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SIMULATION OF STAGGERED FERMIONS BY POLYMER AVERAGING 

I. MONTVAY 
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A numerical fermion algorithm is developed in the framework of the polymer representation of the euclidean fermion path 

integral. It is based on a general Monte Carlo summation procedure which is applicable also in the case ofoscillating phases. Tests 
are performed on four dimensional free staggered fermions. 

The numerical simulation of four dimensional 
quantum field theories with fermions is difficult be- 
cause of the Pauli exclusion principle. The standard 
way of taking into account the effect of the fermionic 
fields goes through the effective bosonic action con- 
taining the logarithm of the “fermion determinant” 
(for a recent review see ref. [ 1 ] ). The disadvantage 
of this method is that it is relatively slow, due to the 
non-local character of the fermion determinant and, 
even worse, it is only applicable if the fermion deter- 
minant is positive. Examples where the fermion de- 
terminant is complex are, for instance: QCD with 
non-zero chemical potential or some simple scalar- 
fermion models with Yukawa couplings, etc. Alter- 
native fermion methods can be formulated in the 
hamiltonian approach on the occupation number ba- 
sis [2] or in the euclidean approach in the polymer 
representation [ 31. These methods are, in principle, 
universally applicable. The problem is that they usu- 
ally lead to a representation of the fermionic path in- 
tegral as a sum of terms with different non-trivial 
phases and, therefore, are not directly suitable for an 
importance sampling Monte Carlo process. The 
straightforward possibility of taking into account the 
absolute value of different terms in the Monte Carlo 
process and including the phase in the measurable 
quantities is not practicable, because the phase factor 
in different regions can fluctuate independently and, 
therefore, its expectation value goes to zero exponen- 
tially with the volume. The numerical determination 
of these very small expectation values is practically 
not possible. 

In the present paper I consider a more general 
Monte Carlo procedure which avoids the very small 
expectation values by averaging over equivalence 
classes of configurations. As a test case four-dimen- 
sional free Kogut-Susskind staggered fermions [ 41 
will be considered in the euclidean polymer represen- 
tation, where the phase factor is simply + 1 or - I. 
Studies for Wilson fermions [ 51 and with non-van- 
ishing interactions will be published later [ 61. 

Let us first consider the general case with a set of 
bosonic fields represented by CJ and the discrete fer- 
mionic configurations denotes by z. (The notations 
are introduced here in the euclidean formulation, but 
the corresponding formulae in the hamiltonian ap- 
proach with summation over occupation numbers can 
be obtained by a simple translation.) The partition 
function Z can be written as 

Z= 
s 

[dU] 2 R(z, U) exp[--S,,(U)] . (1) 
ZE<’ 

Here R is the contribution of the fermion configura- 
tion :, C stands for the set ofall possible fermion con- 
figurations and S,, is the purely bosonic part of the 
euclidean action. The fermionic contribution R can 
be split into the absolute value P( z, U) and the phase 
(or sign) S(z, 17): 

R(z,L')=P(z,U)S(z,L') . (2) 

Performing a Monte Carlo integration (over Lr) and 
summation (over :) by the positive probability mea- 
sure Pexp( -S,), the partition function is obtained 
as the expectation value of the phase factor: 
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z= (S(G U) )/‘c,p,-St,, . (3) 

Let us note that there is nothing special in choosing 
the decomposition (2) just in this way. Other possi- 
bilities where the positive factor P is not equal to the 
absolute value of the fermionic contribution and the 
deviation is compensated by the factor S containing 
the phase may sometimes be better from the practical 
point of view (see later). The following formulae are 
valid in the general case. The expectation value of a 
generic quantity A is given by the ratio 

,(.4)= 
(il(z, WS(G U) ),‘cnp(-.sh) 

<St& w),‘c*p,-.sh~ . 

As discussed before, this representation of the expec- 
tation values is, although mathematically correct, 
practically not useful. In order to obtain a better 
expression let us divide the set of fermion configura- 
tions in equivalence classes 

c= u c, CY (5) 

and consider the averages of the phase factor over the 
subsets C,: 

This can also be considered as a function of z defined 
on the whole configuration set C, if for every XC, 
the average value in C, is taken. This “averaged phase 
factor” will be denoted by S,,a( I, u). 

The averaged phase factor can also be split into its 
absolute value P and a phase: 

S,,,(z. c’)=P,I’(\.(z, U)s(z, U) . (7) 

Similarly, the average of the product of a physical 
quantity with the phase factor can be written as 

z (- u)s Lc,, P(G wilt--, WS(.T w 
IC? 1 T .Lztc,, P(:, w 

=s,‘<r(z, U)u(_-, U) . (8) 

In this case the expectation value (4) of the quantity 
‘4 is given by 

( 4) = (Q(G UM~, L’) )/‘c,p, -S,,)P ‘ 
(St--, L’) )PC\P,-.ShlP 

where the Monte Carlo summation is performed by In order to shortly recapitulate the polymer repre- 

the probability Pexp( -&) P. Up to now this proce- 
dure is completely general. Its success in solving the 
problem of oscillating phases depends on finding a 
proper definition of equivalence classes of states. A 
good definition is such that the phase fluctuation of 
the average is strongly reduced, in an ideal case com- 
pletely removed: s( z, CJ) = + 1. Another aspect for a 
good choice of equivalence classes is that the evalua- 
tion of a( z, V) in eq. (8 ) should be simple. The best 
case is if the value of important physical quantities is 
the same in the whole equivalence class. In the ex- 
ample discussed below this is true, for instance, if the 
quantity is determined by the number of monomers. 
More generally, for the calculation of fermionic ex- 
pectation values some additional open lines have to 
be introduced in the polymer configuration [ 31. The 
contribution of a configuration is usually determined 
by the positions of the endpoints of these lines, there- 
fore a simple equivalence relation should not change 
these endpoints. A more detailed discussion of the 
calculation of typical fermionic expectation values 
will be given in a future publication [ 61. 

In order to test the applicability of this general 
method in four dimensional quantum field theories I 
first considered free staggered and Wilson fermions 
both in the euclidean invariant polymer representa- 
tion [ 31 and in the linear approximation to the ham- 
iltonian method on the occupation number basis 
[ 7,8]. The problem of oscillating phases is similar in 
all these cases. ( In ref. [ 8 ] only a special class offer- 
mion configurations was considered with sign factor 
SE 1, and it was argued that this is enough for lattices 
strongly asymmetric in the time direction. If, how- 
ever, not only single pairs of fermion variables are 
flipped between the timeslices but also touching dou- 
blets of pairs, the configurations with negative sign 
appear. These configurations are not negligible for the 
time asymmetry factors considered in ref. [ 81. I thank 
Tony Duncan for an illuminating discussion on this.) 
In the present paper the results for free staggered fer- 
mions will be described in the polymer representa- 
tion where the definition of equivalence classes is 
simple and which has the advantage of euclidean in- 
variance. (In the case of Wilson fermions in the ham- 
iltonian approach the equivalence classes can also be 
simply defined, but the restoration of euclidean in- 
variance is a non-trivial requirement [ 61. ) 
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sentation of the fermion determinant let us define 
the free euclidean fermion action in terms of the 
Grassmann variables vX, wX as 

sr = C it Q-r.” cv, = C k ( &vM- Kc,, 1 yv . (10) 
.\-I’ .yv 

Here M is the mass parameter and & denotes the 
hopping piece with vanishing diagonal elements. For 
staggered fermions in four dimensions we have 

(11) 
The effective hopping parameter is the ratio of k and 
M:K=k/M. The partition function is given by the 
Grassmann integral 

Z= [Wdy/] exp - C @,Q,,v,, =det Q. 
.VV > 

(12) 

Expanding the exponential in powers of M and K.vJ, it 
follows from the rules of Grassmann integration, that 
every non-zero term can uniquely be represented by 
a “polymer graph” on the lattice: for the mass term 
proportional to M one has to draw a monomer (a sin- 
gle occupied point) and for the products of the hop- 
ping terms a set ofpolymers (non-intersecting closed 
loops of oriented links). Every point on the lattice 
which is not occupied by a monomer has to be the 
starting point of an outgoing link and the endpoint of 
an incoming link. The shortest possible loop is a “di- 
mer” on a single link occupied in both directions. The 
partition function is the sum over different possible 
polymer configurations, where the contribution of a 
configuration is the product of the corresponding M 
and K,,. factors multiplied by an overall negative sign 
if the number of loops is odd. The expectation values 
of fermionic variables can be obtained similarly, the 
only change being the presence of some external 
monomers or external fermion lines originating at the 
points where the fermion variables sit [ 3 1. 

The Monte Carlo procedure on the polymer con- 
figurations can be implemented, for instance, by a 
Metropolis algorithm on plaquettes. The simplest way 
to store the polymers in the computer is to set up an 
array jump(site) defined on the lattice points and 
containing the direction of the link which starts at the 
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given point. (For the points occupied by a monomer 
one can take jump = 0. ) Sometimes it is useful to also 
have another array contig(link) defined on links and 
having the value 0 for an unoccupied link, + 1 for 
once occupied links (the sign giving the direction), 
and 2 for doubly occupied links. Considering the in- 
formation both in jump and config there are alto- 
gether 108 possible different states of a plaquette. 
Uniformly distributed Metropolis proposals for a 
plaquette change can be taken from a table of size 
108.18, because for a given initial state there are either 
1, 2, 3 or 9 possible final states. The transition prob- 
ability on a plaquette is determined by the change of 
P.p, where P is given by the number of monomers p 
and by the number of polymer links 1 as MwkA and P 
is the absolute value of the average sign factor in the 
corresponding equivalence class. For the equivalence 
relation given below by eq. ( 13 ) average acceptance 
rates of about 10% per Metropolis hit can typically 
be achieved. This relatively low rate is due to the fact 
that usually a large number of plaquettes cannot be 
changed at all, because it is blocked by the neigh- 
bouring ones. Nevertheless, the autocorrelation times 
for fermion masses near 0 ( 1) are short, typically also 
oforderO(1). 

In the case of staggered fermions with hopping ma- 
trix in eq. (11) the sign of dimer contributions is 
positive and also the polymer of length 4 on a pla- 
quette (single plaquette loop) is positive. The short- 
est negative polymer is a non-planar loop of length 6. 
The only sign changing transition on a plaquette is 
the one shown by fig. 1. Therefore, for instance, the 
polymers built from a tree of parallel lines (see fig. 
2) are always positive. These graphs are reminescent 
of the polymers appearing in QCD in the limit of in- 
finitely strong gauge coupling [ 9- 111. 

In order to reduce the sign fluctuations in the ex- 
pectation value (9 ) the equivalence classes of poly- 

Fig. I. The only transition on a plaquette which changes the sign 
of the polymer configuration. The circle denotes a monomer. 
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Fig. 2. A polymer built out ofa tree of parallel lines which always 
gives a positive contribution. 

mer configurations have to be defined by the sign 
changing transition in fig. 1. Let us call this transition 
it plaquetteflip and denote the flip transformation of 
the ith plaquette by J;. If a flip h is impossible on a 
configuration z we put, by definition, f;z=O. The 
simplest way to define equivalence classes of contig- 
urations is to require that equivalent configurations 
satisfy 

z’ =A **.&ii z 9 (13) 

i.e. z’ and z belong to the same equivalence class 
(z’ z z) if and only if there exists a sequence of pla- 
quette flips transforming the one into the other. It can 
be easily seen that this is an equivalence relation, in- 
deed, because from z, = z2 it follows z2=z, and if 
z, =z2 and z2=z3 then z, =zj. By this choice of the 
equivalence relation the contribution of every poly- 
mer configuration is weighted with probabilities 
which take into account the absolute value of the av- 
erage sign on the equivalent configurations generated 
by sequences of plaquette flips. The calculation of the 
average sign factor is facilitated by a decomposition 
into clusters. 

In order to introduce this cluster decomposition it 
is useful to consider on a given configuration the set 
of all sign changingplaquettes which can be either di- 
rectly flipped or can be flipped after flipping other 
plaquettes. Let us define two flips connected if the 
corresponding transformations are commuting on 
every configuration. (Commutativity means that the 
corresponding plaquettes have no common links and 
no common points changed by the flips.) The maxi- 
mal sets of connected sign changing plaquettes on a 
configuration can be called plaquette clusters. The 
importance of plaquette clusters is due to the fact that 
the sign averages on the equivalence classes of contig- 
urations are factorized by them. Namely, if the num- 

ber of different configurations of a cluster c with pos- 
itive sign is n, (c) and with negative sign n- (c), then 
the sign average in the corresponding equivalence 
class of configurations is 

s=sn n+(c)---(c) 
c n+(c)+n-(c). (14) 

Here S is the sign of the original configuration before 
any plaquette flip, and the product is performed over 
the different plaquette clusters. As a simple example, 
the polymer in fig. 3 defines a four-plaquette cluster 
with n, (c) =4 and n- (c) = 1, therefore it contrib- 
utes to the sign average by a factor $. 

Of course, besides eq. ( 13) there are also other 
possibilities for the definition of equivalence classes 
of polymer configurations. It is possible to restrict the 
kind of allowed flip sequences in ( 13 ). For instance, 
the size of the cluster to which the flipped sign chang- 
ing plaquette belongs can be restricted. (Note, that 
the number of flips cannot directly be restricted in an 
equivalence relation.) Since the number and length 
of polymers is unchanged by the flips, one can also 
restrict the kind of flipped polymers. A more general 
way of defining equivalence can also allow for the 
rearrangement of dimers. In this respect it is impor- 
tant tonote that dimers are never changed by flip se- 
quences. A simple possibility of this kind is to allow 
for an arbitrary rearrangement of dimers on a pla- 
quette which can change the sign but is locked by a 
dimer (see fig. 4 ) . 

An important property of these equivalence rela- 
tions is that they are separately defined in regions of 
the order of the correlation length. Namely, the av- 
erage size of a sign changing plaquette cluster can be 
expected to be of the order of the fermion correlation 
length. (It seems difficult to prove this statement 
mathematically, but all the numerical experience I 
obtained up to now is in agreement with this.) This 

, % I 
1 m 

Fig. 3. A simple polymer which defines a four-plaquette cluster 
of sign changing plaquettes. 
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Fig. 4. Equivalence of configurations by the rearrangement of di- 
mers on a locked sign changing plaquetle. 

implies that in an updating procedure with the abso- 
lute value of the average sign included in the transi- 
tion probability one can determine the change of the 
average sign in a region of the order of the correlation 
length. Therefore, provided that the average sign of 
the average sign (s( z, V) ) is near + 1, for fixed fer- 
mion correlation length and for large volumes the 
computer time needed for this updating procedure 
grows proportionally to the lattice volume. For de- 
creasing fermion mass (increasing correlation 
length), however, there is a strong “critical slowing 
down” because the clusters are growing and becom- 
ing more numerous. This critical slowing down de- 
pends on the way how the determination of the 
average sign is implemented. The minimum pro- 
gramming effort is required if the average sign in an 
equivalence class of configurations is determined by 
a random walk Monte Carlo process. This goes by 
choosing plaquettes randomly in a neighbourhood of 
the updated plaquette and flipping them if possible. 
If this random walk is sufficiently long every state of 
the nearby plaquette clusters is reached almost cer- 
tainly. In this way the plaquettes belonging to nearby 
clusters can be found and the number of different 
possible cluster states in eq. ( 14) can be determined. 
This gives an exact determination of the change of s 
if every cluster state is reached. The probability of 
missing some state can be made, in principle, arbi- 
trarily small if the random walk is long enough. Of 
course, this “Monte Carlo in Monte Carlo” implies 
an additional critical slowing down which is roughly 
proportional to the square of the correlated volume, 
i.e. 5’ (besides the usual factor 5’ for local updat- 
ings). It is also possible to determine the average sign 
factor on small plaquette clusters exactly by a direct 
“pattern recognition” method. (For instance, the 

configuration in fig. 3 can easily be recognized. ) For 
larger clusters, however, this method becomes very 
complicated. In any case, for the polymer averaging 
with the equivalence classes defined above critical 
slowing down seems to be the main problem. (Let us 
recall that the required CPU time for the hybrid 
Monte Carlo algorithm for large volumes ( V) and 
correlation lengths is expected to behave as k”” 
x (13’J [ 141.) 

A representative physical quantity which can be 
easily determined in the polymer representation if 
@,w,. It is related to the number of monomers N, by 

(15) 

Here atn is the fermion mass in lattice units [in terms 
of the parameters in the action ( 10, 11) atn=M/2k]. 
The distribution of N, can be determined in a way 
somewhat similar to the procedure applied forathe 
calculation of the density of states [ 12,131. Namely, 
one can consider some interval of the values of N, 
and perform a normal Metropolis Monte Carlo pro- 
cess in it. At every step the value of N, is recorded. 
At the ends of the interval, if a Metropolis change 
would lead outside of the interval it is never ac- 
cepted, but the value of N, is still recorded. By choos- 
ing several partly overlapping intervals it is possible 
to determine the distribution of N, (i.e. the ratios of 
the expectation values of 6,,J,,h.~ for different NY) also 
in a larger range. 

The obtained N,-distribution on a 45, lattice for 
mass am= 1.0 is shown by fig. 5. In the present ver- 
sion of the program the average sign in the equiva- 
lence classes of configurations is determined exactly 
for clusters not larger than 2 plaquettes, and ran- 
domly for the rest. In addition, rearrangements of di- 
mers on alone standing plaquettes locked by a dimer 
were also allowed (see fig. 4) if the rearrangement 
did not interfere with the sign changing flips. The sta- 
tistics was collected in about 20000 sweeps in two 
intervals, namely 82 <N, < I 16 and 102 <N, < 128. 
These large intervals were possible, because the de- 
composition of the polymer contributions in eq. (2 ) 
was chosen appropriately. Namely, in the positive 
factor P(Z) used in the Monte Carlo updating a 
somewhat larger mass, actually urn’ = 1.25atn= 1.25 
was taken. Because of eq. ( 15) this implies that the 
decomposition is changed according to 
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Fig. 5. The distribution of the quantity N, defined in eq. ( IS) for 
free staggered fermions on a 4’ lattice at mass a~??= I .O. The nor- 
malization is arbitrary. The arrow shows the correct average value 
for periodic boundary conditions. 

R(r)=P’(z)S’(z), P’(z)=P(z).1.2sV”=‘, 

S’ (z) =S( z) 4.80”“” . (16) 

Since the plaquette flips do not change N,, the rela- 
tion between s’ (z) and s(z) is the same as between 
S’ (z) and S(z). The effect of this decomposition is 
that the statistics over the values of N, is distributed 
more uniformly and, therefore, the intervals can be 
chosen longer. The obtained N, distribution is, of 
course, independent of the decomposition. This was 
checked in a control run with the original P. I also 
performed shorter runs on a 8’ lattice at a/n = 1 .O and 
on 4’ lattice at arn=0.5. The former case was un- 
problematic, but the smaller mass caused a strong 
slowing down of the program due to an extensive need 
of random averaging for larger clusters. 

Possible lines of improvement are to introduce the 
exact averaging for larger clusters and/or a different 
equivalence class definition. Of course, a more im- 
portant step for the moment is to consider the inter- 
actions with bosonic fields, because the optimal 
equivalence class definition may also depend on the 
interaction. Due to the problem of critical slowing 
down it is not clear whether this way of dynamical 

fermion simulations is faster than the more conven- 
tional methods [ 11, in the case when these latter are 
applicable. The main advantage is that polymer av- 
eraging or related phase averaging hamiltonian 
methods are also applicable in cases if the fermion 
determinant is not positive definite. 

It is a pleasure to thank Tony Duncan for discus- 
sions on bosonization and Ulli Wolff for discussions 
on polymers. The Monte Carlo calculations for this 
paper have been performed on the CRAY X-MP/416 
of HLRZ, Jtilich. 
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