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We re-examine the existence of the quantum continuum hmit of the topological susceptibility Xt, as calculated by the geometric 
method We find that ;6 diverges for the standard Wdson action both for SU(2) and SU(3), whereas for certain improved and 
mixed fundamental-adjoint actions, that suppress small scale fluctuations, ,~t is shown to converge Alternative methods for com- 
puting the topological susceptibility are also examined 

At tempts  to unders tand  topology m SU (N)  latt tce 
gauge theory have been h indered  by controversy Be- 
sides the naive method  [ 1 ], there are three methods  
now favored Yet they do not y~eld the same value for 
the topological  suscepttbfll ty Zt, which is the physical  
observable of  interest ;6 = ( Q 2 )  / V, where Q~ 7/is the 
topological  charge and V is the space - t ime  volume 
The geometric method [2-7  ] yields values of;(t larger 
than those of  the coohng method  [ 8-10  ], which, m 
turn, yields values larger than those of  the fe rmlomc 
method  [ 1 1-13 ] However,  the difference between 
the coohng and the fermlomc method  seems to de- 
crease for larger values of  fl The Sltuatton is even 
more controverstal  in view of  ref  [ 14 ], which com- 
bines the geometrtc  method  with blocking 

Wtthln  each o f  these methods  one can define a lat- 
tice approx lmant  to the topological  charge densi ty  
satlsfymg, for smooth fields, 

a 4 

q [ U ] - -  32n2eu~potr[F~,~F~,,,]+O(a 6 ) _ _ _ _  , (1)  

where a is the latt ice spacing and U denotes  the lat- 
tice gauge field Q =  Vq[ U], where the sum extends 
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over  the lattice pomts  In each case q [ U] has the right 
classwal  cont inuum hmlt .  In the quan tum  hmtt  one 
must  also take mto account the cont r ibut ion  of  rough 
fields, which can cause the topological  suscept lbthty 

Zt to &verge [ 15,6,7 ] 
The geometrtc method  [2,3 ], which we favor, re- 

constructs  a fiber bundle  from the latt ice gauge field 
and identif ies the second Chern number  o f  this bun- 
dle with the topological  charge The divergence arises 
f f the  algori thm assigns charge I QI = I to small  scale 
f luctuat ions with act ion S =  fl~q, such that  [ 7 ] 

48n 2 
.¢< l l N ~ = 1 0 8  f o r S U ( 2 )  (2 )  

Then the contr ibut ion  of  these small  scale fluctua- 
txons, or dtslocatlons,  leads to a &vergent  topologtcal 
suscept lblhty m the con t inuum hmtt  In refs [6,7] 
we searched for dlslocat~ons w~th mlmmal  actton Smm 
and found none satisfying eq (2)  In the hght of  the 
( appa ren t )  asymptot ic  scahng of  our results, we felt 
confident  that  the geometric  suscept lbdl ty  with the 
s tandard  Wdson  act ion was correct Since then, Pugh 
and Teper [16] have uncovered &slocat lons  with 
Wtlson act ion S =  9.6 in SU (2) ,  which would create 
the divergence. We have verif ied this result, and be- 
low we describe dis locat ions w~th ~q= 6 8, whtch cre- 
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ate a divergence even in SU (3) However, we show 
that the divergences can be ehmmated  by choosing 
an improved action, for which Srnm>487r2/l lN 2 
This situation is reminiscent of  the CP 2 model [ 17 ] 

The cooling method was designed to suppress the 
dislocations, by smoothening the configurations of  the 
Monte Carlo ensemble [8 ] The validity of  this ap- 
proach was supported by arguments based on the m- 
variance of  the cont inuum topological charge under 
continuous deformations of  classical fields [9,10] 
However, it is not at all clear if these arguments apply 
to lattice gauge fields Hence, we never accepted the 
theoretical basis of  the cooling method Neverthe- 
less, in this paper we suggest that cooling can be jus- 
tified, if the number  of  cooling steps is smaller than 
the correlation length We also present an interpre- 
tation of  cooling as a Monte Carlo renormahzatlon 
group ( M C R G )  transformation In the M C R G  pic- 
ture, some other observable, such as the string ten- 
sion K. should be measured on the cooled configura- 
tions, and then dimensionless ratios like zt /K 2 should 
be compared to the results o f  other methods With an 
improved action for the geometric method and the 
MCRG interpretation of  the cooling method, it seems 
possible that the discrepancy in the values ofz t  can 
be resolved sufficiently deep in the cont inuum limits 

While the above two methods identify topological 
charge with the second Chern number, the fermionic 
method [ l 1,12 ] Identifies topological charge with the 
Atlyah-Singer Index [18] For the (cont inuum) 
Dlrac operator of  classical gauge fields, the Atiyah-  
Singer index theorem says that the two are equal, but 
for lattice fermlons the index theorem does not hold 
The fermlonlc susceptibility is, however, supported 
by its direct relation [ 12 ] to the Witten-Venezlano 
formula [ 19 ] A discussion of  the discrepancies be- 
tween the fermlonlc method and the other two is be- 
yond the scope of  this paper 

Eq (2) shows that It IS essential to find he config- 
uration with the minimal action 5m~n in the I QI = 1 
sector For the sake of  thoroughness, one should in- 
vestigate the value of  5~,~ for all algorithms, but we 
shall restrict our discussion to the geometric meth- 
ods The minimal action configuration must be on 
the boundary to the Q = 0  sector Geometric algo- 
rithms define transition functions o f  the continuous 
fiber bundle underlying the lattice gauge field The 
associated interpolation involves operations like Uc, 

where Uc is a parallel transporter around a small 
closed loop and 0~<z~< 1. When Uc= - 1, the power 
Ug is undefined, and under these circumstances the 
topological charge is undefined A configuration IS 
then called exceptional, and the exceptional configu- 
rations form the boundaries o f  the different topolog- 
ical sectors [2] For our implementations of  the 
Phillips and Stone charge [3,6] and the Liascher 
charge [2,5] the simplest exceptional configurations 
are those with the parallel transporter around some 
plaquette satisfying U D = - 1 

In ref [ 7 ] we searched for Smm, starting from con- 
figurations constructed to have Q =  1, by systemati- 
cally reducing the action using a suitable diffusion 
equation These runs always led to the "fluxon" con- 
figuration, which has U D = - 1 for six plaquettes and 
Wilson action ~¢= 12 (Since most simulations use the 
Wilson plaquette action, we focus on it for the time 
being ) Pugh and Teper [ 16 ] have another construc- 
tion for a Q =  1 configuration, modelled after the ln- 
stanton solution mapped onto a torus For small scale 
sizes they point out that the Phillips and Stone algo- 
rithm still computes Q =  1 When the scale size is 
lowered further the configuration becomes excep- 
tional and one plaquette passes through U D= - 1  
This happens at S =  9.6, which implies that the SU (2) 
topological susceptibility has a divergence, and also 
raises the question of  the true minimal action To de- 
termine this, we developed a program that computes 
the change in the topological charge whenever a sin- 
gle link is changed Starting from a random configu- 
ration, we used this program to systematically lower 
the action in the Q =  1 sector, by only accepting those 
changes which did not change the topological 
charge ~ Several configurations produced in this 
manner had S <  10 8, the one with the smallest action 
had S =  72 It had a plaquette Up ~ -- 1 and it quah- 
tatively resembled Pugh and Teper's S =  9 6 configu- 
ration Using that, in turn, as a starting point, the 
program found a configuration with Q =  1 and S =  6 8 

The S = 6  8 configuration is depicted in fig 1 It 
has one plaquette U[] ~ - 1, which contributes 5t~ ~ 2 
to the action Sixteen plaquettes on cubes attached to 
this plaquette each contribute St~ ~ 0  2, the 8 pla- 
quettes one lattice spacing away from the central pla- 

~ Constraining Q is so labonous, that the search for the minimal 
action configuration was only feasible on a 4 4 lattice 
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Fig 1 Plaquettes with significant values of ~¢t~ for the minimal 
action configurauon m the I QI = 1 sector, and the monopole loop 
(dashed plaquette) 

quette each contribute SD ~ 0  l, and all other pla- 
quettes have SD ~ 0 The lattice equations of  motion 
are satisfied everywhere except on the one central 
plaquette Taking this as a criterion for the true ex- 
ceptional configuration, we now lowered the action 
under the constraint that one plaquette has U D = - 1. 
In this way we rediscovered the S =  6 8 configuration 
on lattices as large as 12 4. We tentatively conclude 
that this is the minimal action configuration In the 
I Qt = 1 sector, and, therefore, that Sm,n = 6.8. In ear- 
her work we already searched the neighborhood of 
the minimal action exceptional configuration" 
hundreds of  small random perturbations had Q =  0 
It seems plausible that the boundary between the Q-- 1 
and the Q=  0 sector looks like a narrow channel of  
Q=  1 leading into the Q = 0  domain. 

The narrow channel could explain why the mini- 
mal action configuration did not spoil the scaling of 
Zt in refs. [6,7] The results of  ref. [ 16], and our re- 
sult ~qm.n = 6 8, suggest a scaling law for the geometric 
Zt which is rather different from the asymptotic scal- 
ing law. The data from ref [ 7 ] are very consistent 
with the asymptotic scaling law, but not at all w~th 

Zt~cxp ( -- flgm.,) 
Another interesting characteristic is that the mini- 

mal action configuration can be gauge transformed 
to a purely abehan one with all link variables diago- 
nal It is thus natural to look for its color magnetic 
monopoles, but, just like for the topological  charge, 
this configuration is exceptional for color magnetic 
charge [20] Hence, its neighborhood contains con- 

figurations with and without monopole loops Re- 
markably, the configuration with S-- 6.8 and Q= 1 has 
a monopole loop of length 4 on the plaquette dual to 
the central Ucz ~ - 1 plaquette, as indicated in fig 1 
Moreover, in Pugh and Teper's construction the color 
magnetic monopole loop and the topological charge 
disappear at the same scale size 

Since the SU (2) topological susceptibility calcu- 
lated with Wilson action and Phillips and Stone 
charge diverges, one must change either the defini- 
tion of the charge o r  the action The former approach 
was pursued in the CP 1 model by Berg and 
Panagiotakopoulos [21 ], and the latter m the CP 2 
model by Petcher and Luscher [ 17 ]. Here we inves- 
tigate the viability of  the latter approach 

For various actions we have looked for configura- 
tions with the smallest action in the I Q I = 1 sector 
This was done as above by systematically lowering 
the action under the constraint that the topological 
charge remains unchanged. Agam we ended up with 
configurations which had one plaquette Utz ~ - 1, and 
which qualitatively resembled the minimal action 
configuration of the standard Wilson action First 
we have analyzed improved actions introduced by 
Wilson [ 22 ], Symanzlk [ 23 ], and Ldscher and Welsz 
[ 24 ], containing loops with up to 6 links 

~¢=Co ~ ( 1 -  1 R e  tr U = )  

+cl =~ ( 1 -  N R e t r  U= ) 

+c2 ~ ( 1 -  1 R e t r  U ~ )  

+c3 ~ ( 1 -  1 R e t r  U%) .  (3) 

For the correct classical limit the coefficients must 
satisfy 

Co +8Cl + 16cz+8c3 = l  (4) 

The coefficients c, and the values we obtain for 57ram 
are given in table 1 We conclude that the SU (2) top- 
ological susceptibility is no longer affected by dislo- 
cations when the Luscher-WeIsz or Wilson im- 
proved action is used. 

We have also investigated the mixed fundamental-  
adjolnt action 
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Table 1 
Values of the coefficients c, and minimal actmn ~¢,~,. m SU (2) for various actmns The free parameter x m the Luscher-Welsz improved 
actmn has been chosen to be x= - 

Acnon Co cl c2 cs ~qmm 

standard Wilson 1 0 0 0 6 8 
Symanzlk Improved ~ - ~ 0 0 9 1 
Luscher-Weisz xmproved ~- 24x - ~ + x x 0 11 3 
Wilson improved 4 376 - 0  252 0 - 0  170 16 0 

S = c v ~ ( l - l R e t r U t z )  

) +CA l - ~ s l t r U  ml 2 . (5) 

In this case the classical con t inuum limit requires 
Cv+2CA= 1. The results for Oem,n are summarized in 
table 2 The SU (2)  topological susceptlbihty will be 
free of dislocations lfCA~< --0.32 CF. 

Under  the assumptmn that all dislocations are 
embedded SU (2)  configurations, viz. 

U = ( 0 0  ~ ) ,  U ~ S U ( N ) ,  0 ~ S U ( 2 ) ,  (6) 

we can draw some conclusions about SU (N) For ac- 
tions described by eq (3) an action acceptable 

for some N is also acceptable for all larger N: e.g 
Wilson's  chotce of the c, 1s acceptable for all N~> 2 
Simdarly, the standard Wilson action should not 
be plagued by dislocations for N>~4, and the 
Symanzlk improved action is acceptable for N>~ 3. 
Finally, the mixed fundamental -adjoint  action has no 

divergence for CA~< --0 12 CV for N>~ 3 
We would now like to discuss the iteratlve proce- 

dure called cooling, in terms of field theory, rather 
than in terms of con t inuum notions of topology In 
SU (2)  one iteration replaces a link matrix U by 

Table 2 
Values of the rano - CA/Cv and minimal a c t m n  Smlll m SU (2) for 
the mixed fundamental-adjomt acUon 

-cA/c~ Sm,° 

00 68 
01 74 
02 84 
03 104 
04 164 

U(~)=~ Y~ U~, (7) 

where Um are the parallel transporters along the sta- 
ples surrounding the link U, and E is chosen such that 
U (~) is an SU(2)  matrix The important  point  is that 
eq (7) is gauge covariant, so that q( t)[U]_= 
q [ U  (~) ] is gauge invariant.  One can thus take the 
view that, after M iterations, cooling has generated a 
"fuzzy" version of the lattice topological charge den- 

slty, q ( M ) [ u ] - q [ U  (M) ], whlch now extends over 
2 M +  1 lattice spacings Writ ing U=exp(aAu)  and 
working to leading order in a, one finds 

A tu l) =Au + l a2D~F~u + O( a 3) , (8) 

where D~F~u=O~F~u+ [A~, F~u]. As long as ~aZM--,O 
as a ~ 0 ,  A ~u M) mainta ins  the right normalization,  and 
q(M) [ U] has the right classical cont inuum limit Note, 
however, that 2 M +  1 should not be larger than the 
correlation length, otherwise q(M)[u] cannot be 

viewed as a local operator We suggest to use the geo- 
metnc  algorithm to compute the charge at this state ~z 
One should also determine Sin,. systematically, as we 
have done for the M =  0 case 

In contrast to the traditional view presented above, 
one can Interpret cooling also as an MCRG transfor- 
mation, which reduces ultraviolet fluctuations and 
thereby generates an effective action on the cooled 
configuration U (M) [25 ]. In this view cooling does 
not change the definit ion of the topological charge. 
In order to fix the scale of the effective actton, one 
should determine the s tnng tension (for example) on 
the cooled configurations and quote z t /K 2 The two 
interpretattons are consistent only i f K  remains more 
or less unchanged during the cooling procedure Ini- 

#2 In the present range offl and on small latnces the naive charge 
[ 10] takes values reasonably close to integers for M~ 5-20, 
and they are rounded by hand This operation becomes, how- 
ever, ambiguous for larger charges 
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tlal results  lndtca te  that  this 1s so, when  the  cool ing  is 

done  slowly [25]  I f  one  cools  to much ,  also the  

M C R G  in t e rp re t a t ion  o f c o o h n g  is doubtful ,  because  

the ef fec t ive  ac t ion  then  b e c o m e s  nonloca l  (on  the  

scale o f  the cor re la t ion  length ) 

A n o t h e r  way to calcula te  Zt ts b lock ing  [ 14 ] Th is  

app roach  uses a fac tor -of - two M C R G  t r ans fo rma-  

t ion  to d a m p e n  u l t rav io le t  effects  Except  for  the  

change o f  two in the  length scale, the  above  analysis  

can be app l ied  to b lockmg  as well  F r o m  the  M C R G  

poin t  o f  view, b lock ing  changes  no t  the  charge,  but  

posits  a new ef fec t ive  ac t ion  In re f  [ 14] it has been  

c la imed  that  the result ing va lue  o fz t  is consis tent  with 

the  coo l ing  m e t h o d  H o w e v e r ,  this  is only  the case i f  

Q is taken  to be the average  o v e r  the 16 posstble  

blocklngs  But this p rocedure  leads to non ln t ege r  val-  

ues o f  Q) The  au thors  o f  re f  [14]  c o n c l u d e d  that  

b locking  e h m m a t e s  the short  d i s tance  f luc tua t ions  in 

Zt H o w e v e r ,  s ince the cor re la t ion  length on the  used 

lat t ices are o f  the  o rde r  o f  1-2 lat t ice spacings,  we 

expec t  that  the b locking  p rocedure  also e l imina tes  

physical  f luc tua t tons  

In this pape r  we have  t r ied  to clar ify the  cont ro-  

versy  su r round ing  the  topologica l  suscept ib i l i ty  in 

lat t ice gauge theor ies  As correc t ly  po in t ed  out  by 

Pugh and  Teper  [ 16 ], Xt d e t e r m i n e d  with  the Wi l son  

ac t ion  and Phi l l ips  and  Stone  charge d iverges  in the 

( q u a n t u m )  c o n t i n u u m  h m l t  In fact, the  m i n i m a l  ac- 

t ion is even  lower  (.ffmln=6 8) than  ref  [16]  wou ld  

suggest Still, the  Phi l l ips  and  Stone  a lgo r i thm can be 

used with i m p r o v e d  ac t ions  for S U ( 2 )  Wt l son  or  

L u s c h e r - W e l s z  i m p r o v e d ,  and  for SU (3)  S y m a n z i k  

i m p r o v e d  as well Al te rna t ive ly ,  one  can use the  

m i x e d  f u n d a m e n t a l - a d j o m t  act ion,  for  suff ic ient ly  

nega t ive  cho ice  o f  the  ad jo ln t  coupl ing  CA We have  

also re inves t iga ted  the cool ing  m e t h o d  This  results 

in two perspec t tves  O n e  can in te rpre t  coo l ing  as a 

m e t h o d  for p roduc ing  a va r i an t  lat t ice a p p r o x l m a n t  

to the topologtca l  charge densi ty ,  or  one  can v iew it 

as an M C R G  t r a n s f o r m a t i o n  Both in t e rp re t a t ions  

seem reasonable  i f  2 M +  1 is smal le r  than  the  corre-  

la t ion  length 
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