 
these higher order corrections is very difficult and has not been done yet. On the 
other hand, the calculation of the tree level diagrams in third order is in some sense 
straightforward and first results have been presented recently [4]. 

Besides needing the O(a~) tree diagram results for the calculation of higher order 
corrections to (n ~< 4)-jet cross sections, the cross section for 5-parton production is 
of interest by itself. At PETRA energies the 5-jet rate as measured by the JADE and 
TASSO collaborations [2], being of the order of 1%, depending on the resolution 
cut, is certainly larger than the production coming from O(c~ 2) perturbation theory 
where part of the 4-patton final states contribute to five jets through subsequent 
fragmentation of quarks and gluons into hadrons [2]. This deficiency in the 5-jet 
rate is attributed to the production of five partons. We showed in ref. [4] that the 
difference between the O(c~) results and the measured 5-jet rate can be reasonably 
well accounted for by the additional cross section for 5-parton production. At 
PETRA energies the 5-jet cross section could be measured only for sufficiently large 
resolution cut y > 0.02 (y = m2/q 2, where q ~  is the total c.m. energy), which 
corresponds to an invariant mass cut m of more than 5 GeV. For smaller mass cuts 
jets cannot be resolved anymore due to the fluctuations in the jet spread caused by 
fragmentation. At higher energies, in the range of the forthcoming e+e colliders 
SLC and LEP, the non-perturbative jet spread will be much smaller, so that data at 
much smaller resolution cuts (down to y = 0.0025 which corresponds to m = 5 GeV 

at v'q 2 = 100 GeV) will be obtainable for which the 5-jet rate is appreciable. 
The full gauge structure of QCD shows up only in higher than first order. In 

O(c~) the 3-gluon vertex comes in. Unfortunately the contribution of the non-abelian 
terms, proportional to Nc 2, in the 4-jet cross section is rather small, so that unique 
features of the 3-gluon vertex could not be verified yet. In O(c~) the 4-gluon vertex 
appears in addition. So we might expect that for 5-jet production the non-abelian 
contributions might be stronger. Of course, this will be of interest only for the 
analysis of data obtained with SLC or LEP. 

The outline of the paper is as follows. In sect. 2 we describe the framework of our 
calculation and present results for the integrated 5-parton cross section for the two 
possible final states, (a) for full QCD, (b) in the N~---, ov approximation for all 
diagrams and (c) for an abelian gluon model. In sect. 3 we give predictions for 
various distributions of common jet variables like sphericity, thrust and acoplanarity 
and test them whether they show differences between standard QCD and the 
abelian gluon model. 

Some technical details like colour factors for the many contributions are relegated 
to appendices. Complete cross section formulas cannot be presented because they 
consist of too many lines. Instead we shall publish the REDUCE programs from 
which they can be obtained [5]. In sect. 4 we summarize and add some concluding 
remarks. 
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2. Integrated flve-jet cross section 

3 the 5-jet cross section is given by the two sets of diagrams shown in To order % 
fig. 1 corresponding to the final (jet) states 

e'e --+q(Pl)q(P2)g(P3)g(P4)g(Ps), 

e+e --+q(P~)q(P2)q(P3)q(Pn)g(Ps). 

(1t 

(2) 

The Pi denote the momenta of the produced partons, quarks q, antiquarks ~t or 
gluons g. The quarks are assumed to be massless. In (2) the two groups of quarks 
and antiquarks may have equal or different flavour. The differential cross section is 
given by 

d o =  e4 l ~ f i  d3pi (2~r)48 ~4) 
2q6N~ ;=l' i 2p;0(2vr) 3 

5 

P++P - E Pi 
i=1 

(3) 

where q=p++p . For unpolarized beams and for single photon exchange 

Z"' 

(a) 

/ 

~ a o ,  

b) 

Fig. 1. Feynman diagrams for the production of five partons. (a) Production of qq3g: all necessary 
permutations of the glnon lines have to be included, (b) production of 2q2qg: all permutations of the 

quark and of the antiquark lines have to be included. 
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(Z exchange can be included in an obvious way) the lepton tensor l ~" is 

1 ,az, 2 l "~=p~+p~ +p~p~+ - ~g q . (4) 

The hadron tensor H,,, contains summations over the final spin, colour and flavour 
states including the quark charge factors. N~ is a statistical factor due to identity of 
final state particles which is equal to 6 for (1) and equal to 4 for (2). For (2) we sum 
over all quark and antiquark flavours in the final state and consider only distribu- 

tions for such jet variables in which the flavour of the quark or the antiquark is not 
specified. Then we have the same statistical factor as in the one-flavour case (see 

also appendix A). The cross section (3) depends on two angle variables which 

determine the orientation of the "hadronic"  5-jet event relative to the lepton beam 
direction. We can integrate over these angles. This is equivalent to replacing the 
lepton tensor (4) by 

. ( 5 )  

In the following we shall consider only cross sections where the angular dependence 
with respect to the beam direction is integrated out. Then we need only the trace of 
the hadron tensor H,, .  We write H, ,  in the following form 

H,.= (4~'a,) ~ E Q~ E A ( m ,  n)~,~.  (6) 
k 1 m ~ > n = l  

A(m,  n) stands for the sum of products of diagram m with diagram n and of n with 
m (except for m = n) taken from the list of diagrams in fig. 1, summed over spins, 
colours and flavours of the final state (1) and (2). For example, the class of the 
QED-type  diagrams, the first four diagrams in fig. 1 together with the permutations 
of the final three gluon lines, consists actually of 24 graphs, so that the sum in eq. 

(6) runs from m = 1 to m = 24 in this case. Similarly, the class of QCD-type 
diagrams, i.e. the second group of diagrams in fig. 1 with permutations of final 
gluon lines consists of 30 diagrams, whereas for the final state (2) we have in total 
48 diagrams. 

The calculation of the traces of the matrix element A(m,  n )~  was performed in 
the Feynman gauge. To sum over gluon polarisations we have taken the trace with 
respect to the gluon polarisation index. Then it is necessary to cancel the contribu- 
tion from the unphysical scalar and longitudinal gluon polarisations by adding 
ghost terms. In total there are 72 ghost diagrams whose products must be added in 
eq. (6). This procedure is well known [6] and was also used for the calculation of the 
e+e ~ qCt2g process [7]. In order to ensure that the ghost terms have the correct 
structure to cancel the unwanted polarisation of the final gluons, we have checked 
the Slavnov Taylor identity for each of the gluons. Details are described in 
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appendix B. An alternative procedure to compensate the scalar and longitudinal 
gluon terms is described in ref. [8]. For technical reasons this procedure could not 
be applied to our case, since for this method to work it would have been necessary 
to calculate the full tensor and not just the trace concerning gluon polarisations. 

which needs much more storage. 
The calculations of the many traces for summation over quark and gluon 

polarisations have been done with REDUCE.  The matrix elements come out as 

functions of the invariants 2pipj (i, j = 1 . . . . .  5) and the colour factors which have 
been calculated by hand. The colour factors for all products of diagrams are given 
in appendix A. The expressions obtained for A(m, n)~, are too long to be repro- 
duced here. We have made several checks to make sure that the results show the 
expected behaviour. For this purpose we have chosen invariants in the infrared or 
collinear region and have verified that the matrix elements show the expected 
scaling if some invariants are decreased. No attempt was made to find out whether 
several matrix elements could be combined so that some terms would cancel each 
other and so the resulting expressions would be shorter. Many matrix elements 

differ only by permutation of momenta.  They could have been taken out if the 
integration measure is symmetric with respect to permutations of momenta.  Al- 

though this is the case for all applications in this paper we have not done this so 

that our formulae can be directly applied in Monte Carlo studies which incorporate 
the fragmentation of quarks and gluons. The R E D U C E  output is directly trans- 
formed into F O R T R A N  codes and then used in a Monte Carlo routine for the 
calculation of the integrated cross section and the single-variable distributions. 
Other techniques for calculating matrix elements for such complicated final states 
are described in ref. [9]. 

To avoid the infrared and collinear singularities present in the tree-level diagrams 
we have introduced an invariant mass cutoff. With this we accept only those 

contributions of the total 5-parton phase space for which all Y,I= 2P~pJq 2 > Y' We 
have calculated %_jet(y)/o0, where o 0 is the zeroth order cross section % =  

2 2 2 4~r~ Y~aQk/q, with a fixed value of c~= 0.2. Since the 5-jet cross section is 
proport ional  to c~ 3 our results can easily be transformed to other values of the 

s ,  

3 the cross sections normalised by % are coupling constant. Except for the factor c~ 

independent of q~-. 
First we have calculated os_jet(y)/% for y = 0.005, 0.01, 0.02, 0.03 and 0.04 with 

the complete matrix elements according to standard QCD, i.e. C v = 4 / 3  and N~ = 3, 
and with N r = 5. The results are shown in fig. 2 where the 5-jet rate is plotted as a 
function of v. In this logarithmic plot, the 5-jet rate increases approximately linearly 
with decreasing y. For y =  0.005 the rate is appreciable, equal to 19% with c~ = 0.2. 
For ) ' ~  0 we expect c~5_i~t(), ) to diverge like log6y due to the infrared singularities. 
Below y =  0.0025 the 5-jet rate is above 100%, so that for such small y the 
perturbative cross section with fixed order % becomes meaningless. For y > 0.005 
we consider our results as reliable estimates of the 5-jet cross section. 
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Fig. 2. 5-jet rate in % versus invariant mass cutoff v. (a) qCt3g final state: dashed-dotted line, (b) 2q2~qg 
final state: dashed line, (c) sum of (a) and (b): full line. 

Second ly  we considered the fol lowing app rox ima t ion  in the matr ix  elements.  Fo r  

N c be ing  large we have C F = ~ N  c , _  so that  terms p ropo r t i ona l  to C r - ~ _  N c = - 1 / 2  N c 

are  smal l  c o m p a r e d  to the dominan t  terms. To test the large N c approx imat ion ,  we 

have  reca lcu la ted  the in tegra ted  cross sect ion with the app rox ima t ion  that  all terms 

p r o p o r t i o n a l  to C F - N J 2  are neglected and terms p ropor t i ona l  to C v - N J 4  are 

mu l t i p l i ed  with N J 4  instead. Otherwise  C F = 4 / 3  and N~ = 3. The results in this 

large N~ l imi t  app rox ima t ion  are c o m p a r e d  with the full ca lcula t ion in fig. 3 by  

p lo t t i ng  the ra t io  of the large N~ app rox ima t ion  to the full theory  separa te ly  for the 

qct3g and  2q2qg final states. This  rat io  is equal to 1.13 for qq3g and somewhat  

smal le r  for 2q2qg. It tends to 1 for y -+ 0 as one expects.  The N~ --+ oc approx ima-  

t ion is a good  es t imate  of the full cross section. But with our me thod  of ca lcula t ing 

the cross sect ion the formulae  are not  s impl i f ied  very much so that  the large N~ 

a p p r o x i m a t i o n  is of no signif icant  advan tage  over the comple te  expressions.  

The  ra t io  of cross sections for 2q2glg and for qcl3g is also exhibi ted in fig. 3. It 

decreases  for y -~ 0 as expected since 2q2gtg is less infrared singular  than q~3g. This 

ra t io  is 0.19 for y = 0.04 and equal  to 0.11 for the smallest  y = 0.001 plot ted.  This 
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Fig. 3. Ratio of 5-jet rates versus invariant mass cutoff y. (a) (,~, - ,  ~c/complete) for qq3g final state 
and 2q2qg final state, (b) ratio of 5-jet rates for QAD and QCD, (c) ratio of 5-jet rates for q~3g and 

2q27qg final states in full QCD. 

ra t io  is larger  than that ob ta ined  in the 4-jet case for the rat io  of the 2q2q and the 
q~t2g cross  sect ions [7, 10]. 

I t  is in teres t ing  to note that  the recent ly publ i shed  third o rder  term in Otot/O 0 is 

0.0166 with c~ = 0.2 [3]. This means  that  even for y = 0.01 the os_mt() ')/o 0 is of the 

same  o rde r  of  magni tude  as the cons tan t  term in otot/%. In general  one would  

expec t  that  O'5_jct/O 0 should be much larger than the third order  term of Otot/O'0 since 

it con ta ins  a series of y - d e p e n d e n t  terms p ropor t iona l  to l o g " y  (n = 1 . . . . .  6). This 

shows that  there  must  be cancel la t ions  of terms in o5_jet/o0 o r / a n d  that  the O(c~)  

te rm in otm/o0 is except ional ly  large. 

The  c o m p a r i s o n  with an abel ian  gluon theory,  called Q A D  here, is done fol lowing 

ref. [10] by  replac ing  the terms p ropor t iona l  to N~ by zero but  keeping C v = 4 / 3 ,  

so that  the abe l ian  coupl ing cons tan t  is equal  to c% = CFa  ,. Wi th  the abel ian  

coup l ing  def ined  in this way we have the same cross sect ion for 3-jet p roduc t ion ,  

e + e  ~ qqg, as in Q C D  in lowest order  of c%. The con t r ibu t ion  of the final state (2) 

is t r ea ted  in the same way with Nf = 5. To have the same zeroth order  cross section 

as in Q C D  it is actual ly  necessary to increase the number  of  f lavours by  a factor  of 

3. This  has not  been done  consistent ly.  Ins tead,  we normal ize  the cross sect ion with 

the  same o o as in QCD,  but  have not  increased the number  of  f lavours in the 

i n t e r m e d i a t e  fe rmion " l o o p s "  accordingly  (see refs. [7, 11] for a di f ferent  t r ea tment  
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in 4-jet production). Since (2) contributes only a small fraction to the cross section, 
this inconsistency is not relevant. Actually it will be difficult to distinguish QAD 
from QCD alone on the basis of the absolute value of the cross section for a special 
y value. Therefore our results for os_jct/o0 serve more for the purpose of normalisa- 
tion of the single-variable distributions to be considered in sect. 3. The resulting 
5-jet cross section for the abelian gluon model (QAD) divided by the full QCD cross 
section is also shown as a function of y in fig. 3. The difference between the full 
QCD curve and the QAD curve is a measure of the influence of the 3- and 4-gluon 
couplings (and other non-abelian terms of course). The separation of the 3- and 
4-gluon contributions from all other terms can be done only for a particular gauge 
and therefore is a gauge dependent result. For this reason we consider the compari- 
son between QCD and QAD as defined above much more meaningful. The ratio 
Q A D / Q C D  is approximately 0.7. This means that the genuine QCD type contribu- 
tions, which are proportional to N2C2F make an appreciable contribution to the 
cross section. This is different in the 4-jet case where the non-abelian N2CF part is 
much smaller, approximately 12% of the NcC 2 term for the range of y ' s  considered 
in this paper [7]. Since for five jets the non-abelian contributions are much larger, it 
will be easier to verify these terms experimentally, for example, by measuring such 
observables which enhance the non-abelian contributions further. 

Above we saw that the non-abelian contributions are significant for 5-jets. So it is 
of interest to find out which type of diagrams gives the major contributions to the 
integrated cross section. For this purpose we have done the integrations for the 
following groups of diagrams separately: (1) QED-type diagrams, (2) diagrams with 
one or two 3-gluon vertices and (3) diagrams with the 4-gluon vertex. Then the 
contribution of all QED-type diagrams is denoted (1-1), the interference between 
group (1) and group (2) is called (1-2) and so on. We have calculated the separate 
contributions of (1-1), (1-2), (2-2), (1 3), (2 3), (3 3) and of the ghost terms to 
os.jct/o 0. The results (in %) for y = 0.01,0.02, 0.03, 0.04, together with the sum of all 

TABLE 1 
Contr ibut ions to o~_j~t/% in % originating from different diagram combinations (1 1), (1-2), 

(2-2),  (1-3),  (2 3), and (3-3) and ghost for various cut values y. (1) stands for QED-type, 
(2) for diagrams with 3-gluon vertices and (3) for diagrams with a 4-gluon vertex. 

y 0.01 0.02 0.03 0.04 

ghost - 0.038 - 0.0051 0.00084 0.00014 
(1-1)  0.32 0.042 0.0070 0.0011 
(1-2)  1.99 0.25 0.043 0.0068 
(2-2) 116 0.12 0.019 0.0027 
(1 3) 0.058 - 0.0067 0.00094 0.00014 
(2 3) 0.17 0.023 0.0035 0.00059 
(3 3) 0.0088 0.0015 0.00026 0.00005 
sum 3.56 0.42 0.071 0.012 
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cont r ibut ions ,  which agrees with the result in fig. 2, is given in table 1. We see that  

the ghost  contr ibut ions  are really negligible. The main  contr ibut ions come f rom 
(1-1) ,  ( 1 -2 )  and (2 2). All the others are negligible. The  largest term comes f rom 
the in terference of (1) with (2). We also notice that  the 4-gluon vertex makes  only a 
small  contr ibut ion.  The largest of them is (2-3)  which is roughly 50% of (1-1) .  
Tab le  1 also tells us that the sum of (1-1) ,  (1 -2 )  and (2 -2)  is sufficient for obtaining 
a good  es t imate  of  the 5-jet rate. 

3. Jet-variable distributions 

The  differential  cross section for 5-jet product ion  depends  on many  variables 

even after  the integrations over 0 and X have been done. Eventual ly it may  be 
useful to s tudy distr ibutions on several of these 5-parton or 5-jet variables. In this 
sect ion we shall single out one jet variable, as for example  acoplanari ty,  thrust or 

spherici ty,  and study differential distr ibutions in one of them. We start  with 
acop lanar i ty  A whose definit ion is well known [7]. Final states with more  than 3 jets 

are character ized by a non-vanishing A. Therefore,  on the par ton level, non-vanish-  
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Fig. 4. Acoplanarity distribution of 5-parton production for y = 0.01, .v - 0.02 and y = 0.04. 
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ing A distinguishes 4 and more jets from 2 and 3 jets. In cluster analysis the 
deficiency of 4-cluster events as compared to O(c~)-QCD predictions has been 
particularly noticed in the A distribution, where the cross section for larger A is 
experimentally larger than predicted [2]. If this has something to do with 5-parton 
production it is of interest to know the A distribution for this final state. 

One possibility to confront our predictions with experimental results, being 
produced in the future with SLC or LEP, would be on the basis of a cluster analysis 
of the hadronic final state as has been done for PETRA and TRISTAN data [2]. 
Under the assumption that the multi-cluster events are reasonably good representa- 
tives for multi-jet events one can compare jet variable distributions of the 5-cluster 
events with the distributions of the 5-parton final state, of course with the same cuts 
applied as in the cluster analysis. Before this could be done, it is necessary to know 
that the 5-cluster distributions are not disturbed too much by the hadronisation, 
which could be checked by adding the fragmentation of quarks and gluons to the 
5-parton production in the same way as for 2-, 3- and 4-parton production in 
the past [1,2]. For such a comparison we have calculated the distributions in the 
variables acoplanarity A, thrust T and sphericity S for final states with fixed 
resolution cuts y = 0.04, 0.02 and 0.01. The results for %1 d o / d A ,  o(~ 1 d o / d T  and 
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Fig. 5. Thrus t  dis tr ibut ion of 5-par ton  product ion  for y = 0.01, y = 0.02 and y - 0.04. 
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Oo 1 d o / d S  are plotted in figs. 4, 5 and 6, respectively. The integrals over the curves 
in these figures yield the cross sections % los_jet(y) shown in fig. 2. The minima near 

A = 0 ,  T = I  and S = 0  are caused by the resolution cut y. Due to this cut the 

maxima  of the curves shift with increasing y to larger A, smaller T and larger S. 

The  normal isat ion of the curves for y = 0.04 is very much reduced. Therefore, only 

the distr ibutions with smaller y cuts are likely to be studied experimentally. 

We have seen above that the cross section for the abelian theory is reduced 

significantly when the coupling is held fixed to yield the same qCtg cross section. But 

also the shape of the distribution changes. In fig. 7 we show the acoplanari ty 
distr ibution for y = 0.01 for the full Q C D  and for the abelian theory QAD.  For  this 

case the integrated cross sections differ by a factor 1.5, but  in the tail the Q A D  
distr ibution is reduced by a factor 2.0 compared  to the Q C D  distribution. This 
means  that the abelian distribution falls off somewhat  faster than the non-abelian 
distr ibution.  The same qualitative behaviour occurs in the thrust distribution in fig. 

8; the tail for small T is reduced more than the maximum when compared  to the 

Q C D  distribution. Such differences can be enhanced by looking at particular 
variables which are sensitive to the terms having the 3-gluon and 4-gluon couplings. 
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Fig. 7. Acoplanarity distribution of 5-parton production with y = 0.01 for full QCD (full line) and QAD 
(dotted line). 

It is obvious that many more variables could be studied. Also measurements of 
the angular distributions of the 5-jet final state with respect to the beam axis can 
provide more detailed tests of QCD. But before this is being done it is necessary to 
supplement the 5-parton cross sections with fragmentation models in order to see 
how the various distributions look on the level of hadrons which are measured in the 
experiment. 

4. Summary and concluding remarks 

We have calculated the 5-jet production processes e+e ~ q~t3g and e+e---* 2q2qg 
in lowest order QCD perturbation theory. The qCt3g production dominates over the 
2q2Ctg production. This is similar to 4-jet production where qCt2g dominates over 
2q2C t. The contribution of genuine QCD diagrams is appreciable as was found by 
comparing with an abelian gluon model. This should make it easier to verify the 
presence of the 3- and 4-gluon couplings. 
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Fig. 8. Thrust distribution of 5-parton production with y= 0.01 for full QCD (full line) and QAD 
(dotted line). 

We have given results for the integrated 5-jet cross section as a function of the 
invariant mass cut. For sufficiently small cut values the 5-jet rate is large, rendering 

detailed studies of 5-jet production feasible at large enough energies, where the 
non-perturbat ive jet spread is very much reduced. We have calculated acoplanarity, 
thrust and sphericity distributions for various cut values and compared the results 
for standard QCD and for an abelian gluon model. 

An evaluation of the cross section with the approximation that terms of order 
1~No  2 compared to 1 are neglected, gives 10% larger cross sections. On the technical 
side the final formulae from which the cross sections for the final states (2.1) and 
(2.2) are calculated, based on many diagrams with all their interferences, are very 
long and cannot be published in a paper but can be reproduced using a R E D U C E  
program which will be published [5]. 

Our results have been produced for one-photon exchange only, i.e., for a pure 
vector current. For the high e+e energies of interest to us also Z exchange is 
present, which has also an axial-vector coupling. In almost all contributions the 
cross section for the axial-vector current is identical to the vector current. The only 
exception are those contributions to e ' e  --, 2q2Ctg with two traces as in fig. 9b. 
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(c) 

Fig. 9. Product of Feynman diagrams for 2q27::lg production with (aL (b) two traces and (c) one trace. 

Since these terms are only a small fraction of the complete 2q2~tg cross section, 
which by itself is at most only 15% of the total integrated 5-jet cross section, our 
results can be applied safely also to Z exchange after the multiplication with the 

known Z propagator  instead of the photon propagator has been done. 
The formulae which we generated for calculating the 5-jet cross section in e+e 

annihilation can also be used after crossing to calculate cross sections for other 
reactions having the same quark and gluon legs, for example to 7q--* q3g and 
7q ~ 2qqg, i.e. 5-jet production in deep inelastic scattering, or to qq ~ 3g7 and 
qq ~ qqg~,, i.e. multi-jet production in the Dre l l -Yan process, in direct photon 

production or in W / Z  production. 

Appendix A 

COLOUR FACTORS 

In this appendix we collect the results for the colour factors of the various 
contributions. These colour factors have been calculated directly without the help of 
REDUCE.  In fig. 1 we presented the diagrams without the momentum labels. 
Therefore these diagrams give the general structure and do not exhaust the complete 
list of contributing diagrams. The complete list can be generated as follows. Let us 
begin with the diagrams for the qY:t3g final state. Then we look first at the QED-type 
diagrams, the first four diagrams in fig. 1. We define the momenta  of the four 
partons in the final state by e+e ~ q(Pl)q(Pz)g(P3)g(Pa)g(Ps) as in (1), where the 
three gluons have momenta P3, P4 and Ps, seen from the top. These four diagrams 
define class I. The colour factor multiplying these diagrams is -iT~3T~4T aS. The 
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complete list of all QED-type diagrams consists of five more classes lI, III, IV, V 

and VI, which are obtained from class I by the following permutations of momenta: 

II:  3 ~ 4---' 5 --' 3, 

I I I :  3 ~ 5---' 4 ~ 3, 

IV: 3--, 4 ~ 3, 

V: 3 ~ 5 ~ 3 ,  

Vl: 4 ~ 5 ~ 4 .  (7) 

These are 24 diagrams. The colour factors in the cross section consist of the colour 

traces of the products of the corresponding colour factors of the diagrams, for 

example 

II* = T r (  T " 3 T ~ n T " ~ T " s T " 4 T  "3 ) = N ~ C  3 = C F  1 , (8) 

with C v = (~,~- - 1)/2N~ and N~ = 3 for SU(B)colou r. The other products are defined 
analogously. They are collected in table 2a with the following definitions used 

CF2 = NcCF ( - 2N )' 2, 

1 CF3 = CF - 

C f  4 = XcCF(  C F -  Nc)(C F-  1No). (9) 

The next group of diagrams has 3-gluon and 4-gluon couplings. The first three 

of these diagrams in fig. 1, where the 3-gluon coupling is at the top, make up the 

class a 1, the second three diagrams, where the 3-gluon coupling is at the bottom, are 

denoted class a 2 and the last four diagrams with two 3-gluon couplings and the 

diagram with the 4-gluon coupling are denoted class a 3. In a l, a 2 and a 3 the 

labelling of the gluon momenta is again P3, P4, P5, always from the top to 
the bottom. The classes bl, b2,b 3 and cuc2,c 3 are generated from the classes 

a l, a 2, a 3 by permutations of momenta. So b~, b 2, b 3 are obtained from a 1, a 2, a 3 by 
the permutation 3 ~ 4 ~ 5 --, 3, and cx, c 2, c 3 by the permutation 3 ~ 5 --, 4 -~ 3. 
This way we obtain 30 genuine QCD-type diagrams. The permutations of the graph 
with the 4-gluon vertex come about since we have dissolved the three terms in the 

4-gluon vertex which are connected by cyclic permutation into three separate 

diagrams. 

The remaining colour factors come from the interference between the QED-type 

and the genuine QCD-type diagrams, as for example 

a l I * =  i f  . . . . .  ' T r ( T " T " s T " s T " ~ T " ~ )  = - 2~ N2Fc~F = - 2CF5~ (10) 
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T A B L E  2 

Colour  factors for qq3g contributions. (a) QED-type  diagrams: X - Y* where X, Y run from I to 
V, the matrix is symmetric. (b) Interference contr ibut ions between QED-type  and 

QCD-type  diagrams: a , .  X* etc. where a = 1,2, 3. (c) QCD-type  diagrams: 
a,," • aft* etc., a, fl = 1, 2, 3. The missing entries are obtained as follows: 

b , , . b l t = C , . C f f = a , . c y  a n d G . b ~ = b , , . a  ~. 

(a) 

I* II* III* IV* V* VI* 

I CF~ 
II  C F 2 C F~ . . . .  

I I I  C F  2 CF  2 C F  1 
IV C F  3 C& C F  4 C F  1 - 
V C F  4 C& CI~a C F  2 C F  1 - 

VI CF~ C F  4 CF~ C &  C &  CF, 

(b) (c) 

I* II* III* IV* V* VI* al* a2* a3* 

1 I C F  7 1 __ ½ C F  7 _ ~CFv 1 5Cry 5CF5 al ~CF5 2 
a,_ 5Cl~ s l  2[ C F  v 2CFvt 1 C F  7 ½ C F  7 ½ CF~ 

1 a 3 aCF6 0 _ ¼ C F  6 _ aCFst a. C F  6 t  0 

bl  _ L ~ ~ CF~ ½CF 7 l L ~CF7 ~CF~ 5 ( F 7  ~ . ~CFv 

b 2 ~ C F  7 ~ CFs - ~ C F  7 ~ CF  5 ½ C F  7 ~ C F  v 

b, ' ' ¼C& ¼C& . - aCF~ 0 0 aCF~, 

cl ~CFv ~CFv - ~ C F s  ~CF7 ~2CF7 ~ C F  5 

c2 ~ CF~ ~ C& i C& ~ CF¢ ~ CF~ ~ CF~ 

¼c& ' ¼c& aCF 6 0 - ac& C 3 0 l 

a~ C ~  

a 2 ¼C~ C& - 
1 1 a 3 - 2 C ~  - a C ~  C ~  

b 1 0 C ~  l 

b2 1 1 ~C~ 0 ~c~  
b~ ' ~c& ~c& ac& 
c~ o ~c& ~c& 
c~ C G 0 o ~ c &  

] l 1 ~c~ ac~ c3 aC~ 

and the products  of the QCD-type  diagrams with itself. An example is 

a la  T = f  . . . .  3fba4a3 Tr(  T . T . s T . s T  b) = N2CF = C F  5 . (11) 

All p roducts  are collected in table 2, where the labels of the rows and columns are 
the classes I, II . . . . .  a 1, a2 , . . ,  introduced above. In this table two more abbreviations 

o c c u r :  

C F  6 = N3 CF ,  C F  7 = N 2 C F ( C F  - ~N~) .  (12) 

In the large N~ limit all contributions proport ional  to CF:, CF> C F  4 and C F  6 are 
neglected. This produces an error of approximately 10% in the cross section as 

already discussed in sect. 2. 
The  colour  factors for the final state q(px)Fq(pz)q(p3)Ct(P4)g(ps) are obtained in 

the following way. First we consider the special case that the quarks coupling to the 
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TABLE 3 

C o l o u r  factors for 2q2glg final states: (a) A X  • AY*,  where  X = I . . . . .  V and Y = I . . . . .  V, 

(b) BX - AY*,  (c) C X .  AY*,  (d) D X  - AY*.  The missing entries are obtained from: 
BX • BY* = C X  - CY* = D X .  DY* = A X  • AY*,  C X .  BY* = D X  - A Y * ,  

D X  • BY* = C X .  AY*,  D X  • CY* = BX . A Y * .  
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(a) (b) 

AI* AII*  AIII*  AIV* AV* AI* AII* AII I*  AIV* AV* 

A I  ½ F  1 - - 

A I I  ½ ~  ~ 6  - - 

A I I I  F ,  F~ ½F 1 - 

A I V  & F 2 ½~ ½F t 
AV ¼F 4 -~F 4 ' ' ~& -~F4 ½F~ 

BI C G C& C& CG ½CG 
BII C~ C 6 C& C G ½CG 
BIII  C& C~ C G C~ -½C G 
BIV C 6 C ~  C 6 C 6 ½ C ~  

BV ~ ~ ~cG - o ~cG ½c& ~cG 

(c) (d) 

AI* AII*  AIII*  AIV* AV* AI* AII*  AII I*  AIV* AV* 

C I  C &  C G  C F  4 CF  2 - ½CF v 

C I I  CF, C F  4 CF. C& - ½CF v 

CII1 C F  4 C F  2 CF~ CF 2 ½CF 7 

C I V  CF, CF~ C ~  C F  4 ½ CF v 

c v  ' ' ~ CF~ ~ C &  0 5CG 5CF7 2 

DI & G ½F~ } &  ~F4 
DII G F2 ½F2 ~F~ ~G 
D i l l  ~ 2 F  1 ½F 2 F~ F~ - _ aF4 
D I V  ½F 2 ½F, & G ¼F 4 

D V  aF4Z _ a F  4 t  ~ F  4 1  a F  4 1  1 

external current and the quarks coupling to the intermediate gluon (see fig. 1) have 
the same flavour. The diagrams in fig. 1 with the first qgl having momenta  Pl and 
P2 coupled to the current are distinguished as group AI (diagram 1,2, 3), group AII 
(diagram 4, 5, 6), group AIII (diagram 7, 8), group AIV (diagram 9,10) and group 
AV (diagram 11, 12). The set with the interchange of momenta 1 ~ 3 is denoted 
BI . . . . .  BV, the set with 2 ~ 4 is called CI . . . . .  CV and the set of diagrams with the 
interchanges (1 ~ 3, 2 ~ 4) is called DI . . . . .  DV. The products AA*, BB* and DD* 
give the main contribution and are calculated from a product of  two traces, in 
colour and spin space (see fig. 9a). The interference terms DA* and CB* are also 
proportional to a product of two traces (see fig. 9b), whereas the interference terms 
BA*, CA*, DB* and DC* have only one trace as indicated in fig. 9c. The complete 
list of  colour factors is given in table 3 with rows and columns from AI up to DV. 
For this table new abbreviations have been defined: 

F ,  = ! 
F =  = - , 

& = - F 4  = (13) 
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Finally we explain the charge and statistical factors which must be taken into 
account. When both fermion lines have the same flavour, there are two pairs of 
identical particles and we have the statistical factor 1/4.  Classifying the diagrams as 
A, B, C and D, as introduced above, the total contribution is ]A - B - C + D12/4 
where the minus signs are due to the anticommuting fermion fields. This is equal to 
the sum of the contributions in fig. 9a, b, c with the interference terms in fig. 9c 
getting an additional minus sign. For this case the charge factor is equal to q2 for 

each flavour i. 
The second possibility, that the flavours of the two quark lines are different, is 

more complicated. Then we can permute only the quark lines completely, i.e. quark 
and antiquark together, and we get the statistical factor 1/2.  Then the total 
contribution ]A + D12/2 may be decomposed according to ([A + D] 2 + ]B + 
C12)/4 as long as the integration measure is symmetric with respect to permutations 
of momenta,  which is the case for all specific calculations done for this paper. The 
charge factor of the diagonal term in fig. 9a, namely AA*, BB* etc. is equal to E~q 2 
( N f -  1), where N r is the number of flavours. The non-diagonal terms DA* and CB* 
in fig. 9b has the charge factor 32~. jqiqj .  

The total contribution with N r flavours is obtained as the sum of contributions 
with equal and unequal flavours which is Y~iq2/4 times the sum of Nf times the 
terms in fig. 9a plus (Y~iqi)2/~iq 2 times the interference term in fig. 9b minus the 
interference term in fig. 9c. For one-photon exchange the factor (~iqi)2/Y~iq 2 = 1/11 

for five flavours is small. 

Appendix B 

GHOST DIAGRAMS AND SLAVNOV TAYLOR IDENTITY 

As already explained in sect. 2 the ghost diagrams are needed in order to 
compensate for the contributions of the scalar (zero component) and longitudinal 
gluons which have been introduced by using the simplified sum over gluon spins 

Y',e~(k, X)e 'e* (k,  X) = -g'~¢. (14) 
x 

Although it is straightforward to draw the needed diagrams with ghost pairs, it is 
instructive to look at the ghost diagrams in connection with the Slavnov-Taylor 
identity. Let pf, be the eith component of pi, where p, is the momentum of gluon i 
(i = 3, 4, 5). Then the Slavnov-Taylor identity (STI) for every i = 3, 4, 5 is 

p ; "  ~ (qcl3g - graphs) = Y] p f , .  ghost(i,  j ) .  (15) 

In eq. (15) ghost(i, j )  is obtained from the sum of all qCt3g diagrams by replacing 
gluon line i by the ghost line 7/ and the gluon line j by the antighost line ~. 
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Fig. 10. Feynman diagrams with ghosts for compensation of scalar and longitudinal gtuon polarisations 
needed for gluons with momenta P3 and P4- 

Therefore, we have six sets of ghost diagrams with (i, j ) =  (3,4),(3, 5),(4, 3),(4, 5), 
(5, 3), (5, 4) which must be added to the already existing diagrams. For (i, j )  = (3, 4) 
we have the twelve diagrams shown in fig. 10. They consist of five groups: 
GI . . . . .  GV, (see table 4) corresponding to the qC:13g diagrams c 2, a~,% where in % 
there are three possibilities how to replace the gluon lines by a ghost and an 
antighost line. Since ~ and ~ couple to gluons only we need to look in fig. 1 at the 
diagrams with 3-gluon couplings. All these diagrams are squared, so that there are 
no interferences between the different sets (i, j ) .  This simplifies the calculation of 
the colour factors for the ghost contributions. In total we have 72 ghost diagrams, 
the twelve diagrams in fig. 10 and five times more with different labels for (i, j ) .  In 
this form the squared ghost diagrams receive also the statistical factor 1 / 6  in the 
same way as for the qcl3g diagrams because of three identical gluons. 

In order to have a check that the ghost terms have been taken into account 
correctly we have verified eq. (15). Due to the complete symmetry with respect to 
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TABLE 4 

Colour  factors for ghost d iagrams:  G X  - GY*,  where X = I . . . . .  V and Y = I . . . . .  V. 

GI*  G I I *  G I I I *  GIV* GV* 

G I  CtVs 

GII C F 7 C F  5 

G I I I  - ¼CF 6 ~CF 6 CF 6 

- ~  E 1CF 6 ~CF 6 CF 6 G I V  ~ C ~, 

G V  ~CF~ - ½CF 6 - ~CF 6 ~CF 6 CF 6 

the three gluon lines it is sufficient to prove the STI for one specific gluon label i, 
for which we take i = 3. Then we have to prove 

p~3. Y] (qCt3g - graphs) = p,~4. ghost(3,4) + p;~. ghost(3, 5). (16) 

To reduce the 1.h.s. of eq. (16) we use the Dirac equation for the massless spinors 
U ( p l )  and V ( p 2 )  and the identities 

1 1 1 1 1 1 1 1 

[~iff~3]~i3 - ~i fii3 ' ~i3~3~ii - ~i ~i3 ' 
(17) 

where Pi3 = Pi + P3. First we multiply the QED-type diagrams I . . . . .  V with p~3. The 
result can be written in terms of commutators  of the Ta: 

p~'~- Y ' . (QED-  type q~3g graphs) 

=p~'~ • (I + II + I I I  + IV + V + VI) 

{ ( 1  1 1)  
u ( P l )  f ....... T.T . s  . . y •  ")/~-'4 - -  ~//~ - -  ~//"5 -+- ~/" 7 ~/U4 7 ~/"5 

//'134 ~1345 /~134 ~35 /ff2345 /ff25 

( ~ 4  1 1 1 1 1 ) 
~1345 .//'14 17"235 g2345 /~'235 ] 

+f, . ,3 .4T.sT.  y , . sT_y , . , __~ ,~ ,  _ y , .5__~.__ye~ + y ~ - _ _ y , ' 5 _ _ y , ' ~  
-~TI5 /~1345 ~15 /~234 ~2345 ~234 ] 

( 1 1 1 1 1 1 )} 

~135 /~1345 //'134 J~24 ~/'2345 ~24 

(18) 
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Nex t  we cons ide r  the d iagrams  with only one 3-gluon vertex, i.e. classes a 1, a 2, b~, 

b 2, c 1 and c 2 in the no ta t ion  of append ix  A. F o r  this we need the cont rac t ion  of the 

3-gluon ver tex with P3. 

p~'3 . i/3 ( Pi3, - Pi,  - P3, a ,  f i ,  e 3) 

= p~3. [ g ~ p ( Z p i  + P3)e3 + gBe3( P3 -- P i ) ~  + g~e~( --Pi -- 2P3)P] 

= 2g~/3Pi "P3 -- ( P i 3 )  ~( Pi3)B + ( P i )  ~( P i )~"  (19) 

In  the sum S 3 = p ~ .  (a 1 + a 2 + b I + b 2 + c I + c2) par t  of  the terms cancel the r.h.s. 

of  eq. (18). The  remainder ,  i.e. the sum of (18) and S 3, is equal to 

p~'3. Y~ (qCzl3g - graphs with at most one 3-gluon vertex) 

=p~'~. (I  + II + I I I  + IV + V + VI + a~ + a 2 + b~ + b 2 + c~ + c2) 

t P_~4 p1345 ~'~ 

+ i f  ........ f ........ T"' P;'-~ ( 1 1 ] 
P35 #'1345 ~2345 ] 

1(o  1) 
+ i f " a 4 " s f  ........ T " ' ~  y _ _  y ,  _ y ~ l  .,/a " V . 3 ( P g s , - P s , - P 4 , a ,  e s , e4 )  

t045 /~I345 /~2345 

( 1  1 1 1 a a /  
_ _  e s _ _  + f T " T " ~  ¢4 "Y e5 

P-4 //'134 //'1345 .(f 134 #'25 /~Z345 p25 ] 

+ f  p].41 "Y"- ~515 ~4 ~1345 "Y "/e5 ~ Y'tt ~ / ~ 4  -- ")t P' - -  "~ e5 P15 e234 ff~2345 ~ 3 4  ~4 

T "a ~5 Y~' T Y , ~5 + T ~ - Y , , 4 ~ 0 5 |  
P35 \ g14 g1345 /~14 /~235 ~23,15 /~235 ] 

~1~/-~t~ ct an P5 

P35 ' /~135 p1345 P2345 P24 

(20) 

Before  we proceed  with a3, b3 and c 3 which conta in  two s t ructure  constants ,  it is 

r ea sonab le  to subt rac t  the ghost  con t r ibu t ion  with only one s t ructure  constant .  
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These are in the classes GI and GII and are of the following form: 

p~,. OI(3,41 = f  . . . . .  ~C°sT"P@4 ~(p l )  
P34 

1 1 .~ g l  e5 ] [/31U(P21 " T e s - - y  , u - r ~  + 
/ ~15 if3 #1345 #15 #234 if3 /7"2345 //'234 ] 

(21) 

The ,/~3 can be eliminated by writing P3 = P34 --P4 and then using eq. (17). The same 
is being done with GII(3, 4). The sum of OI(3, 4) and OII(3, 4) is 

p~,4. (GI + GII) (3,4) 

1 1 1 1 
= f  ........ ~ f i ( P l ) {  P34 ~ 1 ! /~15 e4 ~ 13451 #'15 /;/'234 

1 1 )  ( 1 1 1 1  ~1 e 5 --r --V T¢4 + T"T"' -'~--yes--r"+¢z~r~--y% 
k92345 ~9234 #'4 ~134 ¢1345 #'134 #'25 

y p2345P4tk2s.F's + rm \Ye'TY"t'is45 ~" 7"' v(p2). (221 

The p ~ .  (GI + GII)(3,5) is obtained from eq. (22) by interchanging 4 ~ 5. Both 
expressions are subtracted from the r.h.s, of eq. (20). This yields 

p~'~. (I + II + . - - + V I + a ~ + a 2 +  . . .  +c2) 

_ p~'4. (GI + GII)(3,4) - p ~ .  (GI + GII)(3,5) 

){ iS..,.:i..,,.,r.,Pg { <,11 ,~_ 
Pl _ p24 1 "/ #1345 -̀ // ]'tt ~2~45 Te5 ) 

p ~ t  ~e4/~ 1345 ~e4 

1 { ~ 1 ~, 
+if . . . . .  f~"3mTm p~ l y ~134~-'~"/--,~2~45"~ °~) 

X V3(P45, -[15, -P4 ,  0/, es, e4) 1 v(p2) .  (23) 
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Let us denote  in the following all terms proport ional  to if~".~"4f '~'~' by ST 1, all 

terms propor t ional  to if . . . .  T . . . .  ' by ST 2 and all contributions proport ional  to 

if . . . .  -'f . . . . .  by ST 3. Contributions to ST 1 occur in a3, GV(3,4) and G I I I  (3, 5) and 
in the first term in eq. (23), similarly for ST 2 and ST 3. In total these terms are 

ST~ - ~'~ - • - P 3  "a3 p~4. GV(3 ,4 )  - p ; , .  G I I I ( 3 , 5 )  + (first term in eq. (23)) ,  

ST 2 =p; '~ .  c3 _ p~'4. G I I I ( 3 , 4 )  _p~5.  GV(3,  5) + (second term in eq. (23)),  

ST 3 = p;'~. b3 _ p,~4. G I V ( 3 , 4 )  - p ; , .  GIV(3,  5) + (third term in eq. (23)) .  (24) 

The explicit evaluation of STy, ST 2 and ST 3 gives 

1 ( 1 
P345 ~1345 e2345 ] 

p, 

e4 
_ p ~ (  g2,g2, ..... P4 B. " 

- g ~ 3  g " ) -  ~34P3v3tP34s,-Ps,-P34,  a, es B) 

PS's p3245 e4 es/ 
+~-P~"P34~ ~34P3g~ ~ (25) P24 ) 1 ( 1  

ST, = if . . . . .  f"'"5""T"zs--F~(p1) y ~ - - y " -  v ( p 2 )  
- /3345 ]~ 1345 ~a ya  

× - ZS- V3 ( P34s, - P4, - P35, a, e4, fl) V 3 ( P3s, - P3, - Ps,/~, e3, es) 
P35 

p e s f l  . 
--p~')  ( ~m,~g e4e5 -- geSgee4 ) -I" p25 P3 r3(  P345, -- P4, - P35, a ,  e4, /~ ) 

p2 
PP t'34s p~,.,'4 t 
p2sP;SP3s,, + p25 3 ~,, j .  (26) 

ST3= i f . . ~ ,  f . . . . .  ~T"p~4~ 5 y~ 

_ P~" 
X pzV3(P345 , - P 3 , - P 4 5 ,  a, e 3 . f i ) V 3 ( P 4 5 , - P 5 , - P 4 , ~ . e 5 ,  e4) 

es . . . . . .  S -- - -  1/'3 (P45,  - - P s ,  - P 4 ,  a ,  e5, e4)  -P~(g~ge~ g~ge~) p24S 
PL 

p~,4 ~ + P~5 t 
~sssPasP3~ _~-P~P3. I " (27) 

P45 
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It is shown that the curly brackets in eqs. (25)-(27) coincide. Using the definitions 
for V 3 the curly bracket can be reduced further and we obtain 

p ~ .  Y'~ (qCt3g - graphs) - p~4, ghost(3,4) - p~'. ghost(3,5) 

= i( f~s~Lf~w3.~ + f  . . . . .  fala3a5 +faa3alfala4as) 

× V " ~ - - f i ( p l )  y~ y " - y "  y~ v(p2)  
P_~45 p134S 

X [--ge4es( P4 --P5)a q- gae4( p~5-1-p~5 -1- 2p? )  - g2(pS  ~ + p~4 q_ 2 p ~ 4 ) ]  = 0 

(28) 

because of the Jacobi identity for the product of structure constants. This shows 
that the STI is fulfilled. Therefore, the ghost contributions have the correct form. 

As a last point in this appendix we report the colour factors for the ghost 
diagrams. For example, for the diagram ghost(3,4) the colour factor is GI = 
f u u ~ T a ' T ~ 3 .  Then the colour factor for the squared graph is 

GI"  GI* = f~"3"n f~"3~'Tr(  T ~ s T a T b T  ~5) = N~C~ = C F  5 . (29) 

All other products are calculated in the same way. The results are collected in table 
4. They are also valid for all the other ghost sets ghost(i, j ) .  

We wish to thank F.A. Berends and H. Kuijf for explaining their method. 
Furthermore,  we gratefully acknowledge that they provided us with preliminary 
partial results [9] for the purpose of comparison. 
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