Nuclear Physics B332 (1990) 250-260 North-Holland

LIE ALGEBRA COHOMOLOGY

Friedemann BRANDT*, Norbert DRAGON and Maximilian KREUZER*

Institut für Theoretische Physik, Universität Hannover, Appelstraße 2, D-3000 Hannover 1, FRG

Received 3 July 1989

We calculate the cohomology of the BRS operator s modulo an auxiliary differential operator t where both operators act on invariant polynomials in anticommuting variables C' and commuting variables X'. C' and X' transform according to the adjoint representation of the Lie algebra of a compact Lie group. The cohomology classes of s modulo t are related to the solutions of the consistency equations which have to be satisfied by anomalies of Yang-Mills theories. The present investigation completes the proof of the completeness and nontriviality of these solutions and, as a by-product, determines the cohomology of the underlying Lie algebra.

1. Contents

In the preceding paper [1] we have calculated the solutions of the consistency equations [2] for gauge anomalies. There we needed the cohomology of s modulo t, where s coincides with the BRS operator [3] on anticommuting variables C^i , the ghosts, and vanishes on the additional variables X^i . t is the differential operator which replaces C^i by X^i .

We prove that the cohomology classes of s modulo t are given in terms of the "standard ladders" (47) below, which are related to certain polynomials in Chern-Simons forms (X corresponds to the field strength two-form F). In sect. 2 we introduce the basic notations and calculate the cohomology of s and t. In sect. 3 we pose our fundamental problem and derive the "ladder equations". In sect. 4 we obtain particular solutions of the ladder equations and in sect. 5 we prove that all nontrivial solutions are certain combinations of these solutions. A final remark concerns the implications of our result for the cohomology of the underlying Lie algebra.

2. Cohomology of s and t

Let δ_i span a Lie algebra $[\delta_i, \delta_j] = f_{ij}^k \delta_k$ of rank R of a group G which is the product of U(1)-factors and of simple groups. Consider polynomials f(X, C) in

^{*} Supported by Deutsche Forschungsgemeinschaft.

^{0550-3213/90/\$03.50 ©} Elsevier Science Publishers B.V. (North-Holland)

commuting variables X^i and anticommuting variables C^i – the ghosts – $(i = 1, ..., \dim G)$. The polynomials are chosen to be invariant under the adjoint transformations of the Lie algebra

$$\delta_{i} = \delta_{i}^{C} + \delta_{i}^{X}, \qquad \delta_{i}^{C} = C' f_{ji}^{k} \frac{\partial}{\partial C^{k}}, \qquad \delta_{i}^{X} = X' f_{ji}^{k} \frac{\partial}{\partial X^{k}}.$$
(1)

We investigate the structure of the nilpotent antiderivative $s = -\frac{1}{2}C'\delta_i^C$ (|s| = 1, $s^2 = 0$)

$$sC' = \frac{1}{2}C'C' f_{jk}', \qquad sX' = 0,$$
(2)

and of the operator s + t, where t = $X^i \partial / \partial C^i$ acts as

$$tC' = X', \quad tX' = 0, \quad s + t = \left(\frac{1}{2}C'C'f_{ij}^{k} + X^{k}\right)\frac{\partial}{\partial C^{k}}.$$
 (3)

It is helpful to introduce in addition $r = C^{\dagger} \partial / \partial X^{\dagger}$

$$\mathbf{r}C' = 0, \qquad \mathbf{r}X' = C'. \tag{4}$$

s, t and r commute with the adjoint transformations

$$[\mathbf{s}, \boldsymbol{\delta}_i] = 0, \qquad [\mathbf{t}, \boldsymbol{\delta}_i] = 0, \qquad [\mathbf{r}, \boldsymbol{\delta}_i] = 0.$$
 (5)

If $f_{\lambda}(X, C)$ transforms under the irreducible representation λ of δ_i so do sf_{λ} , tf_{λ} and rf_{λ} . Therefore δ_i -invariant functions f constitute a well-defined subspace for the action of s, t and r.

We can split each of these δ_i -invariant functions $f = \sum f_{\lambda_c}$ uniquely into pieces which transform under the irreducible transformation λ_c of δ_i^c . This decomposition is unique because each finite-dimensional representation of our Lie algebra is completely reducible. Each f_{λ_c} is an eigenfunction of the Casimir operator of the semisimple part of the group

$$\mathscr{O}_{C} = g^{ij} \delta_{i}^{C} \delta_{j}^{C}, \qquad \mathscr{O}_{C} f_{\lambda_{C}} = a(\lambda_{C}) f_{\lambda_{C}}, \qquad a(\lambda_{C}) \in \mathbb{R}.$$
(6)

where $a(\lambda_c)$ vanishes if and only if λ_c is the trivial representation

$$a(\lambda_C) = 0 \Leftrightarrow \delta_i^C f_{\lambda_i} = 0.$$
⁽⁷⁾

If $\delta_i^C f(X, C) = 0$ then f(X, C) depends only on invariant functions $\theta_K(C)$ and the variables X^i also can only appear in invariant combinations $I_K(X)$. The $I_K(X)$

are completely classified: They are polynomials in the fundamental Casimir invariants I_K

$$I_{K}(X) = g_{i_{1}...,i_{m(K)}} X^{i_{1}}...X^{i_{m(K)}}, \qquad K = 1,...,R = \operatorname{rank}(G)$$
(8)

which are homogeneous of order m(K) and can be obtained from traces in suitable representations [4]

$$X = X'T_i, \qquad I_K(X) = \operatorname{tr} X^{m(K)}. \tag{9}$$

For U(1) generators δ_a the corresponding Casimir invariants are $I_a(X) = X^a$, m(a) = 1. For later purposes we assume K ordered such that K < K' implies $m(K) \le m(K')$. So the labels of U(1) generators range from a = 1 to $a = n_u$ (n_u is the number of U(1) factors). We will see below that all δ_i -invariant functions $\theta(C)$ are polynomials in θ_K which correspond to I_K . At this stage, however, let θ_L denote a basis of invariant functions of C^i such that each invariant $\theta(C)$ can be expressed as a polynomial in θ_L . Then we have

$$\delta_{i}^{C}f(X,C) = 0 \quad \Leftrightarrow \quad f = f(I_{K}(X), \theta_{L}(C)), \qquad \delta_{i}I_{K} = \delta_{i}\theta_{L} = 0.$$
(10)

We now show that the s-cohomology is trivial if f contains no δ_i^C -invariant piece

$$sf(X,C) = 0 \quad \Leftrightarrow \quad f(X,C) = s\hat{f}(X,C) + \tilde{f}(I_K,\theta_L).$$
 (11)

The result follows from the observation

$$\delta_i^C = -\left\{s, \partial/\partial C^i\right\}, \qquad \left[s, \delta_i^C\right] = 0.$$
(12a,b)

If one now decomposes $f = \sum f_{\lambda_c}$ into pieces f_{λ_c} from the irreducible representation λ_c then each f_{λ_c} satisfies $sf_{\lambda_c} = 0$ separately because of eq. (12b). The invariant piece gives \bar{f} in eq. (11). For each other piece $a(\lambda_c) \neq 0$ [eqs. (6) and (7)] and one calculates

$$f_{\lambda_{c}} = \frac{1}{a(\lambda_{c})} \mathscr{O}_{C} f_{\lambda_{c}} = \frac{1}{a(\lambda_{c})} g^{ij} \delta^{C}_{i} \delta^{C}_{j} f_{\lambda_{c}}$$
$$= \frac{1}{a(\lambda_{c})} g^{ij} \left\{ \mathbf{s}, \frac{\partial}{\partial C^{i}} \right\} \left\{ \mathbf{s}, \frac{\partial}{\partial C^{j}} \right\} f_{\lambda_{c}} = \mathbf{s} \left(\frac{1}{a(\lambda_{c})} g^{ij} \frac{\partial}{\partial C^{i}} \mathbf{s} \frac{\partial}{\partial C^{i}} f_{\lambda_{c}} \right). \quad (13)$$

This proves eq. (11).

The cohomology of t is even simpler:

$$tf(X,C) = 0 \quad \Leftrightarrow \quad f(X;C) = tf_+(X,C) + \text{const.}$$
(14)

We prove a more general result: each polynomial f(X, C) can be uniquely decomposed into pieces tf_+ , rf_- and a constant:

$$f = tf_{+} + rf_{-} + \text{const.}$$
(15)

Consider $f = \sum f_n$ decomposed into pieces of homogeneity *n* in *X* and *C* and observe that by eqs. (3) and (4) the counting operator *N* is given by the anticommutator

$$\{\mathbf{r},\mathbf{t}\} = X \frac{\partial}{\partial X} + C \frac{\partial}{\partial C} = N_X + N_C = N, \qquad Nf_n = nf_n.$$
 (16)

The piece f_0 is the constant in eq. (15). If $n \neq 0$ one has

$$f_n = \frac{N}{n} f_n = r \left(t \frac{1}{n} f_n \right) + t \left(r \frac{1}{n} f_n \right), \qquad (17)$$

which proves eqs. (15) and (14). Analogously one sees that the r cohomology is given by

$$\mathbf{r}f = 0 \quad \Leftrightarrow \quad f = \mathbf{r}f \quad + \text{ const.}$$
 (18)

3. Ladder equations

We need these results on the s and t cohomology for the fundamental problem to determine all $\chi_{g'}(X, C)$ for which there exists a $\chi_{g'+2}$ such that

$$s\chi_{g'} + t\chi_{g'+2} = 0.$$
(19)

The index g' signifies the ghost number (i.e. the degree in C). To δ_r -invariant solutions $\chi_{g'}$ of eq. (19), there correspond the solutions of the nonabelian consistency conditions which are nontrivial if and only if

$$\chi_{g'} \neq s\chi_{g'-1} + t\chi_{g'+1} + const.$$
 (20)

If $\chi_{g'}(X, C) = \theta_{g'}(C)$ is independent of X then eqs. (19) and (20) determine the cohomology of s: $s\theta_{g'} = 0$ with $\theta_{g'} \neq s\theta_{g'-1}$. If two functions f(X, C) and f'(X, C) differ only by trivial terms $sf + tf_{-} + \text{const.}$, we call them equivalent and write

$$f(X,C) \simeq f'(X,C) = f(X,C) + sf_+ tf_+ const.$$
 (21)

As s and t commute with δ_i , all functions $\chi_{g'+k}$ can be taken to be δ_i invariant if $\delta_i \chi_{g'} = 0$. On δ_i -invariant functions s + t is nilpotent because $s^2 = t^2 = 0$ and

$$(s+t)^{2} = \{s,t\} = -X^{i}\delta_{i}^{C} = -X^{i}\delta_{i}.$$
 (22)

To solve eq. (19) we apply s and obtain

$$0 = \operatorname{st} \chi_{g'+2} = -\operatorname{ts} \chi_{g'+2} \quad \Leftrightarrow \quad \operatorname{s} \chi_{g'+2} + \operatorname{t} \chi_{g'+4} = 0.$$

This argument implies the existence of functions $\chi_{g'+2l}$ up to some maximal ghost number which for later purposes we write as g + 2m - 1, g' = g + 2k - 1. The functions χ_{g+2l-1} satisfy

$$s\chi_{g+2l-1} + t\chi_{g+2l+1} = 0, \quad l \le m, \quad \chi_{g+2m+1} = 0.$$
 (23)

The functions χ_{g+2l+1} are not unique: one changes $\chi_{g'}$ only trivially, i.e. by $s\chi_{g'-1} + t\chi_{g+1} + const$ if one replaces all χ_{g+2l+1} by the equivalent

$$\chi'_{g+2l-1} = \chi_{g+2l-1} + s \hat{\chi}_{g+2l-2} + t \hat{\chi}_{g+2l} + \text{const.}$$
(24)

We call eq. (23) a ladder equation. At the top it reads

$$s\chi_{g+2m-1} = 0, \qquad \chi_{g+2m-1} \neq 0.$$
 (25)

If χ_{g+2m-1} were equal to $s\chi_{g+2m-2} + t\chi_{g+2m}$ then $\chi'_{g+2m-1} = 0$, $\chi'_{g+2m-3} = \chi_{g+2m-3} + t\chi_{g+2m-2}$ would be an equivalent ladder with lower top. In particular by eq. (11), the top of a ladder is a function of invariants I_K and θ_L .

We can complete the ladder to ghost number smaller than g' if we apply t to eq. (19): $0 = ts\chi_{g'} = -st\chi_{g'}$ and using eq. (11) we conclude $t\chi_{g'} + s\chi_{g'-2} = f_{g'-1}(I, \theta)$. It may happen that $f_{g'-1}$ vanishes. In that case the ladder equation (23) extends also below g'. Iterating this argument one obtains the ladder (23) for $1 \le l \le m$ and the last equation either reads

$$t\chi_{g+1} = 0, \qquad \chi_{g-1} = 0$$
 (26)

or

$$s\chi_{g-1} + t\chi_{g+1} = f_g(I,\theta).$$
 (27)

We call $f_g(I, \theta)$ the bottom of the ladder; eq. (26) corresponds to a ladder with vanishing bottom. The part of the ladder below ghost number g' does not only allow for the transformation (24) without changing $\chi_{g'}$ essentially, but one can also add to χ_{g+2l-1} arbitrarily ladders which have a top with ghost number smaller than g'. If one thereby can cancel f_g we assume this done. Then the ladder extends to an even lower bottom.

A concise notation is obtained if one introduces

$$\tilde{\chi} = \sum_{l=0}^{m} \chi_{g+2l-1} \,. \tag{28}$$

Then eqs. (23) and (27) read

$$(s+t)\tilde{\chi} = f_g(I,\theta) + t\chi_{g-1}, \qquad (29)$$

while eqs. (23) and (26) read

$$(\mathbf{s}+\mathbf{t})\tilde{\boldsymbol{\chi}}=0. \tag{30}$$

With this notation the relation of $\tilde{\chi}$ to the equivalent $\tilde{\chi}'$ (24) is given by

$$\tilde{\chi} \approx \tilde{\chi}' = \tilde{\chi} + (s+t)\hat{\chi} + \text{const.}$$
(31)

Eq. (30) only has trivial solutions

$$(s+t)\tilde{\chi} = 0 \quad \Leftrightarrow \quad \tilde{\chi} = \text{const.} + (s+t)\hat{\chi} \simeq 0.$$
 (32)

This follows because by eq. (14), eq. (26) has the solution $\chi_{g+1} = \text{const.} + t\hat{\chi}_{g+2} \approx 0$ (the constant can occur only if g + 1 = 0). Inserted into eq. (23) for l = 1 this implies

$$0 = \operatorname{st} \hat{\chi}_{g+2} + t \chi_{g+3} = t (\chi_{g+3} - s \hat{\chi}_{g+2}) \Longrightarrow \chi_{g+3} = s \hat{\chi}_{g+2} + t \hat{\chi}_{g+4} \simeq 0$$

By repeating the argument for l = 2, 3, ... one can work one's way up to the top of the ladder and thereby confirm eq. (32). We conclude that to each solution of eqs. (19) and (20) there corresponds a ladder (28) which satisfies eq. (29) with nontrivial top (25) and nonvanishing bottom $f_g(I, \theta)$ in eq. (29).

4. Particular solutions

The simplest bottom of a ladder is given by $f = I_{\mathcal{K}}(X)$. The corresponding ladder equation

$$(s+t)\tilde{\chi}_{K} = I_{K}(X) \tag{33}$$

has the particular solution

$$\tilde{\chi}_{K} = \sum_{l=0}^{m(K)-1} \chi_{K,2l+1}, \qquad \chi_{K,2l+1} = \frac{(-)^{l} (m(K)-1)!}{(m(K)+l)!} \{\mathbf{r},\mathbf{s}\}^{l} \mathbf{r} I_{K}(X), \quad (34)$$

where m(K) is the X-number of $I_K(X)$, r is defined in eq. (4). The operator $\{r, s\}$ is calculated to be

$$\{\mathbf{r},\mathbf{s}\} = \frac{1}{2}C'C'f_{ij}^{\ k}\frac{\partial}{\partial X^k}.$$
(35)

In $I_K(X) = \operatorname{tr} X^{m(K)}$ it replaces the matrix $X = X^k T_k$ by $C^2 = \frac{1}{2} f_{ij}^{\ k} C' C^j T_k$. In

particular, the highest ghost-number component of $\tilde{\chi}_{\kappa}$ reads

$$\theta_{K} = \tilde{\chi}_{K_{\text{gh}_{\text{max}}}} = \frac{(-)^{m}(m-1)!m!}{(2m-1)!} \operatorname{tr} C^{2m-1}, \qquad m = m(K).$$
(36)

The θ_K have odd ghost number and therefore anticommute. Eq. (34) is confirmed using the relations $[t, \{r, s\}] = [\{t, r\}, s] + [\{t, s\}, r] = s + C^i \delta_i$ (the last term vanishes if applied to δ_i -invariant functions) and $t(rI_K) = \{t, r\}I_K = m(K)I_K$.

To investigate the general ladder equations we have to split polynomials $f(I, \theta)$ of I_K and θ_K defined by eqs. (8) and (36) into parts f_m of level m

$$f = \sum_{m \ge 1} f_m \,, \tag{37}$$

where f_m is a linear combination of monomials M_{m_1,n_2,α_k}

$$f_m = \sum c_{m,n_K,\alpha_K} M_{m,n_K,\alpha_K}, \qquad c_{m,n_K,\alpha_K} \in \mathbb{R} , \qquad (38)$$

$$M_{m,n_{K},\alpha_{K}} = \prod_{\underline{K} \leq K} (I_{K})^{n_{K}} (\theta_{K})^{\alpha_{K}}, \qquad (39)$$

with $n_K \ge 0$, $\alpha_K \in \{0, 1\}$, $n_{\underline{K}} + \alpha_{\underline{K}} > 0$ and $m = m(\underline{K})$, i.e. the level *m* of a monomial *M* is given by $m(\underline{K})$ where \underline{K} is the minimum of all Casimir labels contributing to *M*. The decomposition (39) is well defined if *f* does not contain a constant part, which we assume in the following. We call $\underline{m} = m_f$ the lowest level of *f* if the decomposition $f = \sum f_m$ starts with $f_{\underline{m}} \neq 0$ ($f_m = 0, \forall m < m_f$). In analogy to eqs. (3) and (4) we define

$$\hat{\mathfrak{t}}_{m} = \sum_{K: \ m(K) = m} I_{K} \frac{\partial}{\partial \theta_{K}}, \qquad \hat{\mathfrak{r}}_{m} = \sum_{K: \ m(K) = m} \theta_{K} \frac{\partial}{\partial I_{K}}.$$
(40)

Each f_m can be uniquely decomposed [see eq. (14)] as

$$f_m(I_1,\ldots,I_R,\theta_1,\ldots,\theta_R) = \hat{\mathbf{t}}_m f_{\perp} + \hat{\mathbf{r}}_m f_{\perp}.$$
(41)

(by construction, the number operator $\{\hat{\mathbf{r}}_m, \hat{\mathbf{t}}_m\} = N_m$, counting all I_K and θ_K at level *m*, has only positive eigenvalues on f_m . Eq. (41) is thus proven like eq. (15) by decomposition of f_m into eigenfunctions of N_m .)

Consider a ladder with a top given by $f = \sum f_m(I, \theta)$. Define

$$\tilde{\chi}(X,C) = \sum_{m} f_m(I_1,\ldots,I_R,\tilde{\chi}_1,\ldots,\tilde{\chi}_n).$$
(42)

It coincides with $f(I, \theta)$ at highest ghost number and satisfies (due to eq. (33) and $(s + t)I_K = 0$)

$$(s+t)\tilde{\chi} = \sum_{K} I_{K} \frac{\partial}{\partial \tilde{\chi}_{K}} f.$$
(43)

The right-hand side vanishes for sufficiently large ghost number. So eq. (43) defines a ladder (see eqs. (23) and (29)) above that ghost number. The highest ghost-number part of the right-hand side of eq. (43) is obtained if one replaces $\tilde{\chi}_K$ by θ_K . $I_K \partial f / \partial \theta_K$ has the ghost number of f minus (2m(K) - 1), so the highest ghostnumber part in $\sum I_K (\partial / \partial \theta_K) f(I, \theta)$ is given by $\hat{\iota}_m f \neq 0$, where $\hat{\iota}_m f = 0$, $\forall m < \underline{m}$.

$$(\mathbf{s}+\mathbf{t})\tilde{\boldsymbol{\chi}} = (\hat{\mathbf{t}}_{\underline{m}}f)(I_1,\ldots,I_R,\theta_1,\ldots,\theta_R) + \cdots$$
(44)

The dots denote terms with lower ghost number. Specialize eq. (44) to $f = f_m(I, \theta)$. At the ghost number g of $\hat{t}_m f_m(I, \theta)$ eq. (44) reads

$$\left(\hat{\mathfrak{t}}_{\underline{m}}f_{\underline{m}}\right)(I_1,\ldots,I_R,\theta_1,\ldots,\theta_R) = s\chi_{g-1} + \mathfrak{t}\chi_{g+1}, \qquad (45)$$

i.e. contributions $\hat{t}_{\underline{m}} f_{\underline{m}}$ to a top of a ladder are trivial [eq. (21)] and can be dropped. This holds for arbitrary \underline{m} . Therefore the most general top $f(I_1, \ldots, I_R, \theta_1, \ldots, \theta_R)$ of a ladder has the form

$$f \simeq \sum_{m \ge \underline{m}} \hat{\mathbf{r}}_m f_m^- \,. \tag{46}$$

This top occurs as linear combination of the tops of the standard ladders

$$\tilde{\chi} = \left[f(I_1, \dots, I_R, \tilde{\chi}_1, \dots, \tilde{\chi}_R) \right]|_{\mathsf{gh} \ge \mathsf{g}^{-1}}, \qquad f = \hat{\mathsf{r}}_m f_m^-, \tag{47}$$

where g is the ghost number of $f_m(I, \theta)$ and the bracket [] indicates to take only the part with ghost number not less than g - 1. $\tilde{\chi}$ then satisfies

$$(\mathbf{s}+\mathbf{t})\tilde{\boldsymbol{\chi}} = (\hat{\mathbf{t}}_m \hat{\mathbf{r}}_m f_m) (I_1, \dots, I_R, \theta_1, \dots, \theta_R) + \mathbf{t} \boldsymbol{\chi}_{g-1}.$$
(48)

The standard top $\hat{\mathbf{r}}_m f_m$ can be reconstructed from the standard bottom using $\hat{\mathbf{r}}_m$.

5. Proof of the main result

We claim that up to trivial parts of the form $(s + t)\tilde{\chi}$ all ladders are linear combinations of the standard ladders (47) and that linear combinations of the components χ_{g+2l-1} , l = 1, ..., m of the standard ladders are trivial if and only if they vanish.

The proof uses induction to the ghost number for the following statements:

(i) A polynomial $P_g(C) = f(\theta_1(C), \dots, \theta_R(C))$ of ghost number g vanishes if and only if $f(\theta_1, \dots, \theta_R)$ vanishes for arbitrary anticommuting variables θ_K , $K = 1, \dots, R$.

(ii) There is no invariant function $\theta(C) \neq s\psi(C)$ of ghost number g which cannot be expressed as polynomial in $\theta_K(C)$, K = 1, ..., R.

(iii) Each bottom f with ghost number g of a ladder (27) satisfies $\hat{t}_{\underline{m}}f = 0$, where \underline{m} is the lowest level of f, i.e. $f = \sum_{m \ge \underline{m}} f_m$, $f_{\underline{m}} \ne 0$.

(iv) Each ladder with lowest top χ [eq. (25)] with ghost number g is equivalent to a linear combination of ladders given in eq. (47).

For ghost number g = 0 the properties (i)–(iv) hold trivially. We now show that they have to hold for ghost number g + 1 if they hold up to ghost number g.

(a) If there exists a relation $f(\theta_1, ..., \theta_R) \neq 0$ but $f(\theta_1(C), ..., \theta_R(C)) = 0$ at ghost number g + 1, then the ladder $\tilde{\chi} = f(\tilde{\chi}_1, ..., \tilde{\chi}_R)$ has a top with ghost number less than g + 1. It satisfies (iii)

$$(\mathbf{s}+\mathbf{t})\tilde{\boldsymbol{\chi}} = \hat{\mathfrak{t}}_m f + \cdots, \qquad \hat{\mathfrak{t}}_m f \neq 0,$$

where $\underline{m} = \min\{m(K): (\partial f / \partial \theta_K)(\theta_1, \dots, \theta_R) \neq 0\}$. $\tilde{\chi}$ is a nontrivial ladder which is shorter than the ladders given by eq. (47). This contradicts (iv) and therefore (i) is proven for g + 1.

(b) Consider a $\theta(C)$ which satisfies $s\theta(C) = 0$, $\theta(C) \neq s\psi + t\chi$ with ghost number g + 1. Due to (iii) it is the top of a ladder $\tilde{\chi}$ with bottom $f(I_1, \ldots, I_R, \theta_1, \ldots, \theta_R)$, $t_m f = 0$. Subtract the ladder

$$\tilde{\chi}^{(1)} = \sum_{l} \frac{1}{l} \hat{\mathbf{r}}_{\underline{m}} f^{(l)} (I_1, \dots, I_R, \tilde{\chi}_1, \dots, \tilde{\chi}_R)$$

from $\tilde{\chi}$, where $f_{\underline{m}} = \sum f^{(l)}$ decomposes the lowest level $f_{\underline{m}}$ of $f = \sum f_m$ into pieces $f^{(l)}$ of definite homogeneity l in the variables I_K and θ_K with $m(K) = \underline{m}$: $l = \sum_{K: m(K) = m} N_{I_K} + N_{\theta_K}$. The ladder $\tilde{\chi}^{(1)}$ has the same bottom as the ladder $\tilde{\chi}$ up to a function f' which depends only on I_K and θ_K with $m(K) > \underline{m}$. Subtracting the corresponding $\tilde{\chi}^{(1)'}$ from $\tilde{\chi} - \tilde{\chi}^{(1)}$, one cancels the lowest level of f' and after some steps $\tilde{\chi} - \tilde{\chi}^{(1)} - \tilde{\chi}^{(1)'} - \cdots$ has no bottom at the ghost number of f. Then this ladder extends to a lower bottom. Use this bottom f^1 with $\hat{t}_m f^1 = 0$ to define $\tilde{\chi}^{(2)}$ and so on. Ultimately,

$$\tilde{\chi} - \tilde{\chi}^{(1)} - \tilde{\chi}^{(1)'} - \cdots - \tilde{\chi}^{(2)} - \tilde{\chi}^{(2)'} - \cdots$$
 (49)

has no bottom, i.e. it satisfies eq. (26) and therefore is of the form $(s + t)\tilde{\psi} + \text{const.}$ [see eq. (31)]. At ghost number g + 1 eq. (49) implies that $\theta(C)$ can be expressed in terms of θ_K , $K = 1, \ldots, R$ which proves (ii) for g + 1. (c) Each bottom f_{g+1} is a function of I_1, \ldots, I_R and $\theta_1, \ldots, \theta_R$ because there are no unknown $\theta_{g+1}(C)$ as we have just shown. If f is the bottom of a ladder $\tilde{\chi}$, it satisfies eq. (29)

$$(s+t)\tilde{\chi} = f + t\chi_g$$

Consider the ladder

$$\tilde{\chi}^{(1)} = f(I_K, \tilde{\chi}_K) - (\mathbf{s} + \mathbf{t})\tilde{\chi}.$$
⁽⁵⁰⁾

It has a top with ghost number g or smaller and is therefore up to trivial terms a linear combination of ladders given in eq. (47). Because of $(s + t)^2 \tilde{\chi} = 0$ it satisfies

$$(\mathbf{s}+\mathbf{t})\tilde{\boldsymbol{\chi}}^{(1)} = \hat{\mathbf{t}}_m f(\boldsymbol{I}_K, \boldsymbol{\theta}_K) + \cdots, \qquad (51)$$

where the dots denote lower ghost number terms. $\hat{t}_m f$ has to vanish because there are no linear combinations of ladders of the form (47) with lower bottom given by this $\hat{t}_m f$ which have a lower top with ghost number g or smaller. So $\hat{t}_m f$ vanishes which proves (iii) for g + 1.

(d) If a ladder $\tilde{\chi}$ is given with lowest top $\chi_{g+1} = f(I_1, \ldots, I_R, \theta_1, \ldots, \theta_R)$ (recall that at g+1 there are no unknown $\theta(C)$). subtract $\hat{\chi} = f(I_1, \ldots, I_R, \tilde{\chi}_1, \ldots, \tilde{\chi}_R)$ from it. $\tilde{\chi} - \hat{\chi}$ is a ladder with lowest top lower than g+1 and therefore is equivalent to a linear combination of the ladders (47). Also $\hat{\chi} = f(I_1, \ldots, I_R, \tilde{\chi}_1, \ldots, \tilde{\chi}_R)$ can be written as such a linear combination which proves (iv) for g+1.

This completes the proof of the statements (i)-(iv).

In particular, our results imply that all linear combinations of ladders (47) are nontrivial because their lowest top f_g cannot be written as $f_g = s\chi + t\chi_+$, since in that case there would exist a ladder with bottom f_g . By (iii) each such bottom (but by (iv) no top) satisfies $\hat{t}_m f = 0$. So all ladders are nontrivial.

Statement (ii) implies that all nontrivial $\theta(C)$ are polynomials in θ_K , K = 1, ..., Rand apart from the fact that the θ_K anticommute there is no polynomial relation among them [see (i)]. Therefore the cohomology classes of s in the space of polynomials in C are given by a superfield $\Phi(\theta_1, ..., \theta_R)$ in R anticommuting variables. Φ has 2^R significant coefficients. No such Φ can be of the form $s\chi$ because Φ is the lowest top of a nontrivial ladder. Alternative descriptions of this fact are contained in ref. [5].

As a check we apply our results to C^{*}

$$C^{\#} = \prod_{i=1}^{D-\dim G} C^{i} = \frac{1}{D!} \varepsilon_{i_{1}...i_{D}} C^{i_{1}} \dots C^{i_{D}} \neq 0.$$
 (52)

 $C^{\#}$ has to be a function of θ_{κ} because it is s invariant and nontrivial. The last

statement follows from $\delta_i^C = -\{s, \partial/\partial C^i\}$ (12) and the δ_i^C -invariance of $\varepsilon_{i_1,\dots,i_p}$:

$$s\left(\frac{\partial}{\partial C'}C^{\#}\right) = \left\{s, \frac{\partial}{\partial C'}\right\}C^{\#} = -\delta_i^C C^{\#} = 0, \qquad (53)$$

and $(\partial/\partial C^i)C^{\#}$ span all terms with ghost number D-1. There can be no combination ψ of these s-invariant monomials such that $s\psi = C^{\#}$. Thus $C^{\#}$ is nontrivial and a function of $\theta_1, \ldots, \theta_R$. There is only one such function with ghost number D because

dim G =
$$\sum_{K=1}^{R(G)} (2m(K) - 1)$$
 (54)

holds in all simple groups and for U(1) factors [4,6]. So

$$C^{*} = \operatorname{const} \cdot \prod_{K=1}^{R} \theta_{K} \neq 0, \qquad (55)$$

i.e. the volume form $C^{\#}$ of gauge groups factorizes into terms θ_K which are invariant under the adjoint action of the group and of degree 2m(K) - 1, where m(K) is the degree of homogeneity of the Casimir operator \mathcal{O}_K , K = 1, ..., R. That these θ_K span the cohomology of the group is a fact which is contained in the more general result (i) (iv).

References

- [1] F. Brandt, N. Dragon and M. Kreuzer, Nucl. Phys. B332 (1990) 224
- [2] J. Wess and B. Zumino, Phys. Lett. B37 (1971) 95
- [3] C. Becchi, A. Rouet and R. Stora, Ann. Phys. (N.Y.) 98 (1976) 287;
- L. Baulieu, Phys. Rep. 129 (1985) 1
- [4] L. O'Raifeartaigh, Group structure of gauge theories (Cambridge University Press, Cambridge, 1986)
- [5] M. Dubois-Violette, M. Talon and C.M. Viallet, Phys. Lett. B158 (1985) 231
- [6] D.P. Želobenko, Compact Lie groups and their representations (Translations of Mathematical Monographs, Vol. 40, American Mathematical Society, Providence, 1978)

260