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The scaling behaviour of renormalized quantities and the validity of renormalized perturba- 
tion theory is tested numerically in the symmetric phase of the 4-dimensional Ising model. The 
high-precision Monte Carlo calculation is based on an efficient percolation cluster algorithm. 

1. Introduction 

The Ising model is the limit of a single-component ~4 theory at infinite bare 
quartic self-coupling (X). A lot is known about the ~4 model in four dimensions. In 
the continuum limit the renormalized coupling (gR) is most probably zero, indepen- 
dently of the value of the bare self-coupling (" triviality") [1]. Correspondingly, there 
is a cut-off-dependent upper limit on the renormalized coupling which vanishes 
logarithmically with the cut-off. The largest possible value of gR is probably 
reached in the Ising limit. The behaviour of renormalized quantities, for large 
cut-off in the scaling region near the critical line, is controlled by the Callan- 
Symanzik renormalization group equations [2]. Assuming this general behaviour, it 
is possible to give an approximate analytical solution of the q~4 model everywhere in 
the physically interesting scaling region [3, 4] by starting from a high-order hopping 
parameter expansion ("high-temperature expansion") and using it as an initial 
condition for the integration of the Callan-Symanzik equations. The success of this 
procedure relies on the fact that in the whole scaling region the renormalized 
coupling is small enough for the application of renormatized perturbation theory. 
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The solution of the renormalization group equations can also be continued over the 
critical theory into the phase with spontaneously broken symmetry [3]. This is where 
the study of simple q~4 models has its physical motivation, because the prototype 
model of the Higgs sector of the standard electroweak theory is a (four-component) 
~4 model with spontaneously broken symmetry. In this context, due to the triviality 
of the continuum limit, one has to assume that in the Higgs sector, for some 
physical reason, the cut-off is finite. This allows for a non-zero renormalized quartic 
interaction of the scalar field. On the lattice the physical cut-off is replaced by the 
inverse lattice spacing, but in the scaling region, where the cut-off is much larger 
than the physical mass scale, this replacement is legitimate because the cut-off 
effects on physical quantities are negligible. 

For  the study of lattice q,4 models, high-precision numerical Monte Carlo calcula- 
tions are particularly useful on the edges of the scaling region, in order to check the 
general consistency of the analytical approach and to control the error estimates. 
Precise numerical calculations are feasible in the region with correlation lengths of 
the order of 1-10. This is just the region where both components of the analytical 
calculation (hopping parameter expansion and renormalized perturbation theory) 
are driven to the limits of their validity in order to join them together. From this 
point of view the calculations in the limit of infinite bare coupling are most useful, 
because the analytical approximations are poorest in this case. It is a fortunate 
circumstance that the numerical Monte Carlo calculations are particularly easy just 
in this limit, because one can use specific techniques applicable to Ising models. A 
highly efficient method of simulating Ising-like systems was developed recently by 
Swendsen and Wang [5]. It is based on the mapping of the Ising spin model onto a 
percolation cluster model [6]. As it was shown in ref. [5], critical slowing down is 
drastically reduced in two and three dimensions by this algorithm. 

In this paper the results of a high-precision numerical Monte Carlo simulation of 
the 4-dimensional Ising model, based on the percolation cluster algorithm, are 
presented. Our aim is to check in the symmetric phase the validity of renormalized 
perturbation theory and, in particular, of the perturbative scaling for renormalized 
quantities. The precise numerical data can also be taken as initial conditions for the 
integration of the renormalization group equations. This implies smaller errors for 
the predictions on the broken-symmetry side of the critical point. As a by-product, 
the merits and drawbacks of the percolation cluster algorithm are experienced in a 
large-scale 4-dimensional computation. For comparison, and as a basis for choosing 
the parameters of the calculation, we shall use the results of a recent study of the 
finite-volume effects in the 4-dimensional Ising model [7]. 

As described in ref. [5], the Monte Carlo simulation in the percolation cluster 
algorithm proceeds by generating an alternating sequence of spin- and bond-config- 
urations. The bond configuration is represented by the values 0 or 1 on the links 
which connect neighbouring lattice sites. A cluster is a maximal set of points 
connected by bonds with value 1. The efficiency of the cluster updating algorithm in 
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fighting critical slowing-down is due to the fact that in the step from the bond-con- 
figuration to the spin-configuration whole clusters are statistically assigned a new 
spin value. Since there are also large clusters, this can imply a non-local change of 
spins. There is, however, also another advantage of the algorithm which turned out 
to be even more important in our calculations with moderate correlation lengths in 
four dimensions. Namely, the generated sequence of bond-configurations and their 
cluster structure can also be used to measure physical quantities. In this way one 
obtains the same expectation values as in the spin representation, but the fluctua- 
tions, and therefore the statistical errors, are smaller [8]. In fact, it turned out in our 
calculations that in many cases the cluster representation is a highly efficient 
variance-reduction method [9,10]. 

2. Presentation and discussion of the results 

The cluster representation of simple quantities is easily obtained from the 
definitions [5], therefore we give here only a few examples and leave the derivation 
to the interested reader. The expectation value of the product of two spins (with 
o~ = + 1) is given in the cluster language by 

(OxOy) = (Cx,>', (1) 

where the prime denotes an expectation value on the sequence of bond-configura- 
tions, and the function Cxy is defined to be 1 if the points x, y belong to the same 
cluster and 0 otherwise. The cluster representation of the susceptibility X2 is, 
accordingly 

xy 

Here N is the number of lattice points, Ec means a summation over the clusters and 
n c denotes the number of points in the cluster c. Note that in a cluster simulation 
the sign of the total spin always fluctuates such that its average vanishes at any 
hopping parameter x. This is different for local algorithms, as e.g. the Metropolis 
algorithm [11], where in the broken phase the metastability of a given sign of the 
average spin can persist for a very long time. This implies that the definition of the 
connected quantities in the phase with broken symmetry requires some care. (For a 
detailed study of the broken phase of the 4-dimensional Ising model with the help of 
the percolation cluster algorithm see ref. [12].) Returning to the cluster representa- 
tion of some important physical quantities, the formulae for the higher susceptibili- 
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ties X4 and X6 (sums of the connected 4-, respectively, 6-point functions) are 

1 

X I ,X2 ,X3 ,X4  

2< > 3[< 
- + 

N ,, 
E 2 2 __ /,/ , t/q t/c2 
CIC 2 C 

(3) 

X6 -= 
1 

E ( % ,  . . . .  %)c  N 
X 1 , . . . , X  6 

[< 2 2 2 ) <  )< 2;<>3]+2 15 
3 En~,n~2 Enc~ - -  - E n ~  ( 4 )  + N Y~ nclnc2nc3 

ClC2C 3 C1C 2 C 3 -- C 

Our numerical calculations were performed on the Cray-XMP-48 at the 
HSchst -Leis tungs-Rechen-Zentrum (HLRZ) in Jiilich, therefore the vectorization 
of the computer code was an important aspect. The steps from the spins to the 
bond-configuration and from the clusters to the spins, as well as the measurement 
subroutines, are well vectorizable, but contain only very few floating-point oper- 
ations (mainly logical operations and memory rearrangements). The search of the 
clusters on the basis of a given bond-configuration is, however, rather hard to 
vectorize due to the inherent non-local information residing in the clusters. At the 
end a full updating cycle, the measurement was about a factor 10 slower than a 
sweep and a measurement with our Metropolis program. For the search of the 
clusters we applied an algorithm whose execution time grows only linearly with the 
number of lattice points. The very small clusters (up to n c < 3) were filtered out at 
the beginning by going through every point (this step can be vectorized). The 
remaining clusters were found by starting from the next "undone"  point and 
collecting all the other points belonging to this cluster before going to the next 
cluster. Within a cluster, the points were found "generation by generation", where a 
generation is defined as the set of points in the cluster with given distance from the 
starting point. (The "distance" is the minimum number of bonds belonging to 
the cluster between two points in the cluster.) A logical array was used to mark the 
lattice sites which were already "done", i.e. already associated to some cluster. The 
different treatment of very small clusters turned out advantageous also for the 
measurement of the physical quantities. We also compared this algorithm to the 
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TABLE 1 
The results of the numerical calculation in the 3 points denoted by A, B, C. 

Here only the statistical errors in last numerals are indicated. 
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L n m X2 X 4 ~k 6 X 10 4 G,  C X 

A 12 0.0710 0.49032(9) 27.983(5) 40.5(3) 1.44(12) 2.597(5) 0.997(4) 
B 16 0.0724 0.37825(18) 45.86(2) 35.0(9) 0.9(3) 2.575(9) 0.990(6) 
C 20 0.0732 0.30665(18) 69.95(4) 32.2(12) 0.6(4) 2.595(12) 0.977(9) 

more conventional Hoshen-Kope lman  algorithm [13] and obtained similar perfor- 

mances. 
The hopping parameter values (K) for the lattices 124, 164 and 204 were chosen in 

such a way that the finite-volume effects, determined in ref. [7], are already small, in 
most  cases smaller than the statistical errors. This occurs in the intermediate 
coupling range (where Monte Carlo calculations are feasible) if the product of the 
mass m and lattice size L is about m L -  6. For such large volumes the small 
finite-size corrections are well given by l- loop lattice perturbation theory [7]. The 
number  of updating cycles and measurements was 7.6 x 106 on the 124, 1.6 × 106 on 
the 164 and 1.0 × 106 on the 204 lattice. A collection of some directly measured 

quantities is given in table 1. 
The mass m in table 1 is obtained from a single cosh function going through the 

1 value of the time-slice of the zero-momentum 2-point function at largest distance 5L 
1 and half the largest distance ~L. The statistical error of the mass and of every other 

quanti ty in table 1 is determined by binning the data in large bins (actually of 
lengths 2 k, k = integer). In every bin the values of the quantities (which are some 
functions of expectation values) were determined and the errors were estimated 
f rom the standard deviation corresponding to the fluctuation of the values in the 
bins. For some quantities involving large cancellation (e.g. for X6) a minimum bin 
length of the order of 100 was needed in order to obtain reasonable values. For 
larger bins the error estimate first increased with the bin length, but at a bin length 
of about  10000 the errors became constant. Note that this way of estimating the 
errors takes into account the correlation between different expectation values 
entering the definition of a given quantity. For instance, the time-slices of the 

~ highly correlated, therefore there is no 2-point function at distances 7L and xL are 
simple way to determine the error of the mass from the errors of the 2-point 
function. In the case of the mass, however, the error in table 1 is not much different 
from that which is obtained by fitting the 2-point function with a single cosh 
function and by assuming the independence of the errors at different distances. Of 
course, in the case of fits the errors depend also on the length of the interval chosen 
for the fit. The value of the mass obtained from the fits is equal, within lo,  to 
the value in table 1. The result of the fits shows that the 2-point function is 
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strongly dominated by the 1-particle state. Some small higher mass contributions 
can only be seen at distances less than 3. The constant multiplying the cosh func- 
tion corresponding to the 1-particle state in the 2-point function is, respectively 
(in the same order as in table 1): c = 3 . 9 0 3 5 ( 7 ) × 1 0  3; c=2.093(2)  x 1 0 - 3 ;  
c = 1.3330(5) x 10 -3. 

The definition of the other quantities in table 1 is as follows: X2 is the 
susceptibility defined in eq. (2) and ~k4, 6 is obtained from the generalized suscep- 
tibilities as 

~k n ~ m 2 n _  4 X n  
( x 2 ) n / 2  " (5) 

The constants Cm. × characterize the critical behaviour of the mass and the suscep- 
tibility, respectively [2] 

m 
Cm ~ .~f l ln  r l l /6 ,  Cx = rX211n r l -1 /3 ,  (6) 

where r = 1 -  g///¢cr" In table 1 the value of the critical hopping parameter was 
assumed to be Xcr = 0.074834(15) [14], and its error was taken into account in the 
error of Cm, x" As it can be seen from the table, C m and C× are the same within 
errors in the three points (the deviations are about 20). Therefore, the scaling of the 
mass and susceptibility is well satisfied, including logarithmic corrections to the 
mean-field critical exponents. The change of the logarithmic factors is an order of 
magnitude larger than the errors, therefore our data establish the presence of the 
logarithmic corrections beyond any doubt. The analogous scaling relation for ~4 is 
not satisfied, however: it would imply 

32vr 2 
•4 (7) 

311nrl 

As one can see from table 1, the measured values in all the three points are about a 
factor of 1.15 larger. Since ~k 4 is closely related to the renormalized coupling gR, we 
shall return to this question below. 

In order to compare the results with the analytic calculations one has to introduce 
the renormalized quantities at zero momenta. The required relations were included 
in ref. [7], we only repeat them here for convenience of the reader. The connection 
between the renormalized mass m R and the physical mass m in 2-loop perturbation 
theory is given by 

1. 2 ,1/2 ½m R] (1 -  0.0013a2),  (8) m = 2log [(1 + amR! + 
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TABLE 2 
Comparison of the renormalized quantities to the theoretical predictions in the points A, B, C. 

Here the errors include also an estimate of the systematic uncertainties. 
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mR gLW ZR Z~ w gR gkW h R X 10 4 h~Tx 10 4 

A 0.4951(2) 0.0709(2) 0.9746(4) 0.973(9) 42.5(5) 42(7) 1.61(15) 1.74(3) 
B 0.3804(3) 0.0724(2) 0.9614(7) 0.973(9) 36.i(11) 33(4) 0.9(3) 1.23(7) 
C 0.3078(3) 0.0732(3) 0.9707(8) 0.975(9) 32.9(i3) 29(3) 0.6(4) 1.02(8) 

where a R = gR/(16qr2). The ratio r = m R / m  occurs also in the other quantities 

Z R  = 2 K r 2 m 2 x 2 ,  gR = - - r4~k4 , h R = rS~k6 . (9) 

Here Z R is the field renormalization factor, gR the renormalized coupling and h R 
the zero-momentum connected 6-point function. Later on, the modified Z-factor 
Z~  = ZK,/(2K ) will also be considered. (Note that compared with ref. [3] the 
notations for Z R and Z~t are interchanged here.) The numerical results for 
the renormalized quantities are compared to the theoretical expectations in table 2. 
The entries in the table with suffix LW are the results of the analytical calculation of 
Liischer and Weisz [3] based on 10th-order hopping parameter expansion and 
3-loop perturbative renormalization group equations. The analytical predictions 
were determined by matching the renormalized mass m R to the measured value. 
From the point of view of the renormalization group equations this is the most 
natural way. In this case the value of the hopping parameter  is an output (third 
column in table 2). The agreement between the numerical data and the analytical 
calculations is excellent. The numerical errors are usually smaller, nevertheless our 
errors are understood in the sense of standard deviations, whereas those in ref. [3] 
are estimates of mathematical bounds on "corridors", which should contain the true 
results with large probability. In the case of m R and gR the numerical results in 
table 2 include an extrapolation to infinite volume from the measured value at 
m L  - -  6, using leading-order lattice perturbation theory [7]. These are small correc- 
tions but they involve some theoretical uncertainty, therefore 10% of the correction 
was added to the error as a rough estimate of the systematic error. 

The last entry in table 2 is the prediction of 2-loop renormalized perturbation 
theory for the zero-momentum connected 6-point function 

h R =  1 0 g 2 ( 1 _  3 9 2 (lo) 

As table 2 shows, this agrees with the measured numbers within errors. Unfor- 
tunately, the statistical errors on the 164 and 204 lattices are too large. The 
numerical result on the 124 lattice is, however, a non-trivial test of renormalized 
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perturbation theory in a point where the renormalized coupling is already not very 
small: the l-loop correction in eq. (10) is -20% and the 2-loop is + 16%. 

An important question in the Monte Carlo calculations is the scaling behaviour of 
the renormalized quantities as a function of the renormalized mass. The renormal- 
ized coupling and the field renormalization factor Z~ satisfy the differential 
equations [2] 

Ogp. 0 in Z~ 
mR arnR -- fl(gv., mR) ,  mR a m ~  - 2y(gR'  mR)" (11) 

The Callan-Symanzik functions # and y are given up to 3-loop in the appendix of 
ref. [3], including the mass-dependence ("a2-corrections '') up to 1-toop. The numeri- 
cal solution of the equation for gR with this #-function is shown in fig. 1, starting 
both at the 124 and 164 points. As one can see from the figure, the points at smaller 
mass have a tendency to be at larger couplings, but the deviation is only at the 20 
level, and therefore statistically insignificant. Comparing this 3-loop #-function to 
the universal 2-loop #-function shows (see fig. 2) that the two points at smaller 
masses are just in the middle between the 2-loop and 3-loop curves. Therefore, the 
true fi-function is probably somewhere in between, which is rather reasonable since 
the perturbation series is alternating. Fig. 2 shows that the numerical results on ga 
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Fig. 1, The result of the numerical integration of the renormalization group equations for the renormal- 
ized coupling. The differential equation is started both from the 124 and from the 164 points. 
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Fig. 2. Compar ison of the different approximations to the fl-function: full line is 3-loop with a2-correc - 
tions taken into account up to lqoop,  the dashed line is 3-loop without a2-corrections and the dotted line 
is 2-loop without a2-corrections. The numerical integration of the renormalization group equation is 

started both from the 124 and from the 164 points. 

are statistically consistent also with the universal 2-loop fl-function, therefore the 
deviations from the scaling law (7) could partly be due to a 2-effects. The impor- 
tance of the a2-effects can also be seen by numerically integrating the equation for 
Z~ in eq. (11). At the level of our small errors, the change of Z~ is reproduced only 
qualitatively by the 3-loop y-function with l-loop a2-corrections. But in this case 
the change is completely dominated by the a %effects. Since the constancy of C x in 
table 1 is well satisfied, one can conclude that the scaling violations in Z~ are 
probably due to the a2-effects and not to higher loop corrections. The a%correc- 
tions are, however, only qualitatively reproduced by the perturbative contributions 
up to l-loop. 

The measured values at the 204 point, which is closest to the critical point, can 
also be used to start the integration of the renormalization group equations in order 
to obtain the continuation of the solution in the phase with spontaneously broken 
symmetry on the other side of the critical point. We applied the same procedure as 
in ref. [3], taking our more precise data. With the 3-loop Callan-Symanzik functions 
and the l- loop a2-corrections one obtains at the mass m R = 0.3 in the broken phase, 
gR = 26.8 + 1.9 and Z~ = 6.10 + 0.03. The error here is only statistical. Taking, as 
another extreme, everywhere the 2-loop functions without a2-corrections, the result 
is gR --~ 30 and Z~ = 6.2. This shows that the extrapolation is quite sensitive to the 
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higher corrections in the Callan-Symanzik functions, but the 3-loop result has, of 
course, a better chance to be correct. A direct numerical check in the broken phase 
would, however, be quite useful [12]. 

Finally, let us discuss our experience with the percolation cluster algorithm. As 
already mentioned before, the updating and measurement is about a factor of 10 
slower on our lattices with the cluster algorithm than with the Metropolis algorithm. 
This is, however, by far compensated by the decrease of the autocorrelation and by 
less fluctuations of the measured quantities in the cluster representation. In order to 
quantify the efficiency of the algorithms, we compared the relative errors of a few 
quantities achieved after the same number of sweeps. For the Metropolis algorithm 
we took the data on 124 and 244 from ref. [7] corresponding to a correlation length 
of about 2 and 5, respectively. For the cluster algorithm, besides the above 124 data, 
we did a shorter 244 run at the same hopping parameter as in ref. [7] (x = 0.074). In 
the percolation cluster runs the quantities were determined both in the spin and in 
the cluster representation, in order to compare the relative errors obtained in both 
ways. On the 124 lattice in the spin representation with the cluster algorithm the 
errors are by a factor of 2.0 to 2.5 smaller than with the Metropolis algorithm, which 
implies a reduction of the autocorrelation time by about 5. For X2, )t4, ~k6 and the 
2-point function time-slice at largest distance the ratio of errors is multiplied, 
respectively, by 3, 6, 10 and 4 due to the smaller fluctuations in the cluster 
representation. Therefore, the total gain in computational speed for these quantities 
is between 5 and 50. This looks even better on the 244 lattice, where the fluctuations 
are damped by roughly the same factor, but the gain in the error due to shorter 
autocorrelations is by a factor of 2 larger. This gives a further factor of 4 gain in 
speed. Therefore, the effect of using the percolation cluster algorithm is rather 
positive. It would be important to develop similar algorithms also for other lattice 
models. (For recent attempts see ref. [8] and the related approach in ref. [15].) 

In summary the highly efficient percolation cluster algorithm makes it possible to 
perform a non-trivial test of renormalized perturbation theory and of perturbative 
scaling. The numerical results are in good agreement with theoretical expectations. 

It is a pleasure to thank Martin Liischer for his interest and help at every stage of 
this work. U.W. would like to thank the DESY theory group for their hospitality. 
The calculations presented here were performed on the CRAY X-MP/48 at HLRZ, 
KFA Jiilich. 
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