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A~tract. Bases of holomorphic ).-differentials on N-punctured Riemann surfaces of arbitrary genus are 
constructed. The resulting extension of the Virasoro algebra on N-punctured spheres is displayed 
explicitly. 
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I. Introduction 

The generalization of the Virasoro algebra to higher genus Riemann surfaces by 
Krichever and Novikov [1, 2] inspired a lot of recent work on applications in 
operator formalism on higher genus surfaces [3,4], on representations of 
Krichever-Novikov algebras and relations to Kac-Moody and Virasoro algebras 
[5-8], and on supersymmetric extensions [9]. The basis of meromorphic ).-differen- 
tials introduced by Krichever and Novikov thus already proved very useful for our 
understanding of conformal field theory on higher genus Riemann surfaces and 
promises to play an important role in the development of interacting string 
theory. One step in this direction might be the observation of the fact that a good 
deal of the construction of Krichever and Novikov can be generalized to N-fold 
punctured Riemann surfaces and is not restricted to the case of twice-punctured 
surfaces. 

In Section 2, it is explained how the unique existence of certain holomorphic 
).-differentials on N-punctured surfaces follows from the Riemann-Roch theorem 
and a certain lemma which will be established. The Krichever-Novikov basis for 
holomorphic 2-differentials on twice-punctured surfaces is then generalized to the 
case of more punctures. 

In Section 3, the corresponding extension of the Virasoro algebra to the N-punc- 
tured sphere is examined in some detail. 

2. Holomorphic Z-Differentials on N-Fold Punctured Surfaces 

Before entering the investigation of holomorphic ).-differentials on punctured 
Riemann surfaces, I would like to fix the notation. In what follows X denotes a 
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compact Riemann surface of  genus g. Jt '~(X) is the space of  meromorphic 2-differ- 
entials on X, i.e. 09 E ~/t'a(X) locally looks like 

09=f (z )  dz ~ f o r 2 1 > 0 ,  

09 =f(z)(O/Oz) ~ for 2 < 0, 

f~-o(X) = {09 ~ ~ '~(X);  orde(09) ~> D(P)} 

in the space of meromorphic 2-differentials whose divisors are multiples of  the 
divisor D. The corresponding sets of  meromorphic functions and meromorphic 

vector fields are, as usual, denoted by (~-D(X) = t~~ and |  = ~-Io(X). 
The reader unfamiliar with these notions may consult [10-12] or the book of  

Martin Schlichenmaier [ 1 3]. 
To gain information on ~a_n(X), we need three basic tools, the first being the 

theorem of  Riemann and Roch, which I write in a form most suitable for later 

applications: 

dim ~-D(X)  = (22 -- 1)(g -- 1) -- deg D + dim f ~ -  a(X). 

The second tool is 

LEMMA. 

= )'dim f~-o - 7, for 0 ~< ~ ~< dim ~ 
dim f~a_ 

-~e (0, for 7 t> dim f~_O,-  
D ,  

D 

where 7 >>- 0 is some integer and P can be any point in X which meets the following 
requirement: I f  {09j, 1 ~ < j ~ < d = d i m ~ _ D }  is some basis of f~_o(X), then the 
Wronskian 

W = det~o--~ 09 . O < ~ m < . d - l , l < . n < . d  

must not vanish in P. 

This condition, of  course, excludes only finitely many points because otherwise 
due to the compactness of X and the identity theorem W would vanish everywhere. 

For  a proof of the lemma, we note that dim f~_o_~,(X) > 0 for ~/> dim fla_o(X) 
would imply existence of a nonvanishing 2-differential 09 = Ea=~cJ09j with 
orde(09) >/d = dim fI~_D(X) in contradiction to W ~ 0. Hence, for 0 ~< 7 ~< 
dim I~D(X),  the dimension of  f i f o _  ~e(X) must decrease from dim fl~_o(X) to 0. 
For ~ ~ 7 + 1, the dimension can decrease only by one unit, however. To show this 
assume 09 and o5 to be different elements of f~-D-  re(X) but not of  fl~_o_ ~ + ~)e(X). 
Then orde(09) = orde(03) = 7 trivially implies existence of some linear combination 
of 09 and 03 contained in ~ - o -  (r + ~)p(X). This concludes the proof  of  the lemma. 

This lemma arises as a natural generalization of  the proof  technique employed to 
establish bounds on pole orders in the holomorphic case [14]. A treatment of the 
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Table I. Dimensions of spaces of holomorphic differentials 

((2~ - 

- I g '  

dim Da(X) 
- 1 

01 

l)(g - I), if ( 2 -  l ) ( g -  1) > 0 ,  
i f 2 =  1, 
if),  = 0  o r g  = I, 
i f 2 ( g -  1) <0 .  
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case N = 2, making no use of  the lemma for meromorphic differentials, can be 
found in [ 13]. 

The third tool we need is Table I, which is a well-known result from the 
R iemann-Roch  theorem and dim f~_D(X) = 0 if 22(g - 1) - deg D < 0. Hence- 
forth, I restrict attention to divisors D which satisfy the following requirement: If  
D(P) > 0, then P must satisfy the conditions of  the lemma with respect to 
~_D+O<ew(X), and if D ( P ) < 0 ,  the conditions must hold with respect to 

1 2 f~o - o(~,)e(X). 
Using Table I as a starting point, by an alternate application of  the Riemann-  

Roch theorem and the lemma, it is possible to calculate Table II. 
The proof  of  these results is straightforward but lengthy and proceeds by 

calculating the table first for the case of  only two points P with nonvanishing D(P), 
then for an arbitrary finite number N of  punctures by conclusion from N to N + 1. 
The basic device is to calculate dim f~_o(X) from dim f~_o+o(e)e(X) directly 
from the lemma for D(P)>0 and via the R iemann-Roch  theorem from 
dim f ~ -  ~ r for D(P) < 0. I omit the details. D -- D(P)PI, "J" I 

For D = yP, Table II(B) expresses the Weierstrass gap theorem for a generic 
point P. 

By an application of  these results, one can construct Krichever-Novikov- l ike  
bases for meromorphic  2-differentials on X which are holomorphic  outside N fixed 
points. 

Table II. Dimenslons of spaces of meromorphic differentials 

( A ) ) . ( g  - l) < 0  or (2 - l)(g - I) > 0 [ , -  --,1(22 - 1)(g - l) I >g] :  

_ ~ ( 2 2 - 1 ) ( g - l ) - d e g D ,  i f d e g D ~ < ( 2 2 - 1 ) ( g - l ) ,  
dim E~D(X) -- ~0, if deg D/> (22 - l)(g - 1), 

( B )  2 = 0  o r g = l :  

0, If deg D t> 1 - g and 3P: D(P) > 0, 

dim ~c'_o(X ) = 1, if deg D > / - g  and VP: D(P) <~ O, 
l - g - d e g D ,  i f d e g D < ~ - g  

(C) ~. = l .  

l g[g-- deg D, if deg D ~< g and VP: D(P)>~O, 
d i m f ~ _ o ( X  ) =  1 - d e g D ,  i f d e g D ~ < g - I  and3P:D(P)<O, 

if deg D >/g. 
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I write the corresponding divisors in a symbolic fashion as D = Z~=ID(Pj )Pj .  
In the case 1(2A- 1 ) ( g -  1)1 > g ,  those A-differentials o~ holomorphic outside Pj 
which obey the condition Eff=l ordej(~o ) = 2 A ( g -  1 ) - g ,  exist and are uniquely 
determined up to multiplication by a constant by the set of  integers ordej(og). 

This follows from Table II by insertion of  D ( P j ) =  ordej(o~): 

dim f l~-D(X) = 1, dim f~1_ D _ p y ( X )  = O. 

I will denote the corresponding A-differentials by 

o)[orde, (w) . . . . .  ordeN(og)]. 

Then a basis for all meromorphic A-differentials holomorphic on X \ { P I  . . . . .  PN } 
is provided by the set 

{09[2A(g - 1) - g - )'2, )'2, 0 , . . . ,  0], )'2 e 7/} u 

w{j=3  ~) {o9121(g- 1 ) - g - ) ' j ,  O , . . . ,  O, )'j,O . . . . .  0], )'j < 0}}. 

For a proof  of  this statement, first note the linear independence of  the differentials 
in the set. Furthermore, fla_D,(X) C ta~_D(X) for D ' >  D. 

Hence, it is sufficient to prove for sufficiently small D that i)~_D(X) is spanned by 
the differentials of the set. To this end, consider the divisor 

D = 2A(g - 1) - g - m - flj PI fljPj 
j = 2  "= 

with flj < 0 and m >I -ZT= 2 flj. 
The corresponding (m + 1)-dimensional space f~_D(X) contains the set 

{ } w[2A(g -- 1) - g -- )'2, )'2, 0 . . . . .  0], fl2 ~ )'2 ~ m fli w 

This concludes the consideration of  the case [(2A - 1)(g - 1)1 > g. 
The treatment of  the other cases requires more care: For A = 0 or g = 1, 

meromorphic functions f which are holomorphic outside the points Pj, are up to 
multiplication by a constant uniquely determined from their orders in Pj if either 

N 

3 P j : o r d e , ( f )  > 0  and ~ o rde j ( f )  = - g  
/ = l  

o r  

VPj: ordpj ( f )  = O. 
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For N > 2, part of these functions provides a basic set 

{f[ - g  - 7z, 7z, 0 . . . . .  0], 72 < - g  or 72 > 0} u 

w { f [ - g  - 1 -72 ,  72, 1, 0 . . . .  ,0], - g  ---<72 < 0} u {f[0 . . . . .  0]}u 

w { U = 3 { f [ - g - l - T j ,  l,O J . . . .  ,0, 7j, 0 . . . . .  01, -g.<Tj <0}}w 

u { ~  { f [ - - g - - v j , 0 j  3 . . . . .  0,7j,0 . . . . .  0] ,Tj<--g}}.  

The proof of this statement proceeds as before. For N = 2, the Krichever-Novikov 
basis [1] is regained in an obvious manner by omission of the parts corresponding 
to Pj f o r j  >2 .  

The meromorphic l-differentials p holomorphic outside the points Pj are uniquely 
determined from orders in Pj if 

N 

3 P ~ : o r d e j ( p ) < - I  and ~ o r d e j ( # ) = g - 2  
j = l  

o r  

N 

3{P~,P,}, j # k : o r d p j ( # ) = o r d ~ k ( p ) = - 1  and Y' ordpj(/O = g - 2  
j = l  

o r  

VPj: ordej(#) ~> 0 and 

This yields as a basis 
X\{P1 . . . . .  PN } for N > 2: 

N 

ordpj(/a) = g  - 1. 
3 = 1  

of meromorphic 1-differentials 

- 2 - 7 2 , 7 2 , 0  . . . . .  0],72< - 1  or ~h~>g}w 

holomorphic on 

w{#[g - 1 -72 ,  72, 0 . . . . .  01,0 ~<72 < g ) w { p [ - 1 ,  - 1 , g ,  0 . . . . .  0]}w 

~{j=3 ~j {ke[g--2--TJ'0 . . . . .  0 , , j , 0  . . . . .  0 ] ,T j<- -1}}w 

w { ~ )  {U[--1,g, 0 j = 3  . . . . .  0 , - 1 , 0  . . . . .  0]}}. 

The proof again proceeds as in the case 1(22- 1 ) ( g -  1)[ >g .  The basis for the 
twice-punctured surface [2] is again obtained by omission of the parts related to Pj 
for j > 2. In [ 1, 2], however, the Abelian differentials of the third kind with pole 
orders - 1 were uniquely defined, not by requirement of a g-fold zero, but by the 
condition of purely imaginary periods with respect to all cycles C: 
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c~2p[g -- 1 -- ~2, ~2, 0 . . . . .  0], 
g - - I  

dk = / ~ [ - 1 ,  - 1 ,  g, 0 . . . . .  01 + E 
7 2 = 0  

Re .~c dk = 0. 

As outlined in [ 1], this differential may be used to establish the notion of  internal 
time z on the Riemann surface via 

f; ~(P) = Re dk. 
o 

This evolution parameter has the properties ~ ( e l ) = - - o o ,  "~(e2)=oo if 
Rese,(dk) = -Rese~(dk)  is chosen as positive [1]. This suggests an interpretation 
of  the twice-punctured surfaces as self-energy graphs and it is possible to generalize 
this construction to the N-fold punctured surfaces under consideration [2]. To 
achieve this, split the set of  punctures according to S; = {Pj, 1 <~j<.NI} and 

S I = {Pj, I < j  ~< N}. Furthermore, I introduce some abbreviations: 

#0(~') = ~[g - 1 - 7, ~', 0 . . . . .  0] for 0 ~< 7 < g, 

V2 =/A[-- 1 , - -1 ,g ,  0 . . . . .  0], 

vj -- /a[--1, g, 0 . . . . .  0 , - - 1 , 0  . . . . .  0] f o r 2 < j ~ < N ,  

where the nonholomorphic differentials are normalized to have residue 1 in P~. 
Then, consider the differential 

N I g - - I  

O k = I '  ~ v j - ( N - I ) -  ~ v j+  ~ cr/~o(~), 
. / = 1 +  1 j = 2  ) , = 0  

where the coefficients c~ are again determined from the requirement 

Re _~c dk = 0 

for any cycle C. The residues are 

Resej(dk) = N - I for 1 ~<j ~< L Resej(dk) = - I  for I < j  ~< N. 

Thus, the evolution parameter z(P) = Re See0 dk satisfies z ( P j )  = - oo for P j e  S, and 
z ( P , )  = ~ for P j e  Sf .  

3. Extended Virasoro Algebras on N-Punctured Spheres 

As remarked in [ 1], the meromorphic vector fields on X have a natural action on the 
2-differentials. If  co is some 2-differential and v a vector, the Lie derivative locally 
looks like 

~ v c o  = 2 �9 co �9 a=v z + v ~ �9 ~=co. 

If  co is also a vector, .gaco = [v, co] is, of  course, the Lie bracket. 
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Hencefor th ,  a t tent ion is again  restricted to 2-differentials and vectors  which are 

ho lomorph ic  on X \ { P 1 , . . . ,  PN }- Like for  N = 2, the a lgebra  o f  the basis vectors  

const ructed in Section 2 under  the Lie bracket  will be called the K r i c h e v e r -  

N o v i k o v  algebra  [3]. By the proper t ies  of  the Lie derivative,  the spaces of  
A-differentials ho lomorph ic  on X\(P~ . . . . .  PN } provide  modules  o f  this algebra.  

T o  consider  the act ion on  the modules  in more  detail, it is useful to abbrevia te  the 
basis differentials o f  Section 2. 

For  ](22 - l ) (g  - 1)1 > g :  

% ( 7 ) = c o [ 2 2 ( g - l ) - g - 7 , 0  . . . .  , 0 , 7 , 0  . . . . .  0], 2<~j<~N. 

I f  2 = - 1 ,  co is somet imes  subst i tuted by v. 

For  2 = 0, the abbrevia t ions  are 

fj(7) = / [ - g  - 7, 0 . . . . .  0 , 7 , 0  . . . . .  0], 2<~j<~U, 

h j ( 7 ) = f [ - g - l - 7 , 1 , O  . . . . .  0 , 7 , 0  . . . . .  0], 2<j<~N, 

h2(7) = f [ - g  - 1 - 7, 7, l, 0 . . . . .  01, 

1 = f [ O  . . . . .  O] 

and f o r 2 = l :  

,uj(7) = p[g -- 2 - 7, 0 . . . . .  O,y,O . . . . .  0], 2<~j<~N, 

#0(7) = Pig -- 1 -- 7, 7, 0 . . . .  ,0], 

vj = p [ - -  l , g ,  0 . . . . .  0, - - 1 , 0 , . . . , 0 ] ,  2<j<~N, 

v2 = p [ - -  1, - l , g ,  0 . . . . .  0]. 

Fol lowing the proceeding o f  Kr ichever  and Nov ikov ,  some in format ion  on the 

s tructure o f  the a lgebra  is gained f rom the pole orders [1]. This  is convenient ly 
carried out  by first writ ing down a divisor whose values are lower bounds  for  the 
pole orders of  Aa~xo, e.g. 

D[ZP~, ~#)% (7)] = [2(2 - 1)(g - 1) - 2g - 1 - fl - Y]P, + [fl - 1]P; + 

+ [7 - liP: + 6oP , 

Inser t ion in Table  I I  yields 

d im Q~_D(X) = 3g + 2 -- 6 v. 

O f  course,  this equat ion  is noth ing  but  the mathemat ica l  expression of  the concept  
o f  grading in t roduced in [ 1]. I t  implies the s ta tement  that  the decompos i t ion  o f  the 
Lie derivative,  with respect to the up to a factor  unique a-differentials,  can be 
ar ranged to contain  at mos t  3g + 2 -  g,j summands .  However ,  due to linear 
dependences,  not  all those unique a-differentials are conta ined  in the basic sets 
const ructed in Section 2. Thus,  for  N > 2, the n u m b e r  o f  basis vectors  appear ing  in 
the decompos i t ion  m a y  well exceed the above  limit. This behav iour  m a y  be 
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illustrated by a simple example:  ho lomorph ic  vector  fields on a 3-punctured sphere: 
The  local coordina tes  zj a round  the punctures  Pj are related in the over lap  regions 

via 

1 1 
Z I ~  - - - - - - - - -  

z2 1 - z 3" 

The  unique vectors  are in local coordinates  

d 
v[2 - 8 - "~, 8, Y] = ( - - ) ~ ( Z l  - -  1 )} ' "  Z 2 - - # - ' ~  - -  

Oz~ 

= (z2 + 1)'" z~ = (z3 - 1) ~ ".z~ ~ 

and a basis is p rovided  by the set o f  vectors  

v d ~ , ) = v [ 2 - ~ , ~ , , O ] ,  ~e~_, v3(~,)=v[2-~,,O,~'l, ~ ,<0 .  

C o m m u t a t i o n  yields, e.g., 

[v2(8), v~(~')l = (~, - 8) "v[3 - 8 - ~', 8, ~' - 11 - 8 "  v[4 - 8 - ~', 8 - 1, ~, - 1] 

= ~ ' "  v [ 3 - - 8  - -7 ,  8, Y -- 11 - - 8 "  v [3 - -  8 - -  7, 8 -- 1,71. 

T o  write down the cor responding  extension o f  the Vi rasoro  algebra,  one has to use 

the decompos i t ions  

(A)  8 / >  - ? > 0 :  

v[~. - 8 - ~, 8 ,  ~] = 

1 
r  �9 v3(n)  + 

n=~ n 7 

+ 2 (-)#+'-" .v~(n). 
.=o  - ~  . = o k n /  

(B) 0 ~ < - ~ :  

n=~, n 7 

(C)  8 < 0 , ~  < 0 :  

( ) ,,+, v [ 2 -  8 - ~,, 8, ~,l = ~ 7 8 =# n - 8  "v2(n)+ Z ( "v3(n). 

I f  7 >/O, we have trivially 

# + ~ (  ' ) 'v2(n).  vt2 -- 8 -- 7' 8 '  ~'] = ,,=X a n - -  8 

The  same decompos i t ion  fo rmulas  hold for  all ho lomorph ic  2-differentials on 
the 3-punctured sphere if v [ 2 - 8 - y , / ~ , y ]  is consistently subst i tuted by  

cot -- 22 - fl --  7, 8, r]. 
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The  ex tended  Vi rasoro  a lgebra  then reads  

[v~(8), v:  (7)] = (7 - 8)  �9 v~(8 + 7 - 1), 

Ivy(8),  v~(7)] = (7 - 8 ) "  v~(8 + 7 - l ) ,  

8 < 0 :  

[V2(8)' V3(7)] = E (n + 1 --  28)"  7 . v2(n ) + 
n = f l - - I  n - - 8  + l 

( ) + ~ ( _ ) ~ + , _ l _ , . ( 2 ? _ n _ l ) .  8 .v3(n) ' 
, = ~ - i  n - 7 + l  

0 ~ 8  <~ - 7 :  

[v~(8) ,  v~(7)] = 

8 >  - 7 :  

[ v d S ) ,  v~(7)] = 

~ + y - 1  
X 

n = y - - I  
( - ) t J + r - l - " ' ( 2 y - - n - - 1 ) ' ( 8 ) ' v 3 ( n ) , n _ 7 +  1 

1 ( ) 
( _ ) ~ + ~ _ , _ . .  (27 _ n  _ l )  . 8 " v3(n) + 

,=~-i  n - -7  + l 

+ 2 ( - - ) / ~ + ' -  1 - "  ' (27 - - P  --  l )  " 8 . 
p=0 - - 7 + 1  

�9 ~ (P)'v2(n).  
, = 0  \ n /  

Due  to 

s - t~ - ~.a.~l co[ - 22 - ~ - r/, r r/] 

= (r /+27)  "co[1 - 2 2  - - 8 - 7  - q  - r  + r  + r / -  1] + 

+ ( r  + 2 8 )  .co[1 - 2 2  - 8  - V  - q  - ~ , 8  + r  - 1, y + r / l  , 

s imilar  decompos i t i on  fo rmulas  ho ld  for  the Lie derivat ives.  

This  explici t  t r ea tmen t  immedia te ly  carr ies  over  to the  N - p u n c t u r e d  sphere:  In 

coord ina te s  

1 k - 2  
zm= - , 2 < k < ~ N  

z2 1 -- zk 

in an over lap  region,  the un ique  vectors  are  

v 8j,82 . . . . .  8N =(-)e2"z~-e~" C'Oz~. 
J= 

The  s t ructure  cons tan t s  appea r ing  in [vz(8), vi(7)] can  be read  off  f rom the for- 

mulas  for  [v2(8),v3(v)] af ter  the subs t i tu t ions  v3(p)--*vj(p) on bo th  sides, 

v2(n) ~ ( j -  2)"'vz(n) on the r igh t -hand  side, and  v2(8) ~ ( j  - 2 )  ~ i "v2(8) on the 

le f t -hand  side�9 
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Thus, the algebra of  basis vectors is completed by 

[vj(~),vk(~)]= ~ ( n + l - - 2 ~ ) .  7 • 
,=t~-I  n - / ~ + l  

( j  _ k)t~+ 7 - , -  1 

x (J  _ 2) 7 _ 1. (k - 2) t~ - ,  - 1 " vj (n) - 

-- '~, ( n + l - - 2 7 ) .  x 
, =7 -1  n - ? + l  

(k _j)t~ +7 - . -1  
x (k - 2) 8 -  1. ( j  _ 2 ) r - , -  l " vk(n), 

with 2 < j  ~< N, 2 < k ~< N, j # k and negative values of/~ and ?. 
In a similar fashion, the action on arbitrary holomorphic 2-differentials on 

punctured spheres can be analysed. Concerning higher genus, much work remains 
to be done, however, because investigation of  the extensions of  the Krichever-  
Novikov algebras purely from pole orders is not very useful for more than two 
punctures. This is due to the fact that the decomposition of  the commutators with 
respect to the bases introduced in Section 2 is possible with undetermined structure 
constants like for N = 2, thus only indicating which vectors will not occur. As the 
resulting formulas are not very enlightening, I omit them. In spite of  this, I think 
that the identification of  the extended Krichever-Novikov bases may be of  some 
help in an intrinsic formulation of  interacting string theory, and that the explicit 
constructions carried out for g = 0 provide a useful tool for further investigation of  
the question of  how this works at least in a 'sphere approximation'.  
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