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We initiate a non-perturbative study of Yukawa coupling in an SU (2)L@ SU (2) R invariant scalar-fermion lattice model. As a 
first step we calculate fermion masses in the broken phase using naive fermions in the quenched approximation. At small Yukawa 
coupling, taking into account appreciable finite-size effects, our results are consistent with perturbation theory. At large bare 
Yukawa coupling we find the fermion mass and the renormalized Yukawa coupling growing with increasing scalar correlation 
length, indicating a non-perturbative behaviour. 

1. Introduction 

Non-perturbative investigations o f  fermion mass 
generation through the Yukawa coupling to scalar 
fields have recently stimulated a lot o f  interest. In 
simple lattice models with one-component  scalar 
fields, first calculations of  the masses in the quenched 
[ 1,2 ] and unquenched [ 3,4 ] simulations have al- 
ready been performed. Simultaneously the influence 
of  the Yukawa coupling on the phase diagram of  the 
one-component  [ 5 ] and two-component  [ 6 ] scalar 
field models with fermions has been studied. Some 
effects o f  the Yukawa coupling have recently been 
analytically investigated also in lattice models with 
scalars and fermions coupled to U(1  ) and SU(2 )  
gauge fields [ 7 ]. 

The most important long-term motivations of  these 
investigations are: (i)  the determination o f  a possi- 
ble upper bound on the mass o f  heavy quarks [ 8 ], in 
analogy to the recent numerical estimate o f  the upper 
bound on the Higgs boson mass in the lattice qb 4 
model with 0 ( 4 )  symmetry [9 -12] ,  (ii) a study of  
the influence of  the strong Yukawa coupling on the 
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scalar sector and on the mentioned upper bound on 
the Higgs boson mass, and, (iii) a search for new 
critical points suitable for the construction o f a  - pos- 
sibly non-trivial - cont inuum limit of  the lattice for- 
mulation o f  the electroweak theory. 

We plan on a systematic investigation of  a lattice 
regularized model with the "ch i ra r '  SU(2 )L® 
SU(2)R symmetry consisting o f  a four-component  
scalar field and a Yukawa coupled fermion field dou- 
blet using essentially the Wilson fermion approach 
where the scalar field appears in the Wilson mass term 
(Wilson-Yukawa term) [ 13-15 ]. This model has a 
promise to be physically realistic in the sense that if 
the doublers can be made sufficiently heavy it be- 
comes a special case of  the SU (2) sector of  the elec- 
troweak theory with the weak gauge interaction turned 
off. The removal of  the doublers is a non-perturba- 
tive issue which will be investigated in a subsequent 
work [ 16 ]. Its complexity requires to understand first 
the effects o f  the strong bare Yukawa coupling on the 
fermion masses. 

Therefore in this letter we study, for the moment  
in the quenched approximation, the effects of  the 
strong Yukawa coupling with naive fermions. We 
concentrate on the determination of  the fermion 
masses in the broken phase and give a tentative esti- 
mate of  the flow lines of  constant renormalized 
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Yukawa coupling. Similar to the findings of  ref. [ 2 ] 
in the Z(2)  case we find a region of large bare Yu- 
kawa couplings where the fermion mass increases 
while the expectation value of the scalar field in the 
broken phase approaches zero. 

2. The model 

The model under consideration in this letter is de- 
fined by the following action on the euclidean lattice: 

4 

S = - K Z  Z ½Tr{q)~q)x+~+h.c.} 
x / t = l  

4 

+½ Z Z ~x~,{~'x+,-~x-,} 
x / t = l  

+YE ~x{OxPR+O~PL} ~x. (1) 
x 

In the above, the scalar field is radially frozen (the 
bare quartic self-coupling is infinite) and ¢)~ is a 2 × 2 
SU(2)  matrix, the fermion fields ~U~, and ~P:, are 
SU (2) doublets, x is the hopping parameter for the 
scalar field and y is the Yukawa coupling. The oper- 
ators PL and PR are the left- and right-hand projec- 
tors. The action is invariant under the global chiral 
SU (2)L®SU (2)R transformations 

~--,( VLPL + VRPR)~, ~ (  V~P~ + V~tPL), 

O~ Ve qbV~, (2) 

where VLESU(2)L and VReSU(2)R. 
The model is a simplified version of a possible lat- 

tice formulation of the electroweak theory suggested 
by Smit [ 14] and Swift [ 15]. Here we restrict our- 
selves to only the SU(2)  sector of  the Smit-Swift 
model and neglect the weak gauge interaction. We 
leave out also the Wilson-Yukawa term so that we 
have naive fermions giving rise to 16 degenerate spe- 
cies in the continuum. 

In the quenched approximation the phase diagram 
of the model ( 1 ) has, for each value of y, a symmetric 
( x <  xc) and a broken (x>  ~c¢) phase, where the value 
of Kc is independent of  y. It is an open question, 
whether the model possesses more phase transition 
lines. 

For y = 0  the model is the 0 ( 4 )  symmetric q)4 the- 
ory at the bare quartic coupling 2 = oo, which has been 

investigated extensively [ 10,11,17,18 ]. From these 
studies it is known that tcc= 0.3045 (7). In the broken 
phase of this model the behaviour of  the scalar mass 
m,  and the field expectation value < O)  has been 
found to be consistent with the scaling laws if rn~< 0.8 
(xc < to< 0.33 ). The scalar wave function renormali- 
zation constant Za~ is very close to unity (Z~.~ 0.97 ) 
and nearly independent ofx. The renormalized quar- 
tic coupling appears to be a logarithmically decreas- 
ing function of ( x - x ¢ )  in the range in which m~ has 
the value between 0.25 and 1 in the lattice units. 

For small values of the Yukawa coupling y, we ex- 
pect the fermion mass and the renormalized Yukawa 
coupling going to zero with x approaching xc at fixed 
value of y, in accordance with the perturbation the- 
ory. The condensate (~p~v) should be proportional 
to y and the tree level relation mF=y< O)  should 
hold. On the contrary, for large values of y, a strong 
y expansion of the unquenched model in refs. [ 2,19 ] 
shows that the fermion mass increases when x ap- 
proaches xc. The renormalized Yukawa coupling 
should also behave correspondingly. From the strong 
y expansion the condensate ( ~ v )  is expected to be 
proportional to 1/y. 

3. Techniques and measurements 

At an equilibrated scalar field configuration, ob- 
tained by a standard Metropolis Monte Carlo algo- 
rithm on an L3T lattice with periodic boundary con- 
ditions, we perform conjugate gradient inversions of 
the fermion matrix for several source points 
Xo= (Xo, to) to get the zero spatial momentum fer- 
mion propagators 

P~%( z) = ( 1/L ~) E. < ( ¢'~)~( ~U~o)~ >. 

Here a,  d =  1, 2 are the SU(2)L,R indices; a, b=  1, 2, 
3, 4 are the Dirac matrices; x =  (x, t) and z=  ]t-tol. 
Choosing the so-called chiral representation of the 
Dirac matrices, we find the transformation proper- 
ties of  the propagators pab (suppressing the indices 
c~, d) to be p13---*VLpI3V[, pSl---*VRp31v~, 
p l l  __~ VLp]l V~, p33___~ VRp33v[, etc. Because of the 
drift of  the scalar field magnetization in the broken 
phase (no spontaneous symmetry breaking occurs for 
a finite size), it is important to construct the 
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SU ( 2 ) L ® S U  (2)R invar iant  propagators  
G 13 = T r s u ( E ) L P 1 3 ,  G31 = T r s u ( 2 ) R p 3 1 .  For  each pa i r  

(x, y )  we obta in  the propagator  da ta  typical ly from 
32 configurations, separated from each other by 1500 
Monte  Carlo i terations.  We use mostly the 83.16 lat- 
tice, but  also 6 3. 12, l03. 16 and 164 lattices to get in- 
format ion  about  the finite size effects. Fe rmion  
masses m E (def ined  by mE= sinh EF, where EF is the 
lowest lying energy) are extracted, using the CERN 
Minui t  fit program, from the exponent ia l  fall-off o f  
the averaged propagators .  

For  ( t p ~ )  measurement ,  we apply  the c o m m o n  
technique using a gaussian noise. Because o f  the non- 
invar iance o f  ( ~ }  we do an invers ion of  the fer- 
mion  matr ix  for scalar configurat ions rota ted always 
so that  the scalar field magnet iza t ion  points  in one 
p rede te rmined  direct ion.  The same technique has 
been used in refs. [ 10,11 ] to assure that  ( ~ )  does 
not vanish because o f  the vacuum drif t  dur ing a sim- 
ulat ion on a finite lattice. 

We block the da ta  for the correlat ion functions into 
blocks of  8 configurat ions and de te rmine  for each 
block the fermion mass. The error  of  the average cor- 
relation function for each block needed for the Minui t  
fit is obta ined  using the jackknife  method.  Regarding 
the fermion mass independent  for each block and for 
each of  G ~ 3 and G31 we calculate the average and also 
es t imate  the error  of  the mass by statist ical  error  
analysis. The errors for the chiral  condensate  (~P~)  
and for the scalar field expectat ion value ( ~ )  are 
ob ta ined  similarly. 

4 .  F e r m i o n  m a s s  mF a n d  c o n d e n s a t e  ( ~ }  

In fig. 1 we show our  results for the fermion mass mF 
as a function o f  the scalar hopping pa ramete r  x 
( x = 0 . 3 1 - 0 . 4 )  for different  f ixed values o f  the 
Yukawa coupling y ( y = 0 . 6 - 1 . 5 ) .  The behav iour  o f  
mF at small  and large y clearly shows two different  
regions. One observes a decrease of  mF as x'~ Xc for 
y~< 1.3 whereas for y>~ 1.4 one observes an increase 
o f m F  as x",rc.  At a value o f y  between 1.3 and 1.4 
the fermion mass appears  to be independent  o fx .  We 
call it the "cross-over  po in t "  y * .  However ,  it  is not  
excluded by our  da ta  that  at Y*m a real phase transi-  
t ion takes place. 

2.0 

m F  
' ' ' J  . . . .  t . . . .  = . . . .  t . . . .  I '  X:y=l .5  

O :y= l .4  
~ : y = l . 3  

1.5 --x ~ : y = l . 2  
- • o + : y = l . O  
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Fig. 1. The fermion mass mF as function ofx for different values 
of the bare Yukawa coupling y. Here and in the following figures 
the straight lines connecting the data points are to guide the eye. 
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Fig. 2. The fermion condensate ( ~ )  as a function ofy for dif- 
ferent values of x. The filled diamonds correspond to the data at 
x=0.31 on a 63.12 lattice. 

Our  conjugate gradient  converges everywhere but  
a round  y *  we observe a substantial  rise in the num- 
ber  of  i terat ions per inversion o f  the fermion matrix.  
For  example,  for x =  0.32 this number  at y =  1.3 is 5 -  
10 t imes larger than its values at y = 0 . 6  and y =  2.0. 

Close to xc, for x~< 0.32 where the scalar correla- 
t ion length m~- 1/> 1.4, we observe large finite-size ef- 
fects for the fermion mass at small  values o f  y. In- 
creasing the lattice size from 63.12 to 83.16 and 103.16 
at x = 0 . 3 2  and y = 0 . 6  the fermion mass decreases 
from 0 .246(11)  to 0 .217(9)  and  0 .204(2) ,  
respectively. 

In fig. 2 we show our results for the condensate  
(~P~)  as a function of  y for various values of  x. 
(~P~)  has a ma x imum also a r o u n d y * .  ( 5 ° ~ )  is seen 
to be propor t iona l  to y for small values o f  y as sug- 
gested from the perturbat ion theory, and although not 
shown in the figure, we f ind it also to be propor t iona l  
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to 1/y for large y, as expected from the strong y 
expansion. 

5 .  R e n o r m a l i z e d  Y u k a w a  c o u p l i n g  

In this section we concentrate on the ratio 
yR=rnEx/~/(@). This ratio is a possible defini- 
tion of  the renormalized Yukawa coupling YR. The 
deviation of  Z~ from unity [ 11,17,18 ] is insignifi- 
cant on the precision level of  the present investiga- 
tion, so we set Z ~ =  1 in YR. 

In the weak y region, characterized by Y<Y*m, the 
perturbative triviality of  the non-asymptotically free 
Yukawa coupling suggests that YR should go to zero 
as the cut-off is raised to infinity. In fig. 3 YR is plot- 
ted as a function of  x at y = 0 . 6  on various lattices. 
For small y and mF an appreciable lattice size depen- 
dence is seen. Actually we find on small lattices qual- 
itatively different behaviour from that expected on 
an infinite lattice. Our present data at y =  0.6 is insuf- 
ficient for a reliable extrapolation to the infinite lat- 
tice but indicates at least that YR decreases slowly with 
decreasing x for x~<0.33 and is around 0.68 at 
x=0 .33 .  Judging from the trend of  the data in fig. 3 
as we increase the lattice size from 6 3.12 to 164, a far- 
ther decrease ofyR with increasing cut-off seems pos- 
sible if even larger lattices could be used. We make 
similar observations at other small y values. We no- 
tice an analogy to the finite-size effects for the ratio 
m,,/(@) in the O (4) symmetric tI~ 4 theory [ 11 ]. 

On the other hand, at y values larger than or around 
Ym, mE is sufficiently large and therefore we do not 
see substantial finite-size effects. Data for YR on var- 
ious lattices are consistent within error bars. In fig. 4 

t . o  . . . .  ~ . . . .  ~ . . . .  ~ . . . .  ~ . . . .  ~. 
YR 

T y=0.6  0 : 6 a x l 2  
0.9 ,~ n:SSx16 

1 \  ):(:103x 16 

0.8 

0.'/ 

0 . 6  , , , , I L L , , I  . . . .  I . . . .  [ . . . .  I 

0.3 0.32: 0.34 0.36 0.36 0.4 /C 

Fig. 3. YR for y=0.6 as a function o f x  on different lattices. 

' . ' ' 1  . . . .  I . . . .  I . . . .  I . . . .  I ' ' 1  

9~ O:y=2.0 q 
\ 8Zx16 O:y=l .5  q 

+:y=1.3 

0 ' I I I I I 

0.a O.3Z 0.34 0.3e 0.38 0.4 
K; 

Fig. 4. Ya f o r y =  1.3, 1.5 and 2.0 as a function ofx. 

/ ph°'° / I / /  

Symmetric phase 

yS Y 

Fig. 5. Schematic plot of the lines of constant YR in the (K, y) 
phase diagram. The dashed line vagucly indicates the position of 
the crossover in the broken phase. 

YR is plotted against x for y = 1.3, 1.5, 2.0 on an 83.16 
lattice. There is a clear increase ofyR as x x, xc. We see 
similar behaviour at all values o f y > y *  we have in- 
vestigated. In the quenched calculation with naive 
fermions there is certainly a different behaviour o f  YR 
for Y>Y*m than that expected from perturbation 
theory. 

In fig. 5 we show a schematic diagram of  possible 
lines of  constant YR in the (x, y)  space. The diagram 
shows a different flow structure for y<y* and y >  y*. 
In fig. 5 the lines drawn for y < y *  are motivated by 
the predictions o f  the perturbation theory and are 
similar to the constant 2R lines in the qb 4 theory [ 18 ]. 
The trend of  the lines for y>y* is motivated by the 
data in fig. 4. From our data, however, we cannot 
conclude that y * = y * .  The issue whether the conjec- 
tured point (x=xc, y= I1") in fig. 5 is a non-trivial 
fixed point where the fermion mass and the scalar 
mass could possibly be tuned independently deserves 
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certainly more at tent ion in future calculations [ 4 ]. References 

6. Conclusions 

In spite of appreciable finite size effects, our results 
for the fermion mass and the renormalized Yukawa 
coupling seem to be in accordance with the pertur- 
bat ion theory in the small Yukawa coupling region. 
In our quenched simulation with naive fermions there 
is a clear indication,  however, of  a non-perturbat ive 
Yukawa coupling region where the fermion mass in- 
creases as we approach the critical point.  This might 
have an impor tant  implicat ion for the question of de- 
coupling of fermions whose masses are generated by 
Yukawa coupling. Though we expect the quenched 
approximation to be qualitatively valid for large 
Yukawa couplings, we intend to investigate the exis- 
tence of a non-perturbat ive Yukawa coupling region 
in an unquenched simulation.  We think that the un- 
quenched numerical  calculations in the one-compo- 
nent  model performed until  now [ 3 ] did not find such 
a region because the large parameter  space has not  
yet been sufficiently explored. When we include also 
the Wilson-Yukawa term [ 16 ], a very interesting is- 
sue naturally will be whether we can make use of the 
observed non-per turbat ive  behaviour  of the fermion 
mass for strong bare Yukawa coupling in decoupling 
the unwanted  doublers. 
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