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We calculate the cohomology of the BRS operator s modulo an auxiliary differential operator
t where both operators act on invanant polynomials in anticommuting vanables C' and commut-
ing variables X'. ¢! and X' transform according to the adjoint representation of the Lie algebra
of a compact Lie group. The cohomology classes of s modulo t are related to the solutions of the
consistency equations which have to be satisfied by anomalies of Yang-Mills theories. The
present investigation completes the proof of the completeness and nontriviality of these solutions
and, as a by-product, determines the cohomology of the underlying Lie algebra.

1. Contents

In the preceding paper {1] we have calculated the solutions of the consistency
equations [2] for gauge anomalies. There we needed the cohomology of s modulo t,
where s coincides with the BRS operator [3] on anticommuting variables C', the
ghosts, and vanishes on the additional variables X'. t is the differential operator
which replaces C' by X'

We prove that the cohomology classes of s modulo t are given in terms of the
“standard ladders” (47) below, which are related to certain polynomials in
Chern--Simons forms ( X corresponds to the field strength two-form F). In sect. 2
we introduce the basic notations and calculate the cohomology of s and t. In sect. 3
we pose our fundamental problem and derive the “ladder equations”. In sect. 4 we
obtain particular solutions of the ladder equations and in sect. 5 we prove that all
nontrivial solutions are certain combinations of these solutions. A final remark
concerns the implications of our result for the cohomology of the underlying Lie
algebra.

2. Cohomology of s and t

Let §, span a Lie algebra (§,, )] =f,jk8k of rank R of a group G which is the
product of U(1)-factors and of simple groups. Consider polynomials f(X,C) in
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commuting variables X' and anticommuting variables C' - the ghosts -
(i=1..... dim G). The polynomials are chosen to be invariant under the adjoint
transformations of the Lie algebra

ad
=8 +8X. 8 =C/ff—r, 8¥=x'f1 . 1
81 81 81 : J (')(~A ¢ it (9XA ( )
We investigate the structure of the nilpotent antiderivative s = — 1C'8¢ (|s] = 1.
s2=0)
sC‘=§C’C"/k'. sX'=0, (2)
and of the operator s + t. where t = X'3/dC" acts as
A d
(=X 1X'=0,  s+t={iCCY, Xt oo (3)
It i1s helpful to introduce in addition r= C'd/d X"
rC'=0. rX'=c(". (4)
$. t and r commute with the adjoint transformations
[s.8,]=0. [t.8,]=0. [r.6,]=0. (5)

If f,(X,C) transforms under the irreducible representation A of 8, so do sf,. tf,
and rf,. Therefore § -invariant functions f constitute a well-defined subspace for the
action of s, t and r.

We can split cach of these §-invariant functions f=Xf, uniquely into picces
which transform under the irreducible transformation A . of §¢. This decomposition
1s unique because each finite-dimensional representation of our Lie algebra is
completely reducible. Each f, is an cigenfunction of the Casimir operator of the
semisimple part of the group

Co=g"8/ 8 . Ocfr, =a(A)f,, a(Ao)ER. (6)
where a(A ) vanishes if and only if A is the trivial representation
a(A) =08, =0. (7)

If 8/(X.C)=0 then f(X,C) depends only on invariant functions 8, (C) and the
variables X' also can only appear in invariant combinations I, ( X). The I, (X)
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are completely classified: They are polynomials in the fundamental Casimir
invariants /,

L(X)=g, ., X' . . X K=1..... R = rank(G) (8)
which are homogencous of order m( K ) and can be obtained from traces in suitable
representations [4]

X=XT, I (X)=tr Xxmk (9)
For U(1l) gencrators §, the corresponding Casimir invariants are [ (X)= X,
m(a)=1. For later purposes we assume K ordered such that K < K’ implies
m(K )< m(K’). So the labels of U(1) generators range from a=1to a=n, (n, is
the number of U(1) factors). We will see below that all §-invariant functions 8(C)
are polynomials in 8, which correspond to .. At this stage, however. let 8, denote
a basis of invariant functions of C' such that cach invariant 8(C) can be expressed
as a polynomial in @,. Then we have

SA(X.CY=0 o= f=f(I(X).6,(C)). 8,1,=8,0,=0. (10)
We now show that the s-cohomology is trivial if f contains no 8¢ -invariant piece
sA(X.C)=0 o f(X.C)=sf(X.C)+f(I;.8,). (11)
The result follows from the observation

8¢ =—{s.a/9C"y,  [s.8¢] =0. (12a.b)
If one now decomposes f=1L/, into pieces f, = from the irreducible representation
Ao then each f, = satsfies sfy =0 separately because of eq. (12b). The invariant
piece gives f in eq. (11). For each other picce a(A ) # 0 [egs. (6) and (7)] and one
calculates

1
= o f, = UgLse
f}x( a(}\() (f)\(» a(}\()g ' //)\(
1 ,/( d { d ) _’ 1 y J d ) (13)
Taa)f aci}\," ac T an g ac Sac ] (b

This proves eq. (11).
The cohomology of t is even simpler:

tf(X.C)=0 & f(X;C)=tf(X,C)+ const. (14)
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We prove a more general result: each polynomial f( X, C) can be uniquely decom-
posed into pieces tf,, rf_ and a constant:

f=1tf,+rf +const. (15)

Consider =Y, decomposed into pieces of homogeneity n in X and C and
observe that by egs. (3) and (4) the counting operator N is given by the anticommu-
tator

d d
{I‘,I} =X'8—X'+C%=N,\/4-N(-.=N. Nj;,=nf". (16)

The piece f, 1s the constant in eq. (15). If n # 0 one has
N 5 TR B

fo= s h=r ) e ). (17)
n n noo

which proves cgs. (15) and (14). Analogously one sees that the r cohomology is given
by

if=0 e f=rf +const. {18)

3. Ladder equations

We need these results on the s and t cohomology for the fundamental problem to
determine all x (X, C) for which there exists a x ., , such that

SXg+ WXys2=0. (19)
The index g’ significs the ghost number (i.e. the degree in ). To §-invariant
solutions X of eq. (19), there correspond the solutions of the nonabelian consis-
tency conditions which are nontrivial if and only if
Xg #SXg-1 X, +const. (20)
If x,(X.C)=86,(C) is independent of X then egs. (19) and (20) determine the
cohomology of s: sf,. =0 with §,. #s6,. . If two functions f(X.C) and f'(X.C)
differ only by trivial terms sf + tf_+ const., we call them equivalent and write

F(X.CY=f(X.C)=f(X.C)+sf_+tf_+const. (21)

As s and t commute with §,, all functions x ., , can be taken to be §, invariant if
8,x, = 0. On §-invariant functions s + t is nilpotent because $?=1?=0 and

(s+ 1) ={s,1) = - X8 =—X,. (22)
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To solve eq. (19) we apply s and obtain
O0=stX, 2= ~UXgs2 @ SXy. 2T Xp.a=0.

This argument implies the existence of functions x -, ,, up to some maximal ghost
number which for later purposes we write as g+2m—1, g'=g+ 2k —1. The
functions x,,,, , satisfy

$Xg-20-1 T WXg, 2041 =0 I<m. Xgoom-1=0. (23)

The functions x,_, ., are not unique: one changes x, only trivially, ie. by
$X -1 T 1X 4.1 + const if one replaces all x,,,,., by the equivalent

Xe-20-1=Xg=21-1F SXg12 2 H X, o+ const. (24)
We call eq. (23) a ladder equation. At the top it reads
Sxk'Zm 1=0‘ Xg*2m—l:t()' (25)

If X,.2, 1 were equal t0 X, 2, 2+ UXgu2m then x50, 1 =00 Xii2m 1=
Xgi2m 3T X, 2, 2 would be an equivalent ladder with lower top. In particular
by eq. (11). the top of a ladder is a function of invariants 7, and §,.

We can complete the ladder to ghost number smaller than g’ if we apply t to eq.
(19): 0 =tsx, = —styx, and using eq. (11) we conclude tx . + sx 2= f,. (1.8).
It may happen that f. | vanishes. In that case the ladder equation (23) extends
also below g’. Iterating this argument one obtains the ladder (23) for 1 < /< m and
the last equation either reads

tX,.1=0. Xg 1=0 (26)
or

SXg 1+ X1 =/ (1.8). (27)

We call f,(1.6) the bottom of the ladder: eq. (26) corresponds to a ladder with
vanishing bottom. The part of the ladder below ghost number g’ does not only allow
for the transformation (24) without changing x .- essentially. but one can also add to
X+ 1 arbitrarily ladders which have a top with ghost number smaller than g’ If
one thereby can cancel f, we assume this done. Then the ladder extends to an even
lower bottom.

A concise notation is obtained if one introduces

)ZZZXg.zl 1- (28)
1=0
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Then eqgs. (23) and (27) read
(s+0)x=/(01.0)+1x, |, (29)
while egs. (23) and (26) read
(s+0)x=0. (30)
With this notation the relation of x to the equivalent X’ (24) is given by
X=%x =%+ (s+ )X + const. (31)
Eq. (30) only has trivial solutions
(s+1)x=0 o x=const.+(s+0)x=0. (32)

This follows because by eq. (14). eq. (26) has the solution x ., =const. + tx,., =0
(the constant can occur only if g + 1 = 0). Inserted into eq. (23) for / =1 this implies

0=5[>2g~2+lX.x'nl:[(X.qﬂ—SXx'-z):X.x'-.izsx.g'~2+l>2x"4:0'

By repeating the argument for /= 2,3.... one can work on¢’s way up to the top of
the ladder and thereby confirm ¢q. (32). We conclude that to each solution of egs.
(19) and (20) there corresponds a ladder (28) which satisfies eq. (29) with nontrivial
top (25) and nonvanishing bottom fg( 1, 8)1n cq. (29).

4. Particular solutions

The simplest bottom of a ladder is given by f= I,.( X). The corresponding ladder
equation

(s+ 0%k =1x(X) (33)
has the particular solution
e (=) (m(K)-1)!
Xx= 2 Xxoii- XK1= {r.s}/rlk.(X). (34)

/=0 (’”(K)+/)!

where m(K ) is the X-number of I, (X), r is defined in eq. (4). The operator {r.s} is
calculated to be

{r,s}) =1cCHt i : (35)
- Yo xk

In Ix(X)=1tr XX it replaces the matrix X =X*7, by C*=1f*C'C'T,. In
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particular, the highest ghost-number component of X, reads
(=)"(m=-1)m!

0K=>2"’shmx= (2m - 1) ot m=m(K). (36)

The 8, have odd ghost number and therefore anticommute. Eq. (34) is confirmed
using the relations [t.{r.s}] = [{t,r}.s] + [{t.s},r] =s + C'8, (the last term vanishes
if applied to 6 -invariant functions) and t(r/,.) = {t.r} [, = m(K ).

To investigate the general ladder equations we have to split polynomials f(/. )
of I, and 8, defined by eqgs. (8) and (36) into parts f, of level m

f= 2 fu. (37)

m=1

where f, 1$ a linear combination of monomials M

" Ny ay

fm = Zcm.nk‘a,\' Mm.nK.uA N (.m. LIRS € R N (38)

Mm.n,\,ak_ n (l "A(H (39)

with np 20, ap € {0,1}. ng+ax,>0 and m=m(K), i.e. the level m of a mono-
mial M is given by m(K) where K is the minimum of all Casimir labels
contributing to M. The decomposition (39) is well defined if f does not contain a
constant part, which we assume in the following. We call m = m  the lowest level of
f if the decomposition f=1Yf  starts with f, # 0 (f, =0.Vm <m ). In analogy to
eqs. (3) and (4) we define

~ )
‘mz Z 1/\'_’ fm: Z 0K— . (40)
K:m(K)y=m (90]\ K:m(K)=m alk
Each f, can be uniquely decomposed [see eq. (14)] as
fold o Ig 8y 8) =, f T, f (41)

(by construction, the number operator {f,.1,,} =N,, counting all I and 6 at
level m, has only positive eigenvalues on f,,. Eq. (41) is thus proven like eq. (15) by
decomposition of f, into eigenfunctions of N,,.)

Consider a ladder with a top given by f=2Xf, (I.8). Define

=me(11 """ IR‘il """ i:\) (42)
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It coincides with f([7, 8) at highest ghost number and satisfies (due to eq. (33) and
(s+t)f,=0)

J
(s+0)x=21I a5/ (43)
K Xk’

The right-hand side vanishes for sufficiently large ghost number. So eq. (43) defines
a ladder (see eqs. (23) and (29)) above that ghost number. The highest ghost-number
part of the right-hand side of eq. (43) is obtained if onc replaces xx by 8;.
I, df/38, has the ghost number of f minus (2m(K)— 1), so the highest ghost-
number part in 1, (3/30,)f(1.8) is given by 1, f# 0. where t,,f= 0. Ym < m.

m”

(5+l)}2=(i,ﬁf)(11 ..... IR,OI....,HR)+... (44)

The dots denote terms with lower ghost number. Specialize eq. (44) to /= /(1. 8).
At the ghost number g of 1, /(1. 8) cq. (44) reads

m

(L fu )1 Ip By B) =Xy + X1 - (45)

1.e. contributions At,_,,f{,_, to a top of a ladder are trivial [eq. (21)] and can be dropped.
This holds for arbitrary m. Therefore the most general top f(/,..... Ig.6,.....0;) of
a ladder has the form

f = Z fIN ./;;l ° (46 )

m>m
This top occurs as linear combination of the tops of the standard ladders
x=[r01..... I X1 s )ZR)]lgh}g L f=t./ . (47)

where g is the ghost number of f (1.8) and the bracket [ ] indicates to take only
the part with ghost number not less than g — 1. X then satisfies

(s + 0% = (Ul ) (oo T B 0) + X,y - (48)

The standard top 1, f,, can be reconstructed from the standard bottom using t

me

5. Proof of the main result

We claim that up to trivial parts of the form (s + t)} all ladders are linear
combinations of the standard ladders (47) and that linear combinations of the
components x,_,_, [=1...., m of the standard ladders are trivial if and only if
they vanish.
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The proof uses induction to the ghost number for the following statements:
(1) A polynomial P (C) =f(8,(C),...,0-(C)) of ghost number g vanishes if and

only if f(6,...., 6,) vanishes for arbitrary anticommuting vanables 6., K=1...., R.
(i) There 1s no invariant function §(C) # s¢(C) of ghost number g which
cannot be expressed as polynomial in 8,(C), K=1,..., R.

(iii) Each bottom f with ghost number g of a ladder (27) satisfies 1, f = 0. where
m is the lowest level of f.ie. =Y, . pfoe fo # 0. -

(iv) Each ladder with lowest top x [eq. (25)] with ghost number g is equivalent to
a linear combination of ladders given in eq. (47).

For ghost number g =0 the properties (i)-(iv) hold trivially. We now show that
they have to hold for ghost number g + 1 if they hold up to ghost number g.

(a) If there exists a relation f(4,..... 8z} # 0 but f(6,(C)..... 6.(CH» =0 at ghost
number g + 1, then the ladder ¥ = f(X,..... X &) has a top with ghost number less
than g + 1. It satisfies (111)

(s+0X="t,f+ . 1,f/#0.

where m = min{m(K): (3f/38,)(8,..... 8z)# 0}. X 1s a nontrivial ladder which is
shorter than the ladders given by eq. (47). This contradicts (iv) and therefore (1) is
proven for g+ 1.

(b) Consider a 8(C) which satisfies s8(C) =0, 8(C) # sy + tx with ghost num-
ber g + 1. Due to (iii) it is the top of a ladder x with bottom f(/,...., Ix.8,..... 0r).
t,.f= 0. Subtract the ladder

from X. where f, =¥ " decomposes the lowest level f, of f=1f, into pieces [
of definite hon;ogeneity ! in the variables I and 0, with m(K)y=m: [=
Lk mxr=mNi, + Ny, . The ladder X" has the same bottom as the ladder x up to a
function f’ which depends only on I, and 6, with m(K)> m. Subtracting the
corresponding ¥ from % — ¥V, one cancels the lowest level of f* and after some
steps x — XV —x™"" — --- has no bottom at the ghost number of f. Then this
ladder extends to a lower bottom. Use this bottom f' with 1, /' = 0 to define ¥
and so on. Ultimately.

2_2(1)_2(1)'_ _)2(2)_52(2)’_ (49)
has no bottom, i.e. it satisfies eq. (26) and therefore is of the form (s + t)\{: + const.
[see eq. (31)]. At ghost number g + 1 eq. (49) implies that §(C) can be expressed in
terms of 8,. K=1,.... R which proves (i) for g+ 1.
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(¢) Each bottom f,,, is a function of /,,..., I and §,..... 0, because there are
no unknown 6, ,(C) as we have just shown. If f is the bottom of a ladder x. it
satisfies eq. (29)

(s+O)x=/+1tx,.

Consider the ladder
>2‘”=/(1x~)2;<)—(8+t)>? (50)

It has a top with ghost number g or smaller and is therefore up to trivial terms a
linear combination of ladders given in eq. (47). Because of (s + t)2% = 0 it satisfies

(s+ )XV =1, (1. 0)+ -, (51)

where the dots denote lower ghost number terms. 1,,f has to vanish because there
are no linear combinations of ladders of the form (57) with lower bottom given by
this 1, f which have a lower top with ghost number g or smaller. So 1,/ vanishes
which proves (i) for g + 1.

(d) If a ladder x is given with lowest top x,., =/f({),.... I.0,..... 0,) (recall
that at g+ 1 there are no unknown 8(C)). subtract x=f(/,..... Ipo Xqe---n Xr)
from it. x —x is a ladder with lowest top lower than g+ 1 and therefore is
equivalent to a linear combination of the ladders (47). Also x=f(I,.....
Too Xpeoos X x) can be written as such a linear combination which proves (iv) for
g+ 1.

This completes the proof of the statements (1)-(iv).

In particular. our results imply that all linear combinations of ladders (47) are
nontrivial because their lowest top f, cannot be written as f, =sx + tx., since in
that case there would exist a ladder with bottom f,. By (iii) cach such bottom (but
by (1v) no top) satisfies Almf= 0. So all ladders are nontrivial.

Statement (11) implies that all nontrivial §(C) are polynomials in §,.. K=1...., R
and apart from the fact that the 8, anticommute there is no polynomial relation
among them [sec (1)]. Therefore the cohomology classes of s in the space of
polynomials in ' are given by a superfield @(4,...., 0x) in R anticommuting
variables. @ has 2% significant coefficients. No such @ can be of the form sy
because @ is the lowest top of a nontrivial ladder. Alternative descriptions of this
fact are contained in ref. [5].

As a check we apply our results to 7

D-dimG 1

c*= 11 Cl= vt L G20, (52)
=1 .

C¥ has to be a function of @, because it is s invariant and nontrivial. The last
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statement follows from 8 = — (s, 3/9C"} (12) and the 8 -invariance of ¢, , :
e { O \em o e =0 53
“(_ I )— > OC‘} TR T (33)

and (d/0C")C* span all terms with ghost number D — 1. There can be no
combination { of these s-invariant monomials such that sy = C¥. Thus C¥ is
nontrivial and a function of 8,...., 8. There is only one such function with ghost
number D because
R((3)
dimG= ) (2m(K)-1) (54)
K=1

holds in all simple groups and for U(1) factors [4.6]. So
R
C*=const- [] 8c+0, (55)
K=1

i.e. the volume form C¥ of gauge groups factorizes into terms 6, which are
invariant under the adjoint action of the group and of degree 2m(K) — 1. where
m(K) is the degree of homogeneity of the Casimir operator ¢, K=1...., R. That
these 8, span the cohomology of the group is a fact which is contained in the more
general result (i) (1v).
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