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We describe routines written in REDUCE for the calculation of the five-parton processes e "e~ — qg3g and e "¢~ — 2q2qg

in lowest order QCD perturbation theory.
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Nature of physical problem
Five-parton cross section in e*e* annihilation is calculated.

Method of solution

The five-parton cross section in e*e~ annihilation is calculated
by REDUCE programs. FORTRAN programs that sum all
contributions such that an application in Monte Carlo studies
is possible are presented. Permutations of momenta of the
external particles are performed numerically to keep the cross
section formula short.

Running time
Calculation of the cross section: 2 hours.

Reference
{1} A.C. Hearn, REDUCE User’s Manual, Version 3.2, Rand
Publication CP78 (Rev. 4/85).



182 N.K. Falck et al. / Five-parton production in e *e ~ annihilation

LONG WRITE-UP
1. Introduction

Recently there has been much interest in multi-
jet production in electron—positron annihilation.
Experimental results for the production of up to
five jets have been presented by two DESY and
one KEK collaboration [1]. In QCD the produc-
tion of hadron jets originates from the primordial
production of quarks and gluons and their subse-
quent fragmentation into hadrons. The annihila-
tion of e” and e~ into quarks and gluons is
calculated in QCD perturbation theory. Then the
number of jets is equal to the number of partons
in the final state. The production of four-parton
final states occurs the first time in second-order
QCD. The Born cross section is proportional to
. Five-parton production is calculated in third
order (0(a?)). The number of diagrams for e*e™
— qq2g and e*e” — 2q2q is still small and the
final formulae for the cross sections, also calcu-
lated with the help of REDUCE, have been pub-
lished [2]. In the case of five-parton production,
the number of Feynman diagrams for e* e~ — qq3g
and e*e” — 2q2qg is much larger. We show the
general structure of these diagrams in fig. 1. The
complete list of all diagrams consists of the di-
agrams in fig. 1 together with the permutations of
final gluon lines for e*e™ — qg3g and together
with the permutations of quark and antiquark
lines for e*e” — 2q2qg. Altogether we have 54
diagrams for

e*e” = q( p1)a( p2)e( p3)e( pa)e( ps), (1.1)

and 48 diagrams for

e*e” — q( p1)a( p2)al p3)alps)e( ps)- (1.2)

The p; stand for the momenta of the partons in
the final state. The differential cross section is
obtained from

e* > daPi

do = I (2m)*
2¢°N,  i-1 21’;‘0(2""')3
i .
><8(“’(17++p_— Zp.-)H,.w (1.3)
i=1

where ¢g=p,+p_, p. and p_ are the momenta
of the incoming positron and electron, respec-
tively. /** stands for the lepton tensor which after
integration over the orientation of the final parton
system with respect to the incoming positron
momentum can be replaced by /,, = —ngw,/ 3.

It is the purpose of this paper to describe the
routines for the calculation of H} for the final
states (1.1) and (1.2) which is needed for the
differential cross section with the angular depen-
dence with respect to the beam direction in-
tegrated out. We write H,, in the following form:

HW=(4WS)3E'1Q3 Y A(m, ) (19)

mzn=1

A(m, n) stands for the product of diagram m
with diagram n and of diagram » with diagram m
(except for m = n) taken from the list of diagrams
in fig. 1, summed over spins, colours and flavours
of the final states (1.1) and (1.2). Therefore the
sums over m and n in (1.4) run over all 54
diagrams with m>n for (1.1) and 48 diagrams
with m > n for (1.2).

The calculation of the traces of the products of
matrix elements A(m, n)} for every m and n was
done in the Feynman gauge. To sum over the
polarizations of the gluons we have taken the trace
with respect to the Lorentz indices of the gluon
polarization vectors. Then it is necessary to cancel
the contribution of the unphysical gluon polariza-
tions by adding ghost diagrams. In total there are
72 ghost diagrams whose products must be added
in (1.4). The general structure of the ghost di-
agrams is shown in fig. 2.

The calculation of the various traces for sum-
mation over quark and gluon polarizations has
been performed with REDUCE 3.2 [3]. The results
for the contributions A(m, n)f come out as func-
tions of the invariants y,;=2p;p; (i, j=
1,2,...,5) and the colour factors which are de-
termined in a separate routine. The expressions
obtained for A(m, n)! are very long. This is the
reason why we want to publish the REDUCE
program so that the matrix elements can be re-
calculated and then used in a Monte Carlo routine
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for the calculation of parton cross sections or in
fragmentation models. The outline of this paper is
as follows. In section 2 we describe the general
setting used for our calculations. Section 3 con-
tains the calculation of the Lorentz structure and
section 4 describes the calculation of the colour
factors. In section 5 we describe how these routines
must be combined by FORTRAN subroutines in
order to obtain the trace of the hadron tensor.

2. General description of the calculation

The hadron tensor H,, is given by H,, = M*M,,
where M, is the amplitude of the process

v(polarization vector u) — final state. (2.1)

The amplitude M, is given as a sum over all
possible subamplitudes M,,

M- LM, (22)

each corresponding to a unique Feynman graph.

We will discuss in detail the case of the final
state qq3g, the calculation of the final states 2q2qg
and q4 2 ghosts g is then an obvious generali-
zation.

First assume that the polarizations A; of the
final state are specified. The quark carries the
index 1, the antiquark the index 2, and the 3
gluons carry the indices 3, 4, 5. We have

M;=l_‘(l’1’ >\1)F,:<3g4<50(1’2, Az)
€€;(P3’ AB)EE:(plh A4)5(?(]75’ >‘5) (23)

Here I}z, is a string of y-matrices corresponding
to a particular Feynman graph, possibly multi-
plied by three- and four-gluon vertices, and
€’(p, A) is the polarization vector of a gluon
carrying momentum p and a Lorentz index p.

The sum over all polarizations in the final state
yields the hadron tensor

H, =Y XM (\)M](A)

A i
= ZZE(P:M AZ)H(Q:,’,:Q“([’I’ A1)
ij A
xa( p1, >\1)1;Lj¢,:4<5”(P2a Az)
'f(s(Pz, As)fsz(Pm >\4)‘<g(p5, As)

'563‘(173’ }\3)5(:(174“ >\4)5‘5.(P5, >‘5)-
(2.4)

We are using the relations,
Yu(p, Nua(p, A) =Y v(p, N)o(p, \) =5,
A A
(2.5)

in the case of massless quarks, and the gluon
polarization sum,

Z}‘:E”(P’ A)ey(p’ }\) = _g;w. (26)

Since we have dropped some terms in the sum
(2.6), we have to add ghost diagrams to ensure
transversality of the external gluons, as explained
elsewhere [4].

Performing the polarization sums (2.5, 2.6) in
(2.4) we get

H, = = T[T o) (27)

ij

Therefore the trace of the hadron tensor is

HY = = DI Tl o). (28)
l’j
We have done these trace calculations with RE-
DUCE.
For the qg3g-case, the contributing diagrams
may have 18 different topologies (fig. 1a), in the
2q2qg-case, there are 12 different topologies (fig.
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1b), and finally, there are 12 different topologies

for the qq 2 ghost g-diagrams (fig. 2).

Now we turn back to the qg3g-case. The
momenta ¢;, g, and g5 of the external gluons
have to run through all six different permutations
of p,;, p, and ps in the case of the Abelian
diagrams (1)—(4); we have to use the cyclic permu-
tations of p;, p, and ps in the case of the
diagrams (5)-(12); and no permutations except
the identity are allowed for the diagrams with the
four-gluon vertex (13)—(18). This is due to the fact
that the three- and four-gluon vertices are sym-
metric with respect to all legs. We have split up
the four-gluon vertex into 3 parts each corre-
sponding to a unique colour structure. In total,
this yields 54 different diagrams as already men-
tioned in the introduction, resulting in 542 contri-
butions to the hadron tensor. Now the matrix
elements are real numbers, so M*M/ = M/"M’,
therefore, we only need the (54 X 55)/2 diagrams
with i <j. This number can be reduced consider-
ably if:

(a) the momentum permutation is performed
numerically in the resulting FORTRAN pro-
gram and

(b) obvious symmetries among the diagrams are
used.

Table 1 shows the six different permutations of
the gluon momenta. The permutation o =1 is the
identity, the first three permutations are cyclic, the
last three are anticyclic.

In principle, we have to sum over all physically
distinct permutations of the external gluons in the
left and right factors. Now it is possible to re-
arrange the sum such that we collect the terms
M*M which differ only in a permutation of the
momenta. Each of these terms is calculated only

Table 1

Momentum permutations for qg3g

4 q3 qa qs
1 P3 Pa ps
2 Pa Ps P3
3 Ps Ps Pa
4 P3 Ps P4
5 Pa P3 Ps
6 Ps P4 P3

Fig. 3. Possible contractions.

once, the momentum permutation is performed
later in a FORTRAN program.

Now we assume that we have chosen a topol-
ogy JL on the left hand side (i.e. in M*) and a
topology JR on the right hand side (i.e. in M); JL,
JR=1, 2,...,18. We denote the momenta on the
left side with QL,, the momenta on the right side
with QR;. Obviously, QL,=QR;=p,;, QL,=
QR;=p,.

If we assume momentum permutations o, and
og for M* and M, respectively, then for i =3, 4,
5 we have

QL; = Ps, (i) QR; = Por(i)> (2.9)

and the same for the Lorentz indices.

There are six possibilities to contract the gluon
indices as depicted in fig. 3. We will call such a
correspondence a contraction.

If o, and oy run through all permutations that
are allowed for the corresponding diagrams, then
this is equivalent to a sum over all o of the right
diagram and all o =07 ' og, such that only the
permutions o; =oy -6~ ' that are appropriate for
the left diagram are reached. We will call oy the
momentum permutation.

The REDUCE programs described in the next
section calculate the products M,,’ "M for all nec-
essary contractions, but only for the momentum
permutation oy = 1.

This means that the momentum permutations
have to be performed numerically by the FOR-
TRAN programs described later on in section 5.

3. Calculation of the Lorentz structure

We describe the REDUCE’ program for the
qq3g case in detail, the dther programs (2q2gg and
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qq 2 ghost g) are quite similar. The program con-
sists of 17 parts that will be explained now.

3.1. Parameters

Since the result is a long list of FORTRAN
statements, we have to split up the result into
smaller parts that can be handled by a FOR-
TRAN compiler. There are various parameters
which determine the part of the result that is
calculated:
@TOPRU and @TOPRO determine the range for
the right topologies;
@TOPLU and @TOPLO do the same for the left
topologies;
@TOPN determines if the denominators are
calculated. If @TOPN = 0, then this calculation is
skipped, if @TOPN = 18, then his calculation is
performed. Similar, if @TOPRO = @TOPLO =0,
@TOPRU = @TOPLU =1, then the calculation
of the numerators is not performed.

3.2. Open output file

We write the REDUCE output to a sequential
file, this file is opened here and all other output is
suppressed.

3.3. FORTRAN output
The output is specified to be in FORTRAN
format (max. 19 continuation cards, etc.)

3.4. Momentum sums

Qup.... is a shorthand notation for Q,+ Qg
+ -+ +Q,. QDEF defines these sums, QREL
defines these symbols to be vectors. Furthermore,
the external momenta are set on the mass shell.

3.5. Declare some vectors

The external momenta p,,..., ps are declared
as vectors and set on the mass shell. The vector
dimension is fixed to 4.

3.6. Lorentz scalars
The final result is expressed in terms of the
Lorentz invariants y,; =2p;p;.

3.7. Indices and fermion lines
Here some Lorentz indices are defined. The
fermion line is denoted by L.

B. q

o\

s

Y. r
Fig. 4. The three-gluon vertex.

3.8. Squares of the inner momenta

The propagators are 1/¢* or ¢/q?, where q is
the momentum of the internal line. The squares of
the four vectors g are defined here.

3.9. The three-gluon vertex

DGLV(a, B, v, p, ¢, r) is an operator that de-
fines the Lorentz structure of three-gluon vertex.
a, 8, vy are the Lorentz indices, p, g, r are the
external momenta (see fig. 4).

3.10. The four-gluon vertex

The four-gluon vertex is a sum of three terms
where each of them has a different colour struc-
ture. We separate the colour structures and define
three different vertices 1, 2, 3. VGLV(n, a, B, v,
8) is the vertex n with Lorentz indices «, 8, v, 8
(see fig. 5).

3.11. Feynman rules

This section contains the strings I,,q, and
I‘MTaB,, of y-matrices corresponding to each of the
topologies TOP =1, 2,...,18 for the momentum
permutations og =0, =1. I and I'T are denoted

by VR(TOP) and VL(TOP), respectively.

3.12. IPR

Since there are various symmetries of the di-
agrams, we classify them according to their sym-
metries. Type 1 are the Abelian diagrams, type 2
the diagrams containing one or two three-gluon
vertices, and type 6 the diagrams with a four-gluon
vertex.

Fig. 5. The four-gluon vertex.
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313 IM

Given a pair (TOPL, TOPR) of topologies, we
need not sum over all contractions o, but only
over a subset depending on the symmetry type of
TOPL and TOPR.

For example, consider a product of a type-1
diagram with a type-6 diagram. The Abelian
(type-1) diagram has no internal symmetry. There-
fore, in principle we should sum over all six con-
tractions. But since the type-6 diagram contains a
four-gluon vertex, all these expressions differ only
in a permutation of the external momenta. Since
this permutation is done in a FORTRAN pro-
- gram, it suffices to calculate the term for the

contraction ¢ = 1. Therefore, in this special case,
IM(1, 6) =1.

3.14. Formula for the cross section
The contribution to the trace of the hadron
tensor is calculated by means of the formula

WQ(TOPL, TOPR)
= — 4+ tr(VL(TOPL) * p, * VR(TOPR) * j,)
(3.1)

as already indicated in eq. (2.8). The factor 4
compensates the factor 1 /4 that REDUCE inserts
into trace calculations, the minus sign stems from

Table 2

Parameters for the qg3g-contributions

filename @TOPLU @TOPLO @TOPRU @TOPRO @TOPN
AA0001 1 3 1 3 0
AA0002 1 2 4 4 0
AA0003 3 4 4 4 0
AA0004 1 4 5 5 0
AA0005 1 4 6 6 0
AA0006 1 4 7 7 0
AA0007 1 4 8 8 0
AA0008 1 4 9 9 0
AAQ0009 1 4 10 10 0
AA0010 1 2 11 11 0
AA0011 3 4 1 11 0
AA0012 1 2 12 12 0
AA0013 3 4 12 12 0
AA0014 1 4 13 18 0
AA0015 5 6 5 6 0
AA0016 5 6 7 8 0
AA0017 7 8 7 8 0
AA0018 5 6 9 10 0
AA0019 7 8 9 10 0
AA0020 9 10 9 10 0
AA0021 5 6 1 11 0
AA0022 7 8 11 11 0
AA0023 9 10 1 11 0
AA0024 11 11 11 11 0
AA0025 5 6 12 12 0
AA0026 7 8 12 12 0
AA0027 9 10 12 12 0
AA0028 1 1 12 12 0
AA0029 12 12 12 12 0
AA0030 5 10 13 18 0
AA0031 11 12 13 18 0
AA0032 13 18 13 18 0
DA0002 1 0 1 0 18 denominators
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Table 3

Parameters for the qf 2 ghost g-contributions

filename @TOPLU @TOPLO @TOPRU @TOPRO @TOPN

AZ0001 1 6 1 12 0

AZ0002 7 12 1 12 0

DG0002 1 0 1 0 12 denominators

the (—g,-)-contractions of the polarization sum
for the external gluons.

3.15. Some calculations

In this section the head of the FORTRAN
subroutines is printed, the name ROUTO001 has to
be replaced by an appropriate name, AAxxxx for
instance, where xxxx runs from 0001 to 0032 (we
had to split up the whole output into 32 FOR-
TRAN subroutines).

There are three nested loops over the different
topologies on the right and left side, and over the
contractions corresponding to the pair (TOPL,
TOPR).

In the next step we perform the permutation of
the Lorentz indices to obtain a certain contrac-
tion, furthermore, the momenta on the left side
are determined from the contraction.

We calculate the traces without replacing the
sum Q,z ., because then we have less terms and
the calculation is therefore faster. Application of
QDETF then defines these sums, the symbols Q5

are replaced, and the dot products are expressed
in terms of the relativistic invariants y,;.

The result is printed, and finally it is assigned
to an array AS(TOPL, TOPR, V, JP). JP is a
dummy index that is needed to store the resuits
after the momentum permutations later on, JP
runs from 1 to 6.

3.16. Calculate the denominators
In this section the denominators are calculated
and printed.

3.17. Close output file
The output file is closed, REDUCE is left.

As mentioned above, we need 32 files contain-
ing the FORTRAN subroutines. To obtain ap-
proximately equal length programs (500-1000
lines), we chose the parameters indicated in table
2,

The denominators are calculated if @TOPLU
= @TOPRU =1, @TOPLO = @TOPRO = 0 and

Table 4

Parameters for the 2q2qg-contributions

filename @TOPLU @TOPLO @TOPRU @TOPRO @TOPN
ANO0001 1 4 1 4 0
AN0002 1 4 5 5 0
ANO0003 1 4 6 6 0
ANO0004 1 4 7 8 0
ANO0005 1 4 9 11 0
ANO0006 1 4 12 12 0
ANQ007 5 6 5 6 0
ANO0008 S 6 7 8 0
ANO0009 5 6 9 10 0
ANO0010 5 6 11 11 0
ANO0011 5 6 12 12 0
ANO0012 7 10 7 10 0
ANO0013 7 10 11 12 0
ANO0014 11 12 11 12 0
DD0002 1 0 1 0 12 denominators
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@TOPN = 18. This subroutine should be called
DAO0002 (ROUTO01 has to be replaced, and the
array AS(18, 18, 6, 6) has to be replaced by an
array DS(18, 6)).

The program in the qq2 ghost g-case is similar.
Here, there is only one external gluon, and we
have to consider only one contraction. The
momentum permutation is done numerically in
the FORTRAN program that calls the sub-
routines.

A slight complication arises in the 2q2gg-case.
Here, depending on the contraction, we may have
to calculate one or two fermion traces. This is
accomplished by introducing two new arguments
in the functions VR and VL: Vx(TOP, a, L).
a =1 denotes the y-string that is connected to the
external photon, a = 2 denotes the y-string that is
connected to the (a=1)-string via a gluon. L
denotes the name of the corresponding fermion
line. The parameters for the ghost-contributions
and the four-quark terms are given in tables 3 and
4,

4. Calculation of the colour and flavour factors

Again, we will describe the qq3g-case in detail.
The REDUCE program that we will describe pro-
duces a FORTRAN program with a lot of assign-
ments. For each contribution (TOPL, TOPR, o)
there is a corresponding term in the resulting
FORTRAN program. The REDUCE program
consists of the following 12 parts:

4.1. Open output file
The REDUCE output is written to a file TFILE.

4.2. FORTRAN output
The output should be FORTRAN-like.

4.3. The invariants of SU(N)

NC and CF are the number of colours and the
eigenvalue of the Casimir-operator, respectively.
We need NC = 3 (corresponding to SU(3)), there-
fore CF = 4/3. D1, D2,...,D7 are some constants
that appear frequently.

4.4. Colour factors
This is a complete list of the colour factors
calculated by hand. We may classify the graphs

according to their colour structure. There are 6
different types. Furthermore, the colour factor
depends on the contraction o.

4.5. Transposed contractions
List of the inverse contractions, VI(V) -V = 1.

4.6. The lower triangle

The GP(...) only define the upper triangle of
the whole matrix, the lower triangle is obtained by
exchanging the arguments for the topologies and
using the transposed contractions.

4.7. TI
TI(TOP) is the colour class of the graph topol-
ogy TOP.

4.8 IPR

Because of the symmetries of the graphs we do
not need to calculate all contractions. IPR(TOP)
specifies the symmetry of a graph.

4.9 IM

Determines the contractions o that are needed
(see the explanation of this variable in section 3.
13).

4.10. Some calculations

First, the head of the FORTRAN subroutine is
written to TFILE. Then there are loops over all
topologies and the relevant contractions. The col-
our factor CFACT is determined and printed.

4.11. Calculation of flavour factors

We define the charges of five quarks, the num-
ber of flavours is fixed to 5. S1 is the sum of the
squares of the quark charges. The flavour factors
for the six contractions are calculated and printed.
Because of the normalization with o, in this par-
ticular case the flavour factors are all 1.

4.12. Close output file
Finally, the file is closed.

The FORTRAN subroutines for the colour and
flavour factors are called FA0002, FD0002 and
FGO0002 for the final states qq3g, 2q23g and qq2
ghost g, respectively.
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S. FORTRAN subroutines

We describe some FORTRAN subroutines that
permute momenta, create arrays containing infor-
mation concerning the symmetry of the graphs,
and subroutines that sum up the contributions
including colour and flavour factors.

5.1. The momentum permutations

‘As described in previous sections, our FOR-
TRAN subroutines only contain the results for the
contributions to the trace of the hadron tensor for
the momentum permutation o = 1. The missing
contributions are determined by a permutation of
the relativistic invariants y,;. For this purpose,
there are two subroutines IPERM2 and IPERC2,
the former for the qg3g-case, the latter for the
2q2qg-case. The structure of these subroutines is
quite simple:

An integer parameter JP (running from 1-6 or
1-4, respectively) determines the permutation. A
common block IPER2 contains the invariants
YA of the particular event and the permuted
ones, Y1J. One has to specify the permutation JP
and to call the subroutine. Then the YIJ will
contain the permuted invariants.

5.2. Arrays containing combinatorial information

Because of the various symmetries of the graphs
we could omit the calculation of a lot of contribu-
tions. We have to pay for this simplification with
the definition of arrays that contain the informa-
tion that has been lost.

The qq3g-case: IKOMBI

The variables IPR(TOP).and IM(TOP) have
already been explained in section 3. The array
IGT(, o)is the group multiplication table of S,,
the symmetry group of the six permutations. We
have 7:0=I1GT(7, o). This array is needed to
calculate the momenta QL,, if QR, and the con-
traction are known.

The arrays IAl, IV1 and IP1 are needed to
calculate the arrays 1A, IV and IP, respectively.
These arrays are handed to the calling program.
We will describe how these arrays are used. Sup-

pose that you want to calculate the following
contribution: The left and right topologies are JL
and JR, the contraction is JV and JP labels the
permutation. We associate (JLN, JRN, JVN, JPR,
JPL) to (JL, JR, JV, JP) in the following sense:

The contribution to the trace of the hadron
tensor of the topologies JL, JR, the contraction JV
and the permutation JP is equal to the contribu-
tion of the topologies JLN, JRN, the contraction
JVN and the momentum permutation JPR, fur-
thermore, the momenta of the external particles in
the complex conjugate matrix elements is given by
JPL.

The formulae for JLN, JRN, JVN, JPR, JPL in
terms of JL, JR, JV, JP are

JLN =JL,
JRN =JR + IA(JL, JR, JV),
JVN =1V(JL, JR, JV), (5.1)

JPR = IGT(JP, IP(JL, JR, JV)),
JPL = IGT(JPR, JVN).

These formulae and the tables IA, IV and IP may
be obtained by choosing symmetry types TL, TR
€ {1, 2,...,5} and comparing the expressions with
respect to the symmetries of the vertices. This is a
straightforward, but tedious task.

The 2q2qg-case: IKOMC1

Here the graphs contain no useful internal sym-
metries with respect to the external legs. The only
possible simplification is to do the momentum
permutation by a FORTRAN program. The array
IGT contains the group multiplication table of
S, X' S, (exchange of the two quarks and the two
antiquarks).

5.3. Subroutines for summing up the contributions

It is assumed that the invariants are defined in
the common block INVR.

The qq 3g-case: ARUPS50

In the beginning, the combinatorial arrays and
the colour factors are determined by means of
IKOMBI1 and FA0002. Then the numerators and
denominators (the Lorentz structure) are de-
termined in all possible permutations of the outgo-
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ing momenta. The last step is the summation of all
contributions. A factor of two has to be included
for all off-diagonal terms. The trace of the hadron
tensor is returned in double precision format.

If the three gluons are not considered to be
distinguishable, then one has to multiply the trace
of the hadron tensor by a factor of 1/6.

The 2q2q g-case ARUDS0

Here the combinatorial arrays are filled by
means of IKOMCI1, the colour factors are de-
termined by FDO0002. The contributions to the
trace of the hadron tensor are determined for all
possible permutations of the outgoing momenta.
Finally, the contributions are summed up.

The qq 2 ghost g-case: ARUGS50

The combinatorial arrays are determined by
means of IKOMBI, the colour factors are calcu-
lated in FG0002. We have to sum over all permu-
tations of the outgoing momenta.

A generic contribution to the hadron tensor has
the form:

ANSO = FS(JV) * GS(JL,JR,JV)
* AS(JL,JR,JV,JP) / DS(JL,JPL)
/ DS(JR,JPR). (5.2)

FS(...) is the flavour factor, GS(...) is the colour
factor. AS(...) denotes the numerator and DS(...)
is the denominator (Lorentz structure).

Now assume, for instance, that you want to
obtain the trace of the hadron tensor for certain
invariants y,; defined in the common block INVR.
If you do not want to distinguish identical par-
ticles, then you should use the following sequence
in your program:

CALL ARUDS0 ( WQ4Q )
CALL ARUP50 ( WQ3G )
CALL ARUGS0 ( WQGH ) (5.3)
WQSUM = WQ4Q,/4.0 :
+ (WQ3G — WQGH) /6.0.

The ghost contributions are subtracted.

5.4. Some numerical examples

Finally, in the program EX0001 we give three
sets of invariants originally determined by a Monte
Carlo program. The three contributions for each
of these sets are given to offer the possibility of a
simple check. We have calculated H} without the
factor (4ma,)? in eq. (1.4) and divided by .

6. Conclusions

We have presented REDUCE programs that
are capable to calculate the trace of the hadron
tensor for the process y — 5 partons. The CPU
time for the calculation of the cross section is
approximately 2 hours on an IBM 3084 Q. If the
momentum permutations are performed numeri-
cally the length of the result can be reduced
considerably (by a factor of 4). Finally we de-
scribed how to use the result in Monte Carlo
simulations. The REDUCE program has been
written in such a way that momentum permuta-
tions are performed numerically in the FOR-
TRAN routines. This has the consequence that the
FORTRAN routines are much shorter and the
time for their production is smaller approximately
by a factor of 4. Explicit calculations for five-jet
cross sections on the basis of these programs have
been described in ref. [5].
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PROGRAM LISTINGS
2q3g

b2

% 2 QUARK 3 GLUON LORENTZ STRUCTURE
K3

COMMEET
5-JBTS, FINAL STATE WITE 2 QUARKS, 3 GLUONS
CALCULATION OF THE LOREFTZ STRUCTURE

FILE CREATRD: 02\02\1989
LAST UPDATR: 0610311989
s

K3

% ==-<> PARAMETERS

% --> RIGHT TOPOLOGIES
TOPAUV: =CTOPRUS

TOPRO : =CTOPROS

% --> LBPT TOPOLOGIES
TOPLY : =6TOPLUS
TOPLO : =¢TOPLOS

% ~-> DENOMINATORS
TOPN : =@TOPRS

%

% ----> OPEN OUTPUT FILE
CFF ECROS
OUT TFILES
v
3

% ==--~> FOLTRAN OUYPUT
03 FORTS

OFF PERIODS
CALDNO!+:=198

% ----> MOMENTUM SUNS
DEPINE QDRF =

BEGIN

LET

QR13=QR1+QR3,
QR15=QR1+QR5,
QR25=QR24QRS5,
QR34=QR3+QR4,
QR134=QR1+QR3+QR4,
QR234=qR2+QR3+QR4,
QR245=R2+QR4+QRS5,
QR345=QR3+QR4+QRS,
QR1345=QR1+QR3+QR4+QRS,
QR2345=QR2+QR3+QR4+QRS,
QL13=QL1+QL3,
QL15=QL1+4QL5,
QL25=QL2+QL5,
QL34=QL3+QL4,
QL134=QL1+QL3+QL4,
QL234=QL2+QL3+QL4,
QL245=QL2+QL4+QLS,
QL345=QL3+QL4+QL5,
QL1345=QL1+QL3+QL4+QLS,
QL2345=QL2+QL3+QL4+QLS

$

BEDS

%

% ==--> CLEAL MOMENTUM SUMS
DEFINE QREL =

BEGIN

CLEAR GR1,QR2,QR3,QR4,QRS5,
QR13,QR15,QR25,QR34,
QR134,QR234,QR245,QR345,
QR1345,QR2345,
QL1,QL2,QL3,qL4,QL5,
QL13,QL15,QL25,QL34,
GL134,QL234,QL245,QL345,
QL1345,QL2345

$

% ----> DRFINE THEM AS VECTORS

$

VECTOR GRf,Q%2,Q03,QR4,0Q05,
QR13,QR15,QR25,QR34,
QR134,Q0234,0R245,QR345,
QR1345,QR2345,
QL1,QL2,4L3,QL4,QL5,
QL13,QL15,QL25,QL34,
QL134,QL234,QL245,QL345,
QL1345,QL2345

$

% ----> BXTBREAL MOMENTA ARE OF THE MASS SHELL

MASS QR1=0,QK2=0,QR3=0,R4=0,QR5=0,

QL1=0,QL2=0,QL3=0, L4=0, QL5=0$

MSHELL Qk1,QX2,0%3,QR4,QR5,
QL1,QL2,QL3,QL4, QLSS

END$

%

% -=--> DECLARE SOME VECTDRS
VECDIM(4)$

VECTOR P1,P2,P3,P4,P5$

MASS P1=0,P2=0,P3x0,P4=0,P5=0$
MSHELL P1,P2,P3,P4,PS$

%

% ----> LORENTZ-SCALARS

LET P1.P2=T12/2,
P1.P3=Y13/2,
P1.P4=Y14/2,
P1.P5=T15/2,
P2.P3=123/2,
P2.P4=124/2,
P2.P5=Y25/2,
P3.P4=134/2,
P3.P6=135/2,
P4.P5=Y45/2
$

iy

RN

5
% ----> INDICES AND FERMION LINES
INDEX L$

INDEX SIR,SIL,REOR,RHOL,MU,ER3,BL3,BR4,EL4,ERS,RLS$ % INDICES

»
% ----> SQUARES OF THE INNER MOMENTA
OPERATOR SQUAS
FOR ALL P LET SQUA(P)=P.P$
LET SQ13 =SQUA(QL13),

SQ15 =SQUA(QL1E),

5Q25 =SQUA(QL2S),

$Q34 QUA(QL34),

$Q134 =5QUA(QL134),

$Q234 =SQUA(QL234),

$Q245 =5QUA(QL245),

$G345 =5QUA{QL345),

$Q2345=5QUA(QL2345)

13

% ----> THE TEREE GLUON VERTEX

OPERATOR DGLV$

FOR ALL &,B,C,P,Q,R LET

DGLV(A,B,C,P,Q,R)=-(A.B=(P-Q).
+B.C*(Q-R) .4
+C.As(R-P).B)

a

%
% ----> THE POUR GLUOF VERTRI
OPERATOR VGLVS

FOR ALL 4,B,C,D LET
VGLV(1,4,B,C.D)=A.BeC.D-A.C*B.D,
VGLV(2,4,B,C,D)=4.C+D.B-A.DsC.B,
VGLV(3,4,B,C.D)=A.D*B.C-4.BD.C

s

A

% =-=--> FEYNMAN RULES
OPERATOR VR,V7L$

% -=---> TOP=1

LET

VR(1)=-G(L,BR3,QR13,ER4,QR134,EN5,QR1345 , HU),
VL(1)=-G(L,MU,QL1345 ,EL5,qL134,KL4,QL13,EL3)
$

% ----> TOP=2

LET
VR(2)=-6(L,ER3,QR13,ER4,QR134,NU, -GR25,BR56) ,
¥L(2)=-G(L,EL5,-QL25 MU, QL134,EL4,QL13,XL3)

$

% ====> TOP=3

LBT

¥R(3)=-G(L,BR3,QR13,MU,-QR245 ,ER4,-QR25,5R5),

VL(3)=-6(L,BL5,-QL25,EL4,-QL245,MU,QL13,EL3)
$

% ----> TOP=4

LET

va(4)=-6(L,MU,-QR2345 ,BR3, -QR245 ,ER4,-QR25,ERE),
VL(4)=-6(L,EL5,-QL25 ,KL4,~QL245 ,EL3,-(L2345 ,M0)

$
% ----> T0P=5
LEBT

VR(5)=-6(L,SIR,QR134,ENS,QR1345 ,MU) «DGLV(SIR, BR3,ER4,-QR34,QR3,QR4),
VL(5)=-6(L,MU,QL1345,BL5,QL134,SIL)»DGLV(SIL, EL3,EL4,-QL34,QL3,QL4)

VR(6)=-G(L,E15,QR15,SIR, QR1345 ,MU) «+DGLY (SIN,ER3,ER4, -QR34,Q23,QR4),
YL(6)=-G(L,MU,QL1345,5IL,QL15 ,BLE)»DELY(STL,RL3,EL4,-QL34,QL3,QL4)

$
% ----> T0P=7
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LET

Y2 (7)=-G(L,SIR,QR134 MU, -GR25,ER5) ¢DGLV(SIR ,ER3,ER4,-QR34,QR3,QR4),

VL(7)=-6(L,EL5,-QL25,MU,QL134,SIL) *DGLY(SIL ,EL3,EL4,-QL34,QL3,QL4)

$

Y% ~---> T0P=8

LET

VR(8)=-G(L,ER5,QR15,XU, -QR234,STN)«DGLV(SIR,ER3, KR4, -QR34,QR3,QR4),

VL(8)=-G(L,SIL,~QL234,HU,QL15 ,EL5) *DGLV(SIL ,EL3,EL4,~QL34,QL3,QL4)

$

% ~---> T0P=9

LET

¥1(9)=-G(L,MU,-QR2345,5TR, -QR25 ,ERS ) +DGLV (SIR,EL3,ER4,~QR34,0QR3,QR4),

VL(9)=-6(L,ELS,-QL25,SIL,-QL2345 ,MU) «DGLY(SIL,EL3,EL4,-QL34,QL3,QL4)

$

% --==> TOP=10

LET

¥1(10)=-G'L,NU, -QR2345,ER5 , -QR234,SIR) «DGLV(SIR,ER3,ER4,-QR34,QR3,Q84) ,

VL(10)=-G(L,SIL,-qL234,ELS QL2345 ,M0) »DGLY (SIL ,EL3,BL4,-QL34,QL3,QL4)

$

% ===-> TOP=11

LET

VR(11)=-G(L,SIR,QR1345,MU) «DGLV (SIX,RNOR,ERS, -GR345,QR34,0RS)
«DGLV (RECR, ER3, ER4, -0R34, Q3 ,QR4),

VL(11)=-G(L,MU,QL1345,3IL) »DGLV(SIL,REOL,ELS, -QL345,QL34,QL5)
«DGLV(RHOL ,RL3,EL4,~QL34,QL3,QL4)

$

% ----> TOP=12

LET

¥R(12)=-G(L,MU,-QR2345,SIR)*DGLY (SIR,RNOR, ERS, -QR345,QR34,QRS)
*DGLY(RNOR, ER3, ER4,-QR34,QR3,QR4),

VL(12)=-6(L,SIL,~QL2346,MU) +DCLV (SIL,RNOL,ELS, -QL345,QL34,QL5)
~DGLYV(RNOL,EL3,RL4,-QL34,QL3,QL4)

$

% ----> TOP=13

LET

VR(13)=6(L,SIR,QR1345,MU;sVCLV(1,SIN, B3, ER4,ERS),

VL(13)=G(L,MU,qL1345,SIL)*¥GLV(1,SIL, EL3,BL4,ELS)

$

% --=-> TOP=14

LET

VR(14)=G(L,5IR,QR1345 ,MU)«VGLV(2 ,SIN,ER3,EN4,ERS),

VL(14)=G(L,MU,QL1345,SIL)=¥GLV(2,5IL,EL3,EL4,ELE)

$

% ----> TOP=15

LBT
YR(15)=G(L,SIR,QR1345,MU)#VGLY(3,SIR, K23, ER4,BRE),
VL(15)=G(L,MU,QL1345,SIL)+VGLY(3,SIL,Ki3,EL4,EL5)

$

% --=-> TOP=16

LET

¥2(16)=G(L MU, -QR2345,5T1) «¥GLV(1,SIR ,BR3,ER4,ERS),
VL(16)=¢(L,SIL,-QL2345,MU)#VGLY(1,5IL,EL3,EL4,ELS)
$

% =---> TOP=17

LET
VR(17)=6(L,MV,-QR2345,SIR)»¥GLV(2,5IR ,ER3, KR4, ER5),
YL(17)*G(L,SIL,-QL2345,MU) »VGLV(2,SIL ,EL3 KL§ ELS5)

3

% ---=> 'IM> CORTAINS THE NUMBER OF CONTRACTIONS TNAT ARE NECESSARY

% (TEE FORMAT IS IM(TYPEL,TYPER))
OPERATOR IM$

IM(1,1):=6§

IM(1,2):=38

IM(1,6):=1%

IN(2,2):=2%

m(2,6):=1%

IN(2,6):=18

IM(6,8):=1%

i3

% ----> FORMULA FOR THE I-SECTION
OPERATON WQ$
%

COMMENT ~---- PAKTOR -4: CONTRACTION OF TEE GLUONS: (-G MU NU)es3,
REDUCE’S TRACE IS ONLY 1/4...

§
FORL ALL TOPL,TOPR LET

WQ(TOPL,TOPR) =-4+VL(TOPL)*G (L,QR1) VR (TOPK)*G(L,QR2)

$
%

% -~-->SOMB CALCULATIONS
%
OFF PERIODS

VAITE "C ---"%

WAITE © SUBROUTINE ROUTOO1(4S,IP)"$

WAITE "C ---"$

VRITE © DOUBLE PRECISION"$

VRITE " £112,713,714, 715,123,724, Y25, 734, Y35, Y45, ¢
WRITE " 218(18,18,6,6)"8

WAITE * INTEGEM 1P"$

WRITE °C ---"$

WRITE " COMMON /INVR1/"$

WRITE " 2712,713,714,T15,Y23,Y24,¥25, Y34, Y35, Y45"$
WRITE "C ---"$

WRITE "C 2 QUARK - 3 GLUON X-SECTIONS"$

WRITE "C33"$

VRLITE TOPLU=",TOPLU,", TOPLO=",T0PLO$

WRITE TOPRU=",TOPRD, ", TOPRO=",TOPRO$

VAITE TOPY =", TOPNS

VAITE

%
POR TOPR:=TOPAU:TOPRO DO BEGIN

%
% =-=-~-> ENSURR TNAT TOPL<=TOPR:
TOPLMAX:=MIN(TOPLO,TOPR)$

POR TOPL:=TQPLU:TOPLMAX DO BEGIN
%

¥0:=IN(IPR(TOPL),IPR(TOPL))$
PORL V :=1:V0 DO BEGIN

%

% -=-=> CALCULATE TEE TRACE USING TEE VARIABLES Q...

% AEPLACING TNEN BY TEE P'S

%

% ----> NOMENTUM PERMUTATION LEFT SIDE
QREL$

]

% -==-> TOP=18

LET
VR(18)=G(L,MU,-QR2345,SIR)»VGLY(3,SIL,ER3,ER4,RR5),
VL(18)=G(L,SIL,-QL2345,M0) «VELY(3,5IL,RL3,KL4 ,EL5)
$

13

% -===> 'IPR’ CONTAINS THE TYPE OF A TOPOLOGY
OPERATOR IPA$
IPR(1) :=1%
IPR(2) :=1%
IPR(3) $
IPR(4) :=1%
IPR(5) :=2%
IPR(6) :=2%
IPR(7) :=28%
"IPR(8) :=2%
IPR(9) :=2%

IPR(10):=2%
IPR(11) ;=28
IPR(12):=2%
IPR(13):=2%
IPR(13):=68
IPR(14):=6%
IPR(15): =88
IPR(16):=68
IPR(17):268
IPR(18):=6%

IF ¥=1
IP ¥=2
IF ¥=3
IF ¥=4
IF ¥=5
IF V=6

THEN LET QL3=QR3,QL4=QR4,QL5+QRE,EL3=ER3,BL4=ER4 ,ELE<ERS ELSE
THEN LET QL3=QR4,QL4=QR6,QLE*QR3,EL3=ER4,KL4=ER5 ,EL5=ER3 ELSE
THEN LET QL3=QR5,QL4=QR3,QLS*QR4,EL3=ERS ,EL4~BR3 ,EL5=ER4 ELSE
THEN LET QL3=QR3,QL4=QRS ,QL5%QR4,KL3=E13, EL4=ERE ,EL6=ER4 BLSE
THEN LET QL3=QR4,QL4=QR3,QL5+QR5 EL3I*ER4, EL4=ER3,EL5=ER6 ELSE
THEEN LET QL3=QRS5,QL4=QR4,QL5*QR3,KL3=ERS EL4=ER4,EL5=ER3

WQ1:=wQ(TOPL,TOPR)$

QDEF$

OFF PERIODS
WRITE "C --- TOPL=",TOPL,”, TOPR=",TOPR,",

%

% =----> PRINT THE X-SECTION
0N PERIODS
WRITE WQ1$
OFF PERIODS

WRITE ™
WRITE "
BEDS
ENDS
EFD$

AS(",TOPL,",",TOPR,",",¥,",JP)=4NS"$

C omm mmmon

195
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ARUPS0

~> CALCULATE TNE DENOMINATORS
OPERATDL NE$

LET

NB(1)=5Q13+5Q134+3(41345,
NE(2)=8(13%5Q25+50134,
JR(3)=5¢13+5Q25+30245,
NE(4)=5Q25+5Q246+5Q2345,

C  ©07/11/88 903170901 MEMBER NAME ARUP50  (#JBT36) FOLTRAR

c

c

[

c
HR(5)=8Q34«5Q134+5Q1345, € --- 2 QUARK 3 GLUGH FIFAL STATE

C

c

c

4

c

[

ARUPSO <

NB(6)=5Q15+5Q34e£41345,
NE(7)=5Q25¢5Q34950134,
BE(8)=8Q15#8034%5Q234,
NE(9)=3Q2505Q34#5Q2345,
BE(10)25034+5Q234#592345,
¥R(11)=5034+5(345#5G1345,

--- SUBROUTINE CALLS THE CALCULATION FOR ONE EVENT

FILE CLEATED: 08\02\1989
LAST UPDATE: 06\03\1889

FE(12)=8034#8(345+502345, € mmmmm e
FE(13)=$Q3455Q1345, c
¥E(14)=8Q345+5Q1345, SUBROUTINE ARUP50(WQUER)
¥E(15)=5Q345+501345, c
NE(16)=84345+502345, DOUBLE PRECISION
FE(17)=80345#802345, RVQUER, 4NS0, 4851,
FE(18)=303450502345 &YD12,YD13,YD14, YD15, YD23, YD24, ¥YD25, YD34, YD35, YD45,
ATE12,YE13,YE14,TR15, Y23, Y824, YE26, YR34, YE35, YE4S,
QREL$ ATF12,YF13,YF14,TF15,YF23,YF24,YP26,YF34, YF35 YF45,
QDEF$ a15(18,18,8,6) ,D5(18,6) ,FS(6) ,G5(18,18,6)
FOR TOP:=1:TGPN DD BEGIN ¢
OFF PERIODS COMMOR /KOMB1/
VAITE "C --- TOP=",TOP$ +1X(18) ,16T(6,6),
0§ PERIODS £IA(18,18,6),1IV(18,18,6) ,IP(18,18,6)
c
QL1:=P1$ COMMOR /IPER2/
QL2:%P28 &YD12,YD13,YD14,TD15,YD23,YD24,YD25,YD34,YD35,YD45,
QL3:=P3$ ®YE12,YE13,YEB14, YE15,YE23, YR24 ,YE25, YR34, YE3S, YE4S
QL4:=Pas C
QL6 :=P5$ COMMON /INVR1/
WRITE BE(TOP)$ &YF12,YP13,YF14,YP15,YP23,TP24,YF25,YFP34,YF35,YP45
OFF PERIODS ¢
VRITE " DS(",TOP,",JP)=ANS"$ : COMMOE /INVR/
WRIIE “C --- g 266 ,B11,822,B33,B44,B55,512,B13,B14,B15,B23, 824,825, B34, B35, B4S,
END$ 2YB12,YB13,YB14,Y815,YB23,YB24,YB25, YB34, YB35, YB4S
Y c
élrrg " RETURN"'S C --- COMBINATORIAL ARRAYS
VRITE " BED"$ c
WRITE C --- END OF TEXT"$ CALL IKOKB1
SHUT TFILES c
BYES C --- COLOUR AND FLAVOUR FACTORS
c
CALL FAOO02(FS,&S5)
c
C --- STORE SINGLE PRECISION INVARIANTS IN DOUBLE PRECISION YARIABLE
c . :
1D12=Y812
TD13=YB13
YD14=YB14
YD15=YB15
YD23=YB23
YD34=YB34
TD35=YB35
TD45=YB4S
c
C --- DETERMINE DENOMIXATORS AND NUMBRATORS IN ALL POSSIBLE
c DISTINCT PEAMUTATIONS OF TEE DUTCOING MOMENTA
c
DO 100 JP=1,6
c
C --- NOMENTUM PERNUTATION
c
CALL IPERN2(JP)
c
YF12=YE12
YF13=YE13
YP14=1E14
YF15=YE5
YF23=TE23
TF24=YTE24
YF25=YE25
YF34=YE34
YF35=YE35
YF45=TR45
c
C --- DEMOMINATORS
c

CALL DPA0002(DS,IP)



¢ ---

100

€ ---

203
202
201
200
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NUMERATORS

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
ciaLL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CiLL
CALL
CALL
CALL
CALL
CALL
CALL

440001(AS,IP)
440002(a8,JP)
110003 (48,IP)
410004 (AS,IP)
1A0005(aS,1P)
140006(a5,IP)
440007 (AS,JP)
240008 (4S,IP)
A440009(AS,JP)
AA0010(AS,IP)
4A0011(4S,IP)
440012(4S,IP)
440013 (4S,IP)
440014(48,3P)
440015 (45,JP)
AA0016(45,IP)
AA0017(45,JP)
440018(25,JP)
AL0019(aS,JP)
440020(4S,IP)
440021 (aS,IP)
A40022(AS,JP)
140023 (48,TP)
4400324 (48,JP)
140026 (45,JP)
2A0026(45,2P)
AA0027(4S,JP)
4A0028(4S,JP)
440029(4S,JP)
140030 (25.JP)
140031 (45,JP)
140032(48,1P)

CONTINUE

SUM UP ALL CONTRIBUTIONS

ANS1=0.0
DO 200 Jh=1,18
JMR=IN(IR)
DO 201 JL=1,I%
IML=IN(IL)
D0 202 JP=1,IM2

Do

203 Jv=1,JML

JLE=JL
JRN=IR+IA(JL,IR,I¥)

IVER

Iv(JL,J0,IV)

JPR=IGT(JP,IP(JL,I0,JIV))
JPL=ICT(JPR.IVE)
ANSO=FS(JVX)«GS(JLE,JAN,JVN)

*A5(JLN,JRN,JVN,JPR) /DS (JL,JPL) /DS(JR,IPR)

IF (JR.NE.JL) THEE
ANS0=2.0%4150
REDIP
ANS1=ARS1+ANSO
CONTINUE
CONTINUE
CONTINUE
CDNTINUE

RETURN
BED

TEST RUN PROGRAM
EX0001

DOUBLE PRECISION WQ4Q, WQ36, WQEH, WQSUM

COMMON/INVR/GG,B11,B22,B33,844,B55,B12,B13,B14,B15,B23,B24,B25,
$B34,B36 ,B45,Y12,Y13,Y14,Y15,¥23,724,Y25,734,Y35, Y45

==> EX0001 <==

SOME SUMERICAL BXAMPLES

SOURCE CREATED:
LAST UPDATE:

08\03\1989
06103\1989

nnhoonaa0cann

VRITE(6,9999)

112
113
T14
Y15
Y23
Y24
Y2s
T34
135
Y45

-3

o

o000 000O

-259435E+03

620182E+02
989886K+02
214198E+03
321739E+02
183717E+03
627708B+02
819113B+02
786124E+02

L1511718+03

SY=Y124Y13+Y14+Y15+Y23+Y24+4T25+Y34+Y35+Y45
VRITE(6,100) ST

CALL ARUD50(WQ4Q)
CALL ARUPSO(WQ3G)
CALL ARUGS0(VQGH)

WQSUM = WQ4Q/4.0 + (WQ36 - WQGH)/6.0

VRITE(6,1500) Wq4Q
WRITE(6,1501) WQ36
WRITE(6,1502) WQGH

WRITE(6,1503) WQSUM

C ~--

VRITE(6,9999)

Y12
T13
Y14
Y15
Y23
Y24
Y25
Y34

Y35 =

Y45

o

o

ocococoocoo0o0

482830E+02
367569E+02
917490B+02
917818E+02
119737E+03
130760B+03
7666268+02
358296E+03
239548B+03
314220E+02

SY=Y12+4Y13+T144Y15+4723+Y24+Y28+T34+Y35+¥45
WRITE(6,100) SY

CALL ARUD50(WQ4Q)
CALL ARUP50(WQ36G)
CALL ARUGSO(WQGH)

WQSUM = WQ4Q/4.0 + (WQ3c - WQGN)/6.0

WRITE(6,1500) WQ4q
WRITB(6,1501) W36
WRITE(6,1502) WQGH

WRITE(6,1503) WQSUM

WRITE(6,9999)
Y12 = 0.161919E+03

197



198

Y13 = 0.460878E+02
Y14 = 0.208431E+03
Y15 = 0.106025E+03
Y23 = 0.169903E+03
Y24 = 0.105832E+03
Y25 = 0.407410B+02
Y34 = 0.187181E+03
Y35 = 0.807370B+02
Y45 = 0.138161E+03

N.K. Falck et al. / Five-parton production in e * e~ annihilation

SY=Y12+Y13+Y14+T15+4Y23+724+Y25+734+Y35+Y45

VRITE(6,100) SY

CALL ARUDS0(WQ4Q)

CALL ARUP5O(WQ36)

CALL ARUG50(WQEH)

WQSTUM = WQaQ/4.0 + (V3¢ - WQGH)/6.0
VRITB(6,1500) WQ4Q

WRITE(6,1501) W43

VRITE(6,1502) WQGE

VRITE(6,1503) WQSUM

VLITE(6,9999)

FORMAT(2X,?SUM OF INVARIANTS:
FORMAT(2X,°

' ,E16.8)

PORMAT(2X,>4Q16 CONTRIBUTION TO X_MU_NU: ’,D16.8)
FORMAT(2X,’2Q3G CONTRIBUTION T0 E_MU_NU: °,D16.8)
FORMAT(2X,’ GE CONTRIBUTION TO E_MU_NU: ?,D16.8)

FOMMAT(2X,* SUM INCL. COMB. FACTORS:

’,016.8)

STOP
END

TEST RUN OUTPUT

SUM OF INVARIANTS: 0.12249954E+04
4016 COXTRIBUTION TO H_MU -0.38740376D+01
2Q3¢ COSTRIBUTION TO H_MU_ -0.44361243D+02

GR CONTRIBUTION TD B_MU_NU: -0.24467497D+00
SUM INCL. COMB. FACTORS -0.83212707D+01
SUM DF INVARIANTS: 0.12249954E+04
4Q16 CONTRIBUTION T0 H_MU_¥U: -0.14602477D+02
203G CORTRIBUTION TO E_MU_NU: -0.26149353D+02

GH CONTRIBUTIGN IO E_MU_KNU: -0.38528598D+00
SUM INCL. COMB. FACTORS: ~0.79446304D+01
SUM OF INVARIANTS: 0.12249968E+04
401G CONTRIBUTIOF TO H_MU_NU: -0.20096614D+01
2Q36 COBTRIBUTION T0 H_MU_NU: -0.28258509D+02

GH CONTRIBUTION TD H_MU_NU: -0.26731649D+00
SUM INCL. COMB. FACTORS -0.51676141D+01




