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We re-examine the existence of the quantum continuum hmit of the topological susceptibility y,, as calculated by the geometric
method We find that x, diverges for the standard Walson action both for SU(2) and SU(3), whereas for certain improved and
mixed fundamental-adjoint actions, that suppress small scale fluctuations, y, 1s shown to converge Alternative methods for com-

puting the topological susceptibility are also examined

Attempts to understand topology 1n SU (N) lattice
gauge theory have been hindered by controversy Be-
sides the naive method [ 1], there are three methods
now favored Yet they do not yield the same value for
the topological susceptibility x,, which 1s the physical
observable of interest y,= ( Q%> /V, where QeZ 1s the
topological charge and V" 1s the space-time volume
The geometric method [2-7] yields values of x, larger
than those of the cooling method [8-10], which, 1n
turn, yields values larger than those of the fermionic
method [11-13] However, the difference between
the cooling and the fermionic method seems to de-
crease for larger values of 8 The situation 1s even
more controversial in view of ref [14], which com-
bines the geometric method with blocking

Within each of these methods one can define a lat-
tice approximant to the topological charge density
satisfying, for smooth fields,

a4
q[U]="?é;ieyupalr[Fqupa]+o(a6)’ (1)

where a 1s the lattice spacing and U denotes the lat-
tice gauge field Q=Xg[U], where the sum extends
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over the lattice points In each case ¢[ U] has the night
classical continuum limit. In the quantum limit one
must also take 1nto account the contribution of rough
fields, which can cause the topological susceptibility
X to diverge [15,6,7]

The geometric method {2.3], which we favor, re-
constructs a fiber bundle from the lattice gauge field
and 1dentifies the second Chern number of this bun-
dle with the topological charge The divergence arises
if the algorithm assigns charge | Q| =1 to small scale
fluctuations with action S= AS, such that [7]

- 4872
11N?

o

=108 forSU(2) (2)

Then the contribution of these small scale fluctua-
tions, or dislocations, leads to a divergent topological
susceptibility 1n the continuum limit In refs [6,7]
we searched for dislocations with mimimal action Sy,
and found none satisfying eq (2) In the light of the
(apparent) asymptotic scaling of our results, we felt
confident that the geometric susceptibility with the
standard Wilson action was correct Since then, Pugh
and Teper [16] have uncovered dislocations with
Wilson action $=9.6 1n SU(2), which would create
the divergence. We have verified this result, and be-
low we describe dislocations with S=6 8, which cre-
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ate a divergence even 1n SU(3) However, we show
that the divergences can be eliminated by choosing
an mmproved action, for which S,,,>4872/11N?
Thus situation 1s reminiscent of the CP? model {17]

The cooling method was designed to suppress the
dislocations, by smoothening the configurations of the
Monte Carlo ensemble [8] The validity of this ap-
proach was supported by arguments based on the in-
vanance of the continuum topological charge under
continuous deformations of classical fields [9,10]
However, 1t 15 not at all clear if these arguments apply
to lattice gauge fields Hence, we never accepted the
theoretical basis of the cooling method Neverthe-
less, 1n this paper we suggest that cooling can be jus-
tified, 1f the number of cooling steps 1s smaller than
the correlation length We also present an interpre-
tation of cooling as a Monte Carlo renormalization
group (MCRG) transformation In the MCRG pic-
ture, some other observable, such as the string ten-
ston K, should be measured on the cooled configura-
tions, and then dimensionless ratios like x,/ K> should
be compared to the results of other methods With an
improved action for the geometric method and the
MCRG interpretation of the cooling method, 1t seems
possible that the discrepancy 1n the values of x, can
be resolved sufficiently deep in the continuum limaits

While the above two methods 1dentify topological
charge with the second Chern number, the fermionic
method [ 11,12] tdentifies topological charge with the
Attyah-Singer index [18] For the (continuum)
Dirac operator of classical gauge fields, the Atiyah-
Singer index theorem says that the two are equal, but
for lattice fermions the index theorem does not hold
The fermionic susceptibility 1s, however, supported
by 1ts direct relation [12] to the Witten-Veneziano
formula {19] A discussion of the discrepancies be-
tween the fermionic method and the other two 1s be-
yond the scope of this paper

Eq (2) shows that 1t 1s essential to find he config-
uration with the mimimal action Sy, 1n the |Q[|=1
sector For the sake of thoroughness, one should in-
vestigate the value of S,,,, for all algorithms, but we
shall restrict our discussion to the geometric meth-
ods The minimal action configuration must be on
the boundary to the =0 sector Geometric algo-
rithms define transition functions of the continuous
fiber bundle underlying the lattice gauge field The
associated interpolation involves operations hike Uz,
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where U, 15 a parallel transporter around a small
closed loop and 0<z< 1. When U,= —1, the power
U?Z 1s undefined, and under these circumstances the
topological charge 1s undefined A configuration 1s
then called exceptional, and the exceptional configu-
rations form the boundaries of the different topolog-
1cal sectors [2] For our implementations of the
Phillips and Stone charge [3,6] and the Luscher
charge [2,5] the simplest exceptional configurations
are those with the parallel transporter around some
plaquette satisfying U= —1

Inref [7] we searched for Sy, starting from con-
figurations constructed to have Q=1, by systemati-
cally reducing the action using a suitable diffusion
equation These runs always led to the “fluxon” con-
figuration, which has U= —1 for six plaquettes and
Wilson action S=12 (Since most simulations use the
Wilson plaquette action, we focus on 1t for the time
being ) Pugh and Teper [16] have another construc-
tion for a Q=1 configuration, modelled after the 1n-
stanton solution mapped onto a torus For small scale
sizes they point out that the Phillips and Stone algo-
rithm still computes =1 When the scale size 1s
lowered further the configuration becomes excep-
tional and one plaquette passes through Ug=—1
This happens at $=9.6, which implies that the SU (2)
topological susceptibality has a divergence, and also
raises the question of the true minimal action To de-
termine this, we developed a program that computes
the change 1n the topological charge whenever a sin-
gle link 1s changed Starting from a random configu-
ration, we used this program to systematically lower
the action 1n the Q=1 sector, by only accepting those
changes which did not change the topological
charge®' Several configurations produced in this
manner had $< 10 8, the one with the smallest action
had S=72 It had a plaquette U5~ — 1 and 1t quali-
tatively resembled Pugh and Teper’s =9 6 configu-
ration Using that, 1n turn, as a starting point, the
program found a configuration with Q=1 and S=6 §

The $=6 8 configuration 1s depicted 1n fig 1 It
has one plaquette U5~ — 1, which contributes S5~ 2
to the action Sixteen plaquettes on cubes attached to
this plaquette each contribute S;~0 2, the 8 pla-
quettes one lattice spacing away from the central pla-

¥ Constraining Qs so laborious, that the search for the minimal
action configuration was only feasible on a 4 lattice
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Fig ! Plaquettes with significant values of Sy for the mimnimal
action configuration 1n the |Q| =1 sector, and the monopole loop
(dashed plaquette)

quette each contribute S5~0 1, and all other pla-
quettes have S~ 0 The lattice equations of motion
are satisfied everywhere except on the one central
plaquette Taking this as a criterion for the true ex-
ceptional configuration, we now lowered the action
under the constraint that one plaquette has Uq= — 1.
In this way we rediscovered the S=6 8 configuration
on lattices as large as 12*. We tentatively conclude
that this 1s the minimal action configuration 1n the
| Q] =1 sector, and, therefore, that Sy, =6.8. In ear-
lter work we already searched the neighborhood of
the minimal action exceptional configuration’
hundreds of small random perturbations had O=0

It seems plausible that the boundary between the O=1
and the Q=0 sector looks like a narrow channel of
Q=1 leading into the @=0 domain.

The narrow channel could explain why the mini-
mal action configuration did not spoil the scaling of
x. in refs. [6,7] The results of ref. [16], and our re-
sult S,,,.=6 8, suggest a scaling law for the geometric
x: which 1s rather different from the asymptotic scal-
ing law. The data from ref [7] are very consistent
with the asymptotic scaling law, but not at all with
thexp( - ﬂgmm)

Another interesting characteristic 1s that the mini-
mal action configuration can be gauge transformed
to a purely abelian one with all ink variables diago-
nal It 1s thus natural to look for 1ts color magnetic
monopoles, but, just like for the topological charge,
this configuration is exceptional for color magnetic
charge [20] Hence, 1ts neighborhood contains con-
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figurations with and without monopole loops Re-
markably, the configuration with §=6.8 and Q=1 has
a monopole loop of length 4 on the plaquette dual to
the central U= — | plaquette, as indicated 1n fig 1
Moreover, in Pugh and Teper’s construction the color
magnetic monopole loop and the topological charge
disappear at the same scale s1ze

Since the SU(2) topological susceptibility calcu-
lated with Wilson action and Phillips and Stone
charge diverges, one must change either the defini-
tion of the charge or the action The former approach
was pursued mn the CP! model by Berg and
Panagiotakopoulos [21], and the latter in the CP?
model by Petcher and Luscher [17]. Here we inves-
tigate the viability of the latter approach

For various actions we have looked for configura-
tions with the smallest action 1n the |Q| =1 sector
This was done as above by systematically lowering
the action under the constraint that the topological
charge remains unchanged. Again we ended up with
configurations which had one plaquette U5~ —1,and
which qualitatively resembled the minimal action
configuration of the standard Wilson action First
we have analyzed improved actions introduced by
Wilson [22], Symanzik [23], and Luscher and Weisz
[24], containing loops with up to 6 links

_ 1
S=¢ (1——RetrU )
0; N ]

{
+c Y (l— X/Rc tr UD>

o

1
+c (1———RetrU )
2; N o

1
+ l— —=RetrUn ).
3 %: ( yRetr Q) (3)
For the correct classical limit the coefficients must
satisfy

co+8c,+16¢c,+8c;, =1 4)

The coefficients ¢, and the values we obtain for S,
are given 1n table 1 We conclude that the SU(2) top-
ological susceptibility 1s no longer affected by dislo-
cations when the Luscher-Weisz or Wilson im-
proved action 1s used.

We have also investigated the mixed fundamental-
adjoint action
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Table 1
Values of the coefficients ¢, and mmimal action S, in SU(2) for various actions The free parameter x 1n the Luscher-Weisz improved
action has been chosen to be x=—
Action Co C C3 Spoun
standard Wilson 1 0 0 0 68
Symanzik improved 3 = 0 0 91
Luscher-Weisz improved 3_24x THx x 0 113
Wilson improved 4376 —-0252 0 -0170 160
1)
_ 1 UM=e} Un, (7)
S=cFZ<1——RetrUD) A
O N
where Up are the parallel transporters along the sta-
+ca Z( 1— _12 Itr Ug |2> ) (5) ples surrounding the link U, and e 1s chosen such that
= N U™ 1san SU(2) matrix The important point 1s that

In this case the classical continuum limit requires
cp+2ca=1. The results for S, are summarized 1n
table 2 The SU(2) topological susceptibility will be
free of dislocations 1f c, < —0.32 ¢p.

Under the assumption that all dislocations are
embedded SU (2) configurations, viz.

U=((()J ?) UeSU(N), UeSU(2), (6)
we can draw some conclusions about SU (N) For ac-
tions described by eq (3) an action acceptable
for some N 1s also acceptable for all larger V: e.g
Wilson’s choice of the ¢, 1s acceptable for all N2
Similarly, the standard Wilson action should not
be plagued by dislocations for N>4, and the
Symanzik improved action 1s acceptable for N> 3.
Finally, the mixed fundamental-adjoint action has no
divergence forc, < —0 12 cg for N2 3

We would now like to discuss the 1terative proce-
dure called cooling, 1n terms of field theory, rather
than 1n terms of continuum notions of topology In
SU(2) one 1iteration replaces a link matrix U by

Table 2
Values of the ratio —c,/crand mimimal action S, 1n SU(2) for
the mixed fundamental-adjoint action

—CA/CF Smm
00 68
01 74
02 84
03 104
04 16 4

eq (7) 1s gauge covanant, so that ¢‘V[U]=
g[U" ] 1s gauge invariant. One can thus take the
view that, after M iterations, cooling has generated a
“fuzzy” version of the lattice topological charge den-
sity, g [U]=q[U™ ], which now extends over
2M+1 lattice spacings Wniting U=exp(ad,) and
working to leading order 1n a, one finds

AN =A4,+4a’D,F,,+0(a’), (8)

where D, F,,=98,F,,+ [4,, F,,]. Aslong as ta’M -0
as a—0, A maintains the right normalization, and
@™ [U] has the nght classical continuum limit Note,
however, that 2M + | should not be larger than the
correlation length, otherwise g™’ [U] cannot be
viewed as a local operator We suggest to use the geo-
metric algorithm to compute the charge at this state ¥
One should also determune S,,,,, systematically, as we
have done for the M =0 case

In contrast to the traditional view presented above,
one can 1nterpret cooling also as an MCRG transfor-
mation, which reduces ultraviolet fluctuations and
thereby generates an effective action on the cooled
configuration U’ [25]. In this view cooling does
not change the defimition of the topological charge.
In order to fix the scale of the effective action, one
should determine the string tension (for example) on
the cooled configurations and quote x,/K? The two
nterpretations are consistent only if X remains more
or less unchanged during the cooling procedure Ini-

#2 In the present range of f and on small lattices the naive charge
[10] takes values reasonably close to integers for M~ 5-20,
and they are rounded by hand This operation becomes, how-
ever, ambiguous for larger charges
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tial results indicate that this 1s so, when the cooling 1s
done slowly [25] If one cools to much, also the
MCRG 1nterpretation of cooling is doubtful, because
the effective action then becomes nonlocal (on the
scale of the correlation length )

Another way to calculate , is blocking [14] This
approach uses a factor-of-two MCRG transforma-
tion to dampen ultraviolet effects Except for the
change of two 1n the length scale, the above analysis
can be applied to blocking as well From the MCRG
point of view, blocking changes not the charge, but
posits a new effective action In ref [14] 1t has been
claimed that the resulting value of y, 1s consistent with
the cooling method However, this 1s only the case 1f
Q 1s taken to be the average over the 16 possible
blockings But this procedure leads to noninteger val-
ues of Q' The authors of ref [14] concluded that
blocking eliminates the short distance fluctuations in
x. However, since the correlation length on the used
lattices are of the order of 1-2 lattice spacings, we
expect that the blocking procedure also eliminates
physical fluctuations

In this paper we have tried to clarify the contro-
versy surrounding the topological susceptibility in
lattice gauge theories As correctly pointed out by
Pugh and Teper [16], x, determined with the Wilson
action and Phillips and Stone charge diverges 1n the
(quantum) continuum hmit In fact, the minimal ac-
tion 1s even lower (S,,,,=6 8) than ref [16] would
suggest Still, the Phillips and Stone algorithm can be
used with improved actions for SU(2) Wilson or
Luscher-Weisz improved, and for SU(3) Symanzik
improved as well Alternatively, one can use the
mixed fundamental-adjoint action, for sufficiently
negative choice of the adjoint coupling ¢, We have
also reinvestigated the cooling method This results
in two perspectives One can interpret cooling as a
method for producing a variant lattice approximant
to the topological charge density, or one can view 1t
as an MCRG transformation Both interpretations
seem reasonable 1f 2M/+ 1 1s smaller than the corre-
lation length

One of us (M L L) was supported by the National
Fonds gebruik Supercomputers.

[1]P di Vecchia, K Fabricius, G C Rosst and G Veneziano,
Nucl Phys B 192 (1981) 392, Phys Lett B 108 (1982)
323,

196

PHYSICS LETTERS B

21 December 1989

M Campostrini, A D1 Giacomo, H Panagopoulos and E
Vicari, Pisa preprint IFUP-TH 2/89
[2]M Luscher, Commun Math Phys 85 (1982) 29
[3] A Phillips and D Stone, Commun Math Phys 103 (1986)
599
[41P Worit, Phys Lett 51 (1983) 638, Nucl Phys B 262
(1985) 284,
Y Ananand P Wort, Nucl Phys B 268 (1986) 521, Phys
Lett B 183 (1987) 341
[SITA Fox, JP Gilchnst, ML Laursen and G Schierholz,
Phys Rev Lett 54 (1985) 749
[6]1AS Kronfeld, M L Laursen, G Schierholz and U -J Wiese,
Nucl Phys B 292 (1987) 330
{71M Kremer. A S Kronfeld, M L Laursen, G Schierholz, C
Schleiermacher and U -J Wiese, Nucl Phys B 305 (1988)
109
[8]B Berg, Phys Lett B 104 (1981) 475
[9]M Teper, Phys Lett B 162 (1985) 357.B 171 (1986) 81,
86,
J Hoek, Comput Phys Commun 39 (1986) 21, Phys Lett
B 166 (1986) 199
[10]J Hoek, M Teper and J Waterhouse, Phys Lett B 180
(1986) 112, Nucl Phys B 288 (1987) 589,
M Teper, Phys Lett B 202 (1988) 553
[11]E Seiler and I O Stamatescu, Phys Rev D 25 (1982) 2177,
D26 (1982) 534,
M Bochicchio, G C Rossi, M Testa and K Yoshida, Phys
Lett B 149 (1984) 487,
F Karsch, E Seiler and I O Stamatescu, Nucl Phys B 271
(1986) 349
[12]J Smut and J Vink, Nucl Phys B 284 (1987) 234, B 298
(1988) 557
[13]J Smut andJ Vink, Phys Lett B 194 (1987) 433,
J Vink, Phys Lett B212 (1988) 483
[14)DJ R Pughand M Teper, Phys Lett B 218 (1989) 326
[15] M Luscher, Nucl Phys B 200 (1982) 61
[16] DJ R Pughand M Teper, Oxford preprint OUTP-89-10P
[17] D Petcher and M Luscher, Nucl Phys B 225 (1983) 53
[18] M Atiyah and I M Singer, Ann Math 93 (1971) 139
[19] E Witten, Nucl Phys B 156 (1979) 269,
G Veneziano, Nucl Phys B 159 (1979) 213
[20] A S Kronfeld, G Schierholz and U -J Wiese, Nucl Phys
B 293 (1987) 461,
A S Kronfeld, M L Laursen, G Schierholz and U -J Wiese,
Phys Lett B 198 (1987) 516
{21] B Bergand C Panagiotakopolous, Nucl Phys B 251 (1985)
353
[22] K G Wilson, in Recent developments 1n gauge theories,
Cargese lectures (1979), eds G 't Hooft et al (Plenum,
New York, 1980)
[23] P Weisz, Nucl Phys B212 (1983) 1,
P Weisz and R Wohlert, Nucl Phys B 236 (1984) 397
[24]M Luscher and P Weisz, Commun Math Phys 97 (1985)
59,98 (1985) 433 (E)
[25]M Campostrini, A D1 Giacomo, M Maggiore, H
Panagopoulos and E Vicari, Pisa preprint IFUP-TH 18/
89



