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Abstract. We present exact expressions for the 0(~]) 
tree graph four-jet cross-sections in neutral current 
and charged current deep inelastic ep scattering 
initiated by quarks, antiquarks and gluons including 
lepton polarization effects. Using helicity amplitudes 
the partonic cross-sections are given in concise form 
including all colour, flavour and statistical factors. We 
explicate the electroweak coupling dependence and 
state how the partonic cross-sections are folded with the 
respective parton densities to obtain the ep jet cross- 
sections to 0(72). We present some numerical results 
for the neutral current one-photon exchange case. We 
elaborate on the cut dependence of the jet rates and 
present differential distributions in some basic 
kinematical variables. 

1 Introduction 

With the study of very high energy lepton-proton 
collisions possible at HERA (x/s_~314GeV) final 
states consisting of multiple parton jets will be abun- 
dant [1]. Jet production rates and their comparison 
with perturbative QCD will constitute an important 
part of the physics program at HERA. Also, there is 
a need to accurately asses production rates and charac- 
teristics of QCD-originated jets since they will be an 
important background to possible rare and exotic 
physics processes at HERA. 

To this end one needs the exact perturbative QCD 
cross-sections for multiparton processes initiated by 
quark, antiquark and gluon partons in the proton. To 
O(~s) one has 3-jet final states*. The necessary O(c~) 
cross-section formulae are well documented in [2-5]. 
Predictions for higher multiplicity jet rates exist only 
in form of parton cascade models (see e.g. [6]) that 
account only for the leading behaviour of the exact 

* We include the target jet when counting the number of produced 
jets 

perturbative QCD matrix elements [7, 8]. As one will 
progress to look more closely at the details of multiple 
jet production one needs to be able to avail of the 
exact higher order QCD matrix elements. 

It is the purpose of this paper to provide the exact 
O(c~s z) 4-jet-production cross-sections in neutral 
current (NC) and charged current (CC) deep inelastic 
scattering (DIS) initiated by quark, antiquark and 
gluon partons including initial lepton polarization 
effects. 

We compute the O(~ 2) partonic hard scattering 
cross-sections by first evaluating all the helicity 
amplitudes of the basic parton processes where we 
treat the partons as massless. This has numerous 
advantages. First, by using the new elegant helicity 
techniques together with their clever gauge choices 
introduced in [9-12] one arrives at very compact 
expressions for the helicity amplitudes despite of the 
many Feynman diagrams that contribute to each basic 
scattering process. To be specific, we calculate the 
helicity amplitudes using the Weyl-van der Waerden 
formalism which was introduced in [13] and [14] and 
further developed in [15]. The complex-valued helicity 
amplitudes are evaluated numerically. This procedure 
leads to a very simple and efficient way of numerically 
evaluating cross-section values by calculating the 
cross-section as sum of square moduli of the 
numerically evaluated helicity amplitudes. Finally, 
polarisation type effects can be calculated quite easily 
once the helicity amplitudes of the process are known. 
The DIS cross-sections can then be obtained from the 
partonic hard scattering cross-sections by folding in 
the relevant partonic distribution functions as usual 
as depicted in Fig. 1. 

In Sect. 2 we calculate the helicity amplitudes for 
all parton scattering processes l + p ~ l' + Pl + P2 + P3 
where I and l' are the momenta of the initial and final 
leptons, and p is the initial parton and Pl,Pz,P3 are 
the final partons. We briefly recapitulate some of the 
basic notions of the Weyl-van der Waerden helicity 
formalism as introduced in [15]. This is necessary to 
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guide the reader through the calculation as well as to 
define some basic notation of the formalism that 
appear in the final formulae. We write down a minimal 
set of vector current-induced hard scattering helicity 
amplitudes for the two quark-two gluon case and the 
four-quark case. We specify how the remaining 
helicity amplitudes are related to the minimal set by 
parity, charge conjugation and crossing. Simple rules 
are given that relate the axial vector current-induced 
helicity amplitudes to the corresponding vector 
current amplitudes. We also specify the numerical 
procedure that is used to evaluate the helicity 
amplitudes numerically. 

In Sect. 3 we provide the material necessary to 
calculate the partonic cross-sections from the helicity 
amplitudes, i.e. we write down the necessary colour, 
flavour and statistical factors that are needed to obtain 
the partonic cross-section from the squared moduli of 
the helicity amplitudes. We also write down the basic 
parity-violating (pv) and parity-conserving (pc) 
flavour couplings of the standard model for the NC 
and CC case and specify how they multiply the helicity 
amplitudes. After squaring and summing the helicity 
amplitudes one obtains the characteristic electro- 
weak flavour coupling combinations multiplying the 
pc and pv DIS cross-sections that one is familiar with 
in the corresponding O(a ~ and O(as) cases (see e.g. 
[5]). In exception is the four-quark case which is more 
involved due to interference contributions where the 
electroweak currents couple to different quark lines. 
These lead to nondiagonal flavour coupling terms on 
the one hand and to a new flavour structure due to 
an explicit breaking ofy5-invariance on the other hand. 
The resulting new pc and pv electroweak flavour 
structure for the interference terms is fully specified. 

In Sect. 4 we introduce the 2 ~ 4 electroproduction 
phase space relevant for the hard parton scattering 
process l + p --* 1' + Px + P2 + P3. We then specify how 
the partonic hard scattering cross-sections are folded 
with the respective parton densities to obtain the DIS 
4-jet cross-section. Section 5 contains our numerical 
results where we have decided to limit our discussion 
to the pure NC one-photon exchange case*. We 
discuss overall kinematical cuts that we choose to 
define our DIS electroproduction phase space. Further 
cuts are then imposed on the invariant jet-jet masses, 
sij, to define the resolved 4-jet phase space. These cuts 
serve to exclude the IR (infrared)/M (mass or collinear) 
singular regions where the 4-jet cross-section diverges. 
We present predictions on 4-jet rates and compare 
them to 3-jet rates and the total DIS cross-section. 
The respective jet rates are given as functions of 
various cut parameters, and as functions of the overall 
CM energy s, and the kinematical variables x, y and 
W 2. Section 6, finally, contains our summary and the 
conclusions. 

* We hope to return to a more detailed numerical discussion 
including Z- and W-exchange effects in a future publication 

We would like to mention that this paper is the 
second one in a series of papers devoted to the study 
of QCD jet production effects in leptoproduction. In 
the first paper of the series [5] we have discussed the 
complete O(as) corrections to the electroweak 2-jet 
cross-sections of both neutral and charged current 
scattering including lepton polarization effects. It also 
contains an extended discussion of the problems of 
how to define jet cross-sections in eP-scattering. In 
the third paper of this series we shall discuss the O(a 2) 
radiative corrections to 3-jet production rates in DIS. 

2 Evaluation of helicity amplitudes in the Weyl-van 
der Waerden formalism 

2.1 Basic notions of the Weyl-van der Waerden 
formalism 

The first step in evaluating helicity amplitudes in the 
Weyl-van der Waerden formalism is to replace spinors, 
?-matrices, etc. in the usual covariant Feynman 
amplitude representation by their Weyl-van der 
Waerden two-spinor counterparts. In the following 
we write down the necessary replacements where we 
follow the conventions of [15]. We remind the reader 
that we take all partons and leptons as massless. 

1. helicity spinors 

u+(P) = v_(P)-+p• 

u_(P) = v+(P)--*p" (1) 

~+(Q) = ~_(Q)~  - iqa 

~_(Q) = ~+(Q)~ iq a 

where the subscripts _+ on the spinors refer to the 
helicities of the respective fermions. 

2. ?-matrices, momenta and polarization vectors 
slashed 

7" ~ ia 'AS -- ia~A (2) 

K ~ i k ; l k ' -  ik,kA where K 2 = 0 (3) 

r (K) - * ( ~ 9 )  (iki~ga - ik;~g') (4) 

r x//2 (ighkA--igAk'), (5) 
<kg>* 

where g is a gauge spinor related to any four- 
momentum which can be conveniently specified. Note 
that we normalize our polarization vectors to ( -1 ) .  
This normalisation differs from the one used in [15]. 
Polarization four-vectors can also occur in an 
"unslashed" form due to the three-gluon coupling. 
These can be transcribed to the above "slashed" 
polarization four-vectors by using the identity 

We use upper case letters for massless four- 
momentum vectors and lower case letters for the 



"momentum" spinors associated with them. This 
suggestive notation was introduced in [15]. The 
momentum spinors are in some sense "square roots" 
of the four-momenta associated with them. We caution 
the reader that we use this suggestive notation only 
in this section where the helicity amplitudes are 
calculated. In later sections we freely dispose of upper 
case and lower case momenta without the momentum 
spinor identification in the latter case. 

The dotted and undotted upper and lower indices 
take the values 1 and 2. Tensor contractions are to be 
done only for upper-lower pairs of dotted (undotted) 
indices, where a summation over repeated indices is 
understood. Terms that cannot be summed in this 
sense have to be dropped. 

A contraction of 2 two-spinors associated with 
massless particles can be viewed as a complex-valued 
scalar-product and will be referred to as a spinor- 
inner-product. 

pAq A = (pq) ,  (6) 

If one sums over dotted instead of undotted indices 
one gets the complex-conjugate of the same spinor- 
inner-product, i.e. 

pAqA = ( p q ) , .  (7) 

Spinors with upper and lower indices are related by 
means of the two-dimensional antisymmetric "metric 
tensor", 

~ 
e AB = I~,,~[~ = - -  F, AB = - -  e = ~k ( 8 )  

via 

PAI~AB = PB (9) 

pA e ~ = pB. (1 o) 

This leads to the relation 

( p q )  = - (qp) .  (11) 

One has to be very careful with the position and 
type of indices. Thus one has e.g. e B A P  A -= - - P B .  In the 
evaluation of helicity amplitudes one makes use of the 
following important identities: 

1. Scalar four product 

( p q ) ( p q ) *  = 2PQ (12) 

2. Schouten identities 

e A B ~  Co + I~AC,~ DB + eADeBC = 0 (13) 

eABe cD + eace DB + ease Bc = 0 (14) 

3. Anticommutator of 7-matrices 

a,i,aveB+,.,vv.i,a ,d, = 2gUVaA c (15) 

a~'nAa~c + a~Baa~c = 2g"'6 A (16) 

4. Fierz-transformations 

.AB C/) 2ffid/~BO (17) O" if/, 
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~AB ~i B a a~d o=26d3 D (18) 

cr~ado = 2~,ide, BD (19) 

A very important ingredient to obtain compact 
expressions for the helicity amplitudes from the 
Feynman amplitudes is the choice of an optimal gauge, 
i.e. the choice of the gauge spinors g in (4) and (5). The 
optimal choice of gauge may in fact even depend on 
the specific helicity amplitude that is being calculated. 
This becomes relevant for the two quark-two gluon 
(qqgg) process to be discussed in the following. In these 
processes the optimal choice is to use one of the 
momenta of the quark to which the two gluons are 
coupled as a gauge spinor. It turns out that with 
such an optimal choice only 5 of the 8 contributing 
Feynman graph amplitudes contribute for any given 
helicity configuration. 

2.2 Results for helicity amplitudes 

There are two classes of contributions to the 2-~4 
parton process l + p ~ l' + Pl + P2 + P3. These are the 
processes involving two quarks and two gluons (qqgg) 
and the processes involving four quarks (qqqq). The 
results for the corresponding helicity amplitudes will 
be presented in turn. Four-momenta will be denoted 
by upper case letters and the momentum spinors 
associated with them by lower case letters. We 
emphasize again that this distinction will not be 
followed through in Sects. 3, 4 and 5 since there is no 
explicit mention of momentum spinors in the later 
sections. 

i) Two quark-two gluon processes (qqgg). The two 
quark-two gluon processes relevant for DIS are 

l + q ~ l '  + q + g + g  (20) 

l + Fl~l' + Fl + g + g (2l) 

l + g ~ l '  +q+Ft+g .  (22) 

A representative Feynman diagram contribution for 
each of the above processes has been drawn in Fig. 1. 

Clearly there are 24=  16 nonvanishing helicity 
amplitudes involved in thcse processes, since the gluon 
helicities can take the two values { + 1} whereas, due 
to hclicity conservation, the fermion helicities can take 
the values { __ 1/2} for each fermionic pair of leptons 
and quarks only. However, it suffices to write down 
only two of the 16 helicity amplitudes. The other 14 
helicity amplitudes can then be obtained from parity, 
charge conjugation and crossing as will be shown later 
on.  

It turns out that there are basically two types of 
helicity amplitudes, namely those with equal gluon 
helicities and those with different gluon helicities. 
When one has equal gluon helicities the helicity 
amplitudes simplify as one can cancel many propa- 
gators. The result is a very compact final expression. 
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Fig. 1. Generic diagram of 4-jet production in deep inelastic ep 
scattering. Also shown are examples of the three O(~ 2) processes 
contributing to 4-jet events. The proton remnant is counted as a 
separate jet 

The case of unequal gluon helicities is more involved 
and does not reduce to a very simple expression. 

We write down our results for the case of the quark 
initiated process (20). Later on we specify the crossing 
rules that allow one to read off the corresponding 
expressions for antiquark (21) and gluon initiated 
processes (22). Further we start our discussion with 
purely parity conserving amplitudes corresponding to 
vector current coupling at both the leptonic and 
hadronic vertices as is relevant for the usual one- 
photon exchange case. Axial vector current couplings 
will be discussed later on. 

Each of the partons will be labelled by its helicity, 
momentum and colour. Thus one has 

l(2L, L) + q(2o, P, i) -~ l'(2L,, L') + q(21, P~,j) 

if g(22, P2, a) + g(23, P3, b), (23) 

where i and j and a and b are colour indices of the 
quarks ( i , j= l - . .3 )  and gluons ( a ,b= l . - . 8 )  respect- 
ively. The helicities of the leptons and partons are 
denoted by 2. The L, L' and P, P~ are the four-momenta 
of the leptons and partons, respectively. For the 
corresponding helicity amplitudes we write: 

vV ". -. . . hq~qoo(2o, P, t, 21, P1,J, 22, P2, a, 23, P3, b, 2L, L; 2L,, L') 

where the lower case v stands for the vector current 
at the leptonic vertex and the upper case V stands for 

the vector current at the hadronic vertex. In order to 
keep our notation reasonably concise, we shall always 
drop those quantum number labels that are not 
important for the argument at hand. 

Equal 91uon helicities: 

v V  . ~ hq~qga(+, +; q-; +" q-, -]-)= 2ie292 ( l P )  2 
(U' )  

T~ Tb TbT . 

"( ( P l P 2 ) ( P 2 P a ) ( P a P )  ~- ( P l P 3 ) ( P 3 P 2 ) ( P 2 P )  J 

Opposite gluon helicities: 
~v . +;  + ;  + )  

hq~qoo(+; +; - ,  
ie2 g 2 

(24) 

(LL')(P2P3)(PP3 ) (PIP2)*(PIP3 ) (PP2 ) * 

. { -  TbTa(P2P3)(( lp) ( l l ' )*  - ( p2p ) (p21 ' )  *) 

"(( l ' l )  ( l'pl )* + (P31 ) (PaPl)*)  
TaTb(P~p3) - TbTa(p1p 3 + P2P3) 

(P1 q- P2 -F P3) 2 

�9 (px p3 ) * ( p l )  (pp2)*  (pp3)  (25) 

�9 ( ( t t ' ) * ( lp2 )  + ( p l ' ) * ( p p z ) )  

T" Tb(pP2) -- T b T"(PP2 - PEP3) + 
( - P  + P 2  + P 3 )  2 

" (p l  I') * (PP2 ) (PIP2)  (PlP3 ) 
" ( ( l ' l ) ( l ' p3)*  + ( p a l ) ( p l p 3 ) * )  
+ 2(T ~ T b - T b T~ P3)(PPz)(Pl l' ) * ( p l )  }, 

where e and # are the electromagnetic and the strong 
QCD coupling constants, respectively (e2/4rc = e and 
g2/4rr=e~). The appropriate coupling factors of 
quarks and leptons to the 7 and Z ~  • and the 
appropriate propagator factor modifications due to 
Z~ +-) exchange will be added later on. In order to 
save on notation we have dropped the spin label on 
the helicity labels in (24, 25). Thus (_+) means (_+ �89 in 
the case of leptons and quark helicities, and (_+ 1) in 
the case of gluon helicities, respectively. 

As mentioned above the remaining 14 helicity 
amplitudes can be obtained from the two helicity 
amplitudes (24, 25) by parity, charge conjugation and 
crossing. From CP invariance one has: 

hvV(20; 21; 2 2 ;  2 3 ;  2 L ; 2 L ' )  

= (h~V(-20; -21 ;  - 2 2 ;  -23 ;  --2L; --2L'))*- (26) 

The remaining six helicity amplitudes are obtained 
from crossing: 

hVV t2 "~ "~ "2 "--2L, L;--2L, ,L')  q ~ q o o ~  0 ' t ~ l ' t ~ 2 ~  3 '  
vV , , t = --hq~qoo(2o,21,22;23;2L, --L;2L,, --L) (27) 

v V  hq,qoo(-,P, ,P1;22,a;23,b;2L;2L') 
v V  = -- hq~qoo(+, - P 1 ;  +,  --P;22,b;23,a;2L;2L ')" 

(28) 



In order to give a meaning to the crossing relations 
(27, 28) one has to define spinor inner products with 
negative momentum spinor components. A discussion 
of this point is delayed to the end of Sect. 2.5 where 
we specify our numerical procedure to evaluate the 
helicity amplitudes. Finally, when both lepton- and 
quark-helicities are reversed one uses both (27, 28). 

The phase choice taken in Sect. 2.5 (46) for spinor 
inner products with negative momentum spinor 
components is compensated for in (27, 28) by multi- 
plying an extra minus sign. The resulting phases of 
the helicity amplitudes are the phases that would result 
from an explicit ab initio calculation of the remaining 
helicity amplitudes using the explicit spinor and pola- 
risation vector representation written down in (1, 4, 5). 

ii) Four-quark processes (qqqq). The four-quark 
processes relevant for DIS are (see Fig. 1) 

l + q ~ l '  +q+q+~l  (29) 

l + c ~ l ' + 0 +  0 +  q. (30) 

For these four-quark processes one has to take into 
account that one has the two possibilities that all 
quark flavours are equal and that one has two different 
pairs of quark flavours. The latter case is simpler since 
the number of contributing Feynman diagrams is 
reduced by a factor two from eight to four. However, 
it is simpler to discuss the two cases of equal and 
unequal quark flavours concurrently. The simplifica- 
tions that occur in the unequal flavour case will be 
obvious from the structure of the following equations. 
One considers the following process: 

/(2L, L) + qy(2o, P, i) --*/'(2z,, L') + qy(2~, P , , j )  

+ qf,()c2,Pz,k ) + glf,(23,P3,1 ). (31) 

Within this equation i,j, k and l are colour indices of 
the four quarks. For the helicity amplitudes we write: 

h vV 
qf ~ qf  qf' q f" 

�9 (20, P, i; 21, PI,J;/~2, P2, k; 23, P3, l; '~L, L; 2L,, L'). 

Due to the necessary antisymmetrization in the 
equal flavour case ( f = f ' )  there are twelve nonvani- 
shing helicity amplitudes in the equal flavour case 
( f = f ' ) ,  whereas there are only eight helicity 
amplitudes in the unequal flavour case ( f  ~ f ') .  

In the four-quark case there is no "optimal" choice 
of the gauge spinor g as in the two quark-two gluon 
case that would lead to the dramatic simplifications 
encountered in the latter case. Obviously the helicity 
formalism in this process leaves no choice of a gauge 
for each helicity configuration. Therefore all Feynman 
diagrams contribute to each helicity amplitude. For 
later purposes it is convenient to keep track which 
Feynman diagram contributes to which term in the 
various expressions of the helicity amplitudes. To this 
end we have drawn the eight contributing Feynman 
diagrams in Fig. 2 and numbered them from 1 to 8. 
The corresponding contributions can be identified in 

- 3  
(11 1 (2) 1 / 

3 

(3)  3 (4) ~ 3 

2 - 2 / 
] 

15) / .Z - 2 (6) 2 

(7)  (8) , r  - 3 

Fig. 2. The eight 0(~)  diagrams contributing 
(boson + q s ~ q s  + qs' + qs') 
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to the process 

the following expressions for the helicity amplitudes 
by the coefficients al (i = 1,.. . ,  8). 

One has 

hqVqqo(+; +; + ; - ;  +;  +)  

--ie2g2{ (a  I T " T "  1 \ 
. . . .  L L '  , 

�9 (p3 I ) (P2Pl )* ( -P+P1 +P2)  2 

�9 ((ll ')*(lp) - (p31')*(p3p)) 
I / 1 a a 

�9 (pl)  (P2Pl)*(P1 -k- P2 4- P3) -2 

�9 ((ll')*(lp3 ) + (pl ')*(pp3)) 
/ 1 , ,  1 , \  

+ ~ a2 p 2Pa Tii Tk, -- a4 p~2 Ti, Tkd ) 

"(PP3)(pil ')*(--P + P2 + P3) -2  

�9 ((l'l)<l'p2}* + (P,l)(PlP2}*) 

q- ( a8 p~P ll Taj T~l -- a6 p@ 33 T~l T~/ ) 

<PP3 ) (p21')*(--P + P, + P3) -2 

�9 ((l ' l)(l 'px )* + (p21)(p2p~)*)~ ) 
(32) 
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h~Vqqo(+; + ; - ;  + ;  +;  + )  

-- ieZ g2 a a [- 1 
-- LL' TijTktLalp2P3(PI>(pIP3>* 

"(P~ + P2 + P3)-E((II')*(IP2> + (pl')*(pp2>) 

1 
+ aTp~xx(PP2)(I 'p3)*(-P + P1 + P2) -2 

�9 ( ( l ' l ) ( l 'p l  )* + (p3l)(p3px)*)  

1 
+ a 2 - - ( P P z ) ( P ~ I ' ) * ( - P  + P2 + P3) -2  

P2P3 

�9 (( l ' l )  (l 'p3)* + (pt  l) (P~P3)*) 

1 
- a8~fi~l(p21)(PlP3)*( - P  + P1 + P3) -2 

- (p21')*(p2p))]  (33) 

hqVqqo(-; + ; - ; - ;  +;  +)  

- ieZ gzLL' I 1 - T ~ . , , itTkj aSpiP3(P2P3)(pl  ) 

"(P1 + P2 + P3) 2 ( ( l ' P l  )*(1'l) - (PPl  > * ( p t ) )  

1 
+ a3p-~-;(lp3)(ppl ) * ( - P  + P~ + P2) -2 

�9 ((ll ')*(lp2 ) -- (p31')*(p3P2)) 

1 
-- a6~tp~ (lP2)(PPl )*(--P + P1 + P3) -2 

"((1l' )*(  lp3 ) -- (p21' ) * (P2 P3  ) )  

1 
- a 4 p p ~ z ( P 2 P 3 ) ( p l l ' ) * ( - - P + P 2  + P 3 )  2 

+ (p~p)*(p~l))  I .  (34) 

The remaining nine nonvanishing helicity ampli- 
tudes can again be obtained from the above three by 
applying parity, charge conjugation and crossing 
according to the rules written down in (26, 27). Note, 
though, that (28) is not valid in the four-quark case 

since the fermion line initiated by the quark with 
momentum P can connect to a final quark with either 
momentum Pa or  P2- As mentioned above the suffix 
i in the coefficients ai identifies the contributing 
Feynman diagram. These coefficients take the values 
_+ 1 and 0 as specified in Table 1. 

It is clear from the structure of(32, 33, 34) that there 
are altogether only eight nonvanishing helicity 
amplitudes in the unequal flavour case ( f  # f ' )  as 
stated above. The diagrams (i = 3, 4, 5, 6) consist of 
fermion lines connecting a quark with flavour f to a 
quark with flavour f '  (see Fig. 2). For f # f '  these 
contributions vanish, i.e. the helicity amplitude (34) 
vanishes. Also the three helicity amplitudes that would 
be derived from (34) with the help of (26, 27) vanish. 

2.3 Axial vector current helicity amplitudes 

When one wants to investigate also party-violating 
(pv) effects in DIS one needs the axial vector current 
helicity amplitudes also. This involves the replacement 
of the vector current by the axial vector current at 
either or both the leptonic and hadronic vertices. This 
replacement is effected by 

~. __. y.?5 (35) 

at the leptonic and/or hadronic current vertex. In 
terms of the Weyl-van der Waerden representation 
this implies the replacement 

ia "aB - iff~A -~ ir ~'AB + ia~a . (36) 

Thus the helicity amplitudes change sign every time 
a term a ~ contributes with lowered spinor indices. This 
will depend on the fermionic lepton and quark 
helicities. 

For the leptonic vertex one then obtains the relation 

h"r= (--)l/2-XLhvV (37) 

and the same for V ~ A .  Relation (37) is true 
irrespective of the associated parton process. 

An analogous relation holds true when one replaces 
the hadronic vector current by the axial hadronic 
vector current, i.e.V.--~A in the two quark-two gluon 
processes. 

hqAqoo = ( _ )I/2-21 hqVqoo (38) 

Table 1. Feynman diagram factors a~ for processes involving four quarks (four-quark case) 

Helicity Hadronic vector current Hadronic axial vector current 
amplitudes h vv h un q~qqgl q~qqq 

+ + + - - + +  a i = l ,  i = 1  . . . . .  8 f = f '  a i= l ,  i=1  .... ,8 f = f '  
a j=l ,  j =  1,2,7,8 aj=l ,  j = 1,2,7,8"[ 
at=O , j =  3,4,5,6 f # f '  aj=0,  j =  3,4,5,6j f # f '  

+ + - - + + +  az=l ,  i = 1  . . . . .  8 f = f '  a~=--l,ai=+l' i=1,2,3,4i=5'6'7'8~, f = f ,  

- - + - - - - +  + a j =  l, a i =  + l, i = 7 , 8  
aj=O, f # f '  a i = - - i  , i=1 ,2  f # f '  J a~=0, i=  3,4,5,6 

j=1,2 ,7 ,8  
j=3,4 ,5 ,6  



No such simple rule exists for the four-quark 
processes due to the fact that the hadronic axial vector 
coupling can occur at either of the two quark lines. 
At one-half of the Feynman diagrams the electroweak 
currents couple to the quark-line which is associated 
with the quark-helicity 21. This is the case for the 
Feynman diagrams i =  1, 2, 3, 4 (see Fig. 2). For these 
terms one has the same relation (38) as in the two 
quark-two gluon case, namely 

(1,2,3,4): vA )Uz-'~lhvV - (39) h q ~ qqq = ( - -  q ~ qqq . 

At the other half of Feynman diagrams the electro- 
weak currents couple to the quark-line associated with 
the quark-helicity 22. (Feynman diagrams i = 5, 6, 7, 8). 
For these contributions one finds 

(5, 6, 7, 8): va )1/2- ~hvV _ (40) h q ~ qqq = ( - -  q ~ qqq . 

Relations (38, 39, 40) hold true irrespective of the 
coupling at the leptonic side, i.e. when interchanging 
~ (--~a. 

In the unequal helicity case 21 522  note that 
va + h~V _ hq~qq~l r _ _  q~qqq since one-half of the contributions 

within a helicity amplitude change sign whereas the 
other half does not. This is clear evidence for the 
breaking of?5-invariance in the four-quark processes*. 
We will have to return to the breaking of 75-invariance 
when we discuss cross-sections. 

2.4 Helicity amplitudes for  antiquark and gluon 
initiated processes 

Up to this point we have concentrated on calculating 
the helicity amplitudes for quark-initiated hard 
scattering processes. Within the parton model 
approach one has in addition also contributions from 
gluon and antiquark initiated processes. The relevant 
helicity amplitudes can be obtained from the quark 
initiated helicity amplitudes through crossing. One has 

ho~ogg(2 o, P, i;/~1, PI,J; 22, a; 23, b; 2L; 2L') 

- ~  - -  h q ~ q o o ( - ' ~ l ,  -- PI,J;  -20 ,  
- P, i; 22, b; 23, a; 2L; 2L,) (41) 

h , 3 ~ g q q ( 2 O ,  P, a; 21; 22, P2,J; 23; 2L; 2L') 

---- - -  h q ~ q g o ( - -  22, -- PE,J; 21; - 2o, 

-- P, a; 23; 2L; 2L') (42) 

hq.qqq(2O, P, i; 21, PI,J; 22, g2, 23, P3; 2/,, 2L, ) 
= -- hq~qq~( - 21, - PI,J; - 20, 

- P ,  i; 23, P3; 22, P2; 2L; 2L')- (43) 

The implementation of these crossing rules in terms 
of spinor inner products involving negative four- 
momenta is discussed in (46). We emphasize that it is 
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very important to accurately keep track of the order 
ofcolour indices in the crossing relations (41-43). Since 
the crossing properties do not depend on the vector 
or axial vector coupling properties of the helicity 
amplitudes we have dropped the relevant superscripts. 

2.5 Numerical procedure for  the evaluation of  
spinor-inner-products 

If one attempts to compute the squared moduli of the 
helicity amplitudes analytically by using e.g. the 
algorithm given in [15] one encounters traces with up 
to twelve momenta slashed*. We have checked that 
the resulting analytical expressions are comparable in 
length to those obtained by the conventional covariant 
("sum and square") method. One therefore looses the 
advantages of the compactness of the helicity 
amplitude expressions. However, one can maintain 
compactness (and therefore possibly speed) by 
evaluating the helicity amplitudes numerically and 
then obtain their squared moduli numerically. 

We use the following procedure. First, one chooses 
a definite representation for the two-spinors. Within 
such a definite representation one can then evaluate 
the spinor-inner-products numerically. With the 
choice of spinors made by [15] one obtains the 
following representation for the complex-valued 
spinor-inner-product: 

( k p )  = ~/(K o + K3)(P 0 - P3)e i~(K) 

-- x/(Po + P3)(Ko -- g z ) e  i~~ (44) 

with 

Q2 tan (~o(Q)) - (45) 
01 

which can easily be evaluated numerically. In (45) 
Q = ( Q o ,  Q1,Q2,Q3) can be either K or P. The 
spinor-inner-products and thereby the helicity ampli- 
tudes can then easily be evaluated numerically by 
inserting numerical values for the four-momentum 
components of the momenta as prescribed in (44, 45). 

We emphasize that the representation (44) is defined 
for Qo > 0 only. If one has to evaluate spinor-inner- 
products involving momenta with negative energy 
component, one uses the following rules (see [18]): 

( ( - k ) p )  = ( k ( - p ) )  = i ( k p )  

( ( - k ) p ) *  = ( k ( - p )  )* = i (  kp)* .  (46) 

The rules (46) are motivated by the following obser- 
vations. The operation ( ) *  denotes the complex 
conjugate of ( ) only when the four-momenta involved 
have a positive energy component. A more general 
definition of the operation ( )* is to associate it with 

* The breaking of 75-invariance in the four-quark case has also 
been noted in the corresponding e § e- four-quark production rate 
in [16] 

* The calculation of traces involving ten and more massless 
momenta slashed can be considerably simplified by using a new 
Dirac matrix identity involving massless momenta derived in [17] 
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the inner product of dotted spinors as in (7).* If one 
considers (12) with the spinor-inner-products replaced 
with the contracted forms (6) and (7) it is quite 
suggestive to associate the momentum spinors with 
the square roots of momenta. In this sense the factors 
i in (46) are the square roots of the minus sign of the 
negative four-momenta in its argument. The rules (46) 
imply a definite choice of phases for the crossed helicity 
amplitudes which may differ from the phases that are 
calculated from the representation of helicity spinors 
and polarisation vectors in (1, 4, 5). The phase changes 
implied by (46) have explicitly been compensated for 
(when necessary) in writing down the crossing relations 
(27, 28, 41, 42, 43). 

3 Squaring the helieity amplitudes 

3.1 Colour  fac tors  

At the level of helicity amplitudes the colour factors 
appear only as particular matrix elements of the S U(3) 
colour matrices. Some care is needed to obtain the 
correct colour factors when squaring the helicity 
amplitudes. The colour factors are obtained by taking 
the relevant colour traces of the contributing products 
oi" colour factors. Clearly one does not have a 
factorization of the colour and the momenta part when 
squaring the helicity amplitudes. However, it is 
advantageous and necessary to identify the different 
colour factors that arise when squaring the helicity 
amplitudes. This we shall do in the following for the 
various parton processes. To get the right order of the 
products of colour matrices one has to carefully keep 
track of their indices. We discuss the various processes 
in turn. 

i)  q -* qgg or ~1 -~ Ftg9. The helicity amplitudes have 

* [18] took this into consideration by choosing an extra symbol 
< > + for the inner product of dotted spinors 

the colour structure (see (24,25)): 

h = h A T a T b + h ~ T b T". (47) 

Their moduli squared read 

Ihl e = (Ihal 2 + IhBle)NcC~ 

+ 2Re(hAhB*)NcCF(CF _ 1 g N c )  (48) 

where N c = 3  is the number of colours and 
C F = Z  a a 2 T T = (N  c - 1 ) / (2Nc)  = 4/3. In (48) we have 

a 

already taken the sum over initial colours. When one 
squares the helicity amplitudes numerically one first 
has to identify the coefficients h A and h B multiplying 
T" T b and T b T", respectively, in (47). Then one has to 
evaluate hAh a*, hAhB*,.., numerically, and, finally, one 
multiplies the relevant colour factors as specified in 
(48). 

ii) 9 ~ gqft. In this case one has one closed fermion 
line by squaring the diagrams. Therefore these 
colour factors differ from those of case (i) by an 
additional trace calculation. Splitting up the helicity 
amplitudes into "A" and "B" type contributions in the 
manner of (47) one obtains for the square 

]h] 2 --(]hA[ 2 + ]h"]2)TRCF(N2c-  1) 

+ 2Re(hAhB*)TR(CF 1 2 - ~ N c ) ( N  c - 1) (49) 

where T R = t r ( T " T  b) = 1/2. We have summed over the 
eight initial state gluon colour indices. 

iii) q ~ q q ( l  or f t~?lqfl .  The colour accounting is 
somewhat more complicated in the four-quark case. 
By squaring the helicity amplitudes diagrammatically 
one gets different closed fermion lines corresponding 
to the different bilinears that arise in the product of 
the sums of terms of the helicity amplitudes. Basically 
there are two types of colour factors. These are 

t r ( T " T  b) t r ( T a T  b) = N c C F T R  (50) 

Table  2. Four-quark processes in the one-photon approximation. Weight factors for quark and antiquark initiated four-quark 
processes in the one-photon approximation. Sums and differences of quark parton densities are for hadronic p.c. case as 
appropriate for the one-photon approximation. The assignment of bilinear terms ( i j ) -  (ij +ji) to the four classes D,D', E 
and F is as following (refer to Fig. 2 for Feynman diagram labels). (D):11,21,22,55,65,66 (D'): 33,43,44,77,87,88 (E): 
31, 32, 41,42, 51, 52, 61, 62, 73, 74, 75, 76, 83, 84, 84, 85, 86 (F): 53, 54, 63, 64, 71, 72, 81, 82 

Contr. Id. 
Feynman part. Colour Parton densities 

1 1 1 
diag.'s - -  fact. factors and charge factors 

2s l + 1 lsv + 1 N c 

~Jf 

D �89 !2 al 2' NcCFTR NT ~, e~(qf + Ftf ) 
f = l  

nf,nf, 

D' �89 2' !3 2' NcCvTR ~ e~,(qy. + @) 
f , f "  1 

not 

E �89 1 a 1 NcCF(C F 1 - - - ~ N ~ )  Z ~ ( q f  + Of) 2 3 2 
f = l  n$,n$, 

F �89 2a as a_2 NcCFTR ~ e~ey,(qf -- @) 
f , f ' = l  
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.q . .  /- J q 

.i ii \ / f  /.q. . E 

.. q ..... ..q'.. i i 

"/q "::" ~ E .. ~,.. F 
_q_ 

Fig. 3. Generic squared amplitudes contributing to the process (boson + qs-* qs + qs' + qs'). For the subdivision into classes D, D'E and F 
see main text 

and 

tr ( T  a T b T a T b) = N c CF(C F -- -JUc) (51) 

where we have summed over the initial colours. 
In order to account for which colour factor 

multiplies which term in the squared helicity 
amplitudes one has to refer back to the Feynman 
diagram decomposition of the helicity amplitudes in 
(32, 33, 34) and Fig. 2. The correct colour accounting 
can then be done by following the colour flow in the 
squared Feynman diagrams. This leads to a 
classification of the various contributions according 
to the four classes D, D', E and F. Some representative 
colour flow diagrams for each of the four classes are 
drawn in Fig. 3. The resulting colour structure is 
detailed in Table 2 which also contains a listing of the 
allocation of various Feynman diagram contributions 
into the four classes. 

3.2 Squared matr ix  elements 

We are now in the position to calculate the squared 
matrix elements of the hard scattering processes. These 
are obtained by taking the squared moduli of the 
helicity amplitudes that have been listed in the 
previous sections. One then does the spin sums by 
summing over all contributing helicity amplitudes. 
Finally one sums over all colours. 

Before we write down the relevant hard scattering 
cross-sections we need to specify the neutral current 
vector and axial vector coupling factors that occur in 
the standard electroweak model. The coupling of the 

photon to a quark with flavour f via the vector current 
is given by the minimal charge coupling ei7 ~ of the 
quark (in units of e). The coupling factors of the Z ~ 
are specified in the following way 

hadronic coupling to quark with f l a v o u r f :  

a f  s  = vs 7 u + - - 7 " 7 5  (52) 
2sin 20w 2sin 20w 

leptonic coupling: 

a e /~u _ Ve 7" + - - 7 u 7 5  (53) 
2sin 20w 2sin 20w 

where 

v f = 2 t f - - 4 e f s i n  20w, a f = 2 t f  

ve = -- 1 + 4sin 20w, ae = -- 1 (54) 

t I denotes the third component of the weak isospin 
of the f - type  quark and e I represents its charge. Ow 
is the Weinberg-angle (sin 20w--0.217). The relevant 
pole propagator factor is 1/(Q 2 + Mz 2 - iMzFz) where 
Q2 = _ q2 = _ 211'. The charged current case (CC) will 
be treated at the end of Sect. 3.2. 

When squaring the amplitudes one will have 
7 - 7 ,  7 -  Zo and Z o -  Zo contributions. When one 
totals these contributions according to the coupling 
factors (52, 53) one obtains the Q2-dependent coupling 
combinations 

Ay(Q 2) = ear + 2 e : v : ~ R ( Z z ) ( - v e  + pae) 
2 2 2 2VeaeP ) (55) 4- (Vf 4- af)lZzl2(v2 e 4- a e -- 
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Bf(Q 2) = 2eyay~t(Zz) ( - a  e + Vep) 
+ 2v:a:lXzl2(-2Gae - p(v~ + aZ)) 

where 

1 (22 
Zz(Q 2) = (56) 

(2sin 20w) 2 Q2 + M~ - iMzF  z 

and where ;~z(Q 2) is the ratio of the Z~ 
and the photon propagator times the coupling factor 
(2sin 20w)- 2 

The coupling combination A:(Q 2) multiplies the 
parity-conserving hadronic contributions whereas 
B:(Q 2) multiplies the parity-violating hadronic contri- 
butions�9 For later convenience we have included in 
(55) the necessary additions when one considers 
polarized lepton deep inelastic scattering, where the 
longitudinal polarization of the (negatively charged)* 
lepton is denoted by p. 

Modifications of the general coupling structure (55) 
occur for the interference terms in the four-quark case. 
First, the electroweak currents may couple to different 
quark flavours in the interference terms, and second, 
the interference terms show an explicit breaking of 
y5-invariance. We shall return to the complications of 
the interference term contributions in due course. 

In the parton model approach the hard scattering 
cross-sections are weighted by the parton densities. In 
order to clearly exhibit the parton that initiates the 
hard scattering process we write down the hard 
scattering processes with the parton density weights 
included�9 We shall also include the statistical colour 
and spin factors (from initial state averaging) and the 
final state identical particle factors in our expressions 
for the squared matrix elements�9 The corresponding 
squared matrix elements will be denoted by a bar. 
Squared matrix elements corresponding to the 
unweighted hard scattering process can then be easily 
obtained by dropping the statistical and the parton 
density weight factors. In writing down the squared 
matrix elements for the quark, antiquark and gluon 
initiated processes we shall take full advantage of the 
many relations among the helicity amplitudes that 
have been written down in Sect. 2 in order to simplify 
the final expressions. 

For the various quark, antiquark and gluon 
initiated processes one then obtains the following 
expressions: 

i) quark and antiquark initiated two quark-two gluon 
processes ( q : ~ q ygg) + ( q : --* q :gg) 

IM4Jc, I2 _- �89189189 

�9 ~ Ih~V~,ool 2 |  + qs) + Bs(Q2) "2 
8heli 

* The description of DIS with positively charged leptons leads to 
minor modifications in (55) which are detailed in [5] 

-) 
2 vv aA , 91(hq:-.q:oohq:-.q:oo ) | (q: - q:) 

8hell ) 

(57) 

where q: and q: denote the quark and antiquark 
parton densities with flavour f .  The numerical factors 
in the first line of (57) are the initial state averaging 
factors (lepton spin, parton spin, parton colour) and 
the final state identical particle factor, in that order. 
The symbol | stands for the folding in of the parton 
densities. A similar notation is employed in the 
following expressions without explicit mention. We 
have made use of the CP relation (26) to reduce the 
sum over helicity amplitudes to eight, and have 
multiplied the resulting expressions by a factor of two. 
ii) gluon initiated processes (g--* 9q:q:) 

IM4Jetl 2 = �89189189 

. ~ h vv IzQg+B:,(Q2) .2  
g ~ g q f ' q f "  8hell 

2 vv ,A * X 91(hg,oq:,o:,ho~oq:,o:, )@g (58) 
8 heli J 

g is the gluon parton density. Again we have made 
use of the CP relation (26) to reduce the sum over 
helicity amplitudes to eight and multiplied the result 
by an overall factor of two. Note that the parity 
violating VA contribution in (58) proportional to 
B:(Q z) is antisymmetric under q*--*q exchange due to 
charge conjugation invariance. Its detection would 
require flavour tagging of the produced quarks and 
antiquarks. 
iii) quark and antiquark initiated four-quark process 
(q:--*q:q:,q:,)+(q:-*q:q:,q:,). We shall first list 
the none-interference contributions from the classes 
D,D' and E. The structure of the interference contri- 
butions F is more involved and requires separate 
discussion. For the D + D' + E contributions one has 

[M4jet2 1 1 1 1 / 2 ID+O,+E=g'g'5"y A:(Q )'2 

" Z 2 h~v 2 |  
- -q f  ~ q f q f q f  

6heli D,E 

+ BI(Q2) "2" Z • 2 vv 91(hq: ~q:q:~: 
6hell D , E  

. h  a A  _ *)| A:,(Q2).2 
q f  ~ q f q f q f  

�9 Z Z Ih~:Vq:q:,o:,l 2 |  + Fly) 
6 hell D" 

+ BI'(Q2) "2" Z ~2~(h~V~q::,o:, 
6heli D' 

�9 a A  * 
hqs~qsqs,Os, ) | (q: - Ft:). (59) 

We have decided to drop the distinction between 



the equal and the unequal flavour cases and have 
summed over 2 times 6 helicity amplitudes in both 
cases. The overcounting in the unequal flavour case 
( f  ~ f ' )  is compensated by our multiplication of these 

a 
contribution with the Fermi statistical factor ~ as in 
the equal flavour case ( f  = f ' ) .  As in the above two 
quark-two gluon cases the sum over helicities runs 
over one-half of the contributing helicity amplitudes 
due to the use of CP relations with a factor of two 
included to obtain the correct final answer. 

As mentioned in Sect. 3 there are two different 
colour factors depending on which bilinear combi- 
nation of Feynman diagrams one is considering. As 
discussed in Sect. 3.1 we have accordingly divided the 
various bilinear contributions within one squared 
helicity amplitude into the classes D, D', E and F with 
the appropriate colour factors given in Table 2*. 
Table 2 also contains the colour and spin factors (from 
initial state averaging) and the final state identical 
particle statistics factor�9 The last column in Table 2 
contains the appropriate charge coupling factors for 
the pure one-photon exchange case. Note that we have 
summed over all quark flavours in the last column of 
Table 2. 

The generalisation of the last column in Table 2 to 
the general standard model electroweak case is then 
obvious For  the classes D, D' and E one replaces e 2. 
(@,) by ' t he  coupling combinations A: (Q2) (A: , (Q2)  ~) 
and B:(Q2) (B: , (Q2) )  of (55) for the pc and pv hadron!c 
contributions, respectively, as already stated in 
(57-59). 

The interference contributions class F involve the 
calculation of two separate fermion traces (see Fig. 3). 
It is then immediately obvious that these contributions 
show explicit breaking of 75-invariance, i.e. one finds 
A A  v~ V V  and A V  ~ V A  for the hadronic contribu- 
tions**. Thus one cannot expect as simple a coupling 
structure as is true for the two quark-two gluon and 
the diagonal four-quark contributions. Also the 
neutral electroweak current may couple to different 
flavours f ~ f '  in the interference terms, in addition, 
the association of the parton density combinations 
( q + q )  and ( q - g )  with pc and pv hadronic 
contributions is no longer true for the interference 
contributions�9 They involve a product of traces of 3 
fermion (or antifermion) propagators and the asso- 
ciated 7 u or 7"~ 5 couplings�9 Each such trace is anti- 
symmetric (symmetric) under quark-antiquark ex- 
change for the vector current (axial vector current) 
due to charge conjugation invariance. Thus one has 
both symmetric and antisymmetric terms under q'--~0 
exchange for both the produced q~--~0 pair of the final 

* Representative contributions of each class have been drawn in 
Fig. 3, where the colour and charge coupling factors can be read 
off from the colour and charge flow of the various diagrams 
** This is most easily seen by using Fierz identities to rewrite the 
products of two traces into one trace. Then the breaking of 
75-invariance becomes quite manifest 
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state and for q'--~0 exchange of the initial state quark 
against an antiquark. Taking all these considerations 
into account we finally arrive at the following 
interference structure resulting from the class F 
contributions: 

M4Jet 2 = 1.1.1.1:At ,(02k2 
F 2 2 3 2 (  f f  ~,.'x~, ! 

�9 E E [hqyV~qyqy,o:, 12 |  Of) 
6 h e l i  F 

+ A~r:'(Q2)'2" ~ E hva _ 2 
qf ~ qf  qf'qf" 

6 h e l i  F 

�9 |  + ~:) + B'~:,(Q~).2 

�9 E E29~(hqV~q:q:,o:,(i)hq:~q:q:,o:,(J) *) 
6 h e l l  F '  

" |  (q:  + O:) + B'~f,(Q2)" 2 

�9 ~ ~ 2 9 ~ ( h  va (i 'h av ( :~*~ 
l.-a " q f ~ q f q f ' O f ' "  ) q f ~ q f q f ' q f ' x J )  ) 

6 h e l l  F '  

| (q: - 4:) t (60) w 

For the VA interference terms in (60) one has to take 
into account the ordered subset F '  of bilinear Feynman 
diagram contributions where 

V':= { (35), (45), (36), (46), (71), (72), (81), (82)} ordered. 

The flavour coupling coefficients appearing in (60) 
are given by* 

A~s,(Q2 ) = ese s, + (esv f, + es, Vs )~(Zz ) (  - -  1) e At- pae) 

2 2 + a 2 2Veaep ) + vfvf, lzzl (re 
A~r:,(Q 2) = aya: ,  I Xz 12( v2 + aZe - 2Veaep) 

B'y:,(Q 2) = e:a:,~R(Zz)( - ae + pVe) + v yaf ,  lXz[ 2 

�9 ( -- 2Vea e -- p(v 2 + a2e)) 

B'~:,(Q 2) = e:,a:~R(Zz)( - ae + pve) + v: ,a f l xz l  2 

�9 ( - 2vea e - p(v 2 + a2)). (61) 

One notes that the electroweak coupling structure (61) 
is somewhat more complicated for the interference 
contributions F than for the non-interference contri- 
butions D , D '  and E due to the breaking of 
75-invariance. 

It  is quite clear that one is not sensitive to the 
interference term contributions in the VV coupling 
case if one does not identify the flavour of the produced 
quarks and antiquarks. Thus class F does not 
contribute to the total  cross-section in the one-photon 
exchange approximation�9 This is no longer true in 

* Note that we do not obtain an overall pv contribution to the 
cross-section from the interference term (i.e. odd in the total number 
of pv couplings) as we are neglecting the imaginary part of the 
2-propagator in the class F interference terms (see also 1-16]) 
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general for the VA, AV  and AA coupling cases since 
the axial vector coupling may occur in the produced 
fermion loop leading to a symmetric distribution in 
the quark and antiquark momenta with the 
consequence that one has class F contributions to the 
total cross-section without flavour identification. 

We close this section by listing the changes necessary 
to obtain the deep inelastic charged current scattering 
case. The squared matrix elements for the charged 
current case for the quark (antiquark) initiated two 
quark-two gluon case can be obtained from (57) by 
the replacement 

Af(Q 2) --* �89 - P)lZw 121Vfs, 12 
(62) 

B s ( & ) - - ,  - �89 - p) lzwl~ l  Vss , I ~ 

where 
1 Q2 

(63) 
;~w = (2 sin Ow) Q2 + M 2w _ iMw F w 

and where V:# is the Kobayashi-Maskawa matrix 
element for the charged current f ~ f '  transitions. 

It is clear that the number of helicity amplitudes to 
be summed in the charged current case is reduced by 
a factor of two since the neutrino (antineutrino) is in 
a definite helicity state. 

Corresponding changes have to be done in the 
gluon-initiated process (58) and the four-quark process 
(59). Note that there are no class F interference 
contributions in the four-quark charged current 
processes because of charge conservation (see Fig. 3). 

4 Differential cross section 

We now proceed with the study of the differential 
cross-section for electron (positron) proton scattering 

e -+ (1) + ~'(P) ~ e -+ (l') + 4jets. (64) 

In the QCD improved quark parton model, the 
cross-section for the hadronic process (64) can be 
written as an incoherent sum of the contributions of 
each parton type (quarks, antiquarks and gluons) 
within the proton. Each of the parton carries a fraction 
r/ of the proton total momentum. The hadronic 
cross-section is obtained by folding the partonic 
cross-section with the parton densities within the 
proton. One thus obtains 

nf  1 

an(P) = Z ~ dr/f,(r/, 122)ai(r/P,/~2) (65) 
i -ny 0 

where the index i refers to the nature of the incoming 
parton (gluon: i = 0, nf light quarks: i = 1, . . . ,  n:, and 
nf light antiquarks: i = - nf . . . .  1). #i is the partonic 
cross-section initiated by the parton i with momentum 
p and fi(r/,/iv z) is the probability of finding this parton 
in the proton with the momentum fraction r/ (i.e. 
p = r/P). We have also indicated the scale dependence 
of the cross-section. It depends on two mass scales: #v 
is the factorization mass in the parton densities and 

#R the renormalization mass entering the strong 
coupling constant. 

The O(cd) 2 ~ 4 differential parton cross-section d~p 
may be written as 

dtTi = 1 [~ii4i jetlZ dPS(4). (66) 
zsp 

Here ]M4Jetl2 is the squared matrix element of the 
parton process initiated by parton i including all 
coupling, statistical, colour and propagator factors as 
given in Sect. 3.2 (see (57-60)). 

The Lorentz invariant four-particle phase space is 
given by: 

dPS  (4~ = (2~z)4f i4(1  + p - l '  - P l  - P 2  - P 3 )  

d31 ' d3pl d3p2 daP3 
(67) 

(2rc)32E ' (2/t)32E1 (2rc)32E2 (2n)32E3 

where the momenta are defined in Fig. 1. The squared 
partonic cms energy s v is related to the total squared 
cms energy, s, via 

sp -= (p + l)2 = r/s - r/(P + 1) 2. (68) 

Besides a trivial azimuthal integration the sub- 
process (66) is determined by seven kinematical 
variables which we choose a s  y, Q2,z,(D, s23,cos023 
and ~23. Here y and Q2 are the standard DIS variables 
defined by: 

Pq QZ= _ ( l _ l , ) 2 = x y s  Y=el 
W 2 = (p + q)2 = (1 -- x)ys. (69) 

The squared invariant mass of partons 2 and 3 is 
denoted by s23: 

$23 ~--- ( P 2  + P 3 )  2.  (70) 

In terms of invariants the variable z is given by 

z = 1 - PP--~ (71) 
p q  

In the (boson-initial parton) cms, p + q = 0, (with the 
incoming parton defining the positive z-axis) z is 
related to the angle 0 between the momentum Pl of 
parton 1 and the momentum p of the incoming parton 
via: 

cos 0 - (2z -- 1)~ - s23 (72) 
- -  $ 2 3  

Here g is the squared invariant mass of the 
(boson-initial parton) subsystem: 

$ = (p + q)2 = yr/s - Q2 (73) 

is the azimuthal angle of the outgoing lepton in the 
(boson-initial parton) cms. Finally, 023 and q~23 are 
the polar and aximuthal angles of parton 2 in the rest 
frame P2 + P3 = 0. In terms of these variables the phase 



space can be decomposed as:* 

1 1 1 ys 1 2n z~ 

I d t l l  dPS'4)(Sp)  : '~14--7 I d y  I dQ2 i dt l !dz  ! d ~ !  ds23 
0 Z 7~ 0 0 x 

+1 2~ 

�9 ~ dcos023 ~ d~23. (74) 
- 1  0 

Now the cross-section of leptoproduction in O(a 2) can 
be written as: 

(2n)Z d8 alt 

dydQ2 dqdzdqgds23 d cos 023d~z3 

= Z o_ L(r/,/~2)l �9 (75) 
\ 2n / i = --nf oqs 

We close this section by remarking that one can 
save on numerical integration time by doing the @ 
integration in (75) analytically. The explicit represen- 
tation of the incoming lepton momentum in the 
(boson-initial patton) cms is given by: 

l = El(l, sin fl cos ~, -- sin fl sin ~, cos fl) (76) 

where 

E~ - ~ + (1 - y)Q2 cos fl = (1 - y)Q2 _ ~ (77) 
2x/~ (1 - y)Q2 + 

The most general ~-dependent  integrands involve up 
to two contractions with the lepton momenta�9 It is 
then easy to show that: 

o 2n 

2~ ~(Ip)(lp') _ ~ (1 - y ) Q 2  
I d ~  - -  = (Ip)(l'p) + (PxP'x + P,P'y) (78) 
o 2n 2y 2 

where ~= El(l, 0, 0, cos fl ) and p and p' are any two 
momenta  not depending on ~. Corresponding 
integrands involving l' can be written in the form (78) 
by using q = l - l'. 

5 Numerical results 

We shall now turn to our numerical cross-section 
results�9 We have decided to limit our discussion to the 
case of unpolarized electron-proton scattering in the 
one-photon exchange approximation which is the 
dominant contribution at HERA energies. To be sure 
on our numerical results we have numerically checked 
the helicity method one-photon exchange parton cross 

* A quick check of the phase space decomposition (74) is afforded 
by an explicit integration of the r.h.s with an integrand 1 which 
gives (2n) 53-2s2. This result can be checked against the general 
formula given e.g. in [19] who obtain the general n-particle result 
ps<.)(sp) = (2n)4- 3.(n/2). 1 s~- 2/((n-- 1)!(n- 2)!) which agrees with 
the latter result for n - 4 which integrated over t/from 0 to 1 (sp = t/s) 
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sections derived in this paper against the corresponding 
covariant expressions obtained from [20] and [21]* 
through crossing�9 We hope to return to an 
investigation of the 7 - Z  ~ Z ~  ~ and charged 
current jet production rates at a later time. 

We use the parton density parametrization set 1 of 
[22] and the one-loop formula of the strong coupling 
constant 

12n 
~s(#~) = (33 - 2Ns)In (~2 /a  2)" (79) 

In order to be consistent with the Q2 evolution of the 
parton densities the values for the QCD scale 
parameter, A, and for the number of flavours, Nz, in 
(79) are taken as in the parametrization of [22], i.e. 
A = 0.2 GeV and N I = 6. We restrict the number of 
(massless) quark flavours in the proton that can initiate 
the higher order parton processes to n I = 4. Similarly 
we include n I = 4 (massless) quark flavours that can 
be pair-produced. There is some freedom in the choice 
of the mass scales #R and #v. In DIS scattering it is 
natural to take 2 2=Q2.  #R = I~v The electroweak 
coupling constant e is assumed to be constant over 
the range of energies considered in this paper, i.e. 

= 1/137�9 
Finally we have to define the deep inelastic 

scattering region. We choose the lower bounds: 

Q Z > Q 2 _ 4 G e V  2 w z > W  2 = 5 G e V  / 

x > x o - 10 -3. (80) 

The lower limits in Q2 and x are prescribed by the 
parametrization of the parton densities. Q2 = 4 GeV 2 is 
the mass value from which the parton densities are 
evolved. Below x <  10 -3 the parton density para- 
metrization is uncertain. One also has to limit W 2 
from below in order to insure an appropriate hadronic 
final state. When producing well separated multijet 
final states the effective lower limit on W 2 will actually 
be increased (see below). 

When calculating the O(a 2) tree graph cross-sections 
in the above region one encounters infrared/mass 
(IR/M) singularities. They originate from the emission 
of soft and/or collinear partons. It is clear that the 
tree graph cross-sections make sense only for the 
production of well separated hard jets. One possibility 
to exclude the singular regions of phase space is the 
introduction of energy and angle cuts. However, as 
elaborated in [5] and [23], energy-angle cuts are not 
suitable for an asymmetric machine with its strong 
boost from the hadronic cms to the laboratory frame. 
Instead we prevent the internal virtual particles to 
reach their mass shell by imposing an invariant mass 
c u t  

s~j>So si~=-(pi+pj) 2, i ~ j = 1 , 2 , 3 , 4 .  (81) 

* Note that the four-quark annihilation rate written down in [21] 
is too small by a factor of 2 
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Fig. 4. Invariant mass cut-off dependence of the various O(c~ 2) and 
O(~) processes. The cut-off m o is defined by s u > m 2. Also shown 
is the total cross-section 

The finite tree graph cross-sections were then 
evaluated using the Monte Carlo integration routines 
VEGAS [24] and DIVON4 [25]. We achieved a major 
improvement on our integration efficiency by explicitly 
incorporating the constraints (80,81) into the phase 
space boundaries (see (74)). 

2 One possible choice for So is a fixed cut, So = m o. 
Although a fixed mass cut will not be our final 
preferred choice it provides for a first cursory 
exposition of the order of magnitude size of the 4-jet 
cross sections. This procedure would be reminiscent 
of the e+e - case where one demands the invariant 
masses, su, to be larger than a given constant value 
for a given fixed value of the squared cms energy Q2. 
Note that the choice s o = m  2 in (81) may increase 
the lower limit in the hadronic mass W 2 according to 

2 =max(W2,3m 2) in O(cq) Wmin  
(82) 

W2mi. = max (W 2, 6too 2) in O(cd) 

since in 0 ( ~ )  W 2 = (Pl + P2 + P 3 )  2 = S12 + S13 q- $23 =~_ 

3soandinO(e~  2) W 2= ~ P i  = s l z + ' " + s 3 4 > 6 S o  �9 
i=1 

In Fig. 4 we show the dependence of the 4-jet 
cross-sections on the cut value too. Also shown is the 
too-dependence of the O(e~) tree graph cross-sections 
and the (too-independent) total DIS cross-section. The 
O(cq) processes, 7*q --* qg and 7*g --* qc], are also subject 
to the resolution criterium (81). The total DIS 
cross-section drawn in Fig. 4 is approximated by the 
quark parton model result (see e.g. (6) in l-5]). We find 
that the 4-jet cross-sections show a steep increase as 
the constant cut mo becomes smaller. The steepest 
increase occurs for the quark initiated process 
Y * q ~ q g g  whereas the small mo-behaviour is some- 
what milder for 7*q--*qqft and 7*g~gqgl .  The O(cq) 
cross-sections show a slower increase with decreasing 
m o where the gluon-initiated process is least sensitive. 

Whereas the quark initiated processes in O(cs) and 
in O(e~) dominate for small too, the gluon initiated 
processes are larger at large values of mo. The 

dominance of the latter at large m 0 originates from 
the corresponding ratio of the parton densities whereas 
the small mo-behaviour of the 4-jet and the 3-jet 
cross-sections can be understood from the singular 
behaviour of the respective partonic cross-sections in 
the small m o limit. The lower limit on r/, the momentum 
fraction of the incoming parton, can be derived from 
the following relations: 

i) in O(cq):~ = (Pl + P2) 2 =- $12 ~ SO 

ii) in O(~2):~=(pl + p 2 + P 3 ) 2 = S 1 2 - } - S 1 3 + S 2 3 ~ 3 S o  . 

We find: 
2 

~min = X "~ m 0  
ys 

3m 2 (83) 
/Tmin = X "t- - - - -  

ys 

Thus even for m o as large as mo = 6GeV we have 
~min ~- 2 X 10  - 3 .  NOW at these small values of I'/ the 
gluon density is much larger than the quark densities 
which explains why the gluon-initiated cross-sections 
are so large. As mo becomes smaller the lower limit 
on t/chartges only slightly to 10-3. Thus it is not the 
parton densities that determine the small mo- 
behaviour, but the small mo-behaviour of the partonic 
cross-sections. 

For the 3-jet case the leading singular behaviour is 
given by 7*q~qgoc lnZm o  and ~*g~qgloc lnmo as 
m o --* 0. This is quite evident in the small mo-behaviour 
of the corresponding 3-jet rates shown in Fig. 4. The 
corresponding 4-jet cases can then be read off from 
the known singular behaviour of the Atarelli Parisi 
splitting functions according to the following dia- 
grammatic representation: 

q~qg 1' (?,q ~ qgg) OC In* m o 

(?*q--~qg),n2mo (84) 
g~qo ~ (7*q --+ qqgl) oc In 3 mo 

and 

(7*g--+qgl)lnmo q ~ q g  ,(?*g--+gqEl)ocln3mo . (85) 

This singularity structure can in fact be observed in 
Fig. 4 as m o becomes small. 

An inspection of Fig. 4 shows that a(4-jet) > a(3-jet) 
when mo < 5.5 GeV. From the perturbative point of 
view this is not acceptable as the O(e 2) jet rates would 
exceed the O(es)jet rates. With such a small cut one is 
probing the singular regions and not the perturbative 
jet regime. In order for perturbation theory to make 
sense one has to choose mo > 5.5GeV in order to 
insure that a(4-jet)< a(3-jet). But even then a closer 
look at the jet rates in different regions of phase space 
reveals that there are regions in x and Q2 where the 
O(e, z) 4-jet rate still exceeds the O(es) 3-jet rate even 
if the total rate does not. A similar behaviour had been 
observed to be true for the corresponding 3-jet/2-jet 
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ratios in [5]. As in [5] we are forced to the conclusion 
that  a fixed invariant mass cut is not  an acceptable 
physical choice for jet definition. 

A better cut-off choice can be found by investigating 
the origin of the logari thmic terms in (84, 85). As an 
example consider the z integration of the 0(%) process 
?* + q --* q + 9- The leading term is 

1-zo dz = l n  z~ z o -  . (86) 
~ 1 - z  \ 1  - Zo,/ (1 - q)ys z o  

Clearly, for fixed so = m o  2 these logari thmic terms 
strongly vary with tl, y and z or  equivalently with p• 
or the rapidity of the jets. If  one replaces m o by an 
invariant mass cut that  scales with an internal mass 
M, one will temper this dependence and thus prevent 
an unphysical growth of the total and differential 
cross-sections. These observations lead us to the 
cut-off choice: 

Sij >= ycM 2. (87) 

The problem in deep inelastic scattering is the 
non-uniqueness of the choice of mass scale M, which 
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could be W, Q or  x/~ or linear combinat ions  of them. 
In the case of 3-jet product ion investigated in [5] we 
found the invariant W 2 =  ( 1 -  x)ys to be a preferred 
choice of mass scale from the physics point  of view. 
We shall subsequently also use W e as mass scale in the 
invariant mass cut (87) in the 4-jet product ion case. 

In Fig. 5 we plot the 3- and 4-jet cross-sections as 
a function of yc. We indeed observe an improvement  
compared  to Fig. 4. The ratios of the various processes 
are now approximately constant  when varying the cut 
y~. The hierarchy of the various par ton  processes is 
partly due to the behaviour  of par ton densities and 
partly due to the limiting behaviour  of the partonic 
cross-sections. The condit ion (87) with M -= W does 
not change the lower limit on W 2 but modifies the 
available r /range:  

w 2 > Wo (88) 

r / > 3 y c + x ( 1 - 3 y ~ )  in 0(% 2 ) 

r l > y ~ + x ( 1 - y ~ )  in O(c~s) 

Hence the par ton densities, fi(rl, Q2), a r e  only probed 
at modest  values of t/ for y~ not  too  small. We do 
observe, however, that  the cross-sections steeply 
increase as y~ decreases. Moreover ,  the 4-jet rates 
exceed the 3-jet rates when yc falls below ~ 3.10 3. 
W 2 is limited from below by Wo 2, (88). Thus for small 
y~ values the absolute lower limit on the invariant 
masses is exceedingly tiny. For  example, with 
y~ = 0.002 we obtain s u > 0.01 GeV 2. This leads to too  
small invariant masses for a perturbative calculation 
to be meaningful. We therefore impose an additional 
fixed mass cut m o in order  to clearly separate the 
perturbative and nonperturbat ive regime. The in- 
variant mass cut now becomes: 

s u > max { y e W  2, m~}. (89) 

In Fig. 6 we plot jet rates as a function of m o with 
yc held fixed at Yc = 0.04. The dependence of the 
various cross-sections on m o is much weaker now, 
(compare with Fig. 4). Also the 4-jet/3-jet ratios are 
rather stable and take the values of  approximately 
%/re. For  small m o < 2 GeV one observes a cross-over 
of  7*q --* qgg as compared  to 7"9 --* 9qcl and 7*q --* qqcl 
on the one hand and 7*q--*qg compared  to 7 * g ~ q g l  
on the other hand. This can again be traced to the 
small m o singularity structure of  the various 
cross-sections as given in (84, 85). We believe that a 
reasonable choice for the fixed mass cut in (89) is 
m o = 2 GeV. Such a choice would be in agreement with 
the experience gained in the 3- and 4-jet analysis in 
e +e-- interact ions.  For  Yc we choose Yc=0-04 
following again the lessons learned in e+e - -  
interactions. Our  subsequent analysis is then based on 
the invariant mass cut 

s u > max {0.04W z, 4GeVZ }. (90) 

We would like to emphasize that  the invariant mass 
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cut (90) in t roduces  a character is t ic  difference between 
the avai lable  ranges in ,/ and  W 2 for the O(as) 3-jet 
and  O(e 2) 4-jet cases. We have: 

W 2 > max (W~, 6m 2) = 24 GeV2; 

r / > 3 y c + X ( 1 - 3 y < ) = 0 . 1 2  in O(c~ 2) 

W 2 > 2 2 = max(Wo,3mo)  = 12 GeV2; 

r / >  Yc + x(1 - Yc) = 0.04 in O(~s). (91) 

The pa t te rn  of (91) can be seen to generalize to higher 
jet  multiplicit ies:  the higher  the je t  mul t ipl ic i ty  the 
higher  the requi red  a m o u n t  of hadron ic  energy W. 
This can only be achieved by  a more  energetic 
incoming par ton ,  i.e. the lower  b o u n d  on */ has to 

increase with the je t  mult ipl ici ty.  This means  that  
mult i jet  final states see less of the sea cont r ibu t ions  
within the pro ton ,  in par t i cu la r  the gluon ini t ia ted 
processes will become less impor tan t .  

In Fig. 7 we show how the var ious  cross-sect ions 

vary with a given invar iant  energy x/s.  The range of 

energies spans the C E R N  SPS (x / s  ~ 2 GeV) to the 

L E P  and L H C  op t ion  ( ~ / s ~ 2 . 1 0 3 G e V ) .  One 

observes an increase with ~ s  of all cross-sect ions 
where the increase is somewha t  s teeper  for lower 
energies. In  the 3-jet case there is a cross-over  at  

FNAL-ene rg i e s  ( ~ s  ~ 4GeV).  In  the 4-jet case the 

process  7*g --* gq?l domina tes  over  the whole  ~ range, 
whereas 7*q--*qgg and ?*q--*qq{l remain  equal  for 



x//s > 100 GeV. One notices a es-hierarchy of cross- 
sections, namely O-tota I > a 3 jet(e~) > a 4 et(e 2) �9 - - j  �9 

In Figs. 8-10 we finally show the dependences of 
the various cross-sections on the basic kinematical 
variables x, y and W 2. (We do not show the 
QZ-dependence since the Q2-dependence is dominated 
by the 1/QZ-behaviour coming from the photon 
propagator). The x distribution of the cross-sections, 
Fig. 8, is mainly governed by the respective parton 
densities. Recalling that the lower limit of the 
momentum fraction of the incoming parton t/increases 
with x (see (91)) it is clear that the gluon initiated 
processes dominate over the quark initiated cross- 
sections both in O(c~) and in O(e 2) at low and high 
values of x. The same pattern is found in the 
comparison of the three-quark final state and the one 
quark-two gluons final state of the quark initiated 
cross-sections. Due to the specific way that these O(e 2) 
processes couple to the photon and the proton the 
three-quark final state probes more of the sea 
contributions whereas the one quark-two gluons final 
state probes more of the valence contributions in the 
proton. 

The y distributions Fig. 9 are similar for all 
processes. There is a steep fall-off at low y values and 
a rather flat behaviour for y larger than y = 0.04. In 
particular there is no cross-over of the various 
processes. The W distributions in Fig. 10, on the other 
hand, again show the cross-over of the quark and 
gluon initiated processes at low W. This is a reflection 
of the x-behaviour since W 2 = (1 - x)ys. However, it 
is interesting to observe that both the O(~,) and the 
O(e 2) distributions decrease faster than the distribu- 
tion of the total cross-section as the hadronic mass W 
increases. Thus, contrary to naive expectation, the 3-jet 
and 4-jet rates actually decrease as there is more energy 
available in the hadronic system. This can be traced 
back to the invarianf mass cut condition (89) where 
we demanded that the jet-jet separation increases with 
increasing W. Since the choice of the mass scale in 
(89) is not unique it will be interesting to 
experimentally test the W-dependence of the jet rates. 
Such measurements should allow one to pin down the 
uncertainty in the description of QCD jets in DIS 
scattering with its (unique) feature of possessing more 
than one mass scale, e.g. Q2 and W 2 or p~. 

6 Summary 

In this paper we have evaluated the helicity amplitudes 
of all tree graph parton subprocesses contributing to 
deep inelastic ep scattering in 0(%2). All partons were 
assumed to be massless. Using new helicity techniques 
together with clever gauge choices we obtained 
concise expressions for the various O(e 2) tree graph 
amplitudes, q + b o s o n ~ q + g + g ,  q + b o s o n ~ q +  
q' + q' and g + boson ~ q + ~ + g. We have written 
down the necessary colour, flavour and statistical 
factors that are needed to compute the partonic hard 
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scattering cross-sections from the helicity amplitudes. 
We explicitly stated the electroweak coupling terms 
and specified how the partonic cross-sections are 
folded with the respective parton densities to obtain 
the ep jet cross-sections of O(e2). 

We developed an efficient numerical Monte Carlo 
4-jet routine which was used to study the various O(e~) 
4-jet processes where we limited our discussion to the 
one-photon exchange case. The DIS region was 
defined by suitable cuts in x, Q2 and W 2. To obtain 
finite tree graph cross-sections the IR/M singular 
regions of the phase space have to be excluded. We 
introduced invariant mass cuts and discussed their 
choice in great detail. Contrary to the e + e -  case there 
is no fixed reference mass scale for jet definition. A 
particular feature in ep collisions, as compared to p/5 
collisions, is the presence of different, a priori equally 
important, mass scales. We elaborated on the 
implications of the nonexistence of an unique mass 
scale that can be used for jet definitions at ep colliders. 
For  comparison we also considered the O(es) processes 
as well as the total DIS cross-section. Finally we 
presented differential distributions in basic kinematical 
variables. They allow for a separation of the various 
O(e 2) subprocesses. Somewhat surprisingly we found 
that both the 3-jet and the 4-jet rates decrease with 
increasing total hadronic energy W. Since this is 
a remnant of the chosen jet definition scheme it will 
be interesting to test it experimentally. The freedom 
in the choice of different mass scales has to be pinned 
down before one can try to extract the strong coupling 
constant es, or observe its Q2-dependence. 

The characteristic behaviour of the 3-jet and 4-jet 
rates with e.g. W is also important for background 
calculations. Here one usually relies on parton cascade 
(PC) models�9 Yet the uncertainty in the choice of a 
mass scale inherent in these models, in particular in 
DIS ep collisions, becomes relevant for multi-jet 
production. For example in the program LEP TO [7] 
the jet multiplicity increases with W when taking W 
as preferred mass scale. Thus multi-jet final states will 
be overestimated. With fixed order calculations at 
hand it will become possible to tune the PC models 
so that they reproduce the predictions of perturbative 
QCD, at least for low jet multiplicities. 

While we were completing this work we received 
two papers on the subject of helicity amplitudes 
relevant to four-jet production in DIS 1-27, 26]. 
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