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We calculate the cohomology of the BRS operator s modulo an auxiliar3, _ differential operator 
t where both operators act on invafiant polynomials in anticommuting variables C' and commut- 
ing variables X'. C' and X' transform according to the adjoint representation of the Lic algebra 
of a compact Lie group. The cohomology classes of s modulo t arc related to the solutions of the 
consistency equations which have to bc satisfied by anomalies of Yang-Mills theories. The 
present investigation completes the proof of the completeness and nontriviality of these solutions 
and, as a by-product, determines the cohomology of the underlying Lic algebra. 

!. Contents  

In the p reced ing  paper  [1] we have ca lcula ted  the solut ions of the consis tency 

equa t ions  [2] for gauge anomalies .  There  we needed the cohomology  of s modu lo  t, 

where  s co inc ides  with the BRS opera to r  [3] on an t i commut ing  var iables  C' .  the 

ghosts ,  and  vanishes on the addi t iona l  variables  X'. t is the different ia l  ope ra to r  

which replaces  C ~ by X'. 

W e  prove  that  the cohomology  classes of s modulo  t are given in terms of the 

" s t a n d a r d  l adders"  (47) below, which are related to certain po lynomia l s  in 

Che rn - -S imons  forms ( X  cor responds  to the field s t rength two-form F) .  In sect. 2 

we in t roduce  the basic nota t ions  and calculate  the cohomology  of s and t. In sect. 3 

we pose  our  fundamenta l  p rob lem and derive the " l a d d e r  equat ions" .  In sect. 4 we 

ob t a in  pa r t i cu la r  solut ions of the ladder  equat ions  and in sect. 5 we prove that  all 

nont r iv ia l  so lu t ions  are certain combina t ions  of  these solutions.  A final remark  

concerns  the impl ica t ions  of our  result for the cohomology  of the under ly ing  Lie 

a lgebra .  

2. Cohomology of s and t 

Let 8, span  a Lie a lgebra  [3, ,6j]  =f, jk3 k of rank R of a group G which is the 

p r o d u c t  of  U(1)-factors  and of s imple groups.  Cons ider  po lynomia l s  f ( X , C )  in 

* Supported by Deutsche Forschungsgemeinschaft. 

0550-3213/o2)/$03.50 ¢.~Elsevier Science Publishers B.V. 
(North-Holland) 



F Brandt et at / Lie algebra cohomolokn" 251 

c o m m u t i n g  variables X'  and an t icommut ing  variables C ' - t h e  g h o s t s -  

(i = 1 . . . . .  d i m G ) .  The polynomials  are chosen to be invariant under the adjoint 
t r ans fo rma t ions  of  the Lie algebra 

0 3 
8 , = 8 ; +  U ,  8~,=C'L,*aC , , U =  x ] , )  ax ,  . (I) 

1 " !  ("" = -  C6,  ( [ s l = l .  We investigate the structure of the nilpotent antiderivative s 

s 2 = 0) 

I r l r ~ r ,  sX'=O. (2) sC t =  z ~ , .  ©~,  

and of  the opera to r  s + t, where t -- X ~ 3 / 0 C  ~ acts as 

3 
= = ' C ' ~ ' % ;  ~ + X ~) a ( . ~  t C '  X ' .  t X'  0, s + t = ( 2  . (3) 

It is helpful to introduce in addit ion r = C ' 3 / 3 X '  

r C ' =  0,  r X ' =  C ' .  (4) 

s, t and r c o m m u t e  with the adjoint t ransformat ions  

Is. a,] = 0 ,  It, a,] = 0 ,  Jr, a,] = 0 .  (5) 

If f~,( X, C)  t ransforms under the irreducible representat ion ~ of 8, so do sf,\. if,\ 
and r f,\. Therefore  6,-invariant functions f consti tute a well-defined subspace for the 
act ion of s, t and r. 

We can split each of these 6,-invariant functions f =  52f~, uniquely into pieces 
which t rans form under  the irreducible t ransformat ion ?~(. of  6, c. This decomposi t ion  
is unique because each finite-dimensional representat ion of our Lie algebra is 
comple te ly  reducible. Each f~,, is an eigenfunction of the Casimir  opera tor  of  the 
semis imple  par t  of the group 

cc~ = g , , a ; a f ,  ecf~=~(x,)f~, u(~,~ e u .  (6) 

where  a ( X ( )  vanishes if and only if ,~(.. is the trivial representat ion 

a (~ , c )  = 0 ¢0 c 6, A ' = 0 .  (7) 

If 6,¢)'( X, C)  = 0 then f (  X, C)  depends  only on invariant functions OA.(C) and the 
var iables  X'  also can only appear  in invariant  combinat ions  I x ( X ) .  The I~,.(X) 
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are completely classified: They are polynomials in the fundamental Casimir 
invariants 1~,. 

1 K ( X ) = g , , . ,  ..... X " . . . X  'o''~~, K = I  . . . . .  R = r a n k ( G )  (8) 

which are homogeneous of order m(K ) and can be obtained from traces in suitable 
representations [4] 

X=X'T , ,  lb.(X) = t r X  "uh' .  (9) 

For U(I) generators 6, the corresponding Casimir invariants are I , ( X ) =  X", 
r n ( a ) =  1. For later purposes we assume K ordered such that K <  K'  implies 
m(K ) <~ m(K'). So the labels of U(1) gcnerators range from a = 1 to a = n u (n u is 
the number of U(1) factors). We will see below that all 6,-invariant functions 0(C) 
are polynomials in Or which correspond to lb.. At this stage, however, let Or. denote 
a basis of invariant functions of C i such that each invariant O(C) can be expressed 
as a polynomial in 0i. Then we have 

8 , C f ( X . C ) = 0  ~ f : f ( l~<(X) ,Oc(C) ) .  6,Ih.=8,0,=0. (10) 

We now show that the s-cohomology is trivial if f contains no 6,~-invariant piece 

s f ( X . C ) = 0  ~ f ( X . C ) = s f ( X , C ) + f ( I K , O t . ) .  (11) 

The result follows from the observation 

aS= - { s , # / O C ' } ,  Is,8, ~] = 0 .  (12a.b) 

If one now decomposes f = Y'-fx, into pieces fx ,  from the irreducible representation 
~,~. then each fx, satisfies sfx ' = 0 separately because of eq. (12b). The invariant 
piecc gives f in eq. (11). For each other piece a(~. c) ~ 0 [eqs. (6) and (7)] and one 
calculates 

1 1 
f ~ ' -  a(~.~ ) cn~fx' a(X¢)~ ", ~Jx, 

_ _  _ _  i ?  

a(A<.)g" ,s . t~C~ s. ff~- S fx = s  a(Ac.)g ~ s ~ T f a  ' . (13) 
\ 

This proves eq. (11). 
The cohomology of t is even simpler: 

tU(X,C)=O ~ f ( X ; C ) = t f , ( X , C ) + c o n s t .  (14) 
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We prove  a more  general result: each polynomial  f ( X ,  C)  can be uniquely decom- 

posed into pieces t f , ,  rf_ and a constant:  

f =  t f ,  + r/ .  + const.  (15) 

Cons ider  f - -3~f , ,  decomposed into pieces of  homogenei ty  n in X and C and 
observe  that  by eqs. (3) and (4) the counting opera tor  N is given by the an t icommu-  

ta tor  

3 3 
{r . t )  ,,V;, = nL .  (16) 

The  piece f~ is the constant  in eq. (15). If n 4:0 one has 

(1) 
f,, = --f , ,  = r tn f , ,  + t , (17) 

I1 

which proves  eqs. (15) and (14). Analogously one sees that the r cohomology is given 

by 

r f = 0  ~ f = r f  + c o n s t .  (18) 

3. Ladder equations 

We need these results on the s and t cohomology for the fundamenta l  problem to 
de te rmine  all X~'( X, C) for which there exists a Xg., 2 such that 

sX ~, + txe, ~ 2 = 0. (19) 

The  index g '  signifies the ghost number  (i.e. the degree in C). To 8,-invariant 
solut ions X~' of  eq. (19), there correspond the solutions of the nonabel ian consis- 
tency condi t ions  which are nontrivial if and only if 

Xg. 4: sxg,_ 1 + tXg., i + const.  (20) 

If X ~ ' ( X , C ) =  Ov.(C)is independent  of X then eqs. (19) and (20) determine the 
c o h o m o l o g y  of s: s0~, - -0  with 8~, :# s8~, z- If two functions f (  X. C) and f ' ( X ,  C)  
differ  only  by trivial terms s f  + t f .  + const., we call them equivalent and write 

f ( X ,  C)  - - f ' ( X .  C)  = f ( X , C )  + s f_ + t f .+  const.  (21) 

As s and t c o m m u t e  with 8 ,  all functions X e'~k can be taken to be 8 i invariant  if 
8iX ~, = 0. On 8,-invariant functions s + t is nilpotent because s 2 = t 2 = 0 and 

(s + 0 2 = { s , t }  = - X ' 8 ,  c =  -X'8,. (22) 
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To solve eq. (19) we apply s and obtain 

0 = S t X g ,  2=  --tSkg, 4. 2 e=:. SXg. 2-+-txg, 4 = 0 .  

This a rgument  implies the existence of functions X~', 2/ up to some maximal ghost 
number  which for later purposes we write as g + 2 m -  1, g ' = g  + 2 k -  1. The 

funct ions X ~  2~ ~ satisfy 

sxe_21.1+tx~,21+l=O, l<.%m. Xv,>, , .  i = 0.  (23) 

The functions X~-21.1 are not unique: one changes X.< only trivially, i.e. by 

sx~ ' -~  + tX~, 1 + const if one replaces all Xg, 2t- ~ by the equivalent 

• ^ 

X.~-2/.-1 = Xg-21-1 + sxg ,  2/. 2 + t)~g, 2/+ const. (24) 

We call eq. (23) a ladder equation. At the top it reads 

sx., ,  2,, l = 0 .  X.,+2,,- 1 :~ (). (25) 

If Xg-2, ,  i were equal to sx.~,2,,, 2 + t X a . 2 , ,  then X~,+2,,,_~=0, X~,2,,, 3 = 
Xx, 2,, ~ + tX.,. 2,,, e would be an equivalent ladder with lower top. In particular 

by eq. (11), the top of a ladder is a function of invariants / K and 01 . 
We can complete the ladder to ghost number  smaller than g '  if we apply t to eq. 

(19): 0 = t s x  ~, = - s t x , ,  and using eq. (11) we conclude tX~, + sx.<_e =fv ' -  1 (I" 0). 
It may  happen that f,,  ~ vanishes. In that case the ladder equation (23) extends 

also below g' .  Iterating this argument one obtains the ladder (23) for 1 ~< / ~< m and 

the last equat ion either reads 

or 

t x g . l = 0 .  Xv I = 0  (26) 

sx, ~+tx.,~l=L(l.O). (27) 

We call fx(1. O) the bot tom of the ladder: eq. (26) corresponds to a ladder with 
vanishing bot tom.  The part of the ladder below ghost number  g '  does not only allow 

for the t ransformat ion (24) without changing X.< essentially, but one can also add to 
Xv, 2/ i arbitrarily ladders which have a top with ghost number  smaller than g' .  If 

one thereby can cancel f~ we assume this done. Then the ladder extends to an even 

lower bot tom.  
A concise notat ion is obtained if one introduces 

= ~ Xg, 2/ 1" (28) 
I= 0 
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Then eqs. (23) and (27) read 

(s + t ) f (=fc( l ,O)  + tX~ l, (29) 

while eqs. (23) and (26) read 

(s + t ) ~  = 0 .  (30)  

With this notation the relation of £ to the equivalent ~' (24) is given by 

2( = X' = ,~ + (s + t)~ + const. (31) 

Eq. (30) only has trivial solutions 

( s + t ) 2 = 0  ~ ~ = c o n s t . + ( s + t ) 2 - - 0 .  (32) 

This follows because by eq. (14). eq. (26) has the solution X~- i = const. + t~g, 2 -- 0 
(the constant can occur only if g + 1 = 0). Inserted into eq. (23) for l =  1 this implies 

0 = stf(~. 2 + i X , . ,  = t ( X , , 3 -  s2~.2)  = X , - 3  = s2~.2 + t2~,.a--" 0. 

By repeating the argument for / =  2,3 . . . .  one can work one's way up to the top of 
the ladder and thereby confirm eq. (32). We conclude that to each solution of cqs. 
(19) and (20) there corresponds a ladder (28) which satisfies eq. (29) with nontrivial 
top (25) and nonvanishing bottom f~ ( l ,  O) in  eq. (29). 

4. Particular solutions 

The simplest bottom of a ladder is given by f =  I;,-(X). The corresponding ladder 
equation 

(s + t )2~ = l,x, ( X )  (33) 

has the particular solution 

'"'"' 1 ( - ) ' ( r e ( K )  - 1)! 
Y~,~= Z x~.2,,¿, x~.~_,., = ( r . s ) ' r 1 ~ ( x ) ,  (34) 

I=,, ( r e ( K )  + l ) !  

where m(K ) is the X-number of I;¢(X), r is defined in eq. (4). The operator {r,s} is 
calculated to be 

a 
(r,s) = ' , c ' c J L i  ~ o x ~ . ( 3 5 )  

In I x ( X ) = t r X  ""K~ it replaces the matrix X = X k T ,  by C2=~f,~kC'CIT~. In 
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particular, the highest ghost-number component of ~¢ reads 

( - ) " ( m -  l)!m! 
= t rC zm-x . m = r n ( K )  (36) 0j¢ = )(K ~ .... (2m - 1)! 

The 0t`. have odd ghost number and therefore anticommute. Eq. (34) is confirmed 
using the relations [t. {r.s}] = [{t,r}.s] + [{t,s},r] = s + C'6, (the last term vanishes 
if applied to 6,-invariant functions) and t(rlt<)= (t. r} It`. = m ( K  ) I  K. 

To investigate the general ladder equations we have to split polynomials f ( l .  O) 

of It,. and 0 K defined by eqs. (8) and (36) into parts f,, of level m 

f =  E f , , ,  (37) 
m >~ i 

where f,,, is a linear combination of monomials M . . . .  ~.,~. 

f , ,  = ~ c,,,. ,,~.aA M, , .  ,,~.,~ . c,,,. ,,A.,~ ~ R .  (38) 

M ...... A.~, = V I  ( l t ` ) " ~ ( O K )  "K, (39) 
_K~<K 

with n~,.>~ 0, c~a.~ {0,1}, n_~.+ c ~ >  0 and m =m(_K), i.e. the level m of a mono- 
mial M is given by m(_K) where _K is the minimum of all Casimir labels 
contributing to M. The decomposition (39) is well defined if f does not contain a 
constant part. which we assume in the following. We call nj = rn! the lowest level of 
f if the d e c o m p o s i t i o n / =  F.f,, starts with f,,_, :~ 0 (/ , ,  = 0. Vm < m / ) .  In analogy to 
eqs. (3) and (4) we define 

3 0 
i , ,  = E 1K - - ,  t,,, = E O K - -  (40) 

a': m ix )= , ,  OOj,. ~¢: ,,,(a) . . . .  Oia 

Each f,,, can be uniquely decomposed [see eq. (14)] as 

f , , (  l~ . . . . .  IR.O ~ . . . . .  OR) = i , , , f  , + f , , , f  (41) 

(by construction, the number operator {f,, , i , ,} = N,,,, counting all It¢ and O K at 
level m,  has only positive eigenvalues on f,,. Eq. (41) is thus proven like eq. (15) by 
decomposition of f,,, into eigenfunctions of No,.) 

Consider a ladder with a top given by f =  Z f , , ( l .  0). Define 

2 (  X,  C )  = Y'J,, ,(I~ . . . . .  IR. 21 . . . . .  ?(~) .  (42) 
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It coincides with f ( l ,  O) at highest ghost number and satisfies (due to eq. (33) and 

(s + t ) l  K = 0) 
# 

(s + t),~ = ,~,K lt¢ ~ . f .  (43) 

The right-hand side vanishes for sufficiently large ghost number. So eq. (43) defines 
a ladder (see eqs. (23) and (29)) above that ghost number. The highest ghost-number 
part of the right-hand side of eq. (43) is obtained if one replaces :~h. by 0~... 
I A. Of lOOt,, has the ghost number of f minus (2 re (K)  - l), so the highest ghost- 
number part in Z l x (  0 /00~  ) f (  I. O) is given by ~t,_,f~ O. where 'i,,,f = 0. Vm < m. 

(s 4- t))~ = (~t,_,f )( I, . . . . .  IR, 01 . . . . .  OR) 4- " ' "  (44) 

The dots denote terms with lower ghost number. Specialize eq. (44) to f=f,_,_,(1, 0). 
At the ghost number g of '{,,j~(l, 0) eq. (44) reads 

( i m f m ) (  I1 . . . . .  IR" 01 . . . . .  OR) = sX e - i  4- tXg ~-1, (45) 

i.e. contributions '{,,,f,,, to a top of a ladder are trivial [eq. (21)] and can be dropped. 
This holds for arbitrary hA. Therefore the most general top f (  11 . . . . .  I n, 01 . . . . .  0~) of 
a ladder has the form 

f =  Y'. ~,,,f,;, . (46) 

This top occurs as linear combination of the tops of the standard ladders 

~--- I f ( I t  . . . . .  1~.~(, . . . . .  2R)]]g , ,~  , .  f=~ , , , . f~ .  (47) 

where g is the ghost number of f~ (1. O) and the bracket [ ] indicates to take only 
the part with ghost number not less than g -  1. ~ then satisfies 

(S 4 - t ) x  = (~tm~mfrn)( l I . . . . .  IR, 01 . . . . .  OZe ) 4 - t x ~ _ l .  (48) 

The standard top ~,,f,,, can be reconstructed from the standard bottom using ~,,,. 

5. Proof of the main result 

We claim that up to trivial parts of the form (s + t))~ all ladders are linear 
combinations of the standard ladders (47) and that linear combinations of the 
components  Xg-21-1, / =  1 . . . . .  m of the standard ladders are trivial if and only if 
they vanish. 
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The  proof  uses induction to the ghost number  for the following statements:  
(i) A po lynomia l  Pg(C)  = f ( O l ( C )  . . . . .  OR(C)) of ghost number  g vanishes if and 

only if f(0~ . . . . .  0~) vanishes for arbi t rary an t i commut ing  variables Oh.. K = 1 . . . . .  R.  
(ii) There  is no invariant function 0 ( C ) 4 :  s~k(C) of ghost number  g which 

canno t  be expressed as polynomial  in 0j¢(C), K = 1 . . . . .  R. 
(iii) Each bo t t om f with ghost number  g of a ladder (27) satisfies i,,_,f = 0. where 

m is the lowest level of f .  i.e. f = E,.  ~ n_,fm, f,,_, 4: O. 
(iv) Each ladder with lowest top X [eq. (25)] with ghost number  g is equivalent to 

a l inear combina t ion  of ladders given in eq. (47). 

For  ghost  number  g = 0 the propert ies  ( i)-( iv)  hold trivially. We now show that 
they have to hold for ghost number  g + 1 if they hold up to ghost number  g. 

(a) If there exists a relation f (O  l . . . . .  OR) 4= 0 but f ( 0 1 ( C )  . . . . .  Og(C)) = 0 at ghost 
n u m b e r  g + 1, then the ladder )~ = f ( ~  . . . . .  Xt¢) has a top with ghost number  less 
than g + 1. It satisfies (iii) 

(s + t )~  = i ,_,f+ " - .  t ,_ , f~  0.  

where  m = rain{ m( K ): ( 3 f / 3 0  K )(01 . . . . .  On) 4= 0}. )~ is a nontrivial ladder which is 
shor ter  than the ladders given by eq. (47). This contradicts  (iv) and therefore (i) is 

p roven  for g + 1. 
(b) Cons ider  a O(C) which satisfies sO(( ' )  = 0, O(C)  =~ s~ + tX with ghost num- 

ber  g + 1. Due  to (iii) it is the top of a ladder ~ with bo t tom f (  I l . . . . .  I~, O, . . . . .  0~), 

t n_,f = 0. Subtract  the ladder 

1 
~" )  = ~ ~7 . ; f ' 1 ) (  I~ . . . . .  I~, "2, . . . . .  ~ )  

I 

f rom ~. where fn_, = • f ( l l  decomposes  the lowest level fn_, of f =  5~f,, into pieces f(l~ 
of defini te homogenei ty  1 in the variables I h. and 0= with m ( K ) = n ~ :  I =  
~=:,,(K)=,,tN,A + ~o~. The ladder ~11) has the same bo t tom as the ladder ~ up to a 

funct ion f '  which depends only on I h. and O h. with r e ( K ) >  ,11. Subtract ing the 
co r respond ing  ~(11' from ~ - ~(xl one cancels the lowest level of f '  and after some 
steps ~ - ~ ( 1 ) _  ~ ( l v _  . . .  has no bo t tom at the ghost number  of  f .  Then this 
ladder  extends  to a lower bot tom.  Use this bo t tom f~ with ~t,,,f ~ = 0 to define ~121 

and so on. Ult imately,  

_ ~(1~_ ~ t l ) ' _  . . . .  ~(2)_ ~ 2 ) ' _  . . .  (49) 

has no bo t tom,  i.e. it satisfies eq. (26) and therefore is of the form (s + t )~  + const. 
[see eq. (31)]. At ghost number  g + 1 eq. (49) implies that  O(C) can be expressed in 
te rms of 0x. K = 1 . . . . .  R which proves (ii) for g + 1. 
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(c) Each b o t t o m  f,+~ is a function of I 1 . . . . .  I R and 02 . . . . .  0 R because there are 
no unknown  0,:. 2((7) as we have just shown. If f is the bot tom of a ladder )~, it 
satisfies eq. (29) 

(s + 0 2  = / +  tX~. 

Cons ider  the ladder 

2 m  = f ( l x ,  2 ~  ) - ( s +  Q 2 .  (50) 

It has a top with ghost number  g or smaller and is therefore up to trivial terms a 
l inear combina t ion  of ladders given in eq. (47). Because of (s + t ) 2 ) (  = 0 it satisfies 

(s + = 0,, ) + . . . ,  (51) 

where the dots  denote  lower ghost number  terms. ],_,,f has to vanish because there 
are no linear combinat ions  of ladders of the form (47) with lower bo t tom given by 
this ] , , , f  which have a lower top with ghost number  g or smaller. So ~t,,f vanishes 
which proves  (iii) for g + 1. 

(d) If a ladder  2 is given with lowest top X~, 1 =f( l l  . . . . .  I R, 01 . . . . .  0 R) (recall 
that  at g + l  there are no unknown O(C)). subtract  2=f(l~ . . . . .  IR. 21 . . . . .  2R)  
f rom it. ) ~ - ) ~  is a ladder with lowest top lower than g + 1 and therefore is 
equivalent  to a linear combinat ion  of the ladders (47). Also 2=f( l~  . . . . .  
I~, 22 . . . . .  )~e) can be written as such a linear combinat ion  which proves (iv) for 
g + l .  

This  comple tes  the proof  of the s tatements  (i)-(iv). 
In part icular ,  our  results imply that all linear combinat ions  of  ladders (47) are 

nontr ivial  because their lowest top f~ cannot  be written as f~ = sx + i x . ,  since in 
that  case there would exist a ladder with bo t tom f , .  By (iii) each such bo t tom (but 
by (iv) no top) satisfies ]_,,,f= 0. So all ladders are nontrivial. 

S ta tement  (ii) implies that all nontrivial O(C) are polynomials  in 0 x. K = 1 . . . . .  R 
and apar t  f rom the fact that the 0,v an t i commute  there is no polynomial  relation 
a m o n g  them [see (i)]. Therefore  the cohomology classes of s in the space of 
po lynomia l s  in (" are given by a superfield q~(01 . . . . .  0e) in R an t i commut ing  
variables,  q) has 2 R significant coefficients. No such q~ can be of the form s X 
because  q) is the lowest top of a nontrivial ladder. Alternative descriptions of this 
fact are conta ined  in ref. [5]. 

As a check we apply our results to C = 

D -  d im(7 ,  1 
c : =  1-I c ' = - -  , ,c' ,  c ' , , . 0  (52) 

, = 1  D ! t ' q .  . . .  . 

(27 = has to be a function of 0~,. because it is s invariant and nontrivial.  The last 
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s ta tement  follows from ~c = _ {s, 8 / O C  * } (12) and the 6,C-invariance of e,,. .... : 

s( 8 " {s, 8 = O(_;~,C=~) = c~-~7}C = - 8 , c C #  = O, (53) 

and (8/8Ci)C n span all terms with ghost number  D - 1 .  There can be no 
combina t i on  "4' of these s-invariant monomials  such that s~ = C =. Thus C = is 
nontr ivial  and a function of 01 . . . . .  O R. There is only one such function with ghost 
n u m b e r  D because 

R((i) 

d i m G =  • ( 2 m ( K ) - l )  (54) 
K=I 

holds in all s imple groups and for U(I )  factors [4,6]. So 

R 

C = = cons t .  1-I 01< 4: 0, (55) 
K=I 

i.e. the vo lume form C = of gauge groups factorizes into terms 01,. which are 
invar iant  under  the adjoint action of the group and of degree 2 r e ( K ) -  1, where 

m(  K ) is the degree of homogenei ty  of the Casimir  opera tor  8A., K = 1 . . . . .  R. That  
these 0 h. span the cohomology of the group is a fact which is contained in the more 
general  result (i) (iv). 
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