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The average action is a continuum version of the block spin action in lattice field theories . We
compute the one-loop approximation to the average potential for the N-component ,p4 theory in
the spontaneously broken phase . For a finite (linear) block size - k-1 this potential is real and
nonconvex . For small rp the average potential is quadratic, U,, _ -

	

k-z9) , and independent of the
original mass parameter and quartic coupling constant . It approaches the convex effective
potential as k vanishes .

1 . Continuum formulation of the block spin action

Effective potentials are a central tool for our understanding of spontaneous
symmetry breaking, as encountered in the electroweak sector of the standard model .
The vacuum expectation value of a scalar field is precisely given by the minimum of
a suitably defined effective potential . An effective potential defined by a Legendre
transformation (as often done) must be convex, and therefore must have a flat inner
region in the spontaneously broken phase . This disadvantage can be avoided by
considering an effective action for averages of fields, where the average is taken over
a large finite volume. The corresponding average potential is not necessarily convex
and a minimum exists in the spontaneously broken phase . This potential will only
become convex in the infinite volume limit . One therefore expects a "flattening" for
the inner region for large volumes, in contrast to the results of naive perturbation
theory . For certain questions (like the scale of spontaneous symmetry breaking or
the physical scalar mass in a pure scalar 1)4 theory) this may be mainly a technical
issue . Under certain circumstances, however, the flattening of the potential could

lead to unexpected new physics . It is conceivable that naive perturbation theory fails
to give an adequate description of spontaneous symmetry breaking in the standard
model due to effective nonlocal interactions generated by the fluctuations of the
almost massless chiral quarks [1] . The average action provides a tool for an
investigation of this question, which crucially depends on how fast the average
potential becomes flat as the volume increases . Besides its applications to elec-
troweak spontaneous symmetry breaking, a computation of the average scalar
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potential may also be relevant for cosmology, whenever the form of the effective
scalar potential plays an important role (e .g . inflation or the cosmological constant
problem) .

In this paper we formulate an effective action for averages of fields, where the
average is taken over a volume with typical length scale k - ' . The average action I'k
describes the physics at energy scales smaller than k by averaging out the high-
momentum degrees of freedom . These ideas were pioneered by Wilson [2] and
Kadanoff [3] in the framework of statistical mechanics and lattice field theories .
They established the close connection between block spin concepts and the renor-
malization group transformations . We aim at a formulation of these concepts in a
continuous space-time, since this permits an easy implementation of translation and
rotation symmetries from the beginning . Otherwise the average action discussed in
this paper closely corresponds to the block spin action on the lattice .

In particular, we discuss the average potential for the N-component 9)4 theory in
the spontaneously broken phase . As is well known, the naive perturbation expansion
for the effective potential fails to give an appropriate description for values of jq~j
much smaller than 1q)0 1, with 4)o the minimum of the perturbative potential. For
small I T I the perturbative effective potential develops an imaginary part . This
indicates the breakdown of the saddle point expansion due to a negative mass term
for the fluctuations around the saddle point . If the effective potential is defined by a
Legendre transformation it must be convex [4] . Obviously naive perturbation theory
gives a badly convergent approximation series for the "inner region" of the effective
potential,

	

I T I << 14po l, which must be essentially flat . To remedy this situation
Fukuda et al . [5] and O'Raifeartaigh et al . [6] have discussed a "constraint effective
potential" for a finite volume of space-time, and a flattening of the potential in the
inner region has been observed . We follow here an alternative approach with infinite
space-time volume and consider the effective action for averages of fields over a
volume with given size .

For small quartic scalar coupling X an appropriate steepest descent approxima-
tion is valid also for the inner region of the potential . We present a one-loop
computation of the average potential . No imaginary part appears . In the inner
region the one-loop average potential approaches - Ik 2cp 2 for small k. In the inner
region, the dominant contribution to the average potential comes from spin waves,
whereas configurations with constant T are dominant for the outer region (jq) j >
I q'o I) . The average potential approaches the convex effective potential as k - 0. In
the outer region we recover the standard perturbative one-loop effective potential
(Coleman-Weinberg [7] potential) .

Let us consider an O(N) invariant scalar field theory in d-dimensional euclidean
space-time, defined by the action

~
wl= fzS[ddx( Z' d,,cpuaj~ - zp

z(p~q),+'A(wuT,)
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Here S2 denotes the total volume of space-time, which should be taken to infinity at
the end . It is our aim to define an average action, Fk[O], which is formally given by

Here

denotes the average of q) over a volume Vk --- k-° (for each component) . If rotation
and translation symmetries are preserved the average action can be expanded in
potential, kinetic and higher-derivative terms,

ddx (U.,(o)+'Kk.,h«p)au4>a2g0h+
. . . } .

Wave function renormalization can be used to bring the kinetic term into the
standard form Kk ,,, t, = 8,,, . From eq . (1 .2) we obtain, for constant 0, the average
effective potential,

1
In f_§~T rI8(Ok(x) - $)exp(-S[,P]) .

So far the expression (1 .2) is only formal . In the lattice formulation the average field
O k in eq . (1 .3) becomes a discrete sum over lattice sites y with ok(x) defined at
block lattice sites x . The average action involves a product over 8-distributions at
block lattice sites x, and the definition (1.2) coincides with the standard block spin
action . In this paper we want to develop a formulation of the average action where
both S[cp] and Fk[O] are integrals over a continuous "space-time", preserving the
symmetries of rotations and translations . We work in euclidean space and regularize
the theory by a momentum cut-off . For the continuum formulation we use a smooth
representation of the average field Ok,

~û(x)_ fz ddyfk(x - y)4,u (y), (1 .6)

where

fk (x) = 17-d/2k d exp( - k 2x,ix1 ) . (1 .7)

For Sl - oc the function fk, is normalized,

fsa ddxfk(x-y)=1>
(1 .8)

exp(-Fk.[q,])=
x-

f-9TH 8 (0k(x) - O(x))exp( - S[T ] ) . (1 .2)

1
Ok(x) =

-
f

ddy9)(x+y) (1 .3)
vk VF
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and obeys the product relation

where

f ddyfk(x - y)fk(y - Z) = gk(x - Z) ,

gk(x) =f1,/f(x) = (k2/27r)d/2exp(- zk2xwxw) .

	

(l .10)

We also need a continuum version of the constraint in eq . (1 .2) . We cannot
constrain the average $k(x) to equal exactly a given field (P(x) at every point x
without enforcing g5k(x) = q)(x) . (The use of S-distributions is possible on the
lattice since the block spin sites x are less dense than the original lattice sites y.) We
therefore replace the S-distribution by a gaussian with large v,

FIS($k(x) - 4~(x)) - expC- f ddx [VW (x) -
,~
(x))2 + C] } ,	(1 .11)

l

where the parameter v should be taken much larger than the other relevant scales of
the problem,

t,»k2,11 .

With this definition exp( - F4.) measures the relative probability that the average
$k(x) approximately equals a given configuration O(x), with v a measure for the
mean deviation 4(x) between $k (x) and q (x),lim,_~, 4(x)=0. (The mean devia-
tion 4 should be defined with a smooth test function.)
We introduce the "constraint action"

Sk q2 =
-

, f d dx z iFl 2Wa9Pa + R~` (92og2~ )z+
,(Oak_

$a ) ~~sa { arg,, ó,,T,, - Oa) } >

(l .13)

such that the average action is related to the partition function from Sk,

exp(-Tk[$l) ° f-9Texp(-Sk[T,$l), (1 .14)

As before, the average potential is obtained for constant 0

1
U4.(0) =- 2

ln fgy2 exp( - Sk([991,0 )> (1 .15)
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where the constraint action for constant 0 becomes, using eqs . (1 .6)-(1.10),

SÄ, ([ q) 1, -~)_~zd`~x{zapgga( x )apqga( x ) - il 2(Pa( X ) (pa( X )

+ 8n (Ta(X )Wa( x ))2+ vq~a~a - 2 vySa(pa(x)}

+v ftddx fld dx'gk(X - X')Ta(X)Wa(X') .

	

(1 .16)

We note that the last term gives a nonlocal interaction for gPa(x) . The relative
probability for a configuration with a given constant average Ok = 'P is proportional
to exp[-QUk((P)] .
The average action can be used to compute n-point functions for average fields

g5k(x) . In particular, the vacuum expectation value of cp can be obtained directly
from the average action,

f-9 ,~ [Q-1f ddx P(x)] exp(-F,[q)l)
(0k=

f-9$exp(-Tk[ol)

f-9m [S2-lfd"xm(x)] exp(-S[l) il 171

The expectation value (q)) corresponds* to the minimum q`'o of 52Uk for k - 0.

2 . The classical average potential

We want to calculate Uk. by steepest descent . For this we need the (absolute)
minimum of S,, and thus we search for a solution of the classical field equation,

SSti

0

	

Sq~a(x)
_ - ail dea(x) - it 2q)a(x)+ 21Àq~n(x)Wn(x)ß9a(x)

+2vf~ddx'gk(X - X')Ta (X') - 2v~a .

	

(2 .1)

* This holds provided SZ { U4 (¢) - Uti (q>� )} diverges for S2 ~ oe and 1§1 0 1~5() J . All conclusions of this
paper remain valid if we add a source term f d"x q),,j,, to the action (1 .1) and take the limit .ja

	

0 at
the end of all computations .
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Without loss of generality we choose

0' = 0 8'1-

	

(2 .2)

Let us concentrate on possible solutions with constant norm,

9)ûl(x)=h,(x), h u (x)h,(x)=h 2 =const,	(2 .3)

for which the field equation simplifies considerably,

with

- d11 d 9ha ( x) - g2h �(x)+ IXh 2hu(x)+ 2 vI ddx'Sk(x - x ')h . (x ' ) =2 v 0 s~1

(2 .4)

The field equation (2.4) always admits a constant solution

h u (x)=h8~1 ,

	

(2 .5)

(2v - tt2 + ;Ah2 )h = 2v(A .

The classical average potential is obtained by inserting this solution into Sk,

Uti~ O) ($) = Sk(h,$)l2_ - 8Xh4+ vp2 -voh,

	

(2.7)

and is independent of k . Up to corrections with inverse powers of v we have h =
and in this approximation,

= - 2 i

L

2
0~
2 + g»4 .

(2.6)

(2 .8)

As we will show below, the constant solution (2.5) with (2.6) corresponds for
arbitrary 0 to the absolute minimum of Sk only if

2 2 (2.9)

where
vk 2 =2k 2

(
ln
k2

+1) . (2 .10)

For k 2 < t,, 2 this only holds for large enough values of 0,

2
101 >-Ocr = Ocr(hcr) ,

/
hcr = -(92-k2)> (2.11), (2 .12)
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where hcr and 0cr are related by eq . (2.6) . For I0 I < Ocr the constant solution
becomes a saddle point rather than a minimum of Sk .

In the "inner region" with Iq)J < (p, we find a new solution with constant norm
where the phase of q)" depends on x (spin wave solution) . We will show below that
this spin wave solution corresponds indeed to the absolute minimum of Sk . For
N >- 3 it is given by

and coincides with her of eq . (2.12) . Eq. (2.17) now determines A2 as a function of
the parameters . The solution exists whenever (2.17) admits A2 > 0 . This is exactly
the case for I q) I < 0« . The limit 0 - q)cr implies vanishing A and we recover the
constant solution . Inserting the solution into Sk gives the classical average potential
for the "inner region",

(F ,2 k 2 ) 2 _

	

v
U~o~(I$I < Ocr) _ -

	

2X

	

2v -
k2 k 2~2 . (2.21)

This potential joins smoothly at Ocr

	

_with the potential (2.7) for the "outer region" in
which_

	

101 > y'cr- It has a negative quadratic term - 2
2~2 (up to corrections

O(k 2/v )) and the combined classical potential for the inner and outer regions
becomes convex as k 2 __.> 0 . In fig . 1 we have plotted the classical average potential
for different values of k . One clearly sees that in the inner region Sk is much lower
for the solution (2.13)-(2 .20) than for the constant solution (2.5) with (2.6), which
corresponds to the curve for k2 > h, z . The solution (2.13)-(2 .20) describes a "spin

2v
h l

2v 0' h 2 (x) =Ah
- lt, z + ;Xh2

cos(p~ (2 .13), (2 .l4)

h 3 (x) = Ah sin( prxw ), h,(x) =0, a=4, . . ., N, (2 .15), (2 .16)

with

A2 2v l
A2 + I =1

It
2-(

ZV-ft
2
+

1
An

2

Here the momentum p,, is set by the scale k,

v
p~pu=p2-2k21n

p2
k2 =, p2+2rexp

( 2k2 ) k , (2.18), (2 .19)

whereas the norm h2 obeys

k 2 -1a2 + 2' Ah
2 =0 (2 .20)
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Fig . 1 . Classical average potential of the scale k .

wave" in the direction given by pt , . For small k 2 << tt2, the potential energy is
minimized by keeping the length of the spin vector h near the minimum of the
classical potential,

where

h2 - Too = 2[t 2/X .

	

(2 .22)

Nevertheless, the average field $2 can be much smaller than h 2 due to the relative
rotation of the spin vector in different regions of space . Only the gradient energy
(dvo) 2 = k 2(p2 distinguishes between configurations with (pk = 0 and 02 - Pó . Due to
the direction p,,, the spin wave solution breaks the space symmetries of translations
and rotations . This solution is only invariant under translations and rotations in the
plane perpendicular to p,, . It also breaks the symmetry of internal rotations in the
plane perpendicular to 4)a . There is, however, a combined symmetry of translations
in the p,,-direction and internal rotations in the 2-3 plane . This replaces the
standard translation symmetry in the pt,direction .

It remains to be shown that the spin wave solution (2.13)-(2 .20) and the constant
solution (2.5) with (2.6) correspond to the absolute minimum of Sk in the inner and
outer regions for 0, respectively . (For k2 > tt2, and in particular for ,u 2 < 0, there is
only an outer region .) For a general classical solution h �(x) with h,,h � = const, we
write

Vu(x) = h u (x) + 8cp� (x) .

	

(2 .23)

Inserting eq . (2.23) into the constraint action (1.16) and using the field equations for
hu yields

St~([~~, ~) = Sk(h, ~5) +,AS4[h, 8(pI , (2 .24)

Sk(h,$) = f d`~x {- xÄh 4 +v1)2 -v(phl (x) },

	

(2 .25)
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and

4SA.[h,S(p

	

ddx~'a �8(pua �S<p,- ;tt2892 .Sq)a +'-, h28Ta8Ta

+KA[2h,Sgg,+8(P"S(P,] 2} +vf ddxf ddx'gk(x-x')S(p.(x)Sgg,(x') .
sz sa

The solution h u minimizes S,° if

.AS,' can be written as

We obtain

(2 .26)

ASk[h, Sq)] >_ 0

	

(2 .27)

for arbitrary Sqp . Introducing the Fourier transform of Scp u(x) by

dd
sq)u(x) = f (27T ) d exp(-iq,,x,,) sq)u(q),

	

(2 .28)

4SA.[h,ST ] =J (17) d 2sg9u(q)S q2- fk
2 + zah2+2vexpl-

2k 2
1
}SWa (q)

If 112 < 0, i .e . in the phase with no spontaneous symmetry breaking (SSB), the
left-hand side of (2.30) will always be positive. An instability can only occur in
the SSB phase, tt 2 > 0, for small k . Define qo in such a way that it minimizes the
generalized kinetic term in (2.30),

E(q) = q2 + 2v exp[ -g 2/2k2 1 .

	

(2 .31)

qo =2k21n
k2

,

	

E(qo) = 2k 2(1 + In k2 ) = k 2 .

	

(2 .32), (2 .33)

+'Äf ddx [2h .(x)Scpu (x) +Swa (X)S(pa(X)] 2 .
s

(2.29)

A necessary condition for an instability is

q 2 -Y2 +''Xh 2 +2vexp [ -q 2/2k 2 ] < 0 . (2 .30)
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The left-hand side of (2.30) satisfies the inequality

k2-JU2 +'-,Xh2<q2-Ft2+''''Xh2+2vexp [ -q2/2k2 ] . (2 .34)

This shows that for k 2
>_

tt2 no instability can occur . The same is true for large
enough h 2 and we conclude that the solution with constant h(x) (2.5) is the
absolute minimum of SÁ for

	

On the other hand, for small k,

the left-hand side of (2.34) becomes negative if

k2 < FL
2 ,

	

(2 .35)

h 2 < hc r =
2
-(~2 - k2 ) .

	

(2 .36)

It is now easy to show that for 101 < 0,r the constant solution (2.5), (2.6) becomes
unstable against small fluctuations . In this region one has h2 < he r and the first term
in eq . (2.29) is negative for a fluctuation S49u(go) . It is sufficient to choose Smu(go)
orthogonal to h l , so that the second term in eq. (2.29) is of order (S(P) 4. We
conclude that in the inner region the constant solution is a saddle point rather than
a local minimum of Sk . Finally, the spin wave solution with p2 = 2 fulfills h2 = h2r .
Then AS,,' must be positive or zero for arbitrary Sc), and h,,(x) given by eqs .
(2.13)-(2 .20) therefore corresponds to the absolute minimum of Sk .

S
(
2)( xun

3 . The one-loop average potential

51 5

The one-loop contribution to the average potential becomes by gaussian integra-
tion over the quadratic part of Sk,

Sk( 2 ) - 2f ddx f ddyS4Pu (x)S,(n~(x, Y)STb(Y)1

	

(3 .1)

= [( - awaw - [t
2 + zXh2 )san+Xh 2Man(x)l ó d(x - Y)

+ 2 PS~1Sk(x - Y) 1

1
Uk($) - Uk(') «p) + 22

In Det{ S.t2,~(x, Y ; $, v, k)}

(3 .2)

--- Uk(o) (0) + Uk(l) (P)-

	

(3 .3)
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Here Det denotes the determinant in group space as well as in ordinary space-time
and M,n(x) = h-2h,(x)ht,(x) .

3 .1 . THE OUTER REGION

We first consider the case where the classical solution is a constant field hl ,
relevant for y2 < k2 or for t,2 > k2 with

	

>0cr. In this case the Fourier transform
of eq. (3.2),

reads

where

Sc'b
)
(q , q~) = f ddx f ddyexp(igwx,) exp(iq'y~) S~n~(x, Y) ,	(3 .4)

Sûi)(q " q ')= [(Pe+ 'Äh 2 )Sun+ah 2SulSni ] s d (9 - 9'),

	

(3 .5)

Py =q2 +2vexp[-q 2/2k 2 ] .

The one-loop contribution to the average potential,

Up) = I
ti

z
In (g2+2vexp [

-2k2J
It
z + ah2

(3 .6)

f z

+(N-1)ln(g2+2vexp- kzJ-,uz+ ;Xh2)l
,

(3 .7)

ressembles the perturbative one-loop effective potential computed by Coleman and
Weinberg [7], up to a modification due to a new infrared cutoff at a scale --- k . We
write eq . (3.7) in the following form :

where

- j2 < .ti= (2q7)

We note that the argument of the logarithm only vanishes for k 2 < ft2 and
at x =p2. For

	

> or

	

o, or x

	

p2 it is always positive . The integral is therefore well

Utii)=
°d(Il+(N - 1 ) 2), (3 .8)

1 = 2d+t7d/Zr(d/2)
(3 .9)

1, f " dxxd/z-l ln(x+2vexp [ - x/2k 2] -tt2 +a,), (3 .10)
0

a l = Xh 2 , a2 = ZX h2 . (3 .11)



defined and Uk') is real as it should be. We split the integral into parts for the
low-frequency and high-frequency modes,

where

aJ; = f

	

dxxd12 - ' 1n I1 +
0

2+N
Ul" 1W =

	

~ X(n2- I k2 + 2~Z1~z
64~r_
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I;=J,.+K; +JJ,+4Ki,

	

(3.12)

J, = fj dxxd12-1 in(2v - g2 +

	

(3 .13)
0

K;= f`~ dxx d12-1 ln(x-t2 +a;),

	

(3 .14)

2v exp [ -x/2k2~
'

	

£'

	

x-N,2+ai

	

~ .
	(3 .16)

Since AK; depends only very weakly on A (the integrand vanishes exponentially for
x >> k 2 ) and AJ,+4K; is of order kd, we neglect AJ;+4K; . This is a good
approximation except for details of the infrared cut-off at k2.
To be more specific, we concentrate on four dimensions (d= 4), where

_
n41n(AZ- t2+a;)+k4

	

2v - g2 + a;
In( 2- 2 +a )

x + 2v(exp[ - xl2k21 - 1)
2v-tt2+a ;

	

~ '

2 -a) In
nz

	

bi, +a

	

+(A2- _
k
2)(a-

	

2

	

1(A4-k4)

	

.

	

(3 .17)- (l~

	

,
z

(k2- nz + a )

	

i 9 )	z
f''

	

1

Up to terms of order k 4 from AJ + AK and neglecting negative powers of n2 and
v, the one-loop contribution to the average potential becomes

327r2
`alln(

k2

	

dz+a

	

+(N-1)az ln( k2

	

nz+a )~i

	

-w z

(3 .15)

z
a2 In

	

+ -

	

+(N-- 1) a2 In

	

+ -l
64m2

~

	

1 (( kz

	

F~z + a,

	

21

	

z
(

	

( k2

	

F~

	

+ az )

	

2 1 ~
I

	

z

	

4z
+ 64,r2(k4

	

W4~(In( kz

	

4
'+ a) + ( N-1 )ln( kz -

	

+ a
~~ +const,

- g2

	

1

	

tL

	

z

(3.18)
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where

For large A we see the usual quadratic and logarithmic divergences . They can be
absorbed into renormalized couplings, which can be defined at large k2 > ,u2 by the
derivatives of the potential at q) = 0,

In the approximation (3 .18) one has b = 1, whereas for a precise estimate we define
b by

d 2U4,
AR(k) -4 (d02)2

i 2 2 1

	

4U~ = - 1 R02 +

= s

	

2

	

1 4) 2 .a i - 2A$ ,	a 2 = 2A

_ dU~. 2+N

	

A2
AR(k) - -2~~2

	

-_~2_
32~r2A~A2+~21n(k2-1~2)02=0

8+N- A2
3277 2

,>z=o

_d,_
t
R __

	

(N+2)A
v

	

i,dxxd12

	

21,exp [- x/2k2~
dk 2

	

4k41n(v/k2)
dJ.

	

(x+2vexp [ -x/2k2] -g2)2

- (N+2)A (

	

db

	

~2 )
32772

	

b + k2 dk 2 + k 2 -	2

	

'	(3 .22)

A similar correction can be made for the computation of AR . For the case of a
constant classical field the average potential in first nontrivial order in A ressembles
the Coleman-Weinberg potential [7], except that an additional infrared cut-off in
the loop is now provided by k 2 - t1 2 . Using eqs . (3.20) and (3 .21) one obtains

AR<2 I 2

	

k 2- WR +ai

	

k2- itR +a2
128~r - kö - l~á

	

ko -wR

-(2+N)(2b(kó)kó-26(k2)k2+k2+N R)

+ AR04, ~91n(
k' ,F ,R

, al)
+(N-1)ln( k2

	

wR+az

	

+(8+N)(

	

I~R
2569r- k~i - [R

	

kó-~R kó-wR

1

	

( ( k2 - 1 ,R+a,

	

I k 2 - wR+a2
4~r2(k

	

ƒ R)(lnl

	

kó-tt2

	

+(N

	

1)1n l

	

kó - WR

	

)
4 - a

	

-

	

_

	

+const .
6

(3 .19)

(3 .20)

(3 .21)

(3 .23)
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Here XR and 1,2 are evaluated at a scale k2> [t2R . For large $2 or, in the symmetric
phase, large - I,R,

where

z~R02 - ttR >> k2,

the modifications from taking averages over finite volumes _ k-d become negligi-
ble and one recovers the standard perturbative one-loop effective potential

1
U1, (~)

	

2NR4) 2 + a ~' RO+ 64~r2 1 u,+(N-1)u21 +const,

	

(3 .25)

_ 2l

	

l 2

ui = (ai - 92 )2(In(
ai
m
-

11R l - 2J+ mRai+2ai[b(kó ) k2-b(k2)k2+k2],

2k2_ ~~2tn = or1R .

We note, however, the presence of a quadratic term _k2 which is due to our
definition of ttR. This term can be absorbed into a suitable redefinition of [tR.
Similarly, the term -- (,uR/1n2)a,2 disappears by an appropriate change of 1n 2 .

Let us next come to the inner part of the potential for k 2 < tt 2, 101 <0, The
expansion around the spin wave solution gets more complicated due to the x-depen-
dent term

Man(x) = hCr2ha(x)hn(x)

	

(3.28)

The determinant is not changed by an orthogonal transformation . We use this fact
to absorbe the x-dependence of M,i, . Let us take the case N= 4 and consider

S.,n Y(x, Y) =
Cad

(x)S
d(
e~(X, Y)Cen(Y) ,

(3 .24)

(3 .26)

(3 .27)

(3 .29)

1 0 0 0
0

	

tospx

	

-sin px

	

0
C( x ) =

	

0

	

sin px

	

tos px

	

0

	

'

	

(3.30)



S(q) _

where

(3 .36)

P() =P
22+2vexp[-p2

/2k2 1 =k 2 ,

	

(3 .37)

P+ = (P±q) 2 + 2 Pexp[ -(P±q)2/2k21 .

	

(3 .38)

The determinant of (3.36) reads, for N >- 3,

dets(q) - t[Pu - Po +a(1 -AZ) h cr]fP+ - Po]fp- Pol

+'-AAZhcr(Pe-Po)(P++p-2Po)}(Py -PO )
N_s .

(3 .39)

Using eq . (3 .37) and, up to corrections in inverse powers of v,

Nh~r =2(x,2 -k 2 ),

	

\her(' -AZ) =~~2,

	

(3 .40), (3 .41)
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- ~ ~ - du
.
dr~

.
- ~2 + 2'Ähc

2j8
~n +PZDûn

) + 2 D,(nip� dt,` + Xh« Man] Mx -Y)

+2PC (x-y)g,,(x-y), (3 .31)

where

(0 0 0 0

D~'>=diag(0,1,1,0), D(2)= 0 0 1 0
(3 .32), (3 .33)

0 -1 0 0
,0 0 0 0

1-A2 A 1-A2 0 0

M'= A>l1 -A2 A2 0 0
.

(3 .34)
0 0 0 0
0 0 0 0

The Fourier transform of (3.31) is diagonal in momentum space,

Sc2Y(q,q')=S(q)sd(q-q'), (3 .35)

(Pt- P,+ X(1-AZ)her ÄA 1-A2her 0 0
XA 1- A Z h,2 r z(P+ +P-2P�)+XA'her - ;i(P+-P) 0

0 (P+- P-) -(P+ + P -2P� ) 0
0 0 0 Py -Po
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one obtains for the one-loop contribution to the average potential

It is easy to check that det S is positive except for a few zeros and Uk
1 > is again a

well-defined real quantity. No imaginary part appears in the one-loop approxima-
tion, in contradistinction to the naive Coleman-Weinberg effective potential [7] .
The zeros of det S are related to the "Goldstone directions" which correspond to
degenerate classical solutions . The N - 3 zeros at q 2 = k 2 account for the possibility
to have a spin wave in some other internal plane orthogonal to 4p, For 0 = 0 an
additional zero at q 2 = k2 appears since the internal direction of the spin wave is
now completely arbitrary . Finally, a zero at q 2 = 0 (P + = P_= k 2) arises from the
rotation of the classical solution in the internal 2-3 plane .

The dominant contribution to the integral (3.42) arises from momenta q2 >> k2 .
In this regime we can neglect the terms - exp(-q2/2k2 ) and approximate (with pw
in the 1-direction)

where

1 ddq
U

2 e 2 <n2 (217) d

x[ln{(Pq-k2)
[
(P+ -k2~~p - k2

)
+(Ft2-k2)(p++P-2k2 )

j

+ ;X$2[2(P+-k2)(P_-k2)-(Pq-k2)(P+ +P_-2k2)1 ~

+(N - 3)ln(Pq - k2 )j .

	

(3 .42)

Pq = q 2 > P+=(p±q)2=p2+2pgi+q2,

	

(3.43), (3 .44)

p2 =k 2 -2k 2 , (3 .45)

and

(P+ - Po)(P- - Po) = q4-4gi(k 2-2k 2 ) -4k 2g2 + 4k4 , (3 .46)

P+ + P-- 2Po = 2(q 2 -2k 2 ) .

	

(3 .47)

One obtains for the determinant

det S(q) = t (q2 - k2) [ q 4 - 4g2k2 -4qi (k2 -2k2 ) +4k4 +2( wz - k 2 )(g2 - 2k2 )]

+ap2 (k 2-2k2 )(g2-4qi -2k2))(g2- k2 ) N-3 . (3.48)

We next expand the logarithm of the determinant (3.48) in powers of k2 and find,



522

	

A. Ringwald, C. Wetterich / cp ° theory

up to corrections of order kd,

with

dq
Uc1> -

2

1

	

k = <gz<

	

d

	

d { Bc2> +B (4) + . . . } + const,

	

(3 .49)nz (2 ~r )

B(2)=X02(k2-2k2) q2-4qi
g4(q2 +2t12)

, (3.50)

k 2 -2kzBc4>-

	

g
8(q2+2U2)2

{(3k2 + 2k2 )g6- 8(k2 +3k2)q q1 - 16 (k2-2k 2 )g2gi

and therefore

+2k2,u 2g 4- 8(k 2 +2k2 )ttZg2gi ) -

Rotation symmetry implies

1

	

(q2 - 4g1) 2_A204
(k

2 _ 2k2)2
2

	

g8(q2 +2tj2)2
.

(3 .51)

fddgi(g 2)q 2- (1/d)
J ddqƒ(g 2 )g 2 ,

	

(3 .52)

fd dqi(g2 )gi - (3/d(d+ 2)fddgf(q2)q4 >

	

(3 .53)

U~" - Vd _,12dxxd12 -'
No

2
(k

2
- 2k2 )( 1- 4/d) + X$

2
(k

2
-2k2)

-

	

x(x+ 2tt
2

)

	

x2(x +
2tt2)2

r ( 848

	

12 48Xlx(I3

	

d

	

d(d+2))k2+2
1-
d +d d+2

	

k2
( )

4

	

8

	

- 1 X204(k2-2k2)2(1-8/d+48/d(d+2))+2,u2((1
- d ) k2

	

dk
2) 1

	

2

	

2(Xx

	

+2,u2) 2

(3 .54)



In four dimensions the term B(2) gives no contribution and Uk
i ) is of the form

a k4 X2 k4
Uk1) _ -

32~r 2 c2 ,uz
02-

i4_7 c4704, (3 .55)

with
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C2

	

nZ

	

4g2k 2 + k2x
c2 = =a

( k 2
- 2k2)I

	

dx
k

	

kz x(x+2~t 2)
2

1

	

2k2	2k2

	

k2 +2tt2

	

1 - 2k2/k2

2 t1

	

k2 ) [ k2
-In(

	

k2

	

) +

	

1+k2

	

2 ]+
O(n

/21~

(k 2 -2k 2 )2 4 ~2

	

1
c4

	

k4

	

`_ dx
x(x + 2~L 2)2

1

	

2k2 2 k 2 +2~,2

	

1

4(1

	

k2) [ln(

	

k2

	

)	1 + k2/2
F,2

	

+ O(A-2)

For small k 2 << tt2 these terms are suppressed by a factor of k2/1U2 compared to the
tree potential Uk

° ) = -(I/2)k 202. For small k2 the steepest descent approximation
gives negligible one-loop corrections to the average potential in the inner region
(-~- < (2/X)(t,2- k2 )) . We note that the approximation (3.48) is only valid up to
terms of order k 4 and an exact calculation of c2 and c4 should therefore evaluate
the 02-derivatives of the integral (3.42) .
For three dimensions the leading contribution from B(2) gives

1

	

k2-2k2	2Uk i )
- - 247r
_

	

W 1

	

~ arctg
2~,

(3 .56)

(3 .57)

k 2 _

2

	

+ O(k3) .

	

(3 .58)

Compared to the tree potential this amounts to a correction of order X/tt . In two
dimensions, finally, the approximation (3 .49) is invalid since the leading term is of
order k 2. We expect contributions of order (A/~t2)k 2f(q) 2 ). Entropy effects could
play a substantial role in this case.

Let us concentrate again on d = 4. We expect our loop expansion to be a valid
approximation only if the minimum of the average potential falls into the outer
region of the potential (02 > Ocr ). In this case the physical scalar has a mass squared
- - Frû. (The other modes are the Goldstone bosons .) If the minimum stays in the
outer region for arbitrarily small k2 we can justify naive perturbation theory a
posteriori, since for k 2 -~ 0 we recover in the outer region the standard perturbative
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effective potential . For a minimum in the inner region (02 < -~,2r) the situation is
more subtle . One needs a renormalization group improved perturbative expansion
before one can decide if this effect is an artefact of an unsufficient expansion
method or if it really corresponds to physics different from the naive perturbative
expectations (which we find unlikely for the pure N-component e theory) . To look
for a possible minimum in the outer region we compute the derivative of eq. (3.23)
for kó = 3,uR,

2

	

dU4

F~R
a02

with

with

=y+

for k2 << 112 , and

AR ~

	

k2

	

6
a 121n 1 +

	

+ ;Y +

	

2

	

2

	

,647r

	

1

	

2,u R

	

1 + k /21~,R + 2

r

	

_ k2 k2 k2

	

3k2
+(2+N)I66(3,uR)+1-26(k 2 ) z + 2 - 2

	

2

	

2

	

2
YR

	

YR Î

	

11R ~ 2F~R + k

	

+ 3y,1R

k
+(N-1)

	

,

	

2

2

	

+y 181n(1 + k2 + 3Y)
k ` + Yl~R

	

2,uR

18

	

2 r1 27
+ 1 + k'-2.Á +

	

Y

	

+Y

	

2 1 +k2/2 2 +

	

Y

2
~2= R(1+y) .

R

6- 3k a

	

4

	

k 2
E =

	

t,R
+ 121n(1 +

1 +k 2/2,uR

	

2 UR

k 2
+2(N-1)ln( +

2A R

N' R+(N-1)
k2 +YI

t1 ~ 1
R

'2Y )

(3 .59)

(3 .60)

In lowest order in A R and y the minimum condition is

y= -(/\R/64772)E,

	

(3 .61)

E = 6 + (N + 2)(66(3tt
R) + 1)

	

(3 .62)

+(N+2)(66(3,uR)+1-26(k 2)k2 ) +3 kZ

	

(3 .63)
N' R

	

R
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for yu2« k2, respectively . One finds 02in always smaller than 2tt2/~ R ,

On the other hand, the value 0,r depends on the cut-off n . Neglecting inverse
powers of v and to lowest order in ~ R one obtains

`Ymin - 2g2/'~ R - ( E/32 �r 2 )1, 2

	

(3 .64)

Oc 2 ( l 2j,2 2k 2 1

	

n2
~

	

~1~2_

	

-k2/

	

Á

	

%~

	

+ 16772 ~ (2+N)n2-6(A.ZRln222
R R

	

~R

2
- [ 4 +'-,N+3(2+N)b(3,uR) ] ~2+(8+N)k2(ln nz +'(3.65)

2gR

The condition for the minimum to be within the outer region is $,Zin > $,2r, or

_ ~R

	

n2
k2>

327r2
(2+N)n2-6~On z%,~

	

2

	

R

n2
+ ['E - 4 - ''N-3(2+N)b(3~Á)]tt2+(8+N )k2 (ln 2 + z29R

This condition is obviously not realized for very small k 2/,u2 or large n2

	

R . An
extrapolation over a large range of scales (large n2/k 2) needs a renormalization
group improved treatment .
We finally mention that our one-loop results, eqs . (3.23) and (3.55), do not

include corrections from wave function renormalization at this point . We do not
expect any divergences in one-loop order (a logarithmic divergence arises only for
two loops) . The finite contributions to K,nq)) (1.4), however, should be computed
for the inner part of the potential.

4 . Conclusion

(3 .66)

We have computed the average potential for the O(N) symmetric qP4 theory in a
straightforward steepest descent approximation, treating the constraint on average
fields as a part of the action . As usual, this is an expansion in the (small) quartic
scalar coupling X . In the one-loop approximation one obtains in four dimensions a
Coleman-Weinberg type potential (3 .23), but only in the outer region, namely for
1P2

>_
O_:-- (2/X)(tt2 - k 2 ). In this region one expands around a constant classical

field . All results correspond closely to standard perturbation theory, except for an
additional infrared cut-off k 2 from the size of the volume over which averages are
taken . In the inner region, for (p2 < 0c2r, the classical solution which minimizes the



526

	

A. Ringwald, C. Wetterich / g)° theorv

constraint action Sk is a spin wave rather than a constant field . In the inner region
the one-loop potential reads

k4
Uk_ _'k2<p2_

	

702

	

64zr2c4,u4~4'

	

(4 .1)

In the inner region the potential decreases fast for small k and becomes purely
quadratic (with negative quadratic term) in a good approximation . For k ---> 0 the
inner part of the potential becomes flat and the one-loop average potential becomes
convex . The inner region encloses the so-called "large field region" and the region
where the naive perturbative effective potential develops an imaginary part . In our
case no conceptual problems arise, since we always expand around the true
minimum of the constraint action and the scale k provides an effective infrared
cut-off. We conclude that the average potential, besides its simple physical interpre-
tation, offers a convenient technical tool for a study of the region 02 « 0cr . A
renormalization group improved treatment is necessary to answer the question
whether the minimum of the average potential lies in the outer region, as we expect .
This will justify a posteriori the use of naive perturbation theory for an investigation
of spontaneous symmetry breaking and the spectrum of physical excitations in the
pure q)4 theory . For the scalar sector of the standard model, however, the situation
is more complex and we cannot exclude that the average potential reveals new
aspects of the physics of spontaneous symmetry breaking which do not show up in
the naive perturbative treatment.

The authors would like to thank M. Löscher for useful discussions .
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