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THE SMALL-X LIMIT AND THE POMERON IN QCD 

Jochen BARTELS 

I I .  Inst i tut fUr Theoretische Physik, Universit~it Hamburg 

A theoretical overview is given of our present understanding of the sma11-x 

l im i t  in deep-inelastic ep-scattering and i ts  connection with the Pomeron in 

QCD. I also discuss a few phenomenological questions which wi l l  be relevant for 

HERA physics. 

1. INTRODUCTION 

Interest in the sma11-x region of structure function comes from both the ex- 

perimental and theoretical sides. HERA wi l l  be the f i r s t  machine which can mea- 

sure the proton structure function in x down to 10 "4. Since existing data have 

not gone further than 10"2, . this opens a new and so far unexplored kinematic 

range for testing QCD. In purely hadronic reactions, perturbative QCD calcu- 

lat ions of inclusive jet-cross sections (e.g. minijets) are becoming increasing- 

ly  sensitive to the behavior of structure functions at very low x-values. From 

the theoretical point of view, the region of very small x-values boarders the 

Regge-limit which is s t i l l  waiting for a satisfactory qCD-based high-energy 

theory. Whereas there is l i t t l e  doubt that the main features of hadron-hadron 

scattering in the Regge l im i t  are due to nonperturbative aspects of QCD, deep 

inelast ic scattering at moderately low x-values iswe11-described by perturbative 

QCD. The l im i t  x ÷ 0 therefore takes us from perturbative QCD into nonperturba- 

t ive dynamics, and any improvement in our understanding of the sma11-x region 

wi l l  be of help for advancing in the Regge l imi t .  
This talk is mainly a review and tries to cover both themain theoretical aspects 

and the present phenomenological situation. Since quite a few features of the 

sma11-x physics have been discussed and summarized I"3 in the two Snowmass mee- 

tings and the Madison conference 4, I wi l l  try to concentrate on those aspects 

which either have not yet been emphasized so much or where some new work has 
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been done since. In the f i r s t  (theoretical) part I wi l l  mainly explain that our 

present understanding of the Regge-limit in QCD is fu l l y  consistent with the 

ideas of Gribov, Levin, and Ryskin 5 on improving the standard QCD description 

in the small-x region: the fan-diagrams, which these authors propose as an 
improvement of the standard QCD-ladders, smoethly transform into the Reggeon 
f ie ld theory which describes the Regge-limit. In the second part I discuss a 

few phenomenological questions: ( i )  how small has x to be in order to "feel" 

the presence of these fan-diagrams 2. As I w i l l  explain, there is evidence that 
x = 10 -3 . . .  10 -4 may very well see these effects, but serious theoretical 

efforts are neededfor performing n~ ~ e ical  calculations (this conclusion may be 
somewhat di f ferent from those drawn at the Snowmass meetings). ( i i )  How well is 
the 1/V~ behavior of x G(x,Q 2) (gluon structure function) theoret ical ly esta- 

blished? ( i i i )  How much does perturbative QCD te l l  us about the Pomeron struc- 
ture function of Ingelman and Schlein? I w i l l  argue that this structure function 
is closely related to other, already known structure functions and, in certain 
kinematic regiohs, even computable in perturbative QCD. 

2. THEORETICAL BACKGROUND 

The part icular interest in the sma11-x region is due to the fact that the 
standard QCD evolution picture 6 of the structure function breaks down when x be- 

comes too small. The momentum-weighted gluon structure function (as given by the 
QCD ladder diagrams (Fig. 1) or, equivalently, by the Lipa¢ov-A1tarelli-Parisi 
equations) has the sma11-x behavior: 

x G(x E) ~ exp v~16NEgn~l x (1.1) 

with ( = ~ n ~ n  Q2/A2J/(gn Q~/^2)J, x = Q2/2pq . I t  grows faster than any power 

of ln(1/x) ~ ln(s/Q 2) and ~hus violates the Froissart bound. Phrased in a more in- 
tu i t ive language, the small-x problem arises because the density of slow gluons 

grows too strongly. In the standard QCD description (single ladder approximation, 
Fig. 1) the whole cascade of patton decays starts from only one of the constitu- 
ents at lowmomentum scalejand the interaction with one of the other virtual 

clouds of partons is unimportant as long as x is not too small. I t  is only when, 
in deep inelastic scattering, the photon t r i~s to f ind a quark with very small x 

that the single-ladder approximation (1.1) needs modifications: interactions of 
different chains of patton decays (]adders) le~d to a slower increase of the gluon 
structure function in 1/x than given by (1.1). When 1/x goes to in f in i t y  (at 

fixed Q2) we must, of course, enter the Regg~-limit of QCD, the (nonperturbative) 
Pomerono The sma11-x l im i t ,  therefore, provides a continuous entrance into the 

Regge-limtt, starting from a perturbative beginning and ending at a nonperturba- 



,1. Barrels~The smaU-x limit and the Pomeron in QCD 203 

N 

• • • 

l I I l l l I I | l l l I I I I I I I l I I t ~  :::::::::::::::::::::::::: 
f 

Fig. 1: QCD "standard" ]adder diagrams for the structure function in deep-ine- 
last ic scattering. For sma]] x only g]uons are important. 
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Fig. 2: QCD diagrams for the leading-Ins Pomeron. The wavy lines denote regge- 
ized gluons, the open circles stand for momentum dependent reggeon in- 
teraction vertices. 

Fig. 3: Scattering of heavy-flavor mesons: coupling of the leading-Ins Pomeron 
to the qq-system. 
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t i re  end, and 1Ix acts as a control parameter. The perturbative QCD analysis of 

the small-x region of deep inelast ic  scattering has been thoroughly examined by 
Gribov, Levin and Ryskin 5. Rather than repeating the i r  results I w i l l  t ry to out- 

l ine how our present (incomplete) understanding of the Regge-limit of QCD supports 

and perfectly matches with the i r  improvement ideas. For this I have to review 

br ief ly  a few results of the Regge-limit (although many of these facts have al -  

ready been mentioned in Alan Nhite's ta lk) ,  and I w i l l  then return to a compari- 
son with the small-x physics. 

Although most of us are f u l l y  convinced that the Regge-limit of QCD ( i .e .  

the structure of the Pomeron) is governed by nonperturbative confinement dyna- 
mics, there seems to be no better method for analyzing the Pomeron than by 

starting from i ts  pe~turbative content and then extending into the region of 

small in t r ins ic  transverse momenta where perturb=tion theory becomes unreliable. 

In this process of continuation formal aspects of un i tar i ty  in both the direct 

and the cross channel are of central importance. Logically, our present status 

of understanding can be summarized in three parts: ( i )  the leading-Ins Pomeron 
(often referred to as "Lipatov ladders"), and i t s  defects; ( i i )  unitar izat ion 

or, equivalently, the derivation of a complete reageOn f ie ld  theory; ( i i i )  

attempts to study the spectrum and the phase structure of this f i e ld  theory. 

Let me star t  with a br ief  review of the leading-Ins Pomeron. I ts origin are 
many-gluon production amplitudes in the mult i regge-l imit  7"13 (Fig. 2). In order 

to jus t i f y  the use of perturbation theory in ~s one needs a large momentum scale. 
As an example, one might consider the scattering of two heavy-flavour mesons 10, 

where the coupling of the two (reggeized) gluons in the t-channel to the meson 

has to be gauge invariant ~Fig. 3). The scale formomenta is then set by the mass of 
the heavy quark, mq. For this process, the diagrams of Fig. 2 then represent 
those terms of the perturbation expansion which, for  each power of as(mq2), pro- 

vide the maximal power of ~n s. The expansion parameter in the sum of al l  dia- 

grams of Fig. 2 is as(mq2 ) - ~n(S/mq) which has to be less than I.  As i t  i s w e l l -  
known, the leading high-energy behavior of these diagrams is described by a 

fixed-cut singular i ty in the angular momentum plane to 'the r ight  of j = 1 (for 
SU(N) the location is j = 1 + as.4Nln2 ) Both the nature of this singular i-  

ty (a fixed cut instead of a moving pole in the angular momentum plane) 
and i ts  location (which leads to a violat ion of the Froissa~c bound by a power 

of s) are unacceptable. A closer look at the dynamical origin of this singula- 

r i t y  shows, from the theoretical point of view, what goes wrong in this approxi- 

mation. The diagrams of Fig. 2, to any f i n i t e  order in a s, are perfectly f i n i t e  

in both the u l t rav io le t  and the infrared region, but wffen more and more i tera-  

tions of them in the t-channel are taken into account, that part of the internal 
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phase space which is responsible for the leading j-plane singulari ty extends 

mope and more into the u l t rav io le t  and infrared region. In the leading-Ins 

approximation, however, neither of them is treated quite correctly: in the UV- 

region, this approximation does not generate a momentum dependent coupling con- 

stand as(k2), but keeps as(mq 2) fi~ed. In the IR-region, as(kZ) grows and per- 

turbation theory is unreliable. The f i r s t  deficiency can be cured rather easily 

by introducing by hand the running coupling constant, whereas the la t te r  is more 

the str ing of poles, 

t ion and wi l l  not be 

s-channel un i tar i ty .  

serious, due to our lack of understanding the dynamics of confinement. Lipatov 11 

has given an argument that, by taking into account asymptotic freedom in the UV- 

region and by modifying the IR-behavior of the Feynman amplitudes to account for 

nonperturbative effects, the previous f ixed-cut resolves into a string of 

poles. Very unfortunately, however, the rightmost one of them s t i l l  s i ts to the 

r ight  of j = 1. I t  is thus clear that this leading-Ins Pomeron - even with such 

corrections - is an unacceptable approximation. The fixed-cut s ingular i tyat  j > 1 (or 

in the modified version) is an a r t i fac t  of this approxima- 

present in the f inal  theory. What is s t i l l  missing is 

When trying to restore s-channel un i ta r i ty  i t  is crucial to consider not 

only 2 ÷ 2 scattering amplitudes but also inelastic amplitudes. Unitar i tymust 

be sat isf ied in al l  subenergies. As to a practical procedure 14, one wants to 

construct a scattering matrix T whose elements are the Tn+ m in multiregge l imi ts .  

In order to f u l f i l l  the un i tar i ty  equation T - T + =iTT + one starts with the Tn~ " 

in the leading-Ins approximation and then solves the nonlinear un i ta r i t ymat r ix  

~quation in an i terat ive way. The leading-Ins Pomeron was just  a f i r s t  example 

of this procedure, other examples are shown in Figs. 4 and 5. The result of this 

scheme is a complete reggeon f ie ld  theory with general n+m reggeon vertices 

(obeying signature conservation rules). The reggeized gluon plays the r61e of 

the elementary f i e ld ,  and the Pomeron is the leading bound state of 2, 4, 6, . . .  

reggeons. This is not the place to go into further detai ls, but a few remarks 

should be made. ( i )  The unitarization procedure makes heavy use of S-matrix 

and Regge-theory. In order to avoid problems that are associated with the pre- 

sence of massless part icles one conveniently uses the Higg's mechanism to give 

the gluons a mass. At the end of al l  calculations this IR-cutoff has to be re- 

moved: there is evidence (although not a s t r i c t  proof) that this regularization 

scheme is correct, even beyond perturbation theory. ( i i )  By construction, this 

reggeon f ie ld  theorysat isf ies asymptotic s-channel unitar i tyand partial=wave t-channel 

un i ta r i ty .  While the gluon mass is s t i l l  nonzero, this set of n~mscattering amplitudes 

is the f i r s t  complete and self  consistent realization of S-matrix postulates and 
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Regge-theory. An important ingredient are"bootstrapequations", the simplest 

example of which has been found by Lipatov et a l .  ( i i i )  For any attempt to study 

the dynamics of this reggeon f i e ld  theory i t  seems indispensable to know the 

detailed form of the general n~m reggeon vertex: this has not yet been worked 

out. ( iv) The examples of Figs. 4 and 5 and our emphasis on un i ta r i t y  in sub- 

energies of inelast ic amplitudes show that there is no evidence for  any simple 

etkonal picture. 

After the removal of the gluon mass this reggeon f ie ld  theory ( i .e .  the sum 

of al1 diagrams which define reggeons and the i r  interaction vertices) repre- 

sents the minimal set of terms which are required by un i tar i ty .  To f ind out what 
i ts  high energy behavior is (e.g. the leading singular i ty in the j-plane) re- 

mains as the th i rd and f inal  step° There are a few features which make a study 

of this f i e ld  theory rather d i f f i c u l t :  i t  has i n f i n i t e l y  may interaction ver- 

t ices, and a pr ior i  there is l i t t l e  j us t i f i ca t ion  that some of them might be less 

important than others. The vertices are momentum-dependent functions ( i .e .  non- 
local operators), and this momentum dependence is essential for  internal con- 

sistency (e.g. reggeization of ~he gluons). Moreover we are not interested in 
some f i n i t e  r~normalizatiOn of the reggeon (g luon) f ie lds but in the bound state spec- 
trum in the even-signature, color zero t-channel. The hardestpart  of the problem, 

however, l ies in the infrared region of the internal momentum integrals. Since 

the effective coupltng constant is large, i t  seems l i ke ly  that the expressions 

obtained from perturbation theory (although i t  may turn out they are infrared 

f in i te )  have to be modified by nonperturbative effects (cf .  the discussion of 

the leading-Ins Pomeron). For this we clearly need to improve our understanding 
of confinement dynamics, and itmay turn out that the Pomeron problem can be sett-  

led only af ter  we have solved the confinement proble~ (see, however, another 

point of view presented in15). In any case, the most l i ke ly  solution to the 

reggeon f ie ld  theory with i ts  i n f i n i t e  number of interaction terms wi l l  exhi- 
b i t  a c r i t i ca l  behavior: this makes c r i t i ca l  reggeon f ie ld  theory the most pro- 
mising candidate. 

After this br ief  excursion into the Regge l im i t  of QCD ! now return to the 

sma11-x region of deeo-inelastic scattering. I w i l l  t ry  to i l l us t ra te  that the 
improvement ideas of Gr~bov, Levin, and Rysktn 5 provide a "bridge" between the 

standard QCD-ladders 6 (Fig. 1) and the reggeon f i e ld  theory. Starting from mo- 

derately small x (say 0.1) and keeping Qz >> A2 f ixed, the regton of decreasing 

x can roughly be divided into four d i f ferent  domains. In the f i r s t  one the stan- 

dard QCD-ladder diagrams (which are equivalent to the Lipatov-A1tarel l i -Parisi  
equations) provide a good description, down to about x = 10 "2. For such x, 

the ladders are dominated by gluons, and quark contributions can be neglected. 

One of the most promiment features of these diagrams is the ordering of internal 
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Fig. 4: A reg.geon diagram: unitar i ty correction to a multiparticle production 
amp11 rude. 
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Fig. 5: A veggeon diagram: beyond the 
leading-Ins approximtion of 
the 2 ÷ 2 scattePing amplitude. 

Fig. 6: A fan diagram: the black lines 
denote sums of ladder diagrams 
of f ig .  1. 

Fig. 7: HoPe diagrams have to be includ- 
ed i f  one goes to smalleP 
values of x: examples of 
"enhancement" diagrams. 

Y 

2 

Fig. 8: Border lines in the [-y plane 
(E, = l n l n ( Q 2 / A ~ ) ) .  
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momenta: the main contribution comes from those parts of the phase space where 

the fractions of ]ongitudina] momentum decrease f rom l  at the bottom to 

x = Q2/2pq at the top of the diagram, and the squares of four momenta qt 2 ~ q1 2 

increase from some low hadronic scale Q~ (~ few GeV 2) inside the incoming hadron 

up to the large scale Q2 at the photon vertex. This ordering of internal momenta 

is one of the crucqal differences between the QCD-ladders qn deep-inelastic 

scattering and the ]adder diagram (Fig. 2) of the leading-|ns Pomeron: i t  pro- 

tects the internal momenta from getting close to the IR-region where the coup- 

]ing wou]d become strong. Non-perturbative contributions are therefore restr icted 
to the bottom part of the ]adder diagrams, and, via factor izat ion, they can be 

absorbed ~nto the low-momentum hadronic wave function. In contrast to th is,  in 

the leading-]ns Pomeron ]adders the internal momentum integration includes the 

IR-region, and this part of the integration has even strong influence on the 

formation of the unwanted f ixed-cut s ingular i ty .  I t  therefore seems as i f  in the 

Regge l im i t  there is no clean separation between large-momentum (perturbative) 

and Tow-momentum (nonperturbat~ve) contributions. Another difference between the 
]adders of Fig. 1 and Fig. 2 is the reggeization of the g]uon l ines along the 

stdes of the ]adders: in F~g. 1 the contributqons which lead to the reggeization 
are not yet needed. 

Nhen x becomes smaller the structure functions obtained from the OCD-ladders 
of Fig. 1 qncrease too strongly (eq. (1.1)) ,  and further perturbative contribu- 
tions have to be included, the so-called fan-diagrams shown in Fqg. 6. They are 

bu i l t  from the ladders of Fig. 1, and when moving from the top to the bottom, 

the number of ladders never decreases. They are discussed and analysed in Refs. 

5 and 6; the f i r s t  fan-diagram has also been careful ly studied by A.H. Mueller 
and Qiu 7. I only mention a few important features. The fan-diagrams are higher- 

twist contributions. The f i r s t  fan-diagram, forexample, has a factor 1/qiz (com- 

pared to the ladder of Fig. 1), where q12 is the four momentum square associated 
with the branching vertex. At low x, this suppression factor is balanced by the 
increase in l /x  of the QCD-ladders. The ma~n ef fect  of the fan d~agrams ~s to 

decelerate the growth in 1/x of the structure function at small x. More ~ntui- 

t~vely, as a result of the ~nteract~on between the large number of chains of 

parton decays, the density of very slow patrons decreases. Comparison of the fan 

d~agrams ~n F~g. 6 with the reggeon f~eld theory clearly shows strong s imi lar i ty :  
the fan diagrams present a subset. There ~s , however, s t i l l  the difference due 
to the momentum ordering, ~.e. the fan d~agrams for  deep-~nelastic scattering 

are evaluated in a s l ight ly  d i f ferent  region of internal integration compared 

to the reggeon diagrams of F~gs. 2, 4 or 5 (reggeization of the gluons, on the 
other hand, should now be included into the fan-diagrams). An ~mportant feature 

of the fan diagrams is the valld~ty of the Abramovsky-Gribov- Kanche11 cutting 
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rules 18 (AGK-rules). In order to obtain the DIS structure function, we are not 

interested in the fu l l  QCO-diagrams of Fig. 6 but only in their  energy discon- 

t i nu i t y .  There are many contributions, but the di f ferent  ways in which these 
diagrams can be cut are related through very simple counting rules 5 (d i f f rac-  

t i r e  cut: multiperipheral cut: double multiperipheral cut = 2 : -8 : 4), These 

cutting rules play an important role in the derivation of the Pomeron structure 

function (see below). Final ly,  for practical purposes one needs convenient 

methods for evaluating the sum of these fan diagrams. The authors of 5 present 

an integral equationwhich is (approximately) equivalent to a partial di f feren- 
t i a l  equation 5. Alternat ively,  i t  is possibe to use a modified A1tare111-Parisi 

equation 17. As I discuss further below, no serious attempt has been made so far 

to perform numerical studies of these fan diagrams. 
When 1/x increases further, then, according to Ref: 5, there is a region in 

x where the set of diagrams has to be further enlarged: in addition to the fan- 
diagrams one has to include the so-called enhanced diagrams (Fig. 7). This is 

a further step towards the reggeon f i e ld  theory described above, but there is 

s t i l l  the dist inct ion connected with the momentum ordering. A~so, since in DIS the 
variables are 1/x and ~(= znznQ z) rather than s and t ,  the expressions for  the 

"bare propagators" of the ladders of Fig. 7 are di f ferent  from those of corres- 

ponding reggeon diagrams. In fact,  the actual form of the "energy-momentum" re- 
lat ion of the "reggeon f ie ld  theory" in Fig. 7 has so far made i t  impossible to 

e .  

perform computations within this f i e ld  theory (nct to speak of finding i ts  solu- 

t ton).  

Ult imately) 
tton of the his 

when 1Ix becomes asymptotically large, the theoretical descrip- 

structure function must coincide with the reggeon f~eld theory. 

For this to happen, we s t i l l  have to cross one last barrier: the ordering of 

momentum scales qi 2 has to disappear, and this brings back al l  the problems 

with the infrared region and possible nonperturbative contributions which I 

have mentioned before. So i t  is at this stage that we are crossing the border 

l tne between perturbative and nonperturbative QCD. 
This concludes my br ief  description of the interrelat ion of the sma11-x re- 

gion in deep-inelastic scattering with the Regge l im i t  (Pomeron) in QCD. AI- 
though the la t te r  one is dominated by certain nonperturbative aspects which we 

do not yet understand, we can nevertheless say that the perturbative sma11-x 

description nicely matches the reggeon f ie ld  theory (or at least that part of 
i t  which we know re l iab ly) .  This survey also indicates that in the sma11-x re- 

gion nonperturbative effects come tn rather late: there is f i r s t  the reg~o, ~,~here 

the (perturbative) fan-diagram description applies, and then, according to Ref. G, 

another region where the enhanced diagrams of Fig. 7 are relevant. Comparing 

these theoretical ideas with experimental data w i l l  certainly provide a very 
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detailed test of QCD. 

3. PHENOHENELOGY 

After this theoretical overview I now turn to a few phenomenologicaI topics. 

Host important, in n~yview, is the question for  what range in x (at fixed Q2) 

should one use the fan-diagrams, and where, f i n a l l y ,  are the nonperturbative 

effects coming in. I have no answer to the second question, but there are some 

hints that the fan diagrams can be tested at HERA. Another point of interest is 

the 1/VE behavior of xG(x,Q 2) at small x, which has been suggested some time 
ago 19. Final ly,  I want to say a few werds about the Pomeron structure function 20 

and i ts  relatfon to perturbat~ve QCD. 

I begin with the f i r s t  question. The mean point I want to make ~s that there 

in a good chance for HERA to test the fan diagrams of Ref. 5. But much more 

(theoretfcal) work needs to be done before the expeHments staet. Let me bHef ly  

su laHze what ~s presently known. In Fig. 9 I ~11ustrate how the authors of 

Ref. 5 descHbe the s~tuat~on. In the Q~-x plane there are two border l~nes: 

I and 2. Their equations are (eqs. (2.117b) and (2,119) of Ref. 5) 

0.21 
y = l n ( l / x )  = • ~n 2 ,'IT (N = 3) 

8N 
(3.1) 

0.21 ( ~ - , ~ n f )  Q2 ° Q2 
y = l n ( l / x )  = 9,n 2 ~-~ • ~nzn ~T ( 3 . 2 )  

4N 

respectively. According to the discussion in Ref. 5, below l ine 2 l ies the region 

where the standard-qCD description is applicable. Between 1 and 2 one should use 

the fan diagrams, and above l ine 1 we are in the regime of, f i r s t ,  the enhanced 

graphs of Fig. 7, than the reggeon f ie ld  theory with i ts  nonperturbat!ve contr i -  

butions. Since we do not exactly know where the la t te r  starts,  l ine 1 has to be 

taken as the lower l im i t  ( in l / x )  for the onset of nonperturbattve effects. In 

Fig. 9 I show a few examples 21 of eqs. (3.1) and (3.2); in order to make l ine 2 

tangential to l ine 1 at the low-momentum point QS, we use, instead of (3.2), the 
equation 

= I n ( l / x ) =  ..  2~,n 2 _-L;. Y £n 
8N 

J L -  

Q 2 
£n -'F 

+ £n 2 ( 3 . 2 ' )  

The estimates are rather sensitive to the choice of the low-momentum scale Q2o. The 

results indicate that already for x < 10 "2 ti~e standard-QCD description should be 

replaced by the fan-diagrams. One should, however, keep in mind that eqs. (3.1) 

and (3.2) are derived by making certain approximations. A more refined analysts 
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Fig. 9: Plots of l ine 1 (eq 2. (3.1~! dotted) and line 2 (eq. (3 .2 ' ) ;  drawn) for 
different values qo and ~ .  (a) Qo = 2 GeV , A= 0.2 GeV (upper curves) 
and A= 0.3 GeV (lower Curves). (b) Q~ = 5 GeV z, ~= 0.2 GeV. (c) Q~ 
= 10 GeV 2, A = 0.2 GeV (upper curves) and A = 0.3 GeV (lower curves). 
In case (b) we also show the line eq. (3.2) (dashed curve) which lies 
above that of eq. (3 .2 ' ) .  
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may s l igh t ly  cha,ge the l imi t ing curves shown t n F i g .  9. In part icular ,  one ex- 

pects that the sensi t iv i ty  to the choice of Q~ disappears. In any case, given 

the fact that HERA reaches the interestin9 domain of small-x values, i t  is very 

important to perform a numerical calculation of the fan diagrams, i .e .  to com- 

pare their  small-x behavior with that of the standard QCD-ladder diagrams. To 

the best of my knowledge, th is has not yet been done (for a f i r s t  step in this 

direction see 22). As a part icular aspect of such an analysis, one wi l l  face 

the task of separating the ef fect  due to the fan-diagrams from the uncertainty in 

the x-distr ibut ion at low Q~ of the standard QCD evolution picture 23. 

Another numerical estimate is due to J. Kwieciflsky 24. Haking a few simple 

assumptions about the coupling to the nucleon he has cslculated the size of 

the f i r s t  fan diagram (screening correction) re lat ive to the standard QCD-ladder. 

The main result  is that for 10 ~ Q2 ~ 10 ~ GeV 2, the f i r s t  fan diagram reaches 

about 10~ of the standard ladder when x is of the order of 10 "4. He also computes 

the interaction probabi l i ty of the partons 

3'e~(O:) . xG(x,Q') (3.3) 
W(x,Q2 ) = Q:' R" 

which has to be well-below 1 in order to make the single-ladder approximation 

work. For example, W = 0.5 for QZ = 10 GeV z and x = 10 -4 , and W = 0.1 for 

Qz = 100 GeV 2 and x = 10 -4 . The conclusion of this study seems to be that the 

physics of the fan diagrams sets in at somewhat lower x-values than i t  has been 

indicated by the authors of Ref. 5. But even then i t  may be possible to see f i r s t  

effects at HERA, and a numerical evaluationof the fan diagrams is needed. A much 

more pessimistic argument has been made by Mueller and Qiu 17. They argue that the 

f i r s t  fan diagram wi l l  be of the same order as the ladder i f  

xG(x,Q2) 
Q2 " R 2 = 1. (3.4) 

Comparing this with (3.3) and the calculation of Ref. 24 one immediately sees 

that either Q2 has to be suspicously small or 1/x has to be exceedingly large 

(note the difference in the factor 3 between (3.3) and (3.4)).  Given the other 

two estimates, i t  seems that the condition (3.4) may be a b i t  too strong. 

Some years ago J.C. Collins 19 suggested that at sma11-x the gluon distr ibu- 

tion G(~IQ2 ) should increase more strongly than l / x ,  namely l ike 1/xa with ~ ~ 1.5. 

I cannot discuss to what extent this behavior has been successful in phenomenolo- 

gical applications, but I only want to comment on i ts  jus t i f i ca t ion  within OOD. 

As the main theoretical basis of such a strong divergence in l / x ,  i t  has been 

argued that the small-x behavior of the standard ladder diagrams (Fig. 1) should 

be described by the leading j-plane s ingular i ty  of the leading-Ins Pomeron 
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(Fig. 2). (In fact,  T. Jaroscewicz 25 used the correspondence between the ladder 

diagrams in Figs. 1 and2 to calculate the anomalous dimension x+(n) beyond the 

leading order in es" As a result of the higher order corrections, the singular i ty 

in n of y+(n) shi f ts from n = 1 to n = =c ~ 1.5. A more recent discussion of the 
Lipatov tntegral equation for the diagrams of Fi3. 2, and i ts  implications for 

the small-x behavior of the structure function has been given by Collins and 
Kwieci~ski in 26)  As I have explained in the f i r s t  part of my talk,  the leading 

s ingular i ty  of the diagrams in Fig. 2, in my opinion, has l i t t l e  significance. 

Rather than summing these diagrams to a l l  order in ~s ( and thereby entering 

regions of internal phase space where perturbation theory is unreliable), one 

has to take into account more and more of the s-channel uni tar i ty  corrections 

( i .e .  reggeon diagrams with more than 2 reggeized in the t-channel). I f ,  on 

the other hand, one wants to stare from the standard ladders (Fig. 1) and then 
more on towards smaller and smaller x-values, the investigations of Ref. 5 

clearly state that i t  is not allowed to simply extrapolate from Fig. 1 to Fig. 2. 

One rather has to proceed from Fig. 1 to the fan-diagrams of Fig. 6 and the en- 
hanced diagrams of Fig. 7 to the fu l l  reggeon f ie ld  theory (Fig. 5). I therefore 

conclude that the leading singulaHty of the ladders in Fig. 2 cannot be used 
to j us t i f y  the 1/xa-behavior of G(x,Q2). Very unfortunately, this insight does 

not ye¢ answer the question what x-dist r ibut ion should be used as starting point 
in the standard QCD evolution analysis, in part icular what kind of small-x be- 

havior. At low Q2 the small-x region is real ly the Regge-lim~t, i .e.  inaccess- 

ible to perturbative QCD. I t  seems to me that the best we can do at the mcment 
is to use some functional dependence ~n l /x  which ref lects the observed rise of 

the hadronic total cross section. SubsequentQ2-evolution then has to proceed in 
accordance with the restr ict ions discussed before (as i l lustrated in Fig. 8),  and 

i t  w i l l  lead to some modified sma11-x behavior at higher Q2-values. 

Hy f inal  topic is the Pomeron structure function and i ts  interpretation w~thin 

QCD. F i rs t  of a l l ,  as ] w i l l  make clear, i t  provides a certain test of the ideas 

which I have explained in the f i r s t  part. Secondly, there is a connection between 

the Pomeron structure function and other known hadronic structure functions, which 

has not yet received much attention. The idea of defining a Pomeron structure func- 
t ion goes back to Ingelman and Schlein 20 who suggested to look for two large- 

transverse-momentum jets inside a d i f f rac t ive ly  produced high missing-mass cluster 

(Fig. lOa and b). Suggestions in the same d~rect~on were also made by Fritzsch 
and Streng 27, and theoretical aspects where discussed by Berger, Coll ins, Soper 

and Sterman 28 and Donnach~e and Landshoff 29, By analogy with the Regge analys~s 

of the tr~ple-Regge inclusive cross section (F~g, lOa), the following expression 

has been suggested20: 
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~ik 
d'o j j  6.8 [e5.6t O.O4e2t]" SdXldX 2 i.:k GIpk(x2'O2.)fi(x1'02) 

= H x" + O'p]p .), x 
(3.5) 

where Gp (x:Q 2) defines the (gluonic) Pomeron structure function. Zn this pic- 

ture, the Pomeron is viewed as an "incoming par t ic le"  which can be handled in 
very much the same way as a normal hadron. Hore recently 30 UA8 data have been 

analysed and compared to (3.5),  and agreement has been found for  x • G (x,Q 2) 

= 6 • ( l -x )  s ( "sof t  Pomeron structure funct ion").  Zn Fig. 11 I i l l us t ra te  how 

the Pomeron structure function can be measured at HERA: one lookes for  events 

with a large rapidi ty gap between the e las t ica l l y  scattered proton and a high- 
missing-mass cluster in the direct ion of the high-Q z photon. 

When analysing these processes within QCD, one arrives at expressions 5 which 

are somewhat di f ferent from those based on the triple-Regge analog. This d i f fe -  
rence is easily seen when one applies the QCD evolution picture to the process 

in Fig. 11a or b. In order to have an interaction with the high-Q 2 photon, we 

need fa r -o f f  shell quarks and gluons which have to evolve from the low momentum 

constituents insidethe scattering hadron. Host natural ly,  one would expect that 

this evolution should star t  already inside the Pomeron, such that at the t r i p l e -  
vertex in Fig. 11b the momentum scale q2 l ies somewherebetween the starting low- 

momentum Q~ and the f inal high momentum square Q2. Since this scale q2 is not 

f ixed, one h~s to integrate over q2. As i l lus t ra ted  in Fig. | lb ,  the cross section 

for this semiinclusive reaction represents a special contribution to the energy 

discontinuity ( "d i f f rac t ive  cut") of the f i r s t  fan diagram. Because of the counting 

rules alluded to before, th is cut is in magnitude (not in sign) equal to the 

contribution of the fan diagram to the deep-inelastic structure function. This 

leads to the following expression for the Pomeron structure function 5 and the 
|ncIusive cross section: 

2 
= ~ / Q 2 d q 2 ~ (  ,Q2 q2) as (q2)g ~2(xH,q2 t ) 

Here x H ," x2+02 ~(xlxH,Q2 ) and ~(x H ) stand for (mainly gluonic) QCD = s+Q2 ; ,q2 ,q2 

(3,6) 

gredients. The variable q2 

integration over q2 which 

Regge analogy (eq. (3.5)).  

in hadron-hadron scattering, 

struc- 
ture functions, and as2(q2).g denotes the t r ip le-ver tex.  The normalization of 

(3.6) is not free; i t  is,  at least in pr inc ip le,  calculable from standard QCD in- 

is the momentum scale at the t r ip le-vertex:  i t  is this 
is missing in the expressions coming from the t r i p le -  

There i t  was assumed that the Pomeron is the same as 

i .e .  q2 is small. Equation (3.6) suggests that there 
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may be contributions coming from a "hard Pomeron" with a large momentum scale q2. 

In order to decide how well (3.6) works and whether (3.5) can be viewed as a 

val id approximation to (3.6), one has to do a numerical analysis of (3,6~, Since 

Fig, 11b represents a higher-twist contribution ~ 1/q2 to the structure function, 

there seems to be a strong enhancement of the integral in the low-q 2 region. 

However, depending upon the values for  XH,Q2,x, there may be a more subtle ba- 

lance between the d i f ferent  parts of the integrand. G. Ingelman and myself 31 

have started a f i r s t  numeHcal study of this question. Using a s~mpler version 

of (3.6) (we use the expressions of Kwiecifiski 24, making the assumption that 

a l l  ingredients of (3.6) are dominated by gluons) we have studied the q2-depen- 

dence of the integrand of (3.6), taking di f ferent  sets of values for x H, Q2 and 

x. Two (preliminary) curves are shown in Figs. 12a and b. In Fig. 12a we plot 

the integrand versus q2 (Q2 = 50 GeW, x H = 0.05, x= 5 • 10 -4 ) (note that the over- 

a l l  normalization is f ixed).  As expected, there is a strong peaking at low q2. 

values. The by far  strongest contribution comes from q2 < 5 GeV 2, where 

perturbative QCD becomes unreliable. This ent i re ly j us t i f i es  the use of (3.5). 

Note, however, that a rather naive extrapolation of the drawn curve down ~o 
q2 1 GeW leads to a nice agreement with the numerical values used by Bonio 

3 0  Starting- from values of q2 where perturbatlve" OCD allows to calculate et al 

the integrand of (3.6), one could have almost "predicted" the (low-q 2 dominated) 

Pomeron structure function used in 20. In Fig. 11b we show the same curve for a 

d i f ferent  set of values (Q2 = 50 GeW, x H = 0.05, x = 0.045 ; note that this s t i l l  

corresponds to values of Hx2, S/Hx2 for  which triple-Regge kinematics is val id) .  

Here the situation is d i f ferent ,  in that large q2-values are dominating: one is 

no longer probing the "soft"  Pomeron of hadron-hadron scattering. These two (ex- 

treme) examples i l l us t ra te  that in some (but not a11) cases (3.5) can be used as 

a val id approximation to (3.6): the function G , together with the other t r i p l e -  

Regge parameters in (3.5), represent the low-q 2 extrapolation of known QCD struc- 

ture functions. In other cases, the Pomeron structure function can be calculated 

d i rect ly  from (3.6). There is certainly more work to be done to make fu l l  use of 

(3.6) and have a fur ther test of QCD. 

4. CONCLUSION 
Let me f i na l l y  t ry  to sumarize . In the f i r s t  part I have tr ied to make clear 

that a nice consistency has emerged between the small-x l im i t  of deep-inelastic 

scattering and the Regge-limit. This can be stated although our understanding of 

the nonperturbative aspects of the Regge l im i t  is not complete. Phenomenologically, 

I think the most important aspect is that HERA (and, later  on, SSC) does have a good 

chance to test the beginning of the fan diagrams: th is ,  however, needs further 
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Fig. 10: The Ingelman-Schlein final state configuration for the Pomeron structure 
function: (a) two large transverse momentum jets inside the diffractively 
produced missing mass, (b) the inclusive reaction ';p + p + Mx. 

Fig. 11: The Pomeron structure function in deep inelastic scattering. 

Fig. 12: A plot of the integrand of eq. (3.6) (for r, 4, and as2 g we use the 
expressions of Ref. 24). We take Q2 = 50 GeV2, xM = 0.05. For r=x/xM 
we use: (a) 0.01 (drawn line), 0.05 (dotted), 0.1 (dashed), 0.25 (dotted- 
dashed); (b) 0.5 (drawn), 0.75 (dotted), 0.9 (dashed). In Fig. 12a the 
crosses on the vertical axis denote the values used in Ref. 30 (eq. 
(3.5)). 
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keoretical work which should be done before HERA comes into operation. I also 

oelieve that the Pomeron structure function provides a test of our understanding 
of QCD: i t  can be measured both at the Sp~S-collider and at HERA. 
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