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We initiate a non-perturbative study of Yukawa coupling in an SU(2),®SU(2)g invariant scalar—fermion lattice model. As a
first step we calculate fermion masses in the broken phase using naive fermions in the quenched approximation. At small Yukawa
coupling, taking into account appreciable finite-size effects, our results are consistent with perturbation theory. At large bare
Yukawa coupling we find the fermion mass and the renormalized Yukawa coupling growing with increasing scalar correlation

length, indicating a non-perturbative behaviour.

1. Introduction

Non-perturbative investigations of fermion mass
generation through the Yukawa coupling to scalar
fields have recently stimulated a lot of interest. In
simple lattice models with one-component scalar
fields, first calculations of the masses in the quenched
[1,2] and unquenched [3,4] simulations have al-
ready been performed. Simultaneously the influence
of the Yukawa coupling on the phase diagram of the
one-component [5] and two-component [6] scalar
field models with fermions has been studied. Some
effects of the Yukawa coupling have recently been
analytically investigated also in lattice models with
scalars and fermions coupled to U(1) and SU(2)
gauge fields [7].

The most important long-term motivations of these
investigations are: (i) the determination of a possi-
ble upper bound on the mass of heavy quarks [8], in
analogy to the recent numerical estimate of the upper
bound on the Higgs boson mass in the lattice @*
model with O(4) symmetry [9-12], (ii) a study of
the influence of the strong Yukawa coupling on the
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scalar sector and on the mentioned upper bound on
the Higgs boson mass, and, (iii) a search for new
critical points suitable for the construction of a — pos-
sibly non-trivial - continuum limit of the lattice for-
mulation of the electroweak theory.

We plan on a systematic investigation of a lattice
regularized model with the “chiral” SU(2).®
SU(2)g symmetry consisting of a four-component
scalar field and a Yukawa coupled fermion field dou-
blet using essentially the Wilson fermion approach
where the scalar field appears in the Wilson mass term
(Wilson-Yukawa term) [13-15]. This model has a
promise to be physically realistic in the sense that if
the doublers can be made sufficiently heavy it be-
comes a special case of the SU(2) sector of the elec-
troweak theory with the weak gauge interaction turned
off. The removal of the doublers is a non-perturba-
tive issue which will be investigated in a subsequent
work [16]. Its complexity requires to understand first
the effects of the strong bare Yukawa coupling on the
fermion masses.

Therefore in this letter we study, for the moment
in the quenched approximation, the effects of the
strong Yukawa coupling with naive fermions. We
concentrate on the determination of the fermion
masses in the broken phase and give a tentative esti-
mate of the flow lines of constant renormalized
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Yukawa coupling. Similar to the findings of ref. [2]
in the Z(2) case we find a region of large bare Yu-
kawa couplings where the fermion mass increases
while the expectation value of the scalar field in the
broken phase approaches zero.

2, The model

The model under consideration in this letter is de-
fined by the following action on the euclidean lattice:

4
S=-kY ¥ iTr{®ld,,, +h.c}
% i=1

[ ES

+% Z lpx]"u{ij\fﬂl_Wx—u}

+yz ¢X{¢xPR+¢,tPL} YIx- (1)

]

In the above, the scalar field is radially frozen (the
bare quartic self-coupling is infinite) and @, isa 2 X2
SU(2) matrix, the fermion fields ¥, and ¥, are
SU(2) doublets, « is the hopping parameter for the
scalar field and y is the Yukawa coupling. The oper-
ators P, and Py are the left- and right-hand projec-
tors. The action is invariant under the global chiral
SU(2),®SU(2)g transformations

Vo (VLPL+VRPR)Y, P-P(VIPr+VEP),
D>V DVE, (2)

where V' eSU(2). and VgeSU(2)x.

The model is a simplified version of a possible lat-
tice formulation of the electroweak theory suggested
by Smit [14] and Swift [15]. Here we restrict our-
selves to only the SU(2) sector of the Smit—-Swift
model and neglect the weak gauge interaction. We
leave out also the Wilson-Yukawa term so that we
have naive fermions giving rise to 16 degenerate spe-
cies in the continuum.

In the quenched approximation the phase diagram
of the model (1) has, for each value of y, a symmetric
(k<k_) and a broken (k> k) phase, where the value
of k. is independent of y. It is an open question,
whether the model possesses more phase transition
lines.

For y=0 the model is the O(4) symmetric @* the-
ory at the bare quartic coupling A =co, which has been
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investigated extensively [10,11,17,18]. From these
studies it is known that x,=0.3045(7). In the broken
phase of this model the behaviour of the scalar mass
m, and the field expectation value (®) has been
found to be consistent with the scaling laws if m,<0.8
(k. <k<0.33). The scalar wave function renormali-
zation constant Zg is very close to unity (Z4~0.97)
and nearly independent of k. The renormalized quar-
tic coupling appears to be a logarithmically decreas-
ing function of (x—x.) in the range in which m, has
the value between 0.25 and 1 in the lattice units.

For small values of the Yukawa coupling y, we ex-
pect the fermion mass and the renormalized Yukawa
coupling going to zero with k approaching k, at fixed
value of y, in accordance with the perturbation the-
ory. The condensate { P¥) should be proportional
to y and the tree level relation mg=y{ @) should
hold. On the contrary, for large values of y, a strong
y expansion of the unquenched model in refs. [2,19]
shows that the fermion mass increases when x ap-
proaches k.. The renormalized Yukawa coupling
should also behave correspondingly. From the strong
y expansion the condensate { P¥) is expected to be
proportional to 1/y.

3. Techniques and measurements

At an equilibrated scalar field configuration, ob-
tained by a standard Metropolis Monte Carlo algo-
rithm on an L3T lattice with periodic boundary con-
ditions, we perform conjugate gradient inversions of
the fermion matrix for several source points
Xo= (X, tp) to get the zero spatial momentum fer-
mion propagators

PE(1)=(1/L*) Z.{(P)a(P) 5> -

Here «, f=1, 2 are the SU(2)y indices; a, b=1, 2,
3, 4 are the Dirac matrices; x=(x, ) and 7= |1—~1,].
Choosing the so-called chiral representation of the
Dirac matrices, we find the transformation proper-
ties of the propagators P%° (suppressing the indices
a, B) to be PBLVPUBVI, PYLVRPIMUIVE,
PUS YL PVE, P31V PPV, ete. Because of the
drift of the scalar field magnetization in the broken
phase (no spontaneous symmetry breaking occurs for
a finite size), it is important to construct the



Volume 231, number 3 PHYSICS LETTERS B 9 November 1989
SU(2).®SU(2)x invariant propagators 2.0 g .
G =Trgy) P G*'=Trsy2) P*'. For each pair myg [ é;g:i;i
(x, y) we obtain the propagator data typically from 15 | §§Yf %g
32 configurations, separated from each other by 1500 i +§§; 10
Monte Carlo iterations. We use mostly the 83-16 lat- tol 5328‘2
tice, but also 6312, 10%-16 and 16* lattices to get in- [ 17
formation about the finite size effects. Fermion [ 1 4
masses mg (defined by mg=sinh Eg, where Ef is the 05 1 187x16
lowest lying energy) are extracted, using the CERN i 1 : 1 | 1

0.0 T el

Minuit fit program, from the exponential fall-off of
the averaged propagators.

For (P¥) measurement, we apply the common
technique using a gaussian noise. Because of the non-
invariance of ( P¥> we do an inversion of the fer-
mion matrix for scalar configurations rotated always
so that the scalar field magnetization points in one
predetermined direction. The same technique has
been used in refs. [10,11] to assure that (@) does
not vanish because of the vacuum drift during a sim-
ulation on a finite lattice.

We block the data for the correlation functions into
blocks of 8 configurations and determine for each
block the fermion mass. The error of the average cor-
relation function for each block needed for the Minuit
fitis obtained using the jackknife method. Regarding
the fermion mass independent for each block and for
each of G'* and G*' we calculate the average and also
estimate the error of the mass by statistical error
analysis. The errors for the chiral condensate { P¥)
and for the scalar field expectation value (@) are
obtained similarly.

4. Fermion mass m; and condensate { ¥¥)

In fig. 1 we show our results for the fermion mass mg
as a function of the scalar hopping parameter
(k=0.31-0.4) for different fixed values of the
Yukawa coupling y (y=0.6-1.5). The behaviour of
mg at small and large y clearly shows two different
regions. One observes a decrease of my as «\, for
y< 1.3 whereas for y> 1.4 one observes an increase
of mg as K\ k.. At a value of y between 1.3 and 1.4
the fermion mass appears to be independent of k. We
call it the “cross-over point” y* . However, it is not
excluded by our data that at y% a real phase transi-
tion takes place.

03 032 034 038 038 0.4 c
Fig. 1. The fermion mass mg as function of k for different values
of the bare Yukawa coupling y. Here and in the following figures

the straight lines connecting the data points are to guide the eye.
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Fig. 2. The fermion condensate { P¥> as a function of y for dif-
ferent values of k. The filled diamonds correspond to the data at
xk=0.31 on a 6> 12 lattice.

Our conjugate gradient converges everywhere but
around y% we observe a substantial rise in the num-
ber of iterations per inversion of the fermion matrix.
For example, for x=0.32 this number at y=1.3 is 5-
10 times larger than its values at y=0.6 and y=2.0.

Close to x,, for k<0.32 where the scalar correla-
tion length m; ! > 1.4, we observe large finite-size ef-
fects for the fermion mass at small values of y. In-
creasing the lattice size from 63-12to 83-16 and 10316
at k=0.32 and y=0.6 the fermion mass decreases
from 0.246(11) to 0.217(9) and 0.204(2),
respectively.

In fig. 2 we show our results for the condensate
(P¥> as a function of y for various values of k.
¢ P¥> hasamaximum also around y¥,. { P¥> isseen
to be proportional to y for small values of y as sug-
gested from the perturbation theory, and although not
shown in the figure, we find it also to be proportional
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to 1/y for large y, as expected from the strong y
expansion.

5. Renormalized Yukawa coupling

In this section we concentrate on the ratio
yR=mF\/Z, /{®>. This ratio is a possible defini-
tion of the renormalized Yukawa coupling yg. The
deviation of Z, from unity [11,17,18] is insignifi-
cant on the precision level of the present investiga-
tion, so we set Zg=11n yx.

In the weak y region, characterized by y<y,, the
perturbative triviality of the non-asymptotically free
Yukawa coupling suggests that yg should go to zero
as the cut-off is raised to infinity. In fig. 3 yy is plot-
ted as a function of x at y=0.6 on various lattices.
For small y and mg an appreciable lattice size depen-
dence is seen. Actually we find on small lattices qual-
itatively different behaviour from that expected on
an infinite lattice. Our present data at y=0.6 is insuf-
ficient for a reliable extrapolation to the infinite lat-
tice but indicates at least that yg decreases slowly with
decreasing k for k<0.33 and is around 0.68 at
x=0.33. Judging from the trend of the data in fig. 3
as we increase the lattice size from 6°-12 to 164, a far-
ther decrease of yr with increasing cut-off seems pos-
sible if even larger lattices could be used. We make
similar observations at other small y values. We no-
tice an analogy to the finite-size effects for the ratio
my/ (@) in the O(4) symmetric ¢* theory [11].

On the other hand, at y values larger than or around
y*., mg is sufficiently large and therefore we do not
see substantial finite-size effects. Data for yg on var-
ious lattices are consistent within error bars. In fig. 4

1.0 DAL EAELAL L AL LA DA B
Yr |
0.9

y=0.6

©:63%12

08 -

0.7 -

[LY: S AREIVE SO SN SN SN B
0.3 0.32 0.34 0.38 0.38 0.4

Fig. 3. yg for y=0.6 as a function of « on different lattices.
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Fig. 4. yg for y=1.3, 1.5 and 2.0 as a function of x.
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Fig. 5. Schematic plot of the lines of constant yg in the (x, y)
phase diagram. The dashed line vaguely indicates the position of
the crossover in the broken phase.

& is plotted against x for y=1.3, 1.5, 2.0 on an 8*-16
lattice. There is a clear increase of yg as k \ k.. We see
similar behaviour at all values of y> y% we have in-
vestigated. In the quenched calculation with naive
fermions there is certainly a different behaviour of yy
for y>yp* than that expected from perturbation
theory.

In fig. 5 we show a schematic diagram of possible
lines of constant yg in the (x, y) space. The diagram
shows a different flow structure for y<y* and y> y*.
In fig. 5 the lines drawn for y<)* are motivated by
the predictions of the perturbation theory and are
similar to the constant Ay lines in the @* theory [18].
The trend of the lines for y> y* is motivated by the
data in fig. 4. From our data, however, we cannot
conclude that y*=y%. The issue whether the conjec-
tured point (k=x., y=Y*) in fig. 5 is a non-trivial
fixed point where the fermion mass and the scalar
mass could possibly be tuned independently deserves
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certainly more attention in future calculations [4].

6. Conclusions

In spite of appreciable finite size effects, our results
for the fermion mass and the renormalized Yukawa
coupling seem to be in accordance with the pertur-
bation theory in the small Yukawa coupling region.
In our quenched simulation with naive fermions there
is a clear indication, however, of a non-perturbative
Yukawa coupling region where the fermion mass in-
creases as we approach the critical point. This might
have an important implication for the question of de-
coupling of fermions whose masses are generated by
Yukawa coupling. Though we expect the quenched
approximation to be qualitatively valid for large
Yukawa couplings, we intend to investigate the exis-
tence of a non-perturbative Yukawa coupling region
in an unquenched simulation. We think that the un-
quenched numerical calculations in the one-compo-
nent model performed until now [3] did not find such
a region because the large parameter space has not
yet been sufficiently explored. When we include also
the Wilson-Yukawa term [16], a very interesting is-
sue naturally will be whether we can make use of the
observed non-perturbative behaviour of the fermion
mass for strong bare Yukawa coupling in decoupling
the unwanted doublers.
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