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Abstract. We present an explicit calculation of the 
one-gluon soft interactions involving one spectator 
quark in the Drell-Yan and in the deep inelastic 
processes. We verify that these interactions are sup- 
pressed in the high energy limit. The gluon has a 
wavelength ranging from infinity to a value that is 
much smaller than the wavelength of the high energy 
photon. This includes a subregion, ranging from the 
meson size to values much bigger than the meson size, 
that has not been explicitly considered in the previous 
calculations. 

1 Introduction 

The factorization conjecture in the Drell-Yan process 
states that the cross section at high energy can 
be calculated using perturbative QCD for the hard 
process of quark antiquark annihilation (active 
quarks), given the structure functions of the hadrons 
as measured in the process of deep inelastic scattering. 
If this conjecture is correct, then the interactions 
involving the quarks that do not participate in the 
hard process of annihilation (spectator quarks) should 
be suppressed at high energy. 

Explicit computations of interactions with spectator 
quarks have considered different regions of the gluon 
momenta. It was found some time ago that if the gluon 
momenta are in the "Glauber" region then the spec- 
tator interactions are not suppressed [ 1]. Subsequently 
contributions from outside the "Glauber" region were 
included and the desired suppression was verified. This 
was done to two-gluon order in [2] in the regions of 
"soft", eollinear and "Glauber" gluons, but not for 
"very-soft" gluons. "Very soft" gluons were included 
in [3] to one gluon order and more recently this was 
extended to two-gluon order [4]; both results show 
that the spectator interactions cancel in the "very soft" 
region too. 

In the present paper it is taken into account, to 
one-gluon order, the contributions of gluon momenta 
not only from the "soft" and "very soft" regions but 
also from the region that lies in between. It is easy to 
see explicitly which region is this. Indeed, if we denote 
the quark mass by m, the transverse gluon momentum 
by K and the 4-momentum of the virtual photon by 
Q, it is evident that there is a gap between the "soft", 
m < [K[ << x / / ~ ,  and the "very soft" regions, [K] << m. 

As in the previous calculations we use the framework 
of the Sachrajda Yankielowicz scalar-field model, 
where the hadrons are described by scalar fields q5 and 
the "quarks" by scalar-fields Z- The hadrons interact 
with the quarks through terms 2qSz* X and this inter- 
action is used only to the lowest order in the coupling 
constant 2. We apply this model to the process 

quark + meson--* lepton pair + anything. (1) 

In this simple case the Drell-Yan cross section is given 
by [2] 

d a  4 h a  2 
d Q  2 - 9Q 4 X F D y ( x ) ,  (2) 

where Q2__ x s  is the invariant mass squared of the 
lepton pair and s is the incident energy squared. 

In the Drell-Yan model FDy =FD,, where Fb~ 
is the deep inelastic structure function. Thus, in the 
Drell-Yan model the factorization is trivially obeyed. 
When we consider the one gluon corrections, we will 
still have factorization/f 

F(1) _ i ( ( 1 ) ~ ? ( o )  F~I), (3) 
D Y  - -  a x  , t D l  § 

where K (1) is the one-gluon contribution to the on-shell 
active-quark/active-quark annihilation process and 
F~, ) is the lowest order contribution to the deep 
inelastic structure function. 

In the next section we study the one-gluon cor- 
rections to FDy. We consider all the relevant graphs 



288 

which describe the active-quark/active-quark and 
active-quark/spectator interactions. The technique used 
in [5] to derive the eikonal result from the Sachrajda- 
Yankielowicz model is generalized to include the 
region m < [k~[ << x / / ~ ,  where k~ are the components 
of the gluon momenta. We find that 

F")  = K(1)F~ ) + ~r (4) DY 

where /~(x) represents the contribution to K (1) from 
the region I k , [ < < x / ~  and d denotes the on-shell 
active-quark/spectator interactions. We show that ~r 
is suppressed in the high energy limit. In the Appendix 
it is verified that the same is true for/s (contributions 
to K ~ come only from hard gluons). Thus, if the 
expression (3) is valid then F(~ ) should be suppressed 
in the high energy limit too. In the Sect. 3 we verify 
that this is indeed the case. 

2 Q u a r k - m e s o n  scattering 

The relevant graphs that contribute to the quark- 
meson scattering cross section are shown in Fig. 1. 
The graphs involving the quark self-energy (which 
represents the renormalization of the quark line) and 
the ones involving the interaction between active and 
spectator quarks inside the meson (these interactions 
are already described in the context of the Sachrajda- 
Yankielowicz model) were not included. 

We work in the Feynman gauge and parametrize 
the momenta of the incoming meson and quark using 
the light cone metric as follows: 

P = (1, M 2, 0), (5) 

nq = (m 2, 1, 0). (6) 

Thus the meson and the quark have respectively mass 
M and m. We set M < 2m so that the meson is stable 
against spontaneous decay. The scale of energy is fixed 
in such a way that s - (P + pq)2 = 1 + (9(m 2) (m 2 << 1). 
The spectator coming from the meson has momentum. 

m 2 
P s = ( 1 - x , - I + P ~ , P ) ,  (7) 

and the gluon momentum is given by 

k = (a, fl, K). (8) 

P P, 

Fig. la-d. Graphs contributing to l'~(1)Dy. Gluons are denoted by 
wavy lines. The right-hand half of the graphs represents a complex 
conjugate amplitude 

The vectors, Petc, are two-dimensional and trans'~erse 
to the direction of propagation of the incident quark 
and meson. 

Using the expressions (5) to (8) we can write the 
spectator and the active quark propagators respective- 
ly as 

D~(k) 

=[(1 / m2+P  2 2P.K a f l - K  2 ~_ie)J -~ 
-x)~fl+ l~x-x ~ - l x - ~  1 - x  

(9) 

and 

o.(k, . .  
m 2 + p  2 2P'K ~ f l - K  2 ~-1 

--  it J (10) + x(1 -- x) x x ' 

and the propagator of the incoming quark as 

O q(k) = (m2 fl + ~ + ~fl - K 2 + ie)- 1 (11) 

In terms of Ds, Da and Dq, the graphs in  Fig. la, b, c 
and d gives contributions that are proportional to 
Da(O)Da(k)Oq(k), Ds(k)Oa(O)Dq(k), Da(O)O~(k)D*(--k) 
and Ds(k)D~(O)D*(--k) respectively. 

In what follows we consider 

Ic~l, Ifl[, IKI << 1. (12) 

This covers the region dealt with by Lindsay et al. [2], 
the region considered by Landshoff and Stirling [3] 
and also the region in between. 

Performing the transformation [2] 

2P'K p2 K2 ] 

e ' (13) 
K - ~ K  + ~ 1 ~  

the propagators (9), (10) and (11) change to 

[ (  m' D'a(k)= --x f l + ~ o ~ + A ( K ) - i e  , (15) 

and 

( 2 2m 2 ) - 1  
D'q(k)= m 2 f l + a - K  +~_xP .K+ie  , (16) 

where 

(P + K) 2 + m 2 - x(1 - x ) M  2 
A(K) = (17) 

x ( 1  - x )  

We have neglected ~fl compared with fl and (9(m2)~ 
compared with C(m2). The gluon propagator does not 
change under the transformation (13). In other words, 
(13) is a Lorentz transformation. 



The other approximation that we are allowed to 
make is to neglect ~ and fl in the expressions for the 
quark-gluon vertices as well as a, fl and (9(m 2) in the 
quark-photon  vertices. Adding the complex conjugate 
of the graphs in Fig. 1 and using the expressions 
(14-16) we obtain 

( 22 ~sCv "d2P } 
F~)y = 2 Re (2~) 2 x(1 - x) J - ~  [IV(x' p2) + iR(x, p2] , 

(18) 
where 

I v = _ 2 i ~ d a d f l d 2 K  m E + 

+ ~ + is 

1 
m 2 

fl + ~ ~ + A(K) -- is 

1 1 

2m2 P K aft - -  K 2 + ie 
r a2 /3+oc -KZ+l - -Z~  " + i s  

(19) 

and 

1 + ~  
I R = 4xSdc td f ld2K m 2 

1 
m 2 

[~ + ~ ~ + A(K) - i~ 

1 
6(~B- K~)o(~ + I~) 

2m2 P - K + i s  
mEfl+~+K2 + 1_  x 

(20) 

are the contributions from the graphs with virtual and 
real gluon corrections respectively. 

Using the identity 

1 1 
?n 2 - -  ttl2 

fl + ( 1 - i ~  ~ + is fl + ~ a - ie 

- 2 n i b ( f l + ~ a ) ,  (21) 

we can write (19) and (20) as 

I v = _ 2 i~dad f ldZK 

27zi / m 2 " \ 7  1 ! 

1 1 

m2fl + ~ -- K z + 2m2 P-K + ie aft - K z + ie 
1--x 

(22) 

and 

IR = 4~ S dad f l d2K  F(k)  
A(O) m 2 

fl + ( l __-(~  ~ - ie 

m 2 f l + c t + K 2 +  2rn2 P ' K + i e  
1 - x  

where 
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(23) 

m 2 ~+~+A(0) 
F(k) = mZ (24) 

~+~~+A(I~) 
The second term in (21) does not contribute to (20) 
because its g-function is inconsistent with the on-shell 
condition for the real gluon. 

If we could replace F by 1 in (22) and in (23), then 
we would have the standard eikonal result obtained 
in [5]. In. this case the first term in (22) and the 
expression (23) would be the contribution to the 
on-shell active-quark/active-quark interaction. 

We now show that even when ]K ] >> m it is possible 
to replace F by 1 in the integrands of expressions (21) 
and (22). In order to do that, let us choose 2, #, and 
such that 

2 << m << # << 1, (25) 

and 

lal, Jill < z << 1. (26) 

We consider two regions: ]K] < 2 and 2 < ]K] </~. In 
the first region there is no problem and we can 
approximate F by 1. This is the "very soft" region 
where it is already known that the eikonal result is 
valid. 

Suppose now that I gl  is in the second region. Let 
us first consider the expression (23). The b-function 
implies that fl = KZ/a and therefore fl > 22/7~ ". If 2,#, 
and z can be chosen in such a way that 

22 
_ _  >> #2,  (27) 
T 

then we would be again allowed to replace F by 1. To 
see that this is indeed possible, let us take # = m~', 
z = m y and 2 = m z and combine (25) with (27). This 
gives the following inequalities: 

x + Y > z >  1 > x .  (28) 
For /~ = z we can have for instance x = y = 3/4 and 
z = 17/16. We can choose y > x as well ("Glauber 
region"). For  example: x = 3/4, y = 3/2 and z = 5/4. 

In the case of the first term in the expression (22), 
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Fig. 2a-c. Graphs a and b represent the contribution to / (~) .  The 
contribution to ~r is represented in e. The external lines represent 
on-shell eikonalized quarks. Wavy lines denote "soft gluons". The 
right-hand half of the graphs represents a complex conjugate 
amplitude 

we can evaluate the fl-integral by closing the contour 
in the lower half-plane where there are two poles. One 
is from the incoming quark propagator which gives a 
contribution that is suppressed by the factor m 2. The 
other is from the gluon propagator and is in the region 
I~1 > X2/~ where again F can be replaced by 1. 

With F(k)= 1, both the frist term in (22) and (23) 
are factorized in the sense that the P-integral and the 
k-integral in (18) do not interfere with each other. The 
factorized P-integral is equal to the lowest order 
correction to the deep inelastic structure function 
(FtD~ The k-integral is represented diagrammaticaly 
by the Fig. 2a and b and is equal to the factor / (~)  
defined in (4). In the Appendix we show that this 
integral vanishes. This is consistent with the fact that 
K ~1) is an ultraviolet-dominated function [6]�9 

The second term in (22) describes the active-quark/ 
spectator interaction and is represented diagram- 
maticaly by Fig. 2c. Substituting this term in (18) we 
get the expression for the second term in (4) which is 
given by 

i ~  a~Cr r d 2 p r  deK r .  
d = 2 R e  x(1 = ~ J  A(0)J A~K) j aa  

1 } 
m 2 

2m2 P 'K + ie - - a  2 K 2 
a - -  K 2 + 1 - x (1 - x) 2 + 

(29) 

where we have used the f-function in the second term 
of (22) to integrate over ft. Making the transformation 
a ~ a + K 2, neglecting 2mZK2a/(1 - x )  2 compared with 
K 2 and performing the result a-integral in the upper 
half-plane we obtain 

asfF m3 dZP . dZK 2P'K (30) 
d = 2 2 Z x ( l ~ x ) 3  I A ~ ) J A ( K )  IKI 3 - 

Outside the infrared region the K-integral is strongly 
suppressed by a facror of order m 4 (the P-integral is 
of order m)�9 In the infrared region, I KI << m, one can 
neglect K in A(K) and the resulting angular integral 
vanishes. 

3 Deep inelastic structure function 

The deep inelastic structure function is represented to 
one-gluon order by the graphs in Fig. 3. We use the 
same parametrization for P, P~ and K as given in 

h 

I T 1 ....... 
p e, 

d 

Fig. 3a-d. Graphs contributing to F~i ). In these graphs the wavy 
line denotes gluons and the dotted line denotes the high energy 
photon. The right-hand half of the graphs represents a complex 
conjugate amplitude 

expressions (5), (7) and (8). For the incoming photon 
w e  u s e  

Q = ( -  x + m 2 + W,  1,0) (31) 

o r  

Q ' = ( - x  +m2 +p2 +a,l + fl, K), (32) 

in the case of virtual or real gluon graphs respectively. 
Neglecting (0(m2), a and fl compared with x, we get 
the standard relation: Q2 _~ Q,2 _ _ x. 

With this notation, the formal difference between 
the deep inelastic structure function and the quark 
meson process is that instead of the expression (11) we 
now have 

Dq(k)=-[a+fl(m2 +p2)+ 2P.K +afl--K 2 ie] -~, 
(33) 

for the propagator of the outgoing active quark. 
We now perform the transformation (13). Under this 

transformation Dq is not altered. The extra terms 
in the transformed fl are suppressed by the factor 
(m2+p2) in (33)�9 In the case of the quark-meson 
process we had to keep the extra term (2m2/(1 -x ) )P 'K,  
but in (33) such a contribution can be neglected when 
compared with 2P-K. We can again neglect a and fl 
in the expressions for the vertices in Fig. 3. Adding 
the complex conjugate of the graphs, the resulting 
expression for F ~  can be written as 

2 asC F d2p 
f~i  )-= 2 Re (2n) 2 x(1 --x) ~ A(0) 

�9 [jV(x ' p2) + jR(x ' p2)] t '  (34) 

where jv and jR denote the contributions from the 
graphs with a virtual and a real gluon respectively. 
The expressions for jv and jR a r e  obtained from (22) 
and (23) replacing the incoming quark propagator by 
(33) and are given by 

VF(k) 1 
m 2 jv= 2i ~ dadfld2K k A(O) fi + ~ a - i e  



m21 A(K) 

1 
e + ( m  2 +P2)[3 + 2 P ' K - K  2 - - i e  e [ 3 - - K  2 +ie 

and 

jR = _ 47r ~ ded[3d2K F(k) 
A(O) m 2 

(35) 

e + (m 2 + p2)fl + 2 P ' K  + K 2 - ie 

�9 6(e[3 - KZ)0(e + [3). (36) 

Integrating the first term in (35) by closing the 
contour in the [3-integral in the lower half-plane, the 
only contribution we get is from the gluon propagator.  
The resulting expression would cancel exactly with jR 
if the sign of K 2 in the quark propagator  was the same 
in both j v  and jR. However, since for this contribution 
we have K 2 = e[3 << e, this difference can be neglected 
and therefore the resulting contributions cancel each 
other. 

Using the f-function to perform the [3-integral in 
the second term of (35) and inserting the result in (34) 
gives 

[ ~  esCv - d 2 P - d 2 K  - 
F~I)= - - 2 R e  x O _ ~ j A ( O ) l A ( ~ J d e  

1 1 -] (37) 
e - K  z + 2 P ' K - i e  m z J _ _  ez  + K 2 

(1 - x) 2 

Making the transformation e -~ e + K 2 and performing 
the a-integral by closing the contour in the lower 
half-plane we obtain 

e~Cl~m . d2p . d2K 2 P ' K  (38) 
F~I)= - 2)]'2 x ( 1 ~ 2  J A ~  j A(K) IK[ 3" 

This expression is not exactly equal to the result 
obtained for ag in (30), as it would be expected if 
equation (3) were exactly obeyed. Nevertheless, one 
can see that F ~  ) is suppressed too. As in (30), the 
angular integral vanishes in the infrared region. Out- 
side the infrared region the result is suppressed by a 
factor (9(m2). 
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Appendix  

In this appendix we verify the suppression of/~(1). The 
contributions to/~(1) are represented in Fig. 2a and b, 
and the respective analytic expressions are obtained 
from the first term in (22) and (23) by replacing F(k) 
by 1. The sum of these two expressions is proport ional  
to 

Im 2m2 P ' K + i e  e [ 3 - K 2 + i e  i~ded[3d2K 2 1 3 + e _ K 2 +  l _ x  

1 
+ 

2/7/2 
m2[3+e+K2 + ~ - - x P ' K + i e  

1 1 (A1) �9 27ci6(efl-KZ)O(e + [3 m2 
[3 + ~ e - -  ie 

In the first term we can perform the a-integral by 
closing the contour in the lower half-plane. The 
contribution from the gluon propagator  cancels with 
the second term. As in the case of the deep inelastic 
structure function, the first and second terms in (A1) 
have a different sign for K 2 in the incoming quark 
propagator,  but this difference is neglegible since for 
this contribution K 2 = e[3 << e. There is also a pole from 
the incoming quark propagator  which gives 

- 2 ~  j.d[3d2K 1 
m 2 [3 + m2 K 2 ~ 2 m 4  K 

( l - - x )  2 + ( l - x )  ~ 

1 

+ i  [3+ - - t ~ - )  
[3+ l - x  1 - x  

2 d2K 1 (A2) 

- - P ' K - i I K I  
1 - x  

where we have performed the [3-integral by closing the 
contour in the lower half plane. After taking the real 
part  of this expression, the resulting angular, integral 
vanishes. 
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