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Abstract. We investigate Green functions for heavy 
quarkonia in a stochastic vacuum. We derive rigorous 
results for an Abelian model and expressions for the 
non-Abelian case which are suited for phenomeno- 
logical analysis. 

1 Introduction 

Recently, a model of a vacuum has been investigated, 
where its dynamical properties, i.e. the fluctuations in 
space time, play an essential role [1, 2]. This picture 
is especially promising and simple for heavy quarkonia 
[2,4-7],  which in this way can be treated as a 
quark-antiquark pair interacting with an external 
color field and among themselves through (short- 
range) gluon exchange. Both interactions are repre- 
sented by potentials in the phenomenological models 
ofquarkonia [8]. In the QCD sum rules [9] one makes 
use of the operator product expansion, where the 
coefficients of the operators represent the perturbative 
contributions, whereas the interaction with the 
external field is taken into account by vacuum 
expectation values of local operators. In this way one 
effectively exploits the space time region, where large 
fluctuations of the vacuum field can be disregarded. 
There is a third [10,11], connected approach 
especially suited for very small systems, where one 
treats the one gluon exchange by a Coulomb potential 
and interaction with the vacuum fields as perturbation. 
The energy shifts of quarkonia levels can in this model 
again be expressed through vacuum condensates. 

It was shown that the fluctuations in space time of 
vacuum background fields can create a linear 
confinement both for heavy quarks [2] and for light 
quarks [4, 5] and gluons. It was also shown that the 
scale of the vacuum fluctuation plays an essential role 

* Permanent address: Institute of Theoretical and Experimental 
Physics, Moscow, USSR 

[12-14]. If the quarks move slowly with respect to the 
time fluctuations of the external field, i.e. if there 
correlation time Tq is large as compared to that of the 
external field To, the fluctuations can effectively be 
treated as. a white noise, and one obtains the potential 
model. In the opposite case, if Tq << T o, the dynamics 
is essentially non-instantaneous and cannot be 
described adequately by potential models, as was first 
remarked by Voloshin and Leutwyler [10, 11]. In this 
situation one can use QCD sum rules or perturbation 
theory for the external field. 

With all that qualitative understanding it is of 
interest to have quantitative estimates of validity of 
all mentioned approaches, especially since for many 
interesting applications one expects both correlation 
times to be of the same order of magnitude. For  that 
purpose one should take into account the color 
Coloumb interaction between the quarks and the 
interaction with the external color field on the same 
footing. Recently a first step in this direction was made 
[15]. The ground state of a quark-ant iquark pair in 
an external Abelian field with Gaussian fluctuations 
was calculated exactly. In this paper we take into 
account both potential quark-ant iquark interaction 
and their interaction with the fluctuating vacuum field. 
In Sect. 2 we treat the exactly solvable case of two 
colorless quarks bound by a hormonic force in an 
external Abelian Gaussian stochastic field. The exact 
result for the ground state energy is discussed and it 
is investigated, under which specific limiting conditions 
the Voloshin-Leutwyler (VL) result [10,11] can be 
obtained for the Abelian case. Specifically we also 
compare with a modified version of the VL model 
[14], where a finite correlation time of the external 
field is taken into account. 

In Sect. 3 we introduce and investigate a pair of 
colored quarks in an external color field. Here arises 
the problem of path integrals with non-commuting 
interactions in the action integral. To establish a 
gauge-independent formalism we introduce gauge 
covariant kernels which have to be disentangled. By 
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choosing the modified coordinate gauge one can 
diagonalize the potential matrix and we obtain 
compact final formulae. The influence of higher than 
bilocal correlators is discussed. In two limiting cases 
we obtain a formulation of the problem either in terms 
of functional integrals or in the form of an integral 
equation. In Sect. 4 we summarize our results and 
discuss possible applications in realistic situations. 

2 S o l v a b l e  A b e l i a n  m o d e l  

In this chapter we introduce a solvable model which 
already shows some characteristic features of the 
realistic problem. We consider a pair of colorless 
particles bound by a harmonic force in an external 
stochastic field E. The latter shall be Abelian, 
space-dependent and shall be described by a centered 
Gaussian process, i.e. the generating functional for that 
process is given by 

W[J]  =exp{ - -~ (a ( z -a )6~kJ j (a ) Jk (~ )dadz}  (2.1) 

6 6 
( E k l ( t l ) ' "  Ek.( tn)  ) -- - -  W [  J ] j : o  

6ak,(tl) 6ak.(t,) 
(2.2) 

with 

c = � 8 9  2 ) ,  q5(0) = 1, ~b(a - z)  = 4)(T - -  a).  

We work in Euclidean space time, hence the action 
is given by 

+T (m +2x2( t )+iE( t )x( t )}  S[x,E, T] : ~vd t l~ i2 ( t )  (2.3) 

and the Green function is expressed by a functional 
integral, averaged over the field E. 

G(g, r/, T, - T ) =  (I~@xe--StX'E'TI)E. (2.4) 

The functional integration ~ x  runs over all continuous 
paths [ - T, T] ~ N with end points 

x ( -  T ) =  q, x (T )=  ~. (2.5) 

Due to the assumption of a Gaussian process, the 
averaging over the field can be performed most easily, 
yielding 

G(~, rl, T, -- T )= ' ~ x e x p - {  )~ ( 2 i 2 ( z ) + D x 2 ( z ) ) d z  

C T T ) 

(2.6) 

It factorizes in three 1-dimensional Green functions: 

Gl(~, t/, T, - T) = ~ x  exp - Sl [x]  

S 1 [x ]  = x (T) --[- 7 x  (T) 

2 - r  r c~(a-r)x(a)x(~)da&" (2.7) 

This Green's function can be expressed by ordinary 
integrals of expressions containing only solutions of 
classical mechanical problems. The method is similar 
to the one proposed by Feynman for the polaron [16]. 
An alternative method of deriving the Green function 
(2.7) is given in the Appendix. 

As a first step, we evaluate the logarithmic derivative 

K(c,~,q,T, -- T ) ~  d l n  Gt(~,r/, + T, - T) 
dc 

T 

- T  

�9 x(z)e-Si txl /~xe -s~txj. (2.8) 

We introduce the effective action 
+T 

S' 1 Ix] = S1 [x] - S f(t; x, x', z, a)x(t)dt (2.9a) 
T 

with 
f ( t, x, x', ~, o) = KS(t - z) + x' 6(t - a). (2.9b) 

With this action we can write 
T 

K(c, 4, , ,  T, -- T) = - � 8 9  ~ dadz~(a - ~) 
- T  

Oz e -s'l[x] / ~ x e  -s'txl. (2.10) OKOK' /x=K,=o~ 

The classical solutions xr and x' d are obtained from 
S 1 and S'~, respectively: 

~ x  ~ ,~sl , [x j = 0 ,  ~ - x [ X j = 0 '  to wit, 

mS(~,(t) = - f(t ,  x, x', ~, a) + Dx',(t) 
T 

+ c I x; ,(a)4~(t-  a)da (2.1 la) 
- T  

T 
m2'a(t ) = c ~ xct(a)dp(t -- a)da (2.1 lb) 

T 

with the boundary conditions 

x'r Xol(T)=~; x'~l(- r ) =  xol ( -  T)=tl .  (2.11c) 

We expand Si and S' i around these classical solutions 
and obtain 

' x '  1 <$2S'~ 
St1 E X] = $1 [ eli -{- 2 ~2x2EX]/xgl Y = X --  Xtel 

1 62s 1 ~ 
SiEx] = S1[x~l ] + ~ x 2  Lyj/x~ ~ y = x -- xd 

y(r )  = y ( -  T) = 0. (2.12) 

Since both S'~ and S 1 are quadratic and differ only by a 
linear term (2.9), the expansion (2.9) is exact and 
moreover 

( t~2S'I ~ = (I~2S1 ~ (2.13) 

'$x~ /ix;, \ <$x~ }1~o," 



Therefore we can write (2.10) as: 

O 2 
K(c,  ~, tl, T, - T)  = -- �89 - ~) e,~O• 

& c & c ' ' -  - 

(2.14) 

i.e. the functional integrals cancel. 
Using the equations of motion and a partial 

integration in the kinetic term, the classical action 
becomes 

! //n t ! 
Sz [ x J  = 2-(~2~1(T) - q2~,(- T)) 

1 t ~ 
- -  ~'(KTXel(~ ) "~- /~ XeI(O')) 

SI[Xcl ] = 2(~2~,(T) -- t/2~,( -- T)) 

and hence 
~2 

K(c,  ~, tl, T, - T)  = - � 89  - z) O~,~c6~c 

(2.15) 

m 
.exp - ~(2;,(T)-r -- 2;,( -- T).r/) 

71- ~(B2Xcl(~" ) "~- g t X ; l ( 0 " ) )  

(2.16) 

Since for c = 0G({, r/, T, - t) = GH({, rl, T, -- r ) ,  the 
explicitly known Green function of the harmonic 
oscillator, we obtain 

G(~, r/, T, -- T) = Gn(~, q, T, -- T) 
c 

�9 e x p  ~ de 'K(c ' ,  ~,,7, T, - T).  
0 

(2.17) 

This is the promised expression for the Green's 
function in terms of classical solutions. Matters are 
simplified if we consider only the ground state energy 
Eo: 

OEo 
1 0 ~  In G(0, 0, T, - T). (2.18) lim 

~C T ~ m  27' 

In that case the solution x(t) of (2.11a) with the 
boundary conditions 

lim x ( T )  = lim x (T )  = 0 (2.19) 
T ~ o o  T ~ - o o  

can be obtained explicitly: 

x ~ , ( ) - _ J  2~e # 2 + ( D g + c ~ ( # )  

t n  

(2.20) 
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with 

(Do = # D i m ,  ~ (# )  = S ~ ( t ) e - ~ d t .  (2.20a) 

We then obtain 

T 
8 E ~  lim 1 ~ ~ d a d z c ~ ( a - z )  
~c r - ~ S T ' m  - T  

2 T  r d(a 
= lim 8T'm j - z) 

T ~ o 9  -T 

+ g ,  q~(~r- z)(e ~u(~-~ + e -iu(~-~) 

1 + oo ~a(U)/m 
= 4~ ~ d#- . (2.21) 

- m  2 C ].12 -F (D O + - - ( / ) ( f i )  
m 

Integration over c gives for the three-dimensional 
oscillator the final result for the ground state energy 
of the system described by the stochastic problem (2.2): 

+ oo { c / m ~ ( # ) ~  (2.22) 

In Appendix A we give an alternative and more 
direct derivation of this result. 

We discuss first some general properties of this 
integral. If q~(a - z) falls off with a characteristic decay 
time T o, the Fourier transform falls off with a 
characteristic frequency #0 ~ 1/Tg. Since 4~(0)= 1 and 
correspondingly ~ ( # ) d #  = 2n, we have 

1 
~(0) ~ T v fq)(#)#2d# .-- T~etc. (2.23) 

g 

ff T a ~ 0 ,  then ~(#) variesslowly and we can replace 
~b(#) in the integrand by q~(0) and obtain by analytic 
integration 

3 2 Eo - ~x/(Do + c/m~p(O). (2.24a) 

This result can be also read off from (2.6), since for a 
white noise the time spread term in the exponent 
becomes an additional oscillator with strength 

+oO 

c /m f dp(t)dt. 
- o o  

The condition for a safe replacement of ~b(p) by ~b(0) 
in (2.22) can be obtained from (2.23) to be (see 
Appendix B): 

2m m 
T 3 + cooT o << --. (2.24b) 

C C 

If on the other hand T o -~ ~ ,  the integrand increases 
logarithmically with T o , but the integration interval 
shrinks like 1/Tg and thus we have for 7"o--+oo 

3 Eo ~ ~(Do, i.e. the static stochastic field does not  yield 
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any level displacement. This result is interesting in 
itself, but of little practical interest, since first we expect 
the vacuum fields to have correlation times of the 
order of the hadronic scale and secondly the validity 
of Gaussian approximation becomes questionable, i.e. 
the importance of neglected higher cluster terms 
increases with growing T O . The energy shift obtained 
by Voloshin and Leutwyler, adapted to the harmonic 
oscillator can also be obtained from the general 
formula (2.22), in the following limits: 

(c/m)~(#) < < / u  2 --{- o )  2 (2.25a) 

S/~2~(#)d/~ << coo z. (2.25b) 

With condition (2.25a) we can expand the logarithm 
and obtain 

Eo 32coo+3+.~ c ~(~) 

~ 32coo + 3 c  ] ~  ~(#){12o _ _ _  #z } 
Co4 + " "  (2.26a) 

under the second assumption (2.25b) we then obtain 

3 3 c  1 
Eo ,,~ ~coo + 4~ m Co,~" 2~ = E o + A E o. (2.26b) 

With (2.24, 2.26) we can express the conditions (2.25) by 

A E o T  o << 1 and l/To << Coo. (2.27) 

The method of Voloshin and Leutwyler is easily 
applied to the harmonic oscillator, yielding for the 
energy shift of the ground state 

(01y210)'c 
A E  o = 

(El -- Eo) 

The ground state expectation value of y2 is obtained 
by the virial theorem as 

(01y210> - 

and hence 

3O9o 3 

2D 2Coom 

c-3 3 c 
A E  o - - (2.28) 

Coo-2Coom 2mCo g" 

Thus in a stochastic model the static VL result is 
obtained under conditions (2.25a, 2.25b). (a) states that 
not only the strength of the perturbation, e, but also 
the value ~(0)= S(a(t)dt has to be small in order to 
justify the expansion of the logarithm. Only in that 
case an averaging over the Green function and an 
averaging over the energy shift yields the same result. 
Condition (2.25b) states that the characteristic 
correlation T o of the field has to be long as compared 
to the oscillator period 1/Co o . It can be released easily 
by modifying the VL method to time-dependent fields. 
For a correlation function ~b(t) = e-Itl/rg the VL result 

iiii 
' ' I . . . .  R 

1 

' I ' 

R 
i 

P"I ..................... 

0.5 

b Or2 , , , ,I , , ~/tv...V~,lWo ) 

Fig. la ,  b. Exact results for the energy displacement of an harmonic  
oscillator with frequency to o in an external stochastic field, a Solid 
curve: exact result (in units 3c/2mto~) for the correlation function 
exp{- l t l /To} , dashed curve: Ratio of the exact value of the 
displacement to the modified VL result (2.29). b Ratios of energy 
displacement for different correlation functions q~(t) as compared to 
t0o(t) = exp { - I tl/T0}, dashed dotted curve: ~b(t) = exp { - t2/T2}, 
dashed curve: qS(t) - 1 for t < To, 0 elsewhere 

is modified to [14]: 

3 c 1 
AE~ = 2 mcoo coo + 1~To" (2.29) 

For that correlation function the integral (2.22) can 
be performed analytically, and we obtain 

Eo = 32o + 3{(co 2 + 1/T 2 + (2c/mTo) + Coo~To ) 2  2 1/2)1/2 

-- CoO -- 1/To}. (2.30) 

In Fig. la we display the exact result for qS(t) = e Itl/r", 
where Co is the abscissa, measured in units of Coo, and 
the energy shift E o - 3Coo is given in units of 3c/2mCo 2 
for c/(mCo 3) = 0.1. 

Also displayed is the ratio of the exact vs. the 
modified VL result and we see the very satisfactory 
agreement for A E o ' T o <  .5. In Fig. lb, c we give the 
ratio of AEo for different correlation functions as 
referred to the exponential decay q~(t)=eFtl/r". A 

Gaussian function e-t2/r~ yields results for AEo 
differing from results with an exponential function by 
at most 15~, whereas the extreme case of a square 
~b(t)= 1 for It[ < 1/Co, 0 elsewhere, differs from the 
exponential by up to 25~o (for c/(mCo3o) = 0.1). In order 
to get an idea of the orders of magnitude, we express 



c by the gluon condensate. Simulating the non-Abelian 
8 

1 case by replacing ( E  2 ) by ~ ~ ( E ~ )  we obtain 
e = l  

c_,.,._,<%,.> - -g  ~ n ,~ 6.6"10-3GeV 4 (2.31) 

we obtain for bot tomium with m = md2 ~ 2.2 GeV, 
coo ~ co(1P) - co(IS) = 0.44 GeV 

C 
- -  ~ 0.035. 
mcoo 3 

Another very simple example of solvable model is 
the two-level model with an external stochastic source, 
which mediates transitions between the two levels, i.e. 

= 0 E 0 

The action is given by 

T 

S(F) = ~ {H o + i~:(t)}dt (2.33) 
0 

and the Green function by 

G(T) = ( (5 - e  s(r)))~. (2.34) 

We separate the time-ordered exponential and obtain 

G(T) = < (Je- f~~ ) 

= e-  H~ (2.35a) 

where 

~_(t) = e~~ Hot. (2.35b) 

We assume again for the stochastic field a Gaussian 
process, i.e. 

( E(t)E(t') ) = ( E 2 >c~(t - t') (2.36) 
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and all higher cumulants vanishing. We then obtain 

T T  
G(T)=e-'Orexp (E2~IIc~(t-t') 

2 oo 
( e ( H ' - ;  2)p-el 0 ) (2.37) 

e ( H 2 _ H t ) l t _ t ,  I " 

If we put specially c~(t-  t ' )= e -~lt-cl we obtain for 
the ground state energy from 

-E~  r-.oolim( lln G(T) ) 

<U> 
E o - + H  I . 

H 2 - - H  t +co 
(2.38) 

This is exactly the result of the modified LV method 
and approaches for the co--, 0 the static result. 

3 Non-Abelian interquark and background 
interactions 
We start from the path integral representation of the 
gauge-invariant nonrelativistic Euclidean Green func- 
tion of the q0 system [7, 14] 

[ ] ( ) (3.1) G(xi, x f; T, O) = ~[dz] d~ e -u/2f~2a~ Pe i~ 

where x = ( z -  z) and the closed path Q is composed 
of the paths from zl to z:, ~: to ~i and the lines 
connecting fi to zi and z: to ~:. The latter two lines 
correspond to a Schwinger string between the quark 
and antiquark in the initial and final state. The 
averaging is done over all color fields. 

We now assume that we can express the average of 
the Wilson loop by two contributions: A color- 
dependent non-Abelian interquark potential (due to 
the exchange of not so soft gluons) and an additional 
non-Abelian background field. From perturbation 
theory the color structure of the interquark potential 

z(T) 

t a 

YCT) ~(T) 

I 

: = - - - - ; i ' = - : : - - ~  D V(v) 

i_- Z_ Z_-_Z, ', C Z_-_Z--_; 

z(O) Y(O) 2(o) 
a 

I( �9 - 

t "# 

t ~ 

z(T) YU) ~(T) 

t G , t "  v ' :  v t i t } ~  

r r J I :t~ 

I d 

d 
z(O) Y(o) g{o) 

Fig. 2. a Deformation of the Wilson loop in 
order to arrive to a gauge-invariant for- 
mulation of the interaction, b Use of the 
"color Fierz relation" 
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is assumed to be of the structure 

V(z -- 5)t"P (3.2) 

where t" acts on the quark at position z and P = - t "* 
on the antiquark at position i. 

In order to give a precise gauge-invariant meaning 
to the potential, we insert t" and P at the same time 
in the contour Q and deform it, as indicated in Fig.2a. 
We form tentacles above and below the point z, where 
t" and P are inserted going from the position of the 
quark, z(z) and antiquark ~(z) to the line YiY I, which 
can be chosen as the center of mass trajectory. 

We do the same for the time interval Az, where 
there is no interaction via the potential, but only with 
the background field A u. We call this part of the 
interaction C, also shown in Fig. 2a. 

Now it is convenient to use a kind of "color Fierz 
relation", which can be derived as follows. Let t~t ~ be 
the generators of SU(N~) in the fundamental 
representation i.e. N~ x N~ matrices, with the usual 
normalization 

t r  (tat b) ---- 1 r~ab (3.3) 

2 ^ We now introduce the Nr c x N~ matrices V, 
v = 0 , . . . N  2 -  1 by 

1 

t~fl ~cc 

Qa = x/2t:p a = 1 . . . N ~ -  1. (3.4) 

From the relations of the SU(N~) generators 

a ta - -~Nc  = ~6iu6;~ ~ 6i~6z u tXlt  ir  1 
a 

one obtains the completeness relation 

(3.5) 

i:p~;,~ = 6pr6~6. (3.6) 

Using (3.6) we can now dissect the contour integrals 
across the line Y(0) to Y(T) inserting the operators f~, 
as shown in Fig. 2b. In this way we obtain the gauge 
covariant matrix operator V~,: 

Vvv, = V(z - ~) tr { q5(s Y)f~49(Y, z)tb(~(xY)U(9(Y, z) t  b} 
(3.7) 

where 
z 

qS(y, z, t) = P exp ~dyA(y, t). (3.8) 
Y 

Using (3.5) we obtain 

{ 1 ~ 6  12tr {c~(z, Y)V(a(Y,~)} V~, = V(z - ~) - 2N~ ~" + 

�9 tr {~b(~, Y)V'fg(Y,z)}}. (3.9) 

Similarly for an elementary background interaction 
during the time slice A~ we have the nonrelativistic 
(mq ~ ~ )  approximation: 

z(~) 

~ , . A z  = g ~ dyitr {f~Ei(y,z; Y)U}'Az  (3.10) 
z(O 

where 

El(y, z, Y) = ~b(Y, y, z)E,(y,z)qS(y, Y, z). (3.11) 

Due to the completeness condition (3.6) the Wilson 
loop (W(Q))  over the interaction with the back- 
ground field can be expressed in two ways: either 
through the surface integral 

/ T z(z) \ 

( W(Q)> = {Pexpig~dz  ~ dyiEi(y,z, Y ) )  (3.12) 
\ o ~(r) oo 

or through 

(W(Q))  = PexpioI&O(T) . (3.13) 
0 / 0 0  

If we choose the modified coordinate gauge [13] 

A(0, t) = 0; (x - X)A(x, t) = 0 (3.14) 

the string operators become unit matrices. The 
potential matrix Vof (3.9) becomes independent of the 
background field and diagonal: 

_ N 2 - 1  
Voo- vl = z) 

- 6o .v  = 6 - 1  - 
~ 2N~ 

V.o = O. (3.15) 

The quantity relevant for the interaction with the 
background field, namely 

tr {f~E~(y, z, Y)U} (3.16) 

becomes in that gauge 

tr { f~Ea(y, z)ta[ v'} (3.17) 

and thus contains as well matrix elements with index 
pairs (0a) as well as (a,c) (i.e. singlet-octet and 
octet-octet transitions). 

Now we are in the position to disentangle V'and L 
We use the well-known separation of the interaction 
representation 

}(Hl+H2)dt }H,(t)dt }II2(t)dt 
ee ~ = (Pe ~ )(Pe" ) 

with 

z 

JH l(t)dt JHl(t)dt 
/42(z) = {pe ~ }- '.H2(z){Pe" } (3.18) 

which is most easily proved by differentiation with 
respect to b. In our case with diagonal V we obtain 



T 

; fZ(x(~')dz i j ?(-c)& 

W ( I  7, e) = (e  ~ "Pe" )oo 

= e x p  -- jd27'V,(x(27'))} P e x p i  ~(z')d27' 
0 O 0  

(3.19) 

with 

?(z) = [e 0 

r 
+ ~, V(x'z')dz' - [, fqx(<))& 

]~(27) [e o ]. (3.20) 

We now evaluate the second factor in (3A9) by using 
the cluster expansion. We make a crucial assumption 
that we need only bilocal contributions: In doing so 
we obtain: 

( P exp i i ~(27')dZ' ) o ~ 

1 r r -1 
= exp -- g I d27 1 d27' (Eo~(27)e~o(27')) ] (3�9 1) 

- ~ 0  0 / 

i.e. due to the reduction on bilocal expressions in the 
cluster expansion, and matrix elements of type Co~ 
enter. Since Coo vanishes (see (17)), we have only Co~ r 0 
and thus we obtain 

i ~(.')~.' i v(x.,)~., i~ v , . . , ) ) -  v~(x.,~l>, 
5oa = (e ~ e(-c)e 0 )Oa = e~ Coa(27) 

(~oo(27)eoo(*')5 = a(x(27), x(27'))( eo~ 

with 

(3.22) 

(3.23) 

z 

A(x(27), x(27')) = exp j" [Vl(x(z") - Vs(x(z"))]d27". (3.24) 

F rom (3.17) we obtain: 

g2 z(O z(r') 
(~0a(27)~0(27')5 = ~  ~ dw~ ~ dWk(tr(E~(w, r; Y)E~(w, <))  

IV c ~(r) z(r') 

= Q(z(27), e(27); z(27'), e(<), 27, 27') (3.25) 

where the gauge (3�9 already used above should be 
used to evaluate the expectat ion value. Combining all 
terms in (3.19) and inserting into (3.1), we obtain an 
expression for the heavy quarkon ium Green 's  
function: 

G(z(T), e(T), z(0), e(0), 0, T) = ~ Edz]Ede] 

"exp{(-2,z2(27)d27-2,z2(27,-iVx(x(27,)d27 

,)} - ~ d27Sd27'a(x(,), x(,'))O(z(T), ~(27), z(27'), e( , ' ) ,  27, 27' . 
0 0 

(3.26) 

In the general case the correlator  Q of (3.25) depends 
on three vectors, which can be taken as the relative 
distances x(z) = z(27) - 2(27); x(27') = z(27') - 2(27') and Z = 
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Y(z) -- Y(z), where Y(z) is the c.m. coordinate:  Y(z) = 
{ritz(r) + m2(27)}/(m + fit). In order to be consistent in our  
nonrelativistic approximat ion,  we neglect the depen- 
dence on the c.m. mot ion  and retain in all formulae 
only the dependence on x(z) and x(z'). Especially we 
deduce from (3.25) that  we then can write the 
correlator  Q in the form 

1 1 

Q = ~.d~ S d~'xi(z)Xk(Z')(tr Ei(c~x(z), Z)Ek(~'x(27'), 27')) 
0 0 

= R(x(27), x(z'), z, z'). (3.27) 

In order  to see the implications made by keeping only 
the bilocal approximat ion,  we expand the last 
exponential  term in (3.26): 

G(x, y, T, O)= S[dx] exp { - -2~  ilz(27")dz" -- ~ V(x(z")dz" } 

�9 exp Vx(x(27"))_ Va(x(27")} 

�9 a27"g(x(27j), x(27j), 27~- 27))}. (3.28) 

We can now use that  R(x(27j),x(27)),27- z') is inde- 
pendent from the path x(27") between z~ > z " >  z) and 
thus perform the functional integral in the different 
time segments. The first two terms are easily evaluated, 
leading to 

T z l  

G(x, y, T, O) = GI(x, y, T, O) - Id271 1 d27'1Gl(X, ul, T, 271) 
0 0 

�9 R ( u .  u;, 27, - 27 0'  G 8 ( u .  u;,  q - q )  
t t �9 G,(up y, 271,0 ) + .... (3.29) 

where Gfi j = 1 or 8 is the color octet or singlet Green 's  
functions: 

Gj(x,y,T,O)=,[dx]exp{-i2Yc2+Vi(x(27"))d27" }.  

(3.30) 

For  the next term, however, we have to distinguish 
between natural  and unnatura l  ordering�9 a) Natura l  
ordering, where the intervals [27~, 27~] do not  overlap: 

! ! 
27j > 27 i > Zk > 27k yields 
T r l  

~ 2271 S a q  a # , ,  ul, 7; q ) g ( u ,  u;, 271 - 27;)28(u~, u'~, 271~'~) 
0 , 0  

z 1 

t t t ! 
"~2 

�9 d272 ~ d27'2Gl(u,, u2, zl, 272)R(u2, u2, 27e -- 272) 
0 

i 
" G8(u2, u2, "c2, 27'2)G1(u2u , y, 272, 0)dUl, du',, du2, du 2. 

(3.31) 

Unnatura l  ordering, however,  where the intervals 
[27~, 27~] do overlap, yields more  involved expressions�9 
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! Consider e.g. the case 272 > 272 > 27tl > "['2 > 0�9 This 

ordering yields the contribution: 

~ i d 2 7 2 G ( x ,  ul, T, 272) ~ d z 2 R ( u 2 ,  u2,771,272)Gs(Ul, u2, Zl, l"2) 
20 0 

I p t ! ~ / 
�9 d 2 7 2 R ( u 2 ,  u 2 , T 2 , 2 7 1 ) G ( u 2 , u 1 , T 2 , 2 7 r l )  ~ d27'2 

0 0 

t t / t t t ,t t 
�9 R(u'l ,  U 2 , 7 5 1 , 2 7 2 ) G 8 ( U l ,  u 2 ,  T, tl ,  2 7 z ) G 2 ( J 2 ,  y, z 2, O) 

(3.32) 
where 

/~t r } 
G( x, y,  T, O) = I [dx] exp ~ - - 122(z') - I ( g i  - 2 g 8 )672 t' 

[ 2O 0 " 
(3.33) 

The occurrence of these terms is the price we have to 
pay for the exponential form (3.26). We can see it also 
from a more formal point of view: In assuming the 
exponential form of the path integral, keeping only 
bilocal operators, we have tacitly assumed that all 
higher cumulants of van Kampen type are zero. For  
the quartic term this means explicitly, e.g. for the case 
272 > 27'1 > > 27'2: 

( C(271 )C(27'1 )C(27 2 )C(~'2) ) = ( C(27 1)C(27'1) ) (C(27 2)C(272) ) 
+ 

-~ ( e(27 1)e(272) ~ (C('Ctl)C(2T2)) 
(3.34) 

i.e. the natural ordered 1.h.s. is expressed by terms in 
unnatural ordering. 

A radical way out of this dilemma is to discard all 
terms with unnatural ordering. In that case we have 
no exponential form for the functional integral, but 
we can easily sum up the series (3.29) to form the 
following integral equation: 

T 
G(x, y, T, O) = G~(x, y, T, O) - I d27 ~ d27'd3ud3u ' 

0 0 

'G1 (x, u, T, r)R(u, u', z - 27') 

"Gs(u, u', "c, V)G(u', y, r'0) (3.35) 

This integral equation is a consequence of the 
"clustering" assumption, or more formally: all 
path-ordered higher cumulants [5,17,18,20] are 
assumed to be zero, e.g. 

(C(Z2)5(27tl)5(272)?(272)) = (C(271)C(272)) (C(T2)C(272)) (3.36) 

4 Summary and discussion 
We obtained in this paper results of two kinds. First 
we have solved exactly an Abelian model for 
"quarkonium" in an external Gaussian stochastic field 
bound by a harmonic oscillator potential�9 This model 
is useful to test the different approximations usually 
made in realistic situations: sum rules [9], local 
potential approach and perturbation theory in an 
external field [10, 1 1]. In addition we also presented 

in Sect. 2 a simple two-level model as an illustration 
to the VL model [10, 11]. 

Comparing the exact result for the groundstate 
energy (2.23) with the result of perturbation theory 
(2.28) one sees that perturbation theory works only 
under two conditions: One very plausible one, namely 
that the average strength of the external field should 
be small, and an less expected one, namely that the 
correlation time of the background field should be not 
too large (2.25a). The modified perturbation theory, 
which takes into account the time dependence of the 
external field, has a wider range of applicability�9 We 
have compared it to the exact result in Fig�9 1 and to 
the two level model in (2�9149 

In Sect�9 3 we have considered the general non- 
Abelian model, where the quark-ant iquark potential 
has color structure and also the external fields are 
non-Abelian. This realistic case serves as a basis to be 
applied to charmonium, bottonium (and eventually 
toponium) systems. 

We obtain an integral (3.35), which is valid when 
the path-ordered higher cumulants are unimportant. 
This assumption is justified if the correlation time (and 
length) is small enough. For  values of large T o the 
overlaps of vacuum fluctuations can be important and 
additional assumptions on higher order cumulants 
must be made. 

Equation (3.31) can be considerably simplified in 
the case when To, which enters in this equation through 
R(u, u', z, z') ~ f ( z  - V ) / T  o is small�9 There are two other 
time parameters which define the dynamics of the 
problem: _qTt8) and T(ql); they are the period of motion 
if the quarks in the color octet and singlet state, 
respectively. For quarkonia T~ 1) is approximately 
given by the inverse Coulomb energy T (2) ~ 2n2/(m_a 2) 

" ( 8 )  " q q s " 

In the octet state the potential V is repulsive, but 
the quark motion is defined by the initial and final 
conditions, i.e. by the velocity in the singlet state. One 

(s) ~ T~I) and one can consider therefore expects that Tq 
the two limiting cases 

(1) i) T o << T~ 8, ,-~ Tq 
(8) (1) ii) T o > Tq ~ T q . 

In the first case we can take octet the Green's function 
G(u, u', z, z') at coinciding time arguments, which gives 

Gs(u, u', z = z') = 63( / / - -  u'). (4.1) 

As a result the integral (3.35) assumes the form 
T 

G(x, y, T, 0 )=  GI(X , y, T, O) - ~ dzd3uG a(x, u, T, T)e(u) 
0 

�9 G(u, y, z, o) (4.2) 

with e(u) = ~ R(u, u, z, z ' )& ' .  
0 

For 27 >> T o the function e(u) becomes independent 
of 27 and thus the Green's function G(x, y, T, 0) is the 
one of a local Hamiltonian 

H = T + V 1 -~- e(b/)�9 (4.3) 



Spin-dependent potentials can be derived as re- 
lativistic correlations [6, 7]. The potential e(u) has been 
shown in [2] to be asymptotically of the form 

e(u) = a l u l -  Colu[--' oo. (4.4) 

In terms of the Lorentz invariant functions @ and @1 
[4] it can be expressed as [7]: 

=  {21nl i dv (Z v) 
0 0 

u 0o 
+ I2d2 ~ d v E - Z ~ ( 2 , v ) + ~ ( 2 , v ) ]  (4.5) 

0 0 

where 

t 2 ~ 1  x~ ( EI(z)Ej(z') ) = fl[31j(.@(z-- z') + ~ l ( z - -  z ) + h ~h2 ) 

h . h . ~ l l  
+ j JOh2J 

g2 ( t r  f2(O) ) 
fl = 12Nc(~(0) + @~(0))' h, = z , -  z; 

~(Z, v) = f(22 + v 2) 

N1(2, v) = f~(22 + v2). 

It is easy to derive the constants a and Co in (4.4) 
from (4.5). A confinement potential of the form (4.3) 
is usually assumed in potential models for heavy 
quarkonia, but we want to emphasize that the integral 
(3.35) is more general, allowing both for non-local and 
for non-instantaneous interactions. 

~,,(8) R In the case II, where Tg > lq  , is a non-local 
operator which should be evaluated explicitly. The 
only simplification occurs if the size of the heavy 
quakonium system is much smaller than the 
correlation length and time of the vacuum fluctuations. 
(Actually one should require that the size in the octet 
state is also small). In that case one can neglect in 
(3.27) the space dependence of the correlator and 
obtains 

R(u, u', z, "c') , 1 , ~- Xi(7~)Xk(T, )3ik ~ (E(z)E(z  ) ). (4.6) 

If the energy shift due to this quadratic stark effect 
is small enough, one may use perturbation theory and 
recover the results of Voloshin [10] and Leutwyler 
[11] or the results modified for finite correlation time 
[14]. 

In our intermediate (3.26) there occurs a sum of the 
interaction 1/1 and the modified background interaction 
A. Q, which differs from the sum V(11)+ e(u) in our 
potential case. The question arises whether one can 
treat V~ + AQ as a local potential for Tg << T~ 8). This 
can be done only if the q~ stays at a fixed distance r, 
so that Vt and V8 in A (see (3.22)) enter as a "local" 
kernel. This is essentially the assumption made in [ 13], 
and which is justified there by the limit of large quark 
masses. However, even for large quark masses, one 
cannot neglect their kinetic energy which is by the 
virial theorem always of the same order as the 
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potential energy. As a result one cannot use V1 + d Q 
as a potential and instead should do the path 
integration as done in passing from (3.26) to (3.35). 

Acknowledgements. It is a pleasure to thank for fruitful and critical 
discussions with M.A. Shifman, M.B. Voloshin, and V.I. Zakharov. 
Our  thanks are also due to the Atomic energy Commission of the 
USSR and the Deutsche Forschungsgemeinschaft  for financial 
support  which made our collaboration possible. H.G.D. wants to 
thank the Institute for Theoretical and Experimental Physics, 
Moscow, for the warm hospitality extended to him, Yu. S. is grateful 
to the staff members of the Theoretical Division of DESY for their 
hospitality. 

Appendix A 

In an alternative approach, we evaluate the Greens 
function G(0,0, T,0) with help of the fourier series 
expansion. 

Solutions with x (0) - -x(T)=  0 can be represented 
by the Fourier series 

x(z) = x. sin w.z w. = 0 -< ~ -< T. (A. 1) 
.=1 T 

The exponent in (2.7) then takes the form 

f } --~Tn~=lXn(Wo"l-Wn)-- ~lXnXmbnm =--KnmxnXm 
n,m = 

(A.2) 

where 
T T 

w~ = D/m, bn,m = (c/2) ~ sin w,z ~ sin w,,~' 
0 0 

"qg(z- z')dzdz'. (A.3) 

We split the matrix K,m: 

K = ~ ( 1  + ~ T f l )  with (A.4a) 

= ~" T(w 2 + wZ)6,m and (A.4b) O~nm 

1 
flnm -- (Wg -~ w2.) b"m" (A.4c) 

The path integration in position space becomes an 
integration over the Fourier coefficients x. and we 
obtain, using the known result for the three 
dimensional harmonic oscillator in an external field: 

\ 2r~shwoTJ 

�9 exp ( -  3tr ln  (1  + ~ f l ) ) .  (A.5) 

The ground state energy of the system is given by: 

E., = - lim -1 In G(0, 0, T, 0). (a.6) 
T 
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Insert ing (A.5) yields 

E o = ~ w o +  lira 3 ~ t r l n ( l + D f l  . (A.7) 
r~oo 2 T  \ 

We expand the logar i thm in powers  o f (4 /#T) f l  and use 

tr(;Tfl)k=(~T)kfl- -- - -- . . . .  f l . ~ .~ " ' f l  . . . .  

( 4"c V ' T T  

= t ~ T "  2 f l )  o I(P(zi  - zz ) f ( z2 '  z 'z )q ' (z2-  ~3) 

"/(~3, ~;) '" "f(vk, ~:)(o(v~, - ~'l)f(~'l, zl) 

"d%dz' 1 . -.dz,fl~',~ (A.8) 

where we have defined 

f(r, z') = ~ sin w.z  sin w.z' (A.9) 
2 + w 2  

n = l  W 0 

The sum can be per formed explicitly. 
Using sin w,z sin w,V = �89 w,(~ - r ' ) -  cos w,(r + ~)) 

we apply  the s u m m a t i o n  formula  1.445(2) of 
Gradschte in  a. Rykik, obtaining: 

T s h w o ( T  - z > )shwoz < 
f (z, "c') = 

2woshwoT  

with 

~> = max( r ,V)  r< = min(r ,z ' ) .  (A.10) 

We introduce the F o u r i e r - T r a n s f o r m  of qS(a) by 

+~ d0~ 
[ -  '~<( . . . .  )(b(a) ( A . l l )   o(-q - = 

and can write (A.8) as 

tr fl = 2"" " " 5  ~ dT~-..dak0(a0-..  

�9 (O(ak)f(%,C~2)...f(ak, a~) (A.12a) 

where 

4 T T 
- -  I dz ! dz' e i~''''- i " s h w o ( r  - "c > )shwoz < 

f (~ ,  a') = shwo T b 

w' = 4 . ~ e i (  ~, ~)TIZ2 sin (a' -- cOT/2 

w o + ~ (m - ~) 
+ O(T~ 

(A.12b) 

In the limit T ~  ~ we obtain  

f(~,  ~ ' ) ~  4 ~ 2nS(~t' - ~). (A.13) 

We thus have 

t / 4fl ,~k f C.Wo.rC ~k T + 2 ,  0k(a) 
tr - -  = - -  J a s -  2 2k" (A.14) 

Fur the rmore  we have not  per formed the limit (A.13) in 

one of the f (~,  ~') but  used that  

f ( c ( , 7 ' ) = 4 . - - w ~  . T  (A.15) 
Wo 2 + ct 2 

(This amoun t s  to the same as put t ing 5(0)= T/2n).  
N o w  the sume over  k can be per formed and we obtain: 

3 3 1 S d ~ l n  1 (A.1 E o =  + 6) 
2 w~ m(w  + 

which is the same result as obta ined  in Sect. 2. 

Appendix B 

Be M a frequency which is small compa red  to the 
characterist ic frequency #a = 1/Ta which characterizes 
the fall-off of ~b(#). If we integrate (2.23) only up to M, 
we may  thus safely replace (b(p) in the integrand by 

This yields 

M { 
! d/~ln 1 -+ 

2 c -  
= ~ { ~ / ~  + C(9o/m - COo} -- ~ m~b(O). (B.1) 

The remainder ,  i.e. the integral f rom M to infin~y, can 
thus be est imated to be smaller than  (2 /M)c/m.  (9 o. The 
replacement  of  ~(/0 by ~b(0) in (2.22) is justified, if 

2 c ~(0) << n { x ~ o  2 + Cd?o/m - (9o}- (B.2) 
M m  

With the condit ion m < 1 / T  a and ~(0) ~ T G (see (2.23)) 
we thus arrive at the condit ion 

--T0<<c n{xfo9 ~ + cTo/m _ o90} 
m 

or 

2m m 
T 3 q- - -o9o  Tg << --. (B.3) g 

c c 

Especially for the free case, one m a y  neglect the 
movemen t  of  the quarks  if 

T 0 < < 3 ~ c ~ 1 0 ~ q q / 6 . 6  in GeV. (B.4) 
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