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The model of planar random surfaces without spikes shows nontrivial critical behaviour on a 
four-dimensional lattice. In this article we address ourselves to the question of whether the string 
tension has a finite continuum limit at the critical point. To this end we calculated the first few 
terms of its strong coupling expansion and analysed them with the help of Pad6 approximants. 
The results indicate a nonvanishing critical string tension in lattice units which implies that the 
physical string tension would diverge in the continuum limit. We applied the method to the 
susceptibility too and found values for its critical exponent which are consistent with the Monte 
Carlo results, supporting the reliability of the method. 

1. Introduction 

F r o m  the po in t  of  view of relat ivist ic  string theory the main  interest  in models  of  

r a n d o m  surfaces is due to the hope  that  they p rov ide  regular ized versions of 

Po lyakov ' s  in tegrals  over surfaces [1] and  allow for a r igorous  invest igat ion of  these 

fo rmal  concepts .  In  the case of a la t t ice regular iza t ion of  surfaces it turns out, 

however ,  tha t  the s implest  model  descr ibing p lana r  r a n d o m  surfaces (PRS), is not  

su i tab le  for  this pu rpose  [2]. I t  is a trivial  model  in the sense that  the cri t ical  

b e h a v i o u r  is governed by  mean  field theory and the con t inuum limit  descr ibes  free 

fields.  The  same is even true for a large class of general iza t ions  of  this mode l  [3]. 
The  mode l  of  p lanar  r a n d o m  surfaces wi thout  spikes (PRSWS),  on the other  

hand ,  shows nontr iv ia l  cri t ical  behav iour  in Mon te  Car lo  s imula t ions  in four  

space - t ime  d imens ions  [4, 5]. It was in t roduced  by  Berg et al. [6] as an analogue  to 

fe rmionic  r a n d o m  walks which cont r ibu te  to the r a n d o m  walk represen ta t ion  of  the 

D i r a c  p ropaga to r .  Fo r  a descr ip t ion  of  this mode l  and  a summa ry  of  results abou t  it  

we refer  to ref. [5]. 

Since P R S W S  appears  to be the s implest  la t t ice  mode l  of  r a n d o m  surfaces with 

non t r iv ia l  cr i t ical  behaviour ,  it  would  be  interes t ing to know whether  it  can be  
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considered as a regularized string theory. For this we have to require that the 
physical string tension has a finite continuum limit, which condition is equivalent to 
the vanishing of the string tension ~-(/8) in lattice units at the critical point rio. This 
is not the case for PRS and for PRSWS in high dimensions where mean field theory 
applies. 

To get some information about the case of low dimensions we studied in this 
work the string tension for PRSWS by means of the strong coupling expansion. In 
order to get an idea of the quality of the results we also considered the susceptibility 
and its critical exponent t for which a comparison with existing Monte Carlo data 
can be made. 

2. Notation and previous results 

The basic quantities relevant for the considerations in this article are the expecta- 
tion values 

c(~,)= E e -'~A~s~- (1) 
ScS~(-y) 

Here the sum is over those planar surfaces S on a hypercubical lattice, that have the 
loop l' as their boundary and that do not possess spikes (see ref. [5]). A(S) is the 
area of a surface S and fl is the coupling. The Wilson loop 

w~. M(/~) = a(vL. M) 

is the expectation value for a rectangular loop "/L, M of sidelengths L and M. Its 
asymptotic decay determines the string tension ~(/~): 

1 
( )  lim - -  log WL, M ( f l ) -  (2) 

• t~ = --  L , M ~ o o  L M  

A modified susceptibility )~ is defined through 

d 
)~ (1~) = - od---A-G(Opo), (3) 

where Opo  denotes the boundary of a fixed plaquette P0- It has the same critical 
behaviour as the usual susceptibility X(/3), defined in ref. [5], but is more conve- 
nient for our purposes. Critical exponents are defined through the behaviour of 
various quantities near the critical point rio- In particular 

~ ( B )  - (t~ - Bo)  ", 
d ?  
- - -  (B - B o ) " - ' .  ( 4 ) , ( 5 )  
d~ 
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The  exponent  /~ is defined in terms of the derivative of the string tension ~-(fl) 

because ~-(fi) itself may  assume a finite value at the critical point  (see below). The 

exponent  e of  the surface entropy and the Hausdorf f  dimension dn,  which have 
been considered in ref. [5], are related to 7 and # through scaling relations [2, 7]: 

2 
y = 2 + e, /~ = - - .  (6 ) , (7 )  

dH 

In  large numbers  of dimensions d mean field theory applies, which has been 

developed in ref. [8] for PRSWS. It predicts the values 

/t = ~, d H = 4, y = ~, e = - 1 . 5 .  (8) 

Fur thermore ,  in mean field theory the string tension does not go to zero; 

,(•0)>0. 

Above  a certain upper critical dimension d u mean field behaviour sets in. A 
conjecture by  Parisi [9] relates it to the Hausdorff  dimension through 

dg = 2d H (9) 

and fur thermore  predicts the value 

d n = 4 .  

Our  Monte  Carlo calculations [4, 5] support  this conjecture. They lead to a value 
dia -- 4 independent ly  of the number  of  space-time dimensions d. The results on the 

exponent  e in d = 8 and 10 dimensions, 

- 1 . 5 8 + 0 . 0 3 ,  f o r d = 8  (10) 
e = 1.55 ~- 0.05, for d = 10, 

are consistent  with the classical value e = - 1 . 5 ,  al though they may contain some 
systematic errors due to the finite maximal area occurring in the simulation. This is 
in contras t  to the case of  d = 4 dimensions, where a significant deviation from the 
mean  field value was observed: 

e = - 1 . 7 4 + 0 . 0 2 ,  f o r d = 4 .  (11) 

It is this result which opens the possibility that PRSWS can be considered as a 
nontrivial  regularized string model. 
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3. The critical exponent 

In this section and sect. 4 the method of strong coupling expansions is applied to 
the PRSWS model. Strong coupling means large values of ft. The quantities under 
consideration are expanded as powers series in the variable 

u = e -~ (12) 

The coefficients of these series are obtained by enumerating all surfaces with a given 
area that contribute to the sum (1). We are mainly interested in the string tension 
r ( f l ) .  But in order to see how reliable the results are we first applied the method to 
the susceptibility )~ and the corresponding exponent e, for which Monte Carlo data 
(10,11) are available. 

The series for the susceptibility in d dimensions, resulting from approximately 70 
strong coupling graphs up to 13 plaquettes is 

9~ = u + 1 0 ( d -  2)u 5 + 2 8 ( d -  2 ) ( 4 d -  5)u v 

+ 9 0 ( d -  2 ) ( 2 d -  5)u 9 + 4 4 ( d -  2)(56d 2 -  180d+ 115)u n 

+ 2 6 ( d -  2)(336d 3 - 1244d 2 + 998d+ 351)u a3 . (13) 

In order to obtain information about the exponent e some extrapolation procedure 
has to be applied. A method, commonly used in statistical mechanics in this 
situation and quite successful, is based on Dlog-Padd approximants [10]. One 
defines the logarithmic derivative 

d 
X = U~uu log ?~, (14) 

whose behaviour near the critical point is given by a simple pole 

UoY 
X -  - -  + regular. (15) 

/d o - -  /,/ 

The exponent y can be determined from the residue of the pole. In our case X is 
given as a power series in the variable 

namely 

t = U  2 , 

X = I +  ~ x , t ' ,  (16) 
n ~ 2  



B. Baumann, G. Mfinster / Random surfaces 

and the singularity can be written as 

693 

2t0Y 
X - - -  (17) 

t 0 - t 

F r o m  the first known coefficients in the power series for X one constructs various 
Pad6 approximants  [10], which are rational functions in t. If poles of  them 

accumula te  a round some point  in the complex t-plane, this indicates a correspond- 

ing singularity for X. On the other hand, if one possesses a priori knowledge about  

the locat ion of  a pole t o of  X f rom other sources, this information can be used to 

improve  the estimation of its residuum. To this end one calculates the first 
coefficients of  the power series of  

1 - X ( t )  = 1 + ynt  n (18) 
n = l  

and  evaluates its various Pad~ approximants  at the point  t 0. 
In  the case at hand  the power series of  X and (1 - t / t o ) X  are known up to the t 6 

term. For  d = 4, 6, 8 and 10, precise values for t o are available f rom the Monte  
Carlo  calculations and can be used as an input for the determination of 7- We 

considered the highest [L,  M]-Pad6 's  with L + M-- -6  and calculated the mean of  
the resulting seven estimates for 7. These values are displayed in table 1 together 
with the results of the Monte Carlo calculation. 

For  d = 3 a precise value of t o is not  available f rom Monte Carlo simulations. 
Extrapolat ing the numbers  for d>~ 4 to d =  3 we  expect a critical point  around 

t o = 0.12. Out  of  the six highest Pad6's for X ( t )  five have poles near 0.1 and their 
residues yield "y = 0.09 _+ 0.01. On the other hand, the second method with t o = 0.1 
and 0.12 as input  yields ~, = 0.16 + 0.10 and 0.22 _+ 0.09 respectively. Therefore we 

took 0.2 _+ 0.1 as a rough estimate in d = 3. 

TABLE 1 
The critical exponent "/for PRSWS in various dimensions d. 

d Strong coupling Monte Carlo 

3 (0.2 + 0.1) 
4 0.26 + 0.26 0.26 + 0.02 
6 0.26 +_ 0.27 
8 0.27 _+ 0.28 0.42 + 0.03 

10 0.28 + 0.29 0.45 ___ 0.05 

The first co lumn shows the results of an analysis of the strong coupling expansion of the susceptibility 
~. The values in the second column result from the Monte Carlo calculation of ref. [5]. 
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We also looked at the direct Pad6's for X(t) in d >/4 and found poles around the 
known t0-values. The corresponding numbers for y from the residues are consistent 

with the numbers in table 1. 
The results from the analysis of the strong coupling series do not vary much with 

the number  of dimensions d. In view of the fact that the absolute values are 
relatively small compared to the error bars they do not allow to discriminate 
between a trivial (~, = 0.5) and a nontrivial critical exponent. However, what is 
important  for sect. 4 is the fact that within error bars they are all consistent with the 
Monte  Carlo data. Therefore the results of the strong coupling method can be 
considered reliable. 

4. String tension 

In this section we consider the strong coupling expansion for the string tension 
+(fl). F rom diagrams involving up to 12 plaquettes we derived the expansion up to 

the fifth term. The result is 

~- = - ½log t - 

- ½1ogt -  2 ( d -  2)t 2 -  8 ( d -  1 ) ( d -  2)t 3 -  2 ( d -  2 ) ( 9 d -  20)t 4 

- S ( d -  2) ( lSd 2 - 4 8 d +  19)t 5, where t = e - 2 B .  (19) 

In fig. 1 the leading logarithmic term and the successive partial sums of this series 
are displayed for the case d = 4. Also indicated is the value of the critical coupling 
t 0. Our main interest was directed to a determination of ~-(t0). From the figure one 
gets the impression that at t o the series is still well converging to some nonzero 
value. However, in order to find out whether some significance can be attributed to 
this observation, we had to apply series extrapolation techniques again. 

The assumed critical behaviour of • is of the type 

-  (t0) + A i r -  t0R" (20) 

in accordance with eq. (5). From eq. (7) and our Monte Carlo results for d H w e  

expect that the exponent/~ assumes its mean-field value ½ in all dimensions d under 
consideration. In the analysis we adopted two different points of view. First we did 
not make any assumptions on /z and made a series extrapolation analogous to that 
of sect. 3, using the known t o as input. This yields values for bt and ~'(t0). Second we 
assumed /x = ~ and used extrapolations, which are based on this assumption. 

Let us start with the first method. The aim is to apply Dlog-Pad~ approximants to 
the derivative of ~'. It is convenient to consider 

dT 
-2t 7 = 1 + (21) 
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Fig. 1. The string tension as a function of t = e -2/~ for PRSWS in d = 4 dimensions. The uppermost 
curve represents the leading order of the strong coupling series; the curves below show the successive 

partial sums. The vertical line indicates the critical point. 

s ince  this q u a n t i t y  has a power  series e x p a n s i o n  in  t. I ts  cr i t ical  b e h a v i o u r  

aT 
- 2 t - ~ t  - I t -  t01 ~-1 (22) 

l eads  us  to the  de f in i t i on  of 

d ( dr) if-1 
T(t) = ~ t l o g  - 2 t ~ -  t -  t o ' (23)  

wh ich  has  a s imple  pole  s ingular i ty .  N o w  di f fe ren t  Pad6 a p p r o x i m a n t s  to 

(1 - t/to)T(t ) were eva lua ted  at  t = t o to yield es t imates  for /z ,  as was d o n e  in  sect. 

3 for  e. I n s t e a d  of  T(t) one  can  also use 

d 
7~(t) = ~-~ l o g ( ~ ' / t )  (24) 

wh ich  has  the  s ame  cri t ical  behav iour .  The  resu l t ing  va lues  for ff in  the case of  d = 4 

are  s h o w n  in  tab le  2. 

T h e  [0, 3] Pad~ o b t a i n e d  f rom T(t) has  a su rp lus  pole  nea r  the or ig in  a n d  is thus  

to be  d i sca rded .  In  the case of  7~(t) the  [2, 0] Pad6  yields a nonsens i ca l  resul t  a n d  is 

d i s c a r d e d  too. The  r e m a i n i n g  cases yield va lues  for if, which  are s o m e w h a t  h igher  

t h a n  ½. 
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TABLE 2 
The critical exponent/L and the critical string tension ~-(to) for PRSWS in d = 4 dimensions from 

the analysis of the strong coupling expansion. 

Padf 's  to T Pad~'s to 7 ~ 

[3,0] [2,1] [1,21 [0,3] [2,0] [1,1] [0,2] 

/~ 0.531 0.667 0,625 1.039 - 4.996 0,585 0.569 
"r(t o) 0.992 1,034 1.022 - 1,059 1.056 

As the next step the Pad6 approximants for T(t) can be integrated to get an 
extrapolation for ~'(t) in the following way. Let 

P(t) = forT(s) ds (25) 

be a Pad6 approximant of T(s) integrated numerically from 0 to t. This defines an 
extrapolation of the derivative of ~- through 

d~" 1 
- e x p P ( t ) .  (26) 

dt  2t 

A second integration, which incorporates the small-t behaviour of T(t), yields the 
desired extrapolation: 

1 f t  1 (ep(s) _ 1) ds .  (27) r(t)---- - ½ 1 o g t -  2Jo s 

For  the three cases listed in table 2 these functions are shown in fig. 2. Up to the 
critical point the curves are very similar and lead to values for ~'(t0) near one, which 

are also shown in table 2. A corresponding analysis based on 7~(t) was performed 
also and is included in the table. 

Now we turn to the second approach, in which /~ = ½ was taken as input. 
Consequently, both 

W ( t ) =  2 t-~--~ 

were assumed to behave like It - t01 -1 

{ 
and l~ ( t )  = I dt] (28),(29) 

near the critical point. Pad6 approximants to 
them were constructed as above using the known t o . They lead to extrapolations of 
d,~/dt  by means of 

d__f~ ___- q r~  --- ( ~ / ~ t )  - 1)/2t  (30), (31) 
dt 
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Fig. 2. The string tension as a function of t = e 2# for PRSWS in d = 4 dimensions. The solid curves 
show the results of an extrapolation of the strong coupling series involving various Padd's (first method). 
The dashed curve represents the leading order of the expansion. The vertical line indicates the 

critical point. 

respect ively ,  which were then in tegra ted  numerica l ly  to yield ex t rapola t ions  to ~-(t). 

Those  coming  f rom W(t )  are shown in fig. 3 for d = 4. The  result ing values for T(to) 

f rom var ious  Pad6 's  are collected in table  3 for d = 4. 

F ina l l y  we app l i ed  a third type of  ex t rapo la t ion  p rocedure  which uses t o and /~  = ½ 

as input .  The  cri t ical  behavior  of  ,7 

impl ies  tha t  in 

e ( t )  -  (to) + A i r -  tol 1/2 (32) 

d ~  
Y ( t )  = ~ ( t )  - 2 ( t -  to) d t  (33) 

the squa re - roo t  s ingular i ty  cancels out  and  it behaves  as 

Y ( t )  -  (to) + o ( t  - t o ) .  (34) 

W e  ca lcu la t ed  Pad6 approx iman t s  to Y(t)  and evalua ted  them at t = t o to get 

es t imates  for  ~(to)  and  thereby for ~-(t0). The result ing numbers  in the case of  d = 4 

are  also con ta ined  in table  3. 

A l l  these calcula t ions  have been  repea ted  for d imensions  d = 6, 8 and 10. The  

resul ts  are summar ized  in table  4. The  numbers  in this table  represent  the averages 
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Fig. 3. The same as fig. 2 for the second method. 

over the various available Pad6 approximants, which for d = 4 have been discussed 
above.  

The absence of an input value for t o in d = 3 dimensions required a separate 
treatment. We constructed Pad6 approximants to l~ ( t )  without utilization of  t 0. 
Instead their poles yielded estimates for t o near 0.16. The values of  r(to) belonging 
to these approximants are 0.66 and 0.60. On the other hand we applied the second 

TABLE 3 
The critical string tension r ( t  0) for PRSWS in d = 4 dimensions from 

the analysis of the strong coupling expansion. 

Padd's to: 

w ~P Y 

[5, 0] 0.966 
[4,1] 0.994 
[3, 2] 0.979 
[2, 3] 0.988 
[1,4] 0.986 
[0, 5] 0.971 
[4, 0] 1.055 
[3,1] 0.953 
[2, 2] 0.971 
[1, 3] 1.019 
[0, 4] 0.964 

[3, 0] 1.045 0.987 
[2,1] - 1.022 
[1,2] 1.044 1.015 
[2, O] 1.036 
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TABLE 4 
The critical exponent/~ and the critical string tension ~'(t 0) for PRSWS in various 

dimensions from the analysis of the strong coupling expansion. 
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Pad6's to W, [~', Y Padfi's to T, 7 ~ 

d ¢(t0) T(t0) t~ 

3 0.7 ± 0.2 
4 1.00 ± 0.03 1.03 ± 0.03 0.60 ± 0.05 
6 1.21 i 0.03 1.25 + 0.02 0.63 + 0.05 
8 1.33 ± 0.03 1.36 ± 0.02 0.63 ± 0.05 

10 1.40 _+ 0.04 1.45 i 0.03 0.64 ± 0.05 

1,5 

0.5 

' ' ' I ' ' ' I ' ' ' I ' ' , I , 

4 6 8 10 12 
d 

Fig. 4. The string tension at the critical point versus d for PRSWS. The circles represent the results of 
the strong coupling analysis, the curve shows the prediction from mean field theory. 

and third method explained above with t o = 0.16 and t o = 0.12, the last number 
taken from sect. 4. In this way we obtained ~-(t0)= 0.6 and 0.9 respectively. 
Therefore we consider T(to) = 0.7 _+ 0.2 as a tentative estimate. 

The numbers in the first column of table 4 are displayed in fig. 4 as a function of  
d. Also  included in this figure is the prediction of mean field theory [8], which is 
supposed to be valid in dimensions larger than the upper critical dimension d~. The 
strong coupling estimates for d = 8 and 10 coincide remarkably well with the mean 
field prediction. Below d = 6 a deviation can be seen, which increases the lower d is. 
In view of  the hypothesis that d u = 8, these observations support the quality of  the 
strong coupling estimates. 

5. Conclusion 

As  is always the case in the types of  investigations that are based on strong 
coupling expansions,  the results are afflicted with an unknown systematic error due 
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to the finiteness of the available series. On the other hand the series for the string 
tension appeared to converge quite well up to the critical point. Furthermore,  all the 

different extrapolations, which are discussed in sect. 4, lead to values for the critical 

string tension r(/30), which are close together and are significantly different f rom 
zero. In more  than six dimensions they agree very well with the prediction of  mean 
field theory. The results on the critical exponent ~ gave us additional confidence in 
the reliability of  the method. We therefore conclude that the strong coupling 

expansion yields evidence for a nonvanishing ~-(/30). 
A nonvanishing critical string tension in lattice units implies that the physical 

string tension, e.g. measured in units of the mass gap, i.e. z / m  2, diverges in the 

con t inuum limit. This is of  course bad news for the model  at hand because it means 

that  it may  not  be considered as a regularized string theory. The connect ion to the 
original motivation,  string theory, would thus be lost. Nevertheless, the model  could 

still consistently describe a nontrivial field theory, as implied by the results of  

refs. [4, 5]. 
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