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THE SMALL-X LIMIT AND THE POMERON IN QCD

Jochen BARTELS

II. Institut fiir Theoretische Physik, Universitdat Hamburg

A theoretical overview is given of our present understanding of the small-x
1imit in deep-inelastic ep-scattering and its connection witii the Pomeron in
QCD. I also discuss a few phenomenological questions which will be relevant for
HERA physics.

1. INTRODUCTION

Interest in the smali-x region of structure function comes from both the ex-
perimental and theoretical sides. HERA will be the first machine which can mea-
sure the proton structure function in x down to 10'4. Since existing data have
not gone furiher than 10'2,-this opens a new and so far unexplored kinematic
range for testing QCD. In purely hadronic reactions, perturbative QCD calcu-
lations of inclusive jet-cross sections (e.g. minijets) are becoming increasing-
ly sensitive to the behavior of structure functions at very low x-values. From
the theoretical point of view, the region of very small x-values boarders the
Regge-1imit which is still waiting for a satisfactory QCD-based high-energy
theory. Whereas there is little doubt that the main features of hadron-hadron
scattering in the Regge 1imit are due to nonperturbative aspects of QCD, deep
inelastic scattering at moderately low x-values iswell-described by perturbative
QCD. The 1imit x - 0 therefore takes us from perturbative QCD into nonperturba-
tive dynamics, and any improvement in our understanding of the small-x region
will be of help for advancing in the Regge limit.

This talk is mainly a review and tries to cover both the main theoretical aspects
and the present phenomenological situation. Since quite a few features of the
small-x physics have been discussed and summarized"'3 in the two Snowmass mee-
tings and the Madison conference4, I will try to concentrate on those aspects
which either have not yet been emphasized so much or where some new work has
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been done since. In the first (theoretical) part I will mainly explain that our
present understanding of the Regge-limit in QCD is fully consistent with the
ideas of Gribov, Levin, and Ryskin5 on improving the standard QCD description
in the small-x region: the fan-diagrams, which these authors propose as an
improvement of the standard QCD-ladders, smocthly transform into the Reggeon
field theory which describes the Regge-limit. In the second part I discuss a
few phenomenological questions: (i)} how small has x to be in order to "feel"
the presence of these fan-diagramsz. As I will explain, there is evidence that

= 10'3 cee 10'4 may very well see these effects, but serious theoretical
efforts are needed for performing nt- vrical calculations (this conclusion may be
somewhat different from those drawn at the Snowmass meetings). (ii) How well is
the '/Ji behavior of x G{x,Q2) (gluon structure function) theoretically esta-
blished? (iii) How much does perturbative QCD tell us about the Pomeron struc-
ture function of Ingelman and Schlein? I will argue that this structure function
is closely related to other, already known structure functions and, in certain
kinematic regions, even computable in perturbative QCD.

2. THEORETICAL BACKGROUND

The particular interest in the small-x region is due to the fact that the
standard QCD evolution picture6 of the structure function breaks down when x be-
comes too small. The momentum-weighted gluon structure function (as given by the

QCD ladder diagrams (Fig. 1) or, equivalently, by the Lipatov-Altarelli-Parisi
equations) has the small-x behavior:

X G(X £) ~ exp /16N§2.n)1—( (1.1)

with ¢ = zn[( 2n Q“,/Aa)/(sm Q%/Az)J s x = C/ope . 1t grows faster than any power
of 1n(1/x)'»1n(s/b2) and thus violates the Froissart bound. Phrased in a more in-
tuitive language, the small-x problem arises because the density of slow gluons
grows too strongly. In the standard QCD description (single ladder approximation,
Fig. 1) the whole cascade of parton decays starts from only one of the constitu-
ents at lowmomentum scale,and the interaction with one of the other virtual
clouds of partons is unimportant as long as x is not too small. It is only when,
in deep inelastic scattering, the photon trics to find a quark with very small x
that the single-ladder approximation (1.%1) needs modifications: interactions of
different chains of parton decays (1adders) lexzd to a slower increase of the gluon
structure function in 1/x than given by (i.1)., When 1/x goes to infinity (at
fixed Q) we must, of course, enter the Reggz-Timit of QCD, the (nonperturbative)
Pomeron. The small-x limit, therefore, provides a cont1nuoua entrance into the
Regge-Timit, starting from a perturbative beginning and ending at a nonperturba-
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Fig. 1: QCD "standard" ladder diagrams for the structure function in deep-ine-
lastic scattering. For small x only gluons are important.
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Fig. 2: QCD diagrams for the leading-Ins Pomeron. The wavy lines denote regge-
ized gluons, the open circles stand for momentum dependent reggeon in-
teraction vertices.

Fig. 3: Scattering of heavy-flavor mesons: coupling of the leading-1ns Pomeron
to the qf-system.
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tive end, and 1/x acts as a.control parameter. The perturbative QCD analysis of
the small-x region of deep inelastic scattering has been thoroughly examined by
Gribov, Levin and Ryskins. Rather than repeating their results I will try to out-
line how our present (incomplete) understanding of the Regge-limit of QCD supports
and perfectly matches with their improvement ideas. For this I have to review
briefly a few results of the Regge-1imit (although many of these facts have al-
ready been mentioned in Alan White's talk), and I will then return to a compari-
son with the small-x physics.

Although most of us are fully convinced that the Regge-1imit of QCD (i.e.
the structure of the Pomeron) is governed by nonperturbative confinement dyna-
mics, there seems to be no better method for analyzing the Pomeron than by
starting from its perturbative content and then extending into the region of
small intrinsic transverse momenta where perturbation theory becomes unreliable.
In this process of continuation formal aspects of unitarity in both the direct
and the cross channel are of central importance. Logically, our present status
of understanding can be summarized in three parts: (i) the leading-1ns Pomeron
(often referred to as "Lipatov ladders"), and its defects; (ii) unitarization
or, equivalently, the derivation of a complete reggeon field theory; (iii)
attempts to study the spectrum and the phase structure of this field theory.

Let me start with a brief review of the leading-1ns Pomeron. Its origin are
many-gluon production amplitudes in the multiregge-limit7'13 (Fig. 2). In order
to justify the use of perturbation theory in ag one needs a Targe momentum scale.
As an example, one might consider the scattering of two heavy~flavour mesons'o.
where the coupling of the two (reggeized) gluons in the t-channel to the meson
has to be gauge invariant (Fig. 3). The scale for momenta is then set by the mass of
the heavy quark, mq. For this process, the diagrams of Fig. 2 then represent
those terms of the.perturbation expansion which, for each power of as(mqa), pro-
vide the maximal power of 2n s. The expansion parameter in the sum of all dia-
grams of Fig. 2 is as(mqa) . zn(s/mq) which has to be less than 1. As it is well-
known, the leading high-energy behavior of these diagrams is described by a
fixed-cut singularity in the angular momentum plane to the right of j = 1 (for

SU(N) the location is j = 1 + o 4N;"2 ). Both the nature of this singulari-
ty (a fixed cut instead of a moving pole in the angular momentum plane)

and its location (which leads to a violation of the Froissart bound by a power
of s) are unacceptable. A closer look at the dynamical origin of this singula-
rity shows, from the theoretical point of view, what goes wrong in this approxi-
mation. The diagrams of Fig. 2, to any finite order in ags are perfectly finite
in both the ultraviolet and the infrared region, but when more and more itera-
tions of them in the t-channel are taken into account, that part of the internal
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phase space which is responsible for the leading j-plane singularity extends
more and more into the ultraviolet and infrared region. In the leading-Ins
approximation, however, neither of them is treated quite correctly: in the uV-
region, this approximation dces not generate a momentum dependent coupling con-
stand as(kz), but keeps “s(an) fixed. In the IR-region, as(kz) grows and per-
turbation theory is unreliable. The first deficiency can be cured rather easily
by introducing by hand the running coupling constant, whereas the latter is more
serious, due to our lack of understanding the dynamics of confinement. Lipatov11
has given an argument that, by taking into account asymptotic freedom in the UV-
region and by modifying the IR-behavior of the Feynman amplitudes to account for
nonperturbative effects, the previous fixed-cut resolves into a string of
poles. Very unfortunately, however, the rightmost one of them still sits to the
right of j = 1. It is thus clear that this leading-1ns Pomeron - even with such
corrections - is an unacceptable approximation. The fixed-cut singularityat j>1 (or
the string of poles, in the modified version) is an artifact of this approxima-
tion and will not be present in the final theory. What is still missing is
s-channel unitarity.

When trying to restore s-channel unitarity it is crucial to consider rot
only 2 + 2 scattering amplitudes but also inelastic amplitudes. Unitarity must
be satisfied in all subenergies. As to a practical procedure14, one wants to
construct a scattering matrix T whose elements are the Tn+m in multiregge limits.
In order to fulfill the unitarity equation T - T* =4TT" one starts with the Tnem
in the leading-1ns approximation and then solves the nonlinear unitarity matrix
equation in an iterative way. The leading-1ns Pomeron was just a first exampfé
of this procedure, other examples are shown in Figs. 4 and 5. The result of this
scheme is a complete reggeon field theory with general n»m reggeon vertices
(obeying signature conservation rules). The reggeized gluon plays the role of
the elementary field, and the Pomeron is the leading bound state of 2, 4, 6, ...
reggeons. This is not the place to go into further details, but a few remarks
should be made. (i) The unitarization procedure makes heavy use of S-matrix
and Regge-theory. In order to avoid problems that are associated with the pre-
sence of massless particles one conveniently uses the Higg's mechanism to give
the gluons a mass. At the end of all calculations this IR-cutoff has to be re-
moved: there is evidence (although not a strict proof) that this regularization
scheme is correct, even beyond perturbation theory. (ii) By construction, this
reggeon field theory satisfies asymptotic s-channel unitarity and partial-wave t-channel
unitarity. While the gluon mass is still nonzero, this set of n»m scattering amplitudes
is the first complete and self consistent realization of S-matrix postulates and
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Regge-theory. An important ingredient are "bootstrap equations", the simplest
example of which has been found by Lipatov etal. (iii) For any attempt to study
the dynamics of this reggeon field theory it seems indispensable to know the
detailed form of the general m»m reggeon vertex: this has not yet been worked
out. (iv) The examples of Figs. 4 and 5 and our emphasis on unitarity in sub-
energies of inelastic amplitudes show that there is no evidence for any simple
eikonal picture.

After the removal of the gluon mass this reggeon field theory (i.e. the sum
of all diagrams which define reggeons and their interaction vertices) repre-
sents the minimal set of terms which are required by unitarity. To find out what
its high energy behavior is (e.g. the leading singularity in the j-plane) re-
mains as the third and final step. There are a few features which make a study
of this field theory rather difficult: it has infinitely may interaction ver-
tices, and a priori there is little justification that some of them might be less
important than others. The vertices are momentum-dependent functions (i.e. non-
local operators), and this momentum dependence is essential for internal con-
sistency (e.g. reggeization of %he gluons). Moreover we are not interested in
some finite renormalization of the reggeon (gluon) fields but in the bound state spec-
trum in the even-signature, color zero t-channel. The hardest part of the probiem,
however, 1ies in the infrared region of the internal momentum integrals. Since
the effective coupling constant is large, it seems likely that the expressions
obtained from perturbation theory (although it may turn out they are infrared
finite) have to be modified by nenperturbative effects (cf. the discussion of
the leading-1ns Pomeron). For this we clearly need to improve our understanding
of confinement dynamics, and it may turnout that the Pomeron problemcanbe sett-
led only after we have solved the confinement problem (see, however, another
point of view presented in15). In any case, the most 1ikely solution to the
reggeon field theory with its infinite number of interaction terms will exhi-
bit a critical behavior: this makes critical reggeon field theory the most pro-
mising candidate.

After this brief excursion into the Regge 1imit of QCD I now return to the
small-x region of deep-inelastic scattering. I will try to illustrate that the
improvement ideas of Gribov, Levin, and Ryskin5 provide a "bridge" between the
standard QCD-ladders6 (Fig. 1) and the reggeon field theory. Starting from mo-
derately small x (say 0.1) and keeping Q2 >> A2 fixed, the region of decreasing
x can roughly be divided into four different domains. In the first one the stan-
dard QCD-ladder diagrams (which are equivalent to the Lipatov-Altarelli-Parisi
equations) provide a good description, down to about X = 10'2. For such x,
the ladders are dominated by gluons, and quark contributions can be neglected.
One of the most promiment features of these diagrams is the ordering of internal
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Fig. 4: A reggeon diagram: unitarity correction to a multiparticle production
amp11itude.
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momenta: the main contribution comes from those parts of the phase space where
the fractions of longitudinal momentum decrease from 1 at the bottom to

x = Q3/2pq at the top of the diagram, and the squares of four momenta q;2 ¥ q, 2
increase from some low hadronic scale Q3 (~ few GeV2) inside the incoming hadron
up to the large scale Q2 at the photon vertex. This ordering of internal momenta
is one of the crucial differences between the QCD-ladders in deep-inelastic
scattering and the ladder diagram (Fig. 2) of the leading-1ns Pomeron: it pro-
tects the internal momenta from getting close to the IR-region where the coup-
ling would become strong. Non-perturbative contributions are therefore restricted
to the bottom part of the ladder diagrams, and, via factorization, they can be
absorbed into the low-momentum hadronic wave function. In cortrast to this, in
the leading-1ns Pomeron ladders the internal momentum integration includes the
IR-region, and this part of the integration has even strong influence on the
formation of the unwanted fixed-cut singularity. It therefore seems as if in the
Regge 1imit there is no clean separation between large-momentum (perturbative)
and low-momentum (nonperturbative) contributions. Another difference between the
ladders of Fig. 1 and Fig. 2 is the reggeization of the gluon lines along the
sides of the ladders: in Fig. 1 the contributions which lead to the reggeization
are not yet needed.

When x becomes smaller the structure functions obtained from the QCD-1adders
of Fig. 1 increase too strongly (eq. (1.1)), and further perturbative contribu- .
tions have to be included, the so-called fan-diagrams shown in Fig. 6. They are
built from the ladders of Fig. 1, and when moving from the top to the bottom,
the number of ladders never decreases. They are discussed and analysed in Refs.
5 and 6; the first fan-diagram has also been carefully studied by A.H. Mueller
and Qiu7. I only mention a few important features. The fan-diagrams are higher-
twist contributions. The first fan-diagram, for example, has a factor 1/qi2 (com-
pared to the ladder of Fig. 1), where qi2 is the four momentum square associated
with the branching vertex. At low x, this suppression factor is balanced by the
increase in ’/x of the QCD-ladders. The main effect of the fan diagrams is to
decelerate the growth in 1/x of the structure function at small x. More intui-
tively, as a result of the interaction between the large number of chains of
parton decays, the density of very slow partons decreases. Comparison of the fan
diagrams in Fig. 6 with the reggeon field theory clearly shows strong similarity:
the fan diagrams present a subset. There is » however, still the difference due
to the momentum ordering, i.e. the fan diagrams for deep-inelastic scattering
are evaluated in a slightly different region of internal i#ntegration compared
to the reggeon diagrams of Figs. 2, 4 or § (reggeization of the gluons, on the
other hand, should now be included into the fan-diagrams). An important feature
of the fan diagrams is the validity of the Abramovsky - Gribov - Kancheli cutting
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rules18 (AGK-rules). In order to obtain the DIS structure function, we are not
interested in the full QCD-diagrams of Fig. 6 but only in their energy discon-
tinuity. There are many contributions, but the different ways in which these
diagrams can be cut are related through very simple counting rules5 (diffrac-
tive cut: multiperipheral cut: double multiperipheral cut = 2 : -8 : 4). These
cutting rules play an important role in the derivation of the Pomeron structure
function (see below). Finally, for practical purposes one needs convenient
methods for evaluating the sum of these fan diagrams. The authors of S present
an integral equationwhich is (approximately) equivalent to a partial differen-
tial equations. Alternatively, it is possibe to use a modified Altarelli-Parisi
equation17. As I discuss further below, no serious attempt has been made so far
to perform numerical studies of these fan diagrams.

When 1/x increases further, then, according to Ref. 5, there is a region in
x where the set of diagrams has to be further enlarged: in addition to the fan-
diagrams one has to include the so-called enhanced diagrams (Fig. 7). This is
a further step towards the reggeon field theory described above, but there is
still the distinction connected with the momentum ordering. Also, since inDIS the
variables are 1/x and £(= 2n2nQ2) rather than s and t, the expressions for the
"bare propagators" of the ladders of Fig. 7 are different from those of corres-
ponding reggeon diagrams. In fact, the actual form of the "energy-momentum" re-
lation of the "reggeon field theory" in Fig. 7 has so far made it impossible to
perform computations within this field theory (nct to speak of finding its solu-
tion).

Ultimately, when 1/x hecomes asymptotically large, the theoretical descrip-
tion of the DIS structure function must coincide with the reggeon fieid theory.
For this to happen, we still have to cross one last barrier: the ordering of
momentum scales q;2 has to disappear, and this brings back all the problems
with the infrared region and possible nonperturbative contributions which I
have mentioned before. So it is at this stage that we are crossing the border
line between perturbative and nonperturbative QCD.

This concludes my brief description of the interrelation of the small-x re-
gion in deep~inelastic scattering with the Regge limit (Pomeron) in QCD. Al-
though the latter one is dominated by certain nonperturbative aspects which we
do not yet understand, we can nevertheless say that the perturbative small-x
description nicely matches the reggeon field theory (or at least that part of
it which we know reliably). This survey also indicates that in the small-x re-
gion nonperturbative effects come in rather late: there is first the region where
the (perturbative) fan-diagram description applies, and then, according to Ref. 5,
another region where the enhanced diagrams of Fig. 7 are relevant. Comparing
these theoretical ideas with experimental data will certainly provide a very
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detailed test of QCD.

3. PHENOMENELOGY

After this theoretical overview I now turn to a few phenomenological topics.
Most important, in my view, is the question for what range in x (at fixed Q2)
should one use the fan-diagrams, and where, finally, are the nonperturbative
effects coming in. I have no answer to the second question, but there are some
hints that the fan diagrams can be tested at HERA. Another point of interest is
the 1/#? behavior of xG(x,Q2) at small x, which has been suggested some time
ago'g. Finally, I want to say a few werds about the Pomeron structure function
and its relation to perturbative QCD.

I begin with the first question. The main point I want to make is that there
in a good chance for HERA to test the fan diagrams of Ref. 5. But much more
(theoretical) work needs to be done before the experiments start. Let me briefly
summarize what is presently known. In Fig. 9 I illustrate how the authors of
Ref. 5 describe the situation. In the Q2-x plane there are two border lines.

1 and 2. Their equations are (eqs. (2.117b) and (2,119) of Ref. 5)

1", 2
0.21 (N - 5n.) ot €
8N A

20

y = In(1/x) = (N = 3) (3.1)

0.21 (1IN - 2Zn,)
y = In(1/x) = 43-N 3%

n2 % * gngn %:- (3.2)
respectively. According to the discussion in Ref. 5, below 1ine 2 lies the region
where the standard-QCD description is applicable. Betweén 1 and 2 one should use
the fan diagrams, and above line 1 we are in the regime of, first, the enhanced
graphs of Fig. 7, than the reggeon field theory with its nonperturbative contri-
butions. Since we do not exactly know where the latter starts, line 1 has to be
taken as the lower limit (in 1/x) for the onset of nonperturbative effects. In
Fig. 9 I show a few examples21 of eqs. (3.1) and (3.2); in order to make line 2

tangential to line 1 at the low-momentum point Q3, we use, instead of (3.2), the
equation

1 2 Q2
0.21 (TN - ) 2 &n
y = In(1/x) = ik 24n2 %% n _j + 4n2 %é (3.2')
o e 12

The estimates are rather sensitive to the choice of the low-momentum scale Q3. The
results indicate thatalready for x < 10'2 the standard-QCD description should be
replaced by the fan-diagrams. One should, however, keep in mind that eqs. (3.1)
and (3.2) are derived by making certain approximations. A more refined analysis
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Fig. 9: Plots of line 1 (eq. (3.1); dotted) and line 2 (eq. (3.2'); drawn) for
different values Qj and 2*: (a) Qf = 2 GeV2, A = 0.2 GeV (upper curves)
and A = 0.3 GeV (Tower curves). (b) Qf = 5 GeV%, A= 0.2 GeV. (c) Q3
= 10 GeV2, A = 0.2 GeV (upper curves) and A= 0.3 GeV (lower curves).
In case (b) we also show the line eq. (3.2) (dashed curve) which lies
above that of eq. (3.2').
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may slightly change the 1imiting curves shown in Fig. 9. In particular, one ex-
pects that the sensitivity to the choice of Q3 disappears. In any case, given
the fact that HERA reaches the interestina domain of small-x values, it is very
important to perform a numerical calculation of the fan diagrams, i.e. to com-
pare their small-x behavior with that of the standard QCD-ladder diagrams. To
the best of my knowledge, this has not yet been done (for a first step in this
direction see 22). As a particular aspect of such an analysis, one will face
the task of separating the effect due to the fan-diagrams from the uncertainty in
the x-distribution at low Q2 of the standard QCD evolution picture23.

Another numerical estimate is due to J. Kwieciﬁsky24. Making a few simple
assumptions about the coupling to the nucleon he has calculated the size of
the first fan diagram (screening correction) relative to the standard QCD-ladder.
The main result is that for 10 < Q2 < 10" GeV2, the first fan diagram reaches
about 10% of the standard ladder when x is of the order of 10'4. He also computes
the interaction probability of the partons.

3ra(Q2) . xG(x,Q2

H(x,02) = 3{E) . XX, Q7) (3.3)
which has to be well-below 1 in order to make the single-ladder approximation
work. For example, W = 0.5 for Q2 = 10 GeV2 and x = 10'4, and W = 0.1 for
Q% = 100 GeV2 and x = 10'4. The conclusion of this study seems to be that the
physics of the fan diagrams sets in at somewhat lower x-values than it has been
indicated by the authors of Ref. 5. But even then it may be possible to see first
effects at HERA, and a numerical evaluationof the fan diagrams is needed. A much
more pessimistic argument has been made by Mueller and Qiu17. They argue that the
first fan diagram will be of the same order as the ladder if

wa(Q?) . xG(x,Q2) =1
QT RT -

Comparing this with (3.3) and the calculation of Ref. 24 one immediately sees

that either Q2 has to be suspicously small or 1/x has to be exceedingly Tlarge

(note the difference in the factor 3 between (3.3) and (3.4)). Given the other

two estimates, it seems that the condition (3.4) may be a bit too strong.

Some years ago J.C. COIIins19 suggested that at small-x the gluon distribu-
tion G(x4Q2) should increase more strongly than 1/x, namely 1ike 1/x“ with o & 1.5.
I cannot discuss to what extent this behavior has been successful in phenomeho1o-
gical applications, but I only want to comment on its justification within 0CD.

As the main theoretical basis of such a strong divergence in 1/x, it has been
argued that the small-x behavior of the standard ladder diagrams (Fig. 1) should
be described by the leading j-plane singularity of the leading-Ins Pomeron

(3.4)
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(Fig. 2). (In fact,'I'.JarosceWicz.z5 used the correspondence between the ladder
diagrams inFigs. 1 and 2 to calculate the anomalous dimension y +(n) beyond the
leading order in Gge As a result of the higher order corrections, the singularity
in n of y_(n) shifts fromn =1 ton = G ~ 1.5. A more recent discussion of the
Lipatov integral equation for the diagrams of Fig. 2, and its implications for
the small-x behavior of the structure function has been given by Collins and
Kwiecinski in 26.) As I have explained in the first part of my talk, the leading
singulartty of the diagrams in Fig. 2, in my opinion, has 1little significance.
Rather than summing these diagrams to alil order in G ( and thereby entering
regions of internal phase space where perturbation theory is unreliable), one
has to take into account more and more of the s-channel unitarity corrections
(i.e. reggeon diagrams with more than 2 reggeized in the t-channel). If, on
the other hand, one wants to start from the standard ladders (Fig. 1) and then
more on towards smaller and smaller x-values, the investigations of Ref. 5
clearly state that it is not allowed to simply extrapolate from Fig. 1 to Fig. 2.
One rather has to proceed from Fig. 1 to the fan-diagrams of Fig. 6 and the en-
hanced diagrams of Fig. 7 to the full reggeon field theory (Fig. 5). I therefore
conclude that the leading singularity of the ladders in Fig. 2 cannot be used
to justify the 1/x“-behavior of G(x,Q2). Very unfortunately, this insight does
not yet answer the question what x-distribution should be used as starting point
in the standard QCD evolution analysis, in particular what kind of small-x be-
havior. At low Q2, the small-x region is really the Reage-limit, i.e. inaccess-
ible to perturbative QCD. It seems to me that the best we can do at the mcment
is to use some functional dependence in 1/x which reflects the observed rise of
the hadronic total cross section. Subsequent Q2-evolution then has to proceed in
accordance with the restrictions discussed before (as illustrated in Fig. 8), and
it will lead to some modified small-x behavior at higher Q2-values.

My final topic is the Pomeron structure function and its interpretation within
QCD. First of all, as I will make clear, it provides a certain test of the ideas
which I have explained in the first part. Secondly, there is a connection between
the Pomeron structure function and other known hadronic structure functions, which
has not yat received much attention. The idea of defining a Pomeron structure func-
tion goes back to Ingelman and Schlein20 who suggested to look for two large-
transverse-momentum jets inside a diffractively produced high missing-mass cluster
(Fig. 10a and b). Suggestions in the same direction were also made by Fritzsch
and Stren927. and theoretical aspects where discussed by Berger, Collins, Soper
and Sterman28 and Donnachie and Landshoffzg. By analogy with the Regge analysis
of the triple-Regge inclusive cross section (Fig. 10a), the following expression
has been suggestedzoz
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> 9%k
d2o.. 6.8 SdxqdX, s 1 G (X05Q2)F:(%4,Q2) -
32 [e56t g0t ] T2 Lk B2 T TR (3.5)
X

dtaNe %P > x

where G', (x,Q2) defines the (gluonic) Pomeron structure function. In this pic-
ture, the Pomeron is viewed as an "“incoming particle" which can be handled in
very much the same way as a normal hadron. More recent]y30 UA8 data have been
analysed and compared to (3.5), and agreement has been found for x + G (x,Q2)
= 6« (1-x)° ("soft Pomeron structure function"). In Fig. 11 I illustrate how
the Pomeron st:ucture function can be measured at HERA: one lookes for events
with a large rapidity gap between the elastically scattered proton and a high-
missing-mass cluster in the direction of the high-Q2 photon.

When analysing these processes within QCD, one arrives at expressions5 which
are somewhat different from those based on the triple-Regge analog. This diffe-
rence is easily seen when one applies the QCD evolution picture to the process
in Fig. 11a or b. In order to have an interaction with the high-Q2 photon, we
need far-off shell quarks and gluons which have to evolve from the low momentum
constituents inside the scattering hadron. Most naturally, one would expect that
this evolution should start already inside the Pomeron, such that at the triple-
vertex in Fig. 11b the momentum scale q2 1lies somewhere between the starting low-
momentum Q3 and the final high momentum square Q2. Since this scale g2 is not
fixed, one has to integrate over q2. As illustrated in Fig. 11b, the cross section
for this semiinclusive reaction represents a special contribution to the energy
discontinuity ("diffractive cut") of the first fan diagram. Because of the counting
rules alluded to before, this cut is in magnitude (not in sign) equal to tbe
contribution of the fan diagram to the deep-inelastic structure function. This

leads to the following expression for the Pomeron structure function5 and the
inclusive cross section:

d2c _ const Qz
=W/

dqz?iﬂ(xiM :02,0%) ag (q2)g ¢2(xy,0q2,t) (3.6)
Q3

MZ 2
Here Xy = sx 0 : $(x/xM,Qa,q2) and ¢(xM.q2) stand for (mainly gluonic) QCD struc-
ture functions, and asz(qz)-g denotes the triple-vertex. The normalization of
(3.6) is not free; it is, at least in principle, calculable from standard QCD in-
gredients. The variable q2 is the momentum scale at the triple-vertex: it is this
integration over q2 which is missing in the expressions coming from the triple-
Regge analogy (eq. (3.5)). There it was assumed that the Pomeron is the same as

in hadron-hadron scattering, i.e. q2 is small. Equation (3.6) suggests that there
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may be contributions coming from a "hard Pomeron" with a large momentum scale q2.
In order to decide how well (3.6) works and whether (3.5) can be viewed as a
valid approximation to (3.6), one has to do a numerical analysis of (3.5}, Since
Fig. 11b represents a higher-twist contribution ~ 1/q2 to the structure function,
there seems to be a strong enhancement of the integral in the low-q2 region.
However, depending upon the vaiues for xM,Qz.x. there may be a more subtle ba-
lance between the different parts of the integrand. G. Ingelman and myself31
have started a first numerical study of this question. Using a simpler version
of (3.6) (we use the expressions of Kwieciﬁski24, making the assumption that
all ingredients of (3.6) are dominated by gluons) we have studied the q2-depen-
dence of the integrand of (3.6), taking different sets of values for Xy Q2 and
X. Two (preliminary) curves are shown in Figs. 12a and b. In Fig. 12a we plot
the integrand versus q2 (Q2 = 50 GeV2, Xy = 0.05,x=5 - 10'4) (note that the over-
all normalization is fixed).As expected, there is a strong peaking at low q2-
values. The by far strongest contribution comes from q2 < 5 GeV2, where
perturbative QCD becomes unreliable. This entirely justifies the use of (3.5).
Note, however, that a rather naive extrapclation of the drawn curve down to
g® % 1 GeV2 leads to a nice agreement witk the numerical values used by Bonio
et a1.30; Starting from values of q2 where perturbative QCD allows to calculate
the integrand of (3.6), one could have almost "predicted" the (low-q2 dominated)
Pomeron structure function used inzo. In Fig. 11b we show the same curve for a
different set of values (Q2 = 50 GeV2, Xy = 0.05, x = 0.045 ; note that this still
corresponds to values of sz, s/Mx2 for which triple-Regge kinematics is valid).
Here the situation is different, in that large g2-values are dominating: one is
no longer probing the "soft" Pomeron of hadron-hadron scattering. These two (ex-
treme) examples illustrate that in some (but not all) cases (3.5) can be used as
a valid approximation to (3.6): the function G , together with the other triple-
Regge parameters in (3.5), represent the low-q2 extrapolation of known QCD struc-
ture functions. In other cases, the Pomeron structure function can be calculated
directly from (3.6). There is certainly more work to be done to make full use of
(3.6) and have a further test of QCD.

4, CONCLUSION

Let me finally try to summarize . In the first part I have tried to make clear
that a nice consistency has emerged between the small-x 1imit of deep-inelastic
scattering and the Regge-limit. This can be stated although our Janderstanding of
the nonperturbative aspects of the Regge limit is not complete. Phenomerologically,
I think the most impertant aspect is that HERA (and,later on,SSC) does have a good
chance to test the beginning of the fan diagrams: this, however, needs further
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PN

(a) (b)

B

Fig. 10: The Ingelman-Schlein final state configuration for the Pomeron structure
function: (a) two large transverse momentum jets inside the diffractively

* L] < - - -
produced missing mass, (b) the inclusive reaction pp + P + M, .
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Fig. 12: A plot of the integrand of eq. (3.6) (for ¥, ¢, and ag2 g we use the

expressions of Ref. 24). We take Q2 = 50 GeV2, xy = 0.05. For z=x/x

we use: (a) 0.01 (drawn 1ine), 0.05 (dotted), 0.1 (dashed), 0.25 (do@ted-
dashed); (b) 0.5 (drawn), 0.75 (dotted), 0.9 (dashed). In Fig. 12a the
crosses on the vertical axis denote the values used in Ref. 30 (eq.

(3.5)).
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ieoretical work which should be done before HERA comes into operation. I also
pelieve that the Pomeron structure function provides a test of our understanding
of QCD: it can be measured both at the SppS-collider and at HERA.
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