LIE ALGEBRA COHOMOLOGY

Friedemann BRANDT*, Norbert DRAGON and Maximilian KRFUZER*
Instifut für Theoretische Physik, Lniversität Hannover, Appelstrabe 2, D. 3000 Hannover 1, FRG

Received 3 July 1989

Abstract

We calculate the cohomology of the BRS operator s modulo an auxiliary differential operator t where both operators act on invariant polynomials in anticommuting variables C^{\prime} and commuting variables $X^{\prime} . C^{\prime}$ and X^{\prime} transform according to the adjoint representation of the Lie algebra of a compact Lie group. The cohomology classes of s modulo t are related to the solutions of the consistency equations which have to be satisfied by anomalies of Yang-Mills theories. The present investigation completes the proof of the completeness and nontriviality of these solutions and, as a by-product. determines the cohomology of the underlying Lic algebra.

1. Contents

In the preceding paper [1] we have calculated the solutions of the consistency equations [2] for gauge anomalies. There we needed the cohomology of s modulo t, where s coincides with the BRS operator [3] on anticommuting variables $C^{\prime \prime}$, the ghosts, and vanishes on the additional variables X^{\prime}. t is the differential operator which replaces C^{i} by X^{i}.

We prove that the cohomology classes of s modulo t are given in terms of the "standard ladders" (47) below, which are related to certain polynomials in Chern--Simons forms (X corresponds to the field strength two-form F). In sect. 2 we introduce the basic notations and calculate the cohomology of s and t. In sect. 3 we pose our fundamental problem and derive the "ladder equations". In sect. 4 we obtain particular solutions of the ladder equations and in sect. 5 we prove that all nontrivial solutions are certain combinations of these solutions. A final remark concerns the implications of our result for the cohomology of the underlying Lie algebra.

2. Cohomology of \mathbf{s} and \mathbf{t}

Let δ_{1} span a Lie algebra $\left[\delta_{i}, \delta_{j}\right]=f_{i j}{ }^{k} \delta_{k}$ of rank R of a group G which is the product of $\mathrm{U}(1)$-factors and of simple groups. Consider polynomials $f(X, C)$ in

[^0]commuting variables X^{i} and anticommuting variables C^{\prime} - the ghosts ($i=1, \ldots . \operatorname{dim} \mathrm{G}$). The polynomials are chosen to be invariant under the adjoint transformations of the Lie algebra
\[

$$
\begin{equation*}
\delta_{1}=\delta_{1}^{C}+\delta_{1}^{X}, \quad \delta_{1}^{C}=C^{\prime} f_{j}{ }^{k} \frac{\partial}{\partial C^{k}}, \quad \delta_{1}^{X}=X^{\prime} f_{j \prime}^{k} \frac{\partial}{\partial X^{k}} . \tag{1}
\end{equation*}
$$

\]

We investigate the structure of the nilpotent antiderivative $s=-\frac{1}{2} C^{\prime} \delta_{1}^{C} \quad(|s|=1$. $\mathrm{s}^{2}=0$)

$$
\begin{equation*}
s C^{\prime}={ }_{2}^{1} C^{\prime} C^{k} f_{j k}^{\prime}, \quad s X^{\prime}=0 \tag{2}
\end{equation*}
$$

and of the operator $\mathrm{s}+\mathrm{t}$, where $\mathrm{t}=X^{i} \partial / \partial C^{i}$ acts as

$$
\mathfrak{t} C^{\prime}=X^{\prime} . \quad \mathrm{t} X^{\prime}=0 . \quad \mathrm{s}+\mathrm{t}=\left(\begin{array}{l}
1 \tag{3}\\
2
\end{array} C^{\prime} C^{\prime} f_{i j}^{h}+X^{k}\right) \frac{\partial}{\partial C^{h}}
$$

It is helpful to introduce in addition $\mathrm{r}=C^{\prime} \partial / \partial X^{\prime}$

$$
\begin{equation*}
\mathrm{r} C^{\prime}=0 . \quad \mathrm{r} X^{\prime}=C^{\prime} \tag{4}
\end{equation*}
$$

s, t and r commute with the adjoint transformations

$$
\begin{equation*}
\left[\mathrm{s}, \delta_{i}\right]=0, \quad\left[\mathrm{t}, \delta_{i}\right]=0, \quad\left[\mathrm{r}, \delta_{i}\right]=0 \tag{5}
\end{equation*}
$$

If $f_{\lambda}(X, C)$ transforms under the irreducible representation λ of δ_{i} so do sf $f_{\lambda}, t f_{\lambda}$ and $\mathrm{r} f_{\lambda}$. Therefore $\delta_{\text {, }}$-invariant functions f constitute a well-defined subspace for the action of s, t and r.

We can split each of these $\delta_{\text {, }}$-invariant functions $f=\sum f_{\lambda_{C}}$. uniquely into pieces which transform under the irreducible transformation λ_{C} of δ_{t}^{C}. This decomposition is unique because each finite-dimensional representation of our Lie algebra is completely reducible. Each $f_{\lambda_{,}}$is an eigenfunction of the Casimir operator of the semisimple part of the group

$$
\begin{equation*}
\mathscr{O}_{C}=g^{\prime j} \delta_{1}^{C} \delta_{l}^{C}, \quad \tilde{O}_{C} f_{\lambda_{1}}=a\left(\lambda_{C}\right) f_{\lambda_{l}} . \quad a\left(\lambda_{c}\right) \in \mathbb{R} . \tag{6}
\end{equation*}
$$

where $a\left(\lambda_{c}\right)$ vanishes if and only if λ_{C} is the trivial representation

$$
\begin{equation*}
a\left(\lambda_{c}\right)=0 \Leftrightarrow \delta_{i}^{C} f_{\lambda_{1}}=0 \tag{7}
\end{equation*}
$$

If $\delta_{t}^{C} f(X, C)=0$ then $f(X, C)$ depends only on invariant functions $\theta_{K}(C)$ and the variables X^{\prime} also can only appear in invariant combinations $I_{K}(X)$. The $I_{K}(X)$
are completely classified: They are polynomials in the fundamental Casimir invariants I_{K}

$$
\begin{equation*}
I_{K}(X)=g_{t_{1} \ldots i_{m(K)}} X^{t_{i}} \ldots X^{\left.i_{m(k)}\right)}, \quad K=1, \ldots, R=\operatorname{rank}(G) \tag{8}
\end{equation*}
$$

which are homogeneous of order $m(K)$ and can be obtained from traces in suitable representations [4]

$$
\begin{equation*}
X=X^{\prime} T_{i}, \quad I_{K}(X)=\operatorname{tr} X^{m(K)} . \tag{9}
\end{equation*}
$$

For $\mathrm{U}(1)$ generators δ_{a} the corresponding Casimir invariants are $I_{a}(X)=X^{a}$. $m(a)=1$. For later purposes we assume K ordered such that $K<K^{\prime}$ implies $m(K) \leqslant m\left(K^{\prime}\right)$. So the labels of $\mathrm{U}(1)$ generators range from $a=1$ to $a=n_{u}\left(n_{u}\right.$ is the number of $\mathrm{U}(1)$ factors). We will see below that all δ_{i}-invariant functions $\theta(C)$ are polynomials in θ_{K} which correspond to I_{K}. At this stage, however, let $\theta_{l .}$ denote a basis of invariant functions of C^{i} such that each invariant $\theta(C)$ can be expressed as a polynomial in θ_{l}. Then we have

$$
\begin{equation*}
\delta_{1}^{C} f(X, C)=0 \quad \Leftrightarrow \quad f=f\left(I_{K}(X), \theta_{l}(C)\right), \quad \delta_{1} I_{K}=\delta_{1} \theta_{l .}=0 \tag{10}
\end{equation*}
$$

We now show that the s-cohomology is trivial if f contains no δ_{1}^{c}-invariant piece

$$
\begin{equation*}
\mathrm{s} f(X, C)=0 \quad \Leftrightarrow \quad f(X, C)=\mathrm{s} \hat{f}(X, C)+\bar{f}\left(I_{K}, \theta_{l}\right) \tag{11}
\end{equation*}
$$

The result follows from the observation

$$
\begin{equation*}
\delta_{1}^{c}=-\left\{\mathrm{s}, \partial / \partial C^{\prime}\right\}, \quad\left[\mathrm{s}, \delta_{i}^{c}\right]=0 \tag{12a,b}
\end{equation*}
$$

If one now decomposes $f=\sum f_{\lambda_{\text {}}}$ into pieces $f_{\lambda_{\text {}}}$, from the irreducible representation λ_{c} then each $f_{\lambda_{c}}$ satisfies $s f_{\lambda_{c}}=0$ separately because of eq. (12b). The invariant piece gives \bar{f} in eq. (11). For each other piece $a\left(\lambda_{C}\right) \neq 0$ [eqs. (6) and (7)] and one calculates

$$
\begin{align*}
f_{\lambda_{c}} & =\frac{1}{a\left(\lambda_{c}\right)} \Theta_{C} f_{\lambda_{C}}=\frac{1}{a\left(\lambda_{C}\right)} g^{i j} \delta_{l}^{C} \delta_{l}^{C} f_{\lambda_{c}} \\
& =\frac{1}{a\left(\lambda_{C}\right)} g^{\prime \prime}\left\{\mathrm{s}, \frac{\partial}{\partial C^{i}}\right\}\left\{\mathrm{s}, \frac{\partial}{\partial C^{\prime}}\right\} f_{\lambda_{C}}=\mathrm{s}\left(\frac{1}{a\left(\lambda_{C}\right)} g^{i j} \frac{\partial}{\partial C^{\prime}} \mathrm{s} \frac{\partial}{\partial C^{\prime}} f_{\lambda_{C}}\right) \tag{13}
\end{align*}
$$

This proves eq. (11).
The cohomology of t is even simpler:

$$
\begin{equation*}
\mathrm{t} f(X, C)=0 \quad \Leftrightarrow \quad f(X ; C)=\mathrm{t} f,(X, C)+\text { const } \tag{14}
\end{equation*}
$$

We prove a more general result: each polynomial $f(X, C)$ can be uniquely decomposed into pieces $\mathrm{t} f_{1}, \mathrm{r} f_{-}$and a constant:

$$
\begin{equation*}
f=\mathrm{t} f_{+}+\mathrm{r} f .+ \text { const } . \tag{15}
\end{equation*}
$$

Consider $f=\sum f_{n}$ decomposed into pieces of homogeneity n in X and C and observe that by eqs. (3) and (4) the counting operator N is given by the anticommutator

$$
\begin{equation*}
\{\mathrm{r}, \mathrm{t}\}=X \frac{\partial}{\partial X}+C \frac{\partial}{\partial C}=N_{X}+N_{C}=N . \quad N f_{n}=n f_{n} . \tag{16}
\end{equation*}
$$

The piece f_{0} is the constant in eq. (15). If $n \neq 0$ one has

$$
\begin{equation*}
f_{n}=\frac{N}{n} f_{n}=\mathrm{r}\left(\mathrm{t} \frac{1}{n} f_{n}\right)+\mathrm{t}\left(\mathrm{r} \frac{1}{n} f_{n}\right) \tag{17}
\end{equation*}
$$

which proves eqs. (15) and (14). Analogously one sees that the r cohomology is given by

$$
\begin{equation*}
\mathrm{r} f=0 \quad \Leftrightarrow \quad f=\mathrm{r} f+\text { const } \tag{18}
\end{equation*}
$$

3. Ladder equations

We need these results on the s and t cohomology for the fundamental problem to determine all $\chi_{x^{\prime}}(X, C)$ for which there exists a $\chi_{g^{\prime}+2}$ such that

$$
\begin{equation*}
s \chi_{g^{\prime}}+\mathrm{t} \chi_{g^{\prime}+2}=0 \tag{19}
\end{equation*}
$$

The index g^{\prime} signifies the ghost number (i.e. the degree in C). To δ_{1}-invariant solutions $\chi_{y^{\prime}}$ of eq. (19), there correspond the solutions of the nonabelian consistency conditions which are nontrivial if and only if

$$
\begin{equation*}
\chi_{g^{\prime}} \neq s \chi_{g^{\prime}-1}+t \chi_{g^{\prime}+1}+\text { const } . \tag{20}
\end{equation*}
$$

If $\chi_{g^{\prime}}(X, C)=\theta_{g^{\prime}}(C)$ is independent of X then eqs. (19) and (20) determine the cohomology of $\mathrm{s}: \mathrm{s} \theta_{g^{\prime}}=0$ with $\theta_{g^{\prime}} \neq \mathrm{s} \theta_{g^{\prime}} \quad$. If two functions $f(X, C)$ and $f^{\prime}(X, C)$ differ only by trivial terms $\mathrm{s} f+\mathrm{t} f_{-}+$const., we call them equivalent and write

$$
\begin{equation*}
f(X, C)=f^{\prime}(X, C)=f(X, C)+\mathrm{s} f_{-}+\mathrm{t} f_{-}+\text {const } . \tag{21}
\end{equation*}
$$

As s and t commute with δ_{i}, all functions $\chi_{g^{\prime}+k}$ can be taken to be δ_{i} invariant if $\delta_{i} \chi_{g^{\prime}}=0$. On δ_{i}-invariant functions $\mathrm{s}+\mathrm{t}$ is nilpotent because $\mathrm{s}^{2}=\mathrm{t}^{2}=0$ and

$$
\begin{equation*}
(s+t)^{2}=\{s, t\}=-X^{i} \delta_{1}^{C}=-X^{i} \delta_{i} \tag{22}
\end{equation*}
$$

To solve eq. (19) we apply s and obtain

$$
0=\mathrm{st} \chi_{g^{\prime}, 2}=-\mathrm{ts} \chi_{g^{\prime}+2} \Leftrightarrow \mathrm{~s} \chi_{g^{\prime}+2}+\mathrm{t} \chi_{g^{\prime}+4}=0
$$

This argument implies the existence of functions $\chi_{g^{\prime}+2 l}$ up to some maximal ghost number which for later purposes we write as $g+2 m-1, g^{\prime}=g+2 k-1$. The functions $X_{g}+2 / 1$ satisfy

$$
\begin{equation*}
\mathrm{s} \chi_{g-2 l-1}+\mathrm{t} \chi_{g, 2 l+1}=0, \quad l \leqslant m . \quad \chi_{g, 2 m \cdot 1}=0 \tag{23}
\end{equation*}
$$

The functions $\chi_{g-2 l-1}$ are not unique: one changes $\chi_{g^{\prime}}$ only trivially, i.e. by $\mathrm{s} \chi_{g^{\prime}-1}+\mathrm{t} \chi_{g \cdot 1}+$ const if one replaces all $\chi_{g, 2 t .1}$ by the equivalent

$$
\begin{equation*}
\chi_{g-2 l-1}^{\prime}=\chi_{g-2 l-1}+\mathrm{s} \hat{\chi}_{g+2 l \cdot 2}+\mathrm{t} \hat{\chi}_{g+2 l}+\text { const. } \tag{24}
\end{equation*}
$$

We call eq. (23) a ladder equation. At the top it reads

$$
\begin{equation*}
s \chi_{g, 2 m 1}=0 . \quad \chi_{g-2 m-1} \neq 0 \tag{25}
\end{equation*}
$$

If $\chi_{g+2 m}$, were equal to $\mathrm{s}_{g+2 m}+\mathrm{t} \chi_{g+2 m}$ then $\chi_{g+2 m-1}^{\prime}=0 . \chi_{g: 2 m}^{\prime}=$ $\chi_{g+2 m}+\mathrm{t} \chi_{g \cdot 2 m} 2$ would be an equivalent ladder with lower top. In particular by eq. (11), the top of a ladder is a function of invariants I_{K} and θ_{l}.

We can complete the ladder to ghost number smaller than g^{\prime} if we apply to eq. (19): $0=\mathrm{ts} \chi_{g^{\prime}}=-\mathrm{st} \chi_{g^{\prime}}$ and using eq. (11) we conclude $\mathrm{t} \chi_{g^{\prime}}+\mathrm{s} \chi_{g^{\prime}-2}=f_{g^{\prime}, 1}(1, \theta)$. It may happen that $f_{g^{\prime}}$, vanishes. In that case the ladder equation (23) extends also below g^{\prime}. Iterating this argument one obtains the ladder (23) for $1 \leqslant l \leqslant m$ and the last equation either reads

$$
\begin{equation*}
\mathrm{t}_{\mathrm{g} \cdot 1}=0 . \quad \chi_{g, 1}=0 \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{s} \chi_{g} 1+\mathrm{t} \chi_{\mathrm{g}+1}=f_{g}(I, \theta) \tag{27}
\end{equation*}
$$

We call $f_{g}(1, \theta)$ the bottom of the ladder: eq. (26) corresponds to a ladder with vanishing bottom. The part of the ladder below ghost number g^{\prime} does not only allow for the transformation (24) without changing $\chi_{g^{\prime}}$ essentially, but one can also add to $\chi_{g, 21}$ arbitrarily ladders which have a top with ghost number smaller than g^{\prime}. If one thereby can cancel f_{g} we assume this done. Then the ladder extends to an even lower bottom.

A concise notation is obtained if one introduces

$$
\begin{equation*}
\tilde{\chi}=\sum_{t=0}^{m} \chi_{g, 2 l} \tag{28}
\end{equation*}
$$

Then eqs. (23) and (27) read

$$
\begin{equation*}
(\mathrm{s}+\mathrm{t}) \tilde{\chi}=f_{g}(l, \theta)+\mathrm{t}_{\mathrm{g}} \chi_{1}, \tag{29}
\end{equation*}
$$

while eqs. (23) and (26) read

$$
\begin{equation*}
(s+t) \tilde{\chi}=0 \tag{30}
\end{equation*}
$$

With this notation the relation of $\tilde{\chi}$ to the equivalent $\tilde{\chi}^{\prime}(24)$ is given by

$$
\begin{equation*}
\tilde{\chi} \simeq \tilde{\chi}^{\prime}=\tilde{\chi}+(\mathrm{s}+\mathrm{t}) \hat{\chi}+\mathrm{const} . \tag{31}
\end{equation*}
$$

Eq. (30) only has trivial solutions

$$
\begin{equation*}
(s+t) \tilde{\chi}=0 \quad \Leftrightarrow \quad \tilde{\chi}=\text { const. }+(s+t) \hat{\chi} \simeq 0 . \tag{32}
\end{equation*}
$$

This follows because by eq. (14). eq. (26) has the solution $\chi_{g-1}=$ const. $+1 \hat{\chi}_{s, 2} \simeq 0$ (the constant can occur only if $g+1=0$). Inserted into eq. (23) for $l=1$ this implies

$$
0=\mathrm{st} \hat{\chi}_{g \cdot 2}+\mathrm{t} \chi_{g-3}=\mathrm{t}\left(\chi_{g+3}-\mathrm{s} \hat{\chi}_{g-2}\right) \Rightarrow \chi_{g-3}=\mathrm{s} \hat{\chi}_{g \cdot 2}+\mathrm{t} \hat{\chi}_{g \cdot 4}=0
$$

By repeating the argument for $l=2,3 \ldots$ one can work one's way up to the top of the ladder and thereby confirm eq. (32). We conclude that to each solution of eqs. (19) and (20) there corresponds a ladder (28) which satisfies eq. (29) with nontrivial top (25) and nonvanishing bottom $f_{g}(I, \theta)$ in cq. (29).

4. Particular solutions

The simplest bottom of a ladder is given by $f=I_{K}(X)$. The corresponding ladder equation

$$
\begin{equation*}
(s+t) \tilde{\chi}_{\kappa}=I_{K}(X) \tag{33}
\end{equation*}
$$

has the particular solution

$$
\begin{equation*}
\tilde{\chi}_{K}=\sum_{i=0}^{m(K)} \chi_{k, 2 /+1}, \quad \chi_{K .2 /+1}=\frac{(-)^{\prime}(m(K)-1)!}{(m(K)+1)!}\{r, s\}^{\prime} r I_{K}(X) \tag{34}
\end{equation*}
$$

where $m(K)$ is the X-number of $I_{K}(X), r$ is defined in eq. (4). The operator $\{r . s\}$ is calculated to be

$$
\begin{equation*}
\{\mathrm{r}, \mathrm{~s}\}={ }_{2}^{1} C^{\prime} C^{\prime} f_{t j}^{k} \frac{\partial}{\partial X^{k}} . \tag{35}
\end{equation*}
$$

In $I_{K}(X)=\operatorname{tr} X^{m(\kappa)}$ it replaces the matrix $X=X^{k} T_{k}$ by $C^{2}=\frac{1}{2} f_{1},{ }^{k} C^{\prime} C^{j} T_{k}$. In
particular, the highest ghost-number component of $\tilde{\chi}_{K}$ reads

$$
\begin{equation*}
\theta_{K}=\tilde{\chi}_{K_{\text {kh:max }}}=\frac{(-)^{m}(m-1)!m!}{(2 m-1)!} \operatorname{tr} C^{2 m-1}, \quad m=m(K) . \tag{36}
\end{equation*}
$$

The θ_{κ} have odd ghost number and therefore anticommute. Fq. (34) is confirmed using the relations $[\mathrm{t} .\{\mathrm{r} . \mathrm{s}\}]=[\{\mathrm{t}, \mathrm{r}\} . \mathrm{s}]+[\{\mathrm{t}, \mathrm{s}\}, \mathrm{r}]=\mathrm{s}+C^{i} \delta_{\text {, }}$ (the last term vanishes if applied to δ_{i}-invariant functions) and $\mathrm{t}\left(\mathrm{r} I_{K}\right)=\{\mathrm{t}, \mathrm{r}\} I_{K}=m(K) I_{K}$.

To investigate the general ladder equations we have to split polynomials $f(I, \theta)$ of I_{K} and θ_{K} defined by eqs. (8) and (36) into parts f_{m} of level m

$$
\begin{equation*}
f=\sum_{m \geqslant 1} f_{m} \tag{37}
\end{equation*}
$$

where f_{m} is a linear combination of monomials $M_{m, n_{\lambda}, \alpha_{\kappa}}$

$$
\begin{align*}
f_{m} & =\sum c_{m, n_{\kappa} \cdot \alpha_{K}} M_{m, n_{K}, \alpha_{\Lambda}} \quad c_{m, n_{K} \cdot \alpha_{K}} \in \mathbb{R}, \tag{38}\\
M_{m, n_{\Lambda}, \alpha_{\Lambda}} & =\prod_{K}\left(I_{K}\right)^{n_{K}}\left(\theta_{K}\right)^{\alpha_{K}} . \tag{39}
\end{align*}
$$

with $n_{\kappa} \geqslant 0, \alpha_{K} \in\{0,1\}, n_{\underline{K}}+\alpha_{\underline{K}}>0$ and $m=m(\underline{K})$, i.e. the level m of a monomial M is given by $m(\underline{K})$ where \underline{K} is the minimum of all Casimir labels contributing to M. The decomposition (39) is well defined if f does not contain a constant part, which we assume in the following. We call $\underline{m}=m_{f}$ the lowest level of f if the decomposition $f=\sum f_{m}$ starts with $f_{\underline{m}} \neq 0\left(f_{m}=0, \forall m<m_{f}\right)$. In analogy to eqs. (3) and (4) we define

$$
\begin{equation*}
\hat{\mathrm{t}}_{m}=\sum_{K: m(K)=m} I_{K} \frac{\partial}{\partial \theta_{K}}, \quad \hat{\mathrm{r}}_{m}=\sum_{K: m(K)=m} \theta_{K} \frac{\partial}{\partial I_{K}} . \tag{40}
\end{equation*}
$$

Each f_{m} can be uniquely decomposed [see eq. (14)] as

$$
\begin{equation*}
f_{m}\left(I_{1}, \ldots, I_{R}, \theta_{1}, \ldots, \theta_{R}\right)=\hat{\mathrm{t}}_{m} f_{1}+\hat{\mathrm{r}}_{m} f . \tag{41}
\end{equation*}
$$

(by construction. the number operator $\left\{\hat{\mathrm{r}}_{m}, \hat{\mathrm{t}}_{m}\right\}=N_{m}$, counting all I_{K} and θ_{K} at level m, has only positive eigenvalues on f_{m}. Eq. (41) is thus proven like eq. (15) by decomposition of f_{m} into eigenfunctions of N_{m}.)

Consider a ladder with a top given by $f=\sum f_{m}(I, \theta)$. Define

$$
\begin{equation*}
\tilde{\chi}(X, C)=\sum_{m} f_{m}\left(I_{1}, \ldots, I_{R}, \tilde{\chi}_{1}, \ldots, \tilde{\chi}_{n}\right) \tag{42}
\end{equation*}
$$

It coincides with $f(I, \theta)$ at highest ghost number and satisfies (due to eq. (33) and $\left.(s+t) I_{K}=0\right)$

$$
\begin{equation*}
(s+t) \tilde{\chi}=\sum_{K} I_{K} \frac{\partial}{\partial \tilde{\chi}_{K}} f . \tag{43}
\end{equation*}
$$

The right-hand side vanishes for sufficiently large ghost number. So eq. (43) defines a ladder (see eqs. (23) and (29)) above that ghost number. The highest ghost-number part of the right-hand side of eq. (43) is obtained if one replaces $\tilde{\chi}_{K}$ by θ_{K}. $I_{K} \partial f / \partial \theta_{K}$ has the ghost number of f minus ($2 m(K)-1$), so the highest ghostnumber part in $\sum I_{K}\left(\partial / \partial \theta_{K}\right) f(I, \theta)$ is given by $\hat{\mathrm{t}}_{\underline{m}} f \neq 0$, where $\hat{\mathrm{t}}_{m} f=0, \forall m<\underline{m}$.

$$
\begin{equation*}
(\mathrm{s}+\mathrm{t}) \tilde{\chi}=\left(\hat{\mathrm{t}}_{\underline{m}} f\right)\left(I_{1} \ldots, I_{R}, \theta_{1} \ldots, \theta_{R}\right)+\cdots \tag{44}
\end{equation*}
$$

The dots denote terms with lower ghost number. Specialize eq. (44) to $f=f_{m}(I, \theta)$. At the ghost number g of $\hat{\mathrm{t}}_{m} f_{\underline{m}}(I, \theta)$ eq. (44) reads

$$
\begin{equation*}
\left(\hat{\mathrm{t}}_{\underline{m}} f_{\underline{m}}\right)\left(I_{1} \ldots, I_{R}, \theta_{1}, \ldots, \theta_{R}\right)=s \chi_{q-1}+\mathrm{t} \chi_{g+1} \tag{45}
\end{equation*}
$$

i.e. contributions $\hat{\mathrm{t}}_{\underline{m}} f_{m}$ to a top of a ladder are trivial [eq. (21)] and can be dropped. This holds for arbitrary \underline{m}. Therefore the most general top $f\left(I_{1} \ldots, I_{R}, \theta_{1}, \ldots, \theta_{R}\right)$ of a ladder has the form

$$
\begin{equation*}
f=\sum_{m \geqslant \underline{m}} \hat{\mathbf{r}}_{m} f_{m}^{-} \tag{46}
\end{equation*}
$$

This top occurs as linear combination of the tops of the standard ladders

$$
\begin{equation*}
\tilde{\chi}=\left.\left[f\left(I_{1}, \ldots, I_{R}, \tilde{\chi}_{1}, \ldots, \tilde{\chi}_{R}\right)\right]\right|_{g h \geqslant g \quad 1}, \quad f=\hat{\mathrm{r}}_{m} f_{m}^{-} \tag{47}
\end{equation*}
$$

where g is the ghost number of $f_{m}^{-}(I, \theta)$ and the bracket [] indicates to take only the part with ghost number not less than $g-1$. $\tilde{\chi}$ then satisfies

$$
\begin{equation*}
(\mathrm{s}+\mathrm{t}) \tilde{\chi}=\left(\hat{\mathrm{t}}_{m} \hat{\mathrm{r}}_{m} f_{m}\right)\left(I_{1}, \ldots, I_{R}, \theta_{1}, \ldots, \theta_{R}\right)+\mathrm{t} \chi_{g_{-1}} \tag{48}
\end{equation*}
$$

The standard top $\hat{\mathrm{r}}_{m} f_{m}$ can be reconstructed from the standard bottom using $\hat{\mathrm{r}}_{m}$.

5. Proof of the main result

We claim that up to trivial parts of the form $(s+t) \tilde{\chi}$ all ladders are linear combinations of the standard ladders (47) and that linear combinations of the components $\chi_{g-2 l-1}, l=1 \ldots, m$ of the standard ladders are trivial if and only if they vanish.

The proof uses induction to the ghost number for the following statements:
(i) A polynomial $P_{g}(C)=f\left(\theta_{1}(C), \ldots, \theta_{R}(C)\right)$ of ghost number g vanishes if and only if $f\left(\theta_{1} \ldots, \theta_{R}\right)$ vanishes for arbitrary anticommuting variables $\theta_{K}, K=1 \ldots, R$.
(ii) There is no invariant function $\theta(C) \neq s \psi(C)$ of ghost number g which cannot be expressed as polynomial in $\theta_{K}(C), K=1 \ldots, R$.
(iii) Each bottom f with ghost number g of a ladder (27) satisfies $\hat{\mathrm{t}}_{\underline{m}} f=0$, where \underline{m} is the lowest level of f. i.c. $f=\Sigma_{m \geqslant m} f_{m}, f_{\underline{m}} \neq 0$.
(iv) Each ladder with lowest top χ [eq. (25)] with ghost number g is equivalent to a linear combination of ladders given in eq. (47).

For ghost number $g=0$ the properties (i)-(iv) hold trivially. We now show that they have to hold for ghost number $g+1$ if they hold up to ghost number g.
(a) If there exists a relation $f\left(\theta_{1} \ldots . \theta_{R}\right) \neq 0$ but $f\left(\theta_{1}(C) \ldots . \theta_{R}(C)\right)=0$ at ghost number $g+1$, then the ladder $\tilde{\chi}=f\left(\tilde{\chi}_{1}, \ldots, \tilde{\chi}_{R}\right)$ has a top with ghost number less than $g+1$. It satisfies (iii)

$$
(\mathrm{s}+\mathrm{t}) \tilde{\chi}=\hat{\mathrm{t}}_{\underline{m}} f+\cdots, \quad \hat{\mathrm{i}}_{\underline{m}} f \neq 0
$$

where $\underline{m}=\min \left\{m(K):\left(\partial f / \partial \theta_{K}\right)\left(\theta_{1}, \ldots, \theta_{R}\right) \neq 0\right\} . \tilde{\chi}$ is a nontrivial ladder which is shorter than the ladders given by eq. (47). This contradicts (iv) and therefore (i) is proven for $g+1$.
(b) Consider a $\theta(C)$ which satisfies $s \theta(C)=0, \theta(C) \neq s \psi+\mathrm{t} \chi$ with ghost number $g+1$. Due to (iii) it is the top of a ladder $\tilde{\chi}$ with bottom $f\left(I_{1}, \ldots, I_{R}, \theta_{1}, \ldots, \theta_{R}\right)$, $\mathbf{t}_{\underline{m}} f=0$. Subtract the ladder

$$
\tilde{\chi}^{(1)}=\sum_{l} \frac{1}{l} \hat{r}_{\underline{m}} f^{(1)}\left(I_{1}, \ldots, I_{R}, \tilde{\chi}_{1}, \ldots, \tilde{\chi}_{R}\right)
$$

from $\tilde{\chi}$, where $f_{\underline{m}}=\Sigma f^{(1)}$ decomposes the lowest level $f_{\underline{m}}$ of $f=\Sigma f_{m}$ into pieces $f^{(l)}$ of definite homogeneity l in the variables I_{K} and θ_{K} with $m(K)=\underline{m}: \quad l=$ $\sum_{K: m(K)=m} N_{t_{K}}+N_{\theta_{\kappa}}$. The ladder $\tilde{\chi}^{(1)}$ has the same bottom as the ladder $\tilde{\chi}$ up to a function f^{\prime} which depends only on I_{K} and θ_{K} with $m(K)>\underline{m}$. Subtracting the corresponding $\tilde{\chi}^{(1)^{\prime}}$ from $\tilde{\chi}-\tilde{\chi}^{(1)}$, one cancels the lowest level of f^{\prime} and after some steps $\tilde{x}-\tilde{x}^{(1)}-\tilde{x}^{(1)}-\cdots$ has no bottom at the ghost number of f. Then this ladder extends to a lower bottom. Use this bottom f^{1} with $\hat{t}_{\underline{m}} f^{1}=0$ to define $\tilde{\chi}^{(2)}$ and so on. Ultimately,

$$
\begin{equation*}
\tilde{\chi}-\tilde{\chi}^{(1)}-\tilde{\chi}^{(1)^{\prime}}-\cdots-\tilde{\chi}^{(2)}-\tilde{\chi}^{(2)^{\prime}}-\cdots \tag{49}
\end{equation*}
$$

has no bottom, i.e. it satisfies eq. (26) and therefore is of the form $(s+t) \tilde{\psi}+$ const. [see eq. (31)]. At ghost number $g+1$ eq. (49) implies that $\theta(C)$ can be expressed in terms of $\theta_{K}, K=1, \ldots, R$ which prove.s (ii) for $g+1$.
(c) Each bottom f_{g+1} is a function of I_{1}, \ldots, I_{R} and $\theta_{1}, \ldots, \theta_{R}$ because there are no unknown $\theta_{g .1}(C)$ as we have just shown. If f is the bottom of a ladder $\tilde{\chi}$. it satisfies eq. (29)

$$
(s+t) \tilde{\chi}=f+t \chi_{g} .
$$

Consider the ladder

$$
\begin{equation*}
\tilde{\chi}^{(1)}=f\left(I_{K}, \tilde{\chi}_{K}\right)-(s+\mathrm{t}) \tilde{\chi} . \tag{50}
\end{equation*}
$$

It has a top with ghost number g or smaller and is therefore up to trivial terms a linear combination of ladders given in eq. (47). Because of $(s+t)^{2} \tilde{\chi}=0$ it satisfies

$$
\begin{equation*}
(\mathrm{s}+\mathrm{t}) \tilde{\chi}^{(1)}=\hat{\mathrm{t}}_{\underline{m}} f\left(I_{K}, \theta_{K}\right)+\cdots, \tag{51}
\end{equation*}
$$

where the dots denote lower ghost number terms. $\hat{\mathrm{t}}_{\underline{m}} f$ has to vanish because there are no linear combinations of ladders of the form ($\overline{47}$) with lower bottom given by this $\hat{\mathrm{t}}_{\underline{m}} f$ which have a lower top with ghost number g or smaller. So $\hat{\mathrm{t}}_{m} f$ vanishes which proves (iii) for $g+1$.
(d) If a ladder $\tilde{\chi}$ is given with lowest top $\chi_{g{ }^{11}}=f\left(I_{1}, \ldots, I_{R}, \theta_{1} \ldots, \theta_{R}\right)$ (recall that at $g+1$ there are no unknown $\theta(C))$. subtract $\hat{\chi}=f\left(I_{1} \ldots \ldots I_{R} \cdot \tilde{\chi}_{1}, \ldots, \tilde{\chi}_{R}\right)$ from it. $\tilde{x}-\hat{\chi}$ is a ladder with lowest top lower than $g+1$ and therefore is equivalent to a linear combination of the ladders (47). Also $\hat{\chi}=f\left(I_{1} \ldots\right.$. $I_{R}, \tilde{\chi}_{1} \ldots \ldots, \tilde{X}_{R}$) can be written as such a linear combination which proves (iv) for $g+1$.

This completes the proof of the statements (i)-(iv).
In particular. our results imply that all linear combinations of ladders (47) are nontrivial because their lowest top f_{g} cannot be written as $f_{g}=s \chi+\mathrm{t} \chi_{+}$, since in that case there would exist a ladder with bottom f_{q}. By (iii) each such bottom (but by (iv) no top) satisfies $\hat{\mathrm{t}}_{\underline{m}} f=0$. So all ladders are nontrivial.

Statement (ii) implies that all nontrivial $\theta(C)$ are polynomials in θ_{K}. $K=1 \ldots, R$ and apart from the fact that the θ_{k} anticommute there is no polynomial relation among them [see (i)]. Therefore the cohomology classes of s in the space of polynomials in C are given by a superfield $\Phi\left(\theta_{1} \ldots, \theta_{R}\right)$ in R anticommuting variables. Φ has 2^{R} significant coefficients. No such Φ can be of the form s χ because Φ is the lowest top of a nontrivial ladder. Alternative descriptions of this fact are contained in ref. [5].

As a check we apply our results to C^{*}

$$
\begin{equation*}
C^{*}=\prod_{i=1}^{D-\operatorname{dim} C} C^{\prime}=\frac{1}{D!} \varepsilon_{i_{1} \ldots t_{1}} C^{\prime_{1}} \ldots C^{t_{l}} \neq 0 . \tag{52}
\end{equation*}
$$

C^{*} has to be a function of θ_{κ} because it is s invariant and nontrivial. The last
statement follows from $\delta_{i}^{C}=-\left\{\mathrm{s}, \partial / \partial C^{i}\right\}(12)$ and the δ_{i}^{C}-invariance of $\varepsilon_{i_{1} \ldots i_{D}}$:

$$
\begin{equation*}
s\left(\frac{\partial}{\partial C^{\prime}} C^{\#}\right)=\left\{s, \frac{\partial}{\partial C^{i}}\right\} C^{\#}=-\delta_{i}^{C} C^{\#}=0 \tag{53}
\end{equation*}
$$

and $\left(\partial / \partial C^{i}\right) C^{\#}$ span all terms with ghost number $D-1$. There can be no combination ψ of these s-invariant monomials such that $s \psi=C^{*}$. Thus C^{*} is nontrivial and a function of $\theta_{1} \ldots, \theta_{R}$. There is only one such function with ghost number D because

$$
\begin{equation*}
\operatorname{dim} \mathrm{G}=\sum_{K=1}^{R(\mathrm{G})}(2 m(K)-1) \tag{54}
\end{equation*}
$$

holds in all simple groups and for $U(1)$ factors [4.6]. So

$$
\begin{equation*}
C^{\#}=\text { const } \cdot \prod_{K=1}^{R} \theta_{K} \neq 0 \tag{55}
\end{equation*}
$$

i.e. the volume form $C^{\#}$ of gauge groups factorizes into terms θ_{K} which are invariant under the adjoint action of the group and of degree $2 m(K)-1$, where $m(K)$ is the degree of homogeneity of the Casimir operator $\mathcal{O}_{K}, K=1, \ldots, R$. That these θ_{K} span the cohomology of the group is a fact which is contained in the more general result (i) (iv).

References

[1] F. Brandt. N. Dragon and M. Kreuzer, Nucl. Phys. B332 (1990) 224
[2] J. Wess and B. Zumino. Phys. Lett. B37 (1971) 95
[3] C. Becchi. A. Rouet and R. Stora, Ann. Phys. (N.Y.) 98 (1976) 287 :
L. Baulieu, Phys. Rep. 129 (1985) 1
[4] I. O'Raifeartaigh. Group structure of gauge theories (Cambridge University Press. Cambridge. 1986)
[5] M. Dubois-Violette, M. Talon and C.M. Viallet. Phys. Lett. B158 (1985) 231
$[6]$ D.P. Želobenko. Compact Lie groups and their representations (Translations of Mathematical Monographs. Vol. 40. American Mathematical Society, Providence. 1978)

[^0]: * Supported by Deutsche Forschungsgemeinschaft.

