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For the case of a compact gauge group we determine all solutions to the consistcncv 
conditions. In particular, our results imply that the known list of anomalies is complete also for 
nonrenormaliTable models. 

I. Introduction 

Inva r i an t  local act ions and anomal ies  can be const ructed  in terms of tensors  and 

forms.  In this paper  we show for the Y a n g - M i l l s  case that  these const ruct ions  are 

comple te .  Fo r  the case of a compac t  gauge group we de te rmine  all nontr ivial  

so lu t ions  to the consis tency equat ions  sa  = 0 [1.-3] with a rb i t ra ry  ghost number  g. 

In sect. 2 we in t roduce  the basic notat ions.  In sect. 3 we list our results and 

discuss  the cases g = 0 and g = 1 (i.e. invar iant  act ions and anomalies) .  In sect. 4 we 

s ta r t  our  invest igat ion with an appropr i a t e  extension of the algebra.  We conc lude  

that  nontr iv ia l  solut ions are invar iant  under  the adjoint  act ion of the gauge group 

and  that  an t ighos ts  only cont r ibu te  to trivial solut ions a = s X. An expans ion  in the 

n u m b e r  of  fields allows us to start  with the invest igat ion of the l inearized (abel ian)  

p rob l em.  In sect. 5 we calculate  the solut ion of the abel ian  consis tency condi t ion  

us ing a va r ia t iona l  method.  For  a unique charac ter iza t ion  of the (abel ian)  cohomol-  

ogy classes we further need a covar iant  form of Poincard 's  lemma,  which is der ived 

in sect. 6 (at  this stage of our invest igat ion one type of solut ions emerges which 

d e p e n d s  on forms only). In sect. 7 the nonabe l i an  extension of these results is 

p e r f o r m e d  using results on the Lie a lgebra  cohomology,  which are proven in a 

s epa ra t e  inves t igat ion [4]. Omi t t ing  the deta i led proofs ,  the results of the present  

inves t iga t ion  and of ref. [4] have been descr ibed in ref. [5]. In the append ix  we 

impose  in add i t i on  ant i -BRS invariance.  The nontr ivial  solut ions are shown not  to 

be af fec ted while the s tructure of the gauge fixing and ghost part  of the act ion is 

res t r ic ted.  
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2. Notation 

We consider  local functionals 

= f d x . ~ ( [ 4 , ] }  (2.1} 

of  the gauge fields A;,, matter  fields g,, ghost fields C', antighosts C'  and auxiliary 
field B', where .~  is a polynomial in [4,], 

= {A,,; ( " . ( ' . B ; . ~ }  . . . . .  [ 4 , ] = { , t , . a , , 4 , , a . a . 4 , ,  } {2.2) 

which satisfy the consistency condition [1] sa = 0 or 

s ,~([4~]) = d X ( [ 4 , ] ) .  (2.3) 

Eq. (2.3) holds identically in the fields [,b], irrespective of the x-dependence of a 
chosen element  of [4']. Note  that the variables are not x ~'. ()u acts on [4,] alge- 
braically, it "'creates an index ~".  If we were to consider eq. (2.3) as equation for 
. ,~(x)  = .~( [~ , (x) ] ) ,  then all d would satisfy eq. (2.3) and all ~ would be trivial 
because each volume form c0(x) is closed and exact by PoincartS's lemma for forms 
in a s tar-shaped coordinate patch. 

The  BRS opera tor  [2] s acts on the multiplets (A~,, 4, C)  and (C, B) according to 

sA~, = //,,C' ' +C 'Af ,~  ', s(" = ~ CJC~/,/2 . . . .  sg,= - ( "6 ,4  s(:' = B' sB' ={} 

(2.4) 

fj~' are the structure constants of the gauge group with generators 3,, [3;, 3a] =y)/6, .  
s commutes  with partial derivatives, 

[s, O~,] = 0,  (2.5) 

and is extended to polynomials by linearity and the graded product  rule for 
differential  operators  d applied to products 

d(4,14,2 ) = (d4, t )4 ,  2 + ( - ) I d l ' ~ l ; 4 , 1  d{~2. (2.6) 

The  grading 14,] is zero for commuting fields A~,, B and bosonic matter  fields and 
one for fermionic matter  fields, the ghosts C, C and the operator  s. Because of eqs. 
(2.4) and (2.5). s is nilpotent 

s 2 = o.  (2.7) 
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So one immediately obtains solutions to eq. (2.3) 

a(~,,,,,(,t,) = s f  dxX([¢,]) + c o n s t .  (2.8) 

For vanishing ghost number, eq. (2.8) is the gauge fixing and ghost part of the 
action, for ghost number 1, eq. (2.8) corresponds to removable (nonanomalous) 
symmetry breaking. We neglect trivial terms and write -- to indicate equality up to 
trivial terms 

s X +  dY + const. = O. 

Whether there are nontrivial solutions at all depends decisively on the transfor- 
mation (2.4). If ,~ contains a Goldstone field, i.e. a field which transforms inhomo- 
geneously, then each anomaly of the other fields can be cancelled by the 
Wess-Zumino term [1]. If there is no Goldstone field, the group acts linearly [6] 

8,q, = - T,q,. (2.4a) 

T, is a matrix representation of 8,, [T,, ~]  = f , / T  k. We assume eq. (2.4a) to hold and 
classify the nontrivial solutions of eq. (2.3). 

To describe our results we recall that for each compact Lie algebra of rank R 
there are R independent Casimir operators 0~¢. K = 1 . . . . .  R 

e ,<=g ,  ...... , - ,=%. . .a , . , , ,  (2.9) 

of order r e ( K )  with coefficients gJ' ..... J-. which are completely symmetric. We 
assume the labels K ordered such that K < K'  implies r e ( K ) ~  m ( K ' ) .  For abelian 
factors, m ( K  ) = 1. All coefficients g are obtained from symmetrized traces 

gi ...... ,.(~) = str T j . . .  T;.,(K , (2.10) 

taken in an appropriate matrix representation T, of the generators 8, (either the 
fundamental or the spinor representation [7]). To each Casimir operator O x there 
belongs a 2m(K)- fo rm f~ 

f ~  = F "  . . .  F-im(~,g,~ ..... s.,,<, = t r ( F )  "'{~} , (2.11) 

constructed out of the Yang-Mills field strength 

F'=!~"cl2-,,~x"dx ~, F =  F ' T , .  (2.12) 
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Starting from the connection form A 

F is given by' 

227 

A t , ~ ,  = . = A,,dx A A' E (2.13) 

F =  dA - A 2 (2.14) 

s anticommutes with the exterior derivative d and in our notation sA = - d C +  
{ A,  C }, sC = C:. Each fh- is closed, dfk = 0 and s-invariant, sfK = 0. This holds in 
arbitrary dimensions due to the Bianchi identity. Therefore, the algebraic Poincard 
lemma (eq. (6.1) below) implies the existence of a ladder of forms q,~ with ghost 
number g > 0 and form degree 2 m ( K ) -  1 - g which satisfy the descent equations 

[81 

fh = dq °-, sq~ + dq~,- ~ = 0, g > 0. (2.15) 

So q;~ solves the consistency condition with ghost number g. With the matrix 
notation 

C = C ' ~ .  A = A  + C .  B = ( A  +C)= ,  (2.16) 

the qi~ are given explicitly by 

, , ,  I m ! ( m -  1)! 
~Th. = y '  q~=  o~' )! )!strA'/}lk .... / 1 m = m ( K ) .  (2.17) 

~-I~ /=~ ( m + /  ( m - l - 1  

q?~ can be read off ~tx by collecting all terms with ghost number g. Eq. (2.17) 
follows from the explicit formula for the Chern -Simons form q~ by observing that 
F =  (d + s)A- - A--' [8]. For abelian factors 4 = ,4-= A + C and the descent equations 
read f = d A ,  sA + d C = O ,  s C = O .  

cTx, and all components q~ anticommute. With the help of CTx the descent 
equations take the particularly simple form 

(s + d)q a. = f a .  (2.18) 

At highest ghost number qh- is given by 

m! ( m  - 1)! 
0/<-= q~<" 1 -  t rC >''-I m = m ( K ) .  (2.19) 

( 2 m -  1)! 

For abclian factors 0. = C". As a consequence of eqs. (2.18) and (2.19) one has 

(2.20) s0/< = 0 ,  

(0x,0h-,} = 0 ,  K , K ' ~  {1 . . . . .  R} .  (2.21) 
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A polynomial in 0 K vanishes as a polynomial in C if and only if it vanishes as a 
polynomial in the R anticommuting variables 0~,., i.e. there are no algebraic relations 
among the 0r,. in addition to eq. (2.21) [4]. We can now state our results. 

3. Results 

The general solution of the consistency equation is 

sCd"x =£° (  01 . . . . .  OR: [LP, F,,,])dr'x +sdd, i~l . (3.1) 

is a superfield in O~ with 2 ~ component fields which are 8,-invariant polynomials 
in the matter fields ~p, the field strength k~,, and their covariant derivatives, c~ is 
nontrivial if one of its component fields has nonvanishing Euler derivative with 
respect to A, or ~5 or if, for positive ghost number, one of its components contains a 
nonvanishing constant. £,0 generalizes invariant lagrangians and trace anomalies. 

'J~chiral c a n  be naturally written in terms of forms. Its general form with specified 
ghost number g and space-time dimension D is 

'5~ch,ral= E E E O K ~ f K P m . ' g ' ( f l  . . . . .  JR'6]I  . . . . .  qR) • (3.2) 
,,I g ' = g  2,,i. i K:tnlK)=,I e, 

where P,,,,v is a linear combination of monomials 

M,,..~'.,~.oA.= 1--I (fK)"~((]K) '~ , (3.3) 
R] ~ K 

with 

= ( 2 , , , ( K )  - 1 ) .  = D + g -  + 1 .  ( 3 . 4 )  
K 3, 

and n~>~O, C~K~ (0,1}, nK+C%>O, m=m(_K) .  The bracket [ ]~ in eq. (3.1) 
denotes taking only the parts with ghost number g. 

It is readily verified that C.Wdt)x and dchi,~ are solutions of the consistency 
equation. This is trivial for the trace anomaly £,°(0,[q,, F]) because sO K = 0 and s 
vanishes on 8-invariant tensors. For the chiral anomaly '~hir~l (2.18) and (s + d)f,~ 
= 0 imply that 

(s + d) ~ gtKGP,,,  = Y[fK' ~ " - -  . (3.5) 
K:m(K) = m m(K) =m , 
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The highest ghost number of this expression does not exceed g'. So the parts of 

0 g ' + 2 m  1 

m( K ) = m g = 0 

with ghost number not less than g', satisfy the consistency equations 

sq~ + dqx, 1 = 0, g' ~< g ~< g' + 2 m -  I .  (3.6) 

~hi r~  is nontrivial if and only if it is nonvanishing. 
In particular, eq. (3.1) states that antighosts C" and auxiliary fields B and 

derivatives of ghosts contribute only to trivial solutions. All nontrivial solutions 
have non-negative ghost number. 

For g = 0 eq. (3.1) gives all integrands of BRS invariant actions up to s-exact 
terms s X 

.~(' dnx =.~i,,,,([~b, F])d°x  -t-,.~c(~iral , (3.7) 

=I2 E 0 ) • ~.h,~., ~-uP.,(f,  . . . . .  f~) . (3.8) 
m K:miK)=,n u)K i 

a~'~O~r~ contributes only in odd dimensions D = 2k + 1. In that case P,,(f) defines a 

2k + 2-form. For the monomials (3.3) this requires ~_,KnKm(K) = k + I and ~x = 0. 

In particular in three dimensions 

PI = F ~ ' ~ c ° ~ L L  , c °h= c~°, 

P2 = E c~f~. (3.9) 
m( K ) = 2 

where the sum 22' extends over the U(1) factors and the quadratic Casimir operator 
occurs in the nonabelian case where r e ( K ) = 2 .  The corresponding d ° are the 
topological mass terms 

t 

,~¢o = (3.10) E ,'o,,Ao/,, + E ,.,,qO.. 
j r e ( K ) = 2  

Eq. (3.7) states that all gauge invariant actions can be obtained from invariant 
lagrangians and the generalization (3.8) of topological mass terms which exist in odd 
dimensions only. 

For ghost number 1 eq. (3.1) implies 

~ '  dt)x-- E'C".L~'~,([¢, r ] )  +.S~Ohiral (3.11) 

,[ 0 ] 
~'c,,,~., = ~ g g glK~KP,,,.~'(f,O), (3.12) 

g '~O K:m(K)=m g = i  
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The sum Y:' in (3.11) runs over U(1) factors only, there 0, = C". c~  are constants 
plus 8,-invariant polynomials in ~. the field strength F~,, and their covariant 
derivatives with nonvanishing Euler derivative. 

For g ' =  1 P,,,l(f ,  q) can depend only on abelian ,~, 

P , , . , ( f .  ~) = Y ' . ' / 5 , ( f )4 , ,  (3.13) 
o 

and m = m ( K  ) =  1, i.e. also the differential operator Y'qK O/Ofs. applied t o  P m , l  = 

PI.I runs over U(!)-Casimir terms only. Therefore ~:'~hi~l is given by 

, 0 8 
l Ja/chi,~, = E ( C " A " -  Ct'A") ~ t ' h ( ] ' )  + Z Y~ q~-~KP, , .o ( f ) ,  (3.14) 

a ,  I) ~u rn K : m ( K ) = m  

where we have used q. = A"+  C". The first term occurs in odd dimensions D = 
2k + 1 only. The second term contributes in even dimensions D = 2k. In each case 
/~, or P,,,,o have to be of form degree 2k + 2. Because of the antisymmetrization in 
eq. (3.14). there is no anomaly in odd dimensions unless the gauge group contains at 
least two U(1) factors. 

4. Algebra 

The algebra (2.4) can be suitably extended. Consider for example the number 
operator N which counts powers of the fields [~]. Each polynomial P can be 
uniquely decomposed into pieces of definite homogenity 

P =  ~_.P:. N(P,)  = IP,. (4.1) 

For each P the sum is finite and extends from lmi n to /.,ax. We call (/'/, lmi. ~< / ~< 
Imp) the ladder corresponding to P and P/m,, the head of the ladder. 

The BRS operator is also decomposed: one has 

s=s,~+s~, [N, s0] =0,  

where s o preserves the homogeneity. 

soA ~= C .C , soC' = O 

and s~ increases the homogeneity by 1 

s~A;, = c , A ~ L , ' ,  

[N, s l ] = s  l,  [N, 3,] = 0 .  (4.2) 

s0q: = 0, so~'= B, soB = 0 (4.3) 

siC' = ~C'C~f: ' , s~  = C'~4,, siC= O. s 1B = O. 

(4.4) 
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The  ni lpotency of s o + s~ decomposes into the relations 

= 0 ,  } = 0 ,  se = 0 ,  (4.5) 

as does the consistency condition 

s..a¢= d X ~ so..~¢/+ 1 + S l ~ l  = d X/. 1" (4.6) 

These  equat ions imply 

Soag/~,. = d X/,.," . (4.7) 

Eq. (4.7) is the abelian consistency condition. 
Consider  the question whether s¢ is equivalent to .z/ '=..~¢+ s B + d X  with a 

ladder  ..~'/ which is shorter, i.e. for which . ~ / =  0, Vl ~< l,,m. Explicitly this requires 
the existence of B~ and Xt such that 

soBl+s,Bl l + d X / = 0 ,  l< /mm 

• .cCr+soBt+slBt.  l + d X , . = 0 .  L = lmm. (4.8) 

Define .,4 by, tile ladder act._ ~ = - S l B  r and .~=.~t+.~er .  l, B=).21.<rBI, X =  
Y-/< t X/- Then  eq. (4.8) reads 

. ~¢ '=d+ sB + d X = O ,  (4.9) 

i.e. if the ladder can be shortened, . ~ .  is the head of a s-trivial solution. This occurs 
if and only if there is a head of a ladder B l which cannot  bc completed to a 
nonabel ian solution. Heads ..~z. which are So-nontrivial but s-trivial are in one-to-one 
cor respondence  with heads B / (with gh(A) = gh(B)  + 1 and / < L)  which cannot  be 
comple ted  to a solution. We therefore first determine all abelian solutions and then 
el iminate pairwise the heads which cannot  be completed and the ones which are 
s-trivial. This principle is dealt with in more detail in sect. [4] of ref. [11]. 

s preserves separately the degree in (~ )  and in (C. B), increases the ghost number  
Ni t  I - N[/= 1 and preserves the degree in derivatives O, and A;, 

[ NIt-. - N{i-l.s] = s. [N[.41 + No,sl = 0. [N,,=, + N,,~..s] = 0.  [U,~..s] = 0  

(4.10) 

Therefore ,  the condit ion (4.6) splits into separate equations with fixed ghost 
number ,  fixed homogenei ty in }.  in (C-, B) and in A~, and derivatives. In eq. (4.6) 
"~¢/m,, has the lowest degree in A which increases with l, i.e. in the ladder (.~'/~) 
derivatives are replaced by' A, as / increases. 
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The number operator N[B I + N[U I can be written as anticommutator of s with a 
suitably chosen operator r (Irl = 1) defined by 

rA, = 0. r C = 0 ,  r + = 0 ,  r B = C ,  r C = 0 ,  Jr. 8,} = 0 .  (4.11) 

One checks that {r,s}A~, = ( r , s } C =  {r,s}~ =0 ,  ( r , s } C =  C, (r ,s}B = B, i.e. 

{r,s} = Ntt~l + NI? 1 . (4.12) 

From eq. (4.12) it follows that B and C cannot appear in a nontrivial solution of 
s.~¢= d X because in polynomials they can occur only in pieces -~¢~n~ which satisfy 
(Nin 1 + NE~:I)(.~¢~,,~) = n.~¢~, I, n = 1,2 . . . . .  Because of eq. (4.10c) s.~'~,)= dX~,). 
Applying (4.12) one obtains 

( ' ) ( '  ) {r,s}. .~ ' l , , ,=n.~ael , , )An~0~. .~u, ,=s nr..~¢~,~ + d  - n r X { , )  ---0. (4.13) 

Only .~o~ can be nontrivial, so the antighost C and the auxiliary field B do not 
occur in nontrivial solutions. In particular, there are no nontrivial solutions with 
negative ghost number. In the following we disregard the multiplet (C'. B). For 
ghost number 0 the nontrivial solutions do not contain ghosts (i.e, they are exactly 
the gauge invariant classical actions). 

Similarly one concludes that each nontrivial solution ~ has to be invariant under 
the adjoint transformations 8, of the group, To see this consider the operators 8, 

8 k ~ 

~. A,C,) = ~  A~C j . 6,ff = - T , + .  (4.14) 

One readily checks that 

OC----S.O. = 0 .  [ s , 8 i ] = O ,  [ 0 . . 8 , ] = 0 ,  [8 , ,S j]=f , j*8 , .  (4.15) 

The Casimir operators (2.9) of the semisimple part of the group allow a unique 
decomposition of d =  Y~,,z~' x, where 

Oa.d x = c( K.  X)~¢ x (4.16) 

(with eigenvalues c(K, X)) because the eigenfunctions of O K are complete. (This 
follows because each finite dimensional representation of a semisimple group is 
completely reducible [7, 9]. za¢ x is the piece of za¢ which transforms according to the 
representation h.) 
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Because of eqs. (4.15b, c) the consistency condition decomposes 

233 

sza¢= d X ¢~ szd x = d X x , VX. (4.17) 

If there exists a K such that c(K, X) :g 0, then zd x is trivial because then 

c(K,X) 
/ o) 

g'l ....... <*)8,,,,,A) 8'2 - s ,  ~ .~t x 

1 0 ) 
=d c(K,X~g" .... ~'*)8,.,,,.,...8,_-~-~X x 

( , 0 ) 
s c ( K , X ) g "  ...... *,6 8,, = 0  (4.18) • - -  ~ . . K )  ' " " . ~ J ~ x .  " 

We made use of eqs. (4.17) and (4.15) to evaluate (3 / (?C")s~x .  So only that piece 
of zae for which c(K, X) vanishes for all K is nontrivial. The only representation X 
with this property is the trivial one. Thus we may assume 8 , ~ =  0 for nontrivial 
solutions .~. 8, preserves the homogeneity, so 6za¢= 0 implies 

8,sale = 0. V/: /,,,~,, ~</~< / .... (4.19) 

for the ladder .~¢~ (see eqs. (4.1) and (4.6)). 

5. Variational 

We now consider variational derivatives 
condition is an identity in the fields which 
From eq. (2.4) one obtains 

equations 

of sa. We stress that the consistency 
holds for a (~  + 8q~) with arbitrary 8~. 

sSA'. = ( q , s c ) ' +  c,/,~'sA~, sSC'= c % ' 8 c  ~, 

and calculates 

8a 8a ) 
sSa = f dx  8A'~ S 8A-~u + C ~,~ 8A~ 

\ 

sSq, = craq~ + 8CT4 (5.T) 

:+1~,[ 8a , TSa + ( - )  ov s - -  '] [8+ +(T ~:, 

8a 8a 8a 8a ) 
- 8 C '  s ~ 7 + C ' f / , k - ~  + D, TT, + ' v . 8A,, vT, 8q~ (5.2) 

s8a has to vanish identically for all 8A'~, 8C' and 8~b, i.e. the parentheses in cq. 
(5.2) have to vanish and the transformation of 8a/8A',,  8a /8C '  and 8 a / 8 ~  is fixed. 
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In part icular ,  a corresponds to a ladder .~a / start ing with a / ..... for which (we drop 
the suffix /m,,,) 

8a 8a 8a  8a 
s , , ~ = o ,  s08- ~=0 ,  s,)~c , o,,SA,. (5.3) 

The  first two equations are homogeneous.  To  determine their solution one can 
consider  separately'  terms with ghost number  g and fixed degrees of  homogenei ty  n 

and  n '  in the fields A' and ~p, respectively. Each such term can be reconstructed u. 

f rom the variat ional  derivatives because 

( 8a 8a ~) 
( , ,+g+,, ' )a=fdx A ~ 7 + C ~ + +  . (5.4) 

We now show that eq. (5.3) implies 

6a 8a 
- C " . . .  C'~,o~ . . . .  , + soY," - -  = C " . . .  C',p,, + soY, (5.5) 

where  oa and 0 depend only on [ F , ~ ] ,  i.e. F , ~ = O , A , - O ~ A , ,  ~ ,  and their 
derivatives.  In t roduce  the notat ion 

(],,) = O,,, . . .  Oj,,C. A(,,) = 0(~, . . .  O,,, A~,,,), 

ki,,, = i),,, . . .  0~,,, 2(,6)~,A,,- O~Au).  ~(,,) = 0,, 1 . . .  Or. + . (5.6) 

where  comple te  symmetr izat ion of A(,,) is understood,  s o acts as 

0 
so = ,~,2 Cl'~ (5.7) 

,.. 1 OA(,,)  

on these variables.  In addition. 
c o m m u t e  with 0)  by' 

and calculate that 

one can define an opera tor  r (which does not 

r = Y'. A~,,) (5.8) 

r ,  s t )  = ,,>.Z, A,,,)OA,.-----7) + C,,,)at,., (5.9) 

So {r. so} is the number  opera tor  which counts A(,,~ and C(,,) with t7 >/1. Repeat ing 
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the a rgumen t  (4.13) one finds that 
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s 0 X = 0  ~ X =  X o ( C , [ F ,  ~b]) + soY, (5.1o) 

and thereby eq. (5.5) is proven. 
Extending  the argument  it is easy to see that Golds tone  fields ~bc; (i.e. fields with 

so~(; = (7.(,) and the corresponding ghosts C(i only occur in trivial solutions soy  
because  if so,b(; = C¢; then with rCci = ~(; and r~G = 0, the an t i commuta to r  {r. s} == 

Y~,,>.I(Nq,, + N A , , , ) + N { 4 . , ; ! +  NI(-  I also counts these ghosts and the Golds tone  
fields. If the ghost C¢; corresponds to global t ransformations,  i.e. O~,C¢; = O, then 
nontrivial  solutions can depend on derivatives of the Golds tone  field since we then 
have r~m ~ = C. r.wt ~,,)= 0. 

We insert the solution (5.5) into eq. (5.3c) 

6 a  \ 
I 1 

- -  ~ - ( "  ~ 0 3 .  l . I~¢ s,, + &Y?- scO,c c .. . .p'" " 

• ' q '" . ) -  C q . . . ( . ' ' , 8 , ,~o~ '  ( 5 . 1 1 )  = s 0 ( - g A , , C ' . . . C % o 2 ,  ,~ . ., " 

As a necessary consequence 

.... :=  o, (5.12) 

because  the last term of eq. (5.11) does not contain derivatives of ghosts as all other 
te rms do (see eq. (4.3)). With eq. (5.10) we can solve (5.11) 

8 a  

6 C '  
- 8 y , ~ - g A ' u C ' , . . . C ' , o a ~ ,  , + X ~ ( C , [ F , t ~ ] ) + s o Y  , .  (5.13) 

Inser t ing eqs. (5.13) and (5.5) into (5.4) and absorbing normalizat ion factors, one 

ob ta ins  for the most general head with ghost number  g >/0 

. . . . .  + C " . . .  C',XI,,. 0~ ,¢o[ ' ,o  = 0 .  ( 5 . 1 4 )  J =  A~C ...C%0~,,, ,~ . , , i '  ,~ 

~o~', . . . . .  d and Xl, ' ,el depend only on [F, "+]. ,.,~, ...... ,1 is completely  ant isymmetr ic  in 
g + 1 indices and has vanishing divergence (5.12). Note  that symmetr ized derivatives 
of AI, or derivat ives of C appear  only in trivial contr ibut ions to ag. 

Eq. (5.14) is a necessary consequence of the condit ion soa := 0. It is readily 
checked that its form is also sufficient. But (5.14) still contains trivial solutions. If 
w~, . . . . .  el is a divergence of an ant isymmetr ic  tensor which depends only on [F, +], 
then the term can be rewritten 

g I I I /L~, ] ~ l  o ~v  ,,-~t 1 A , ' C  . . .  C *8,oa i ...... ,1 = 5G~¢°1, ...... ,1 u . . . .  C'., (5.15) 
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in the form (( ') .~X([F. ~b]). If XI,~ ,,] is a divergence of a tensor which depends 
only on IF. ~b], then the second term in eq. (5•14) is trivial: 

• , .  t~(~  C" C rX~, ..... d ( [ F ,  g,]) = 0 (5.16) 

S o  we can restrict the terms in eq. (5.14) and require 

Ouw"=O.  t0r 4: 0,¢0"r ([ F, ~b 1), X ( [ F , q ~ I ) ~ O r X " ( [ F , + I ) .  (5•17) 

6 .  P o i n e a r ~  l e m m ~ s  

To  solve eq. (5.17) we need the algebraic form of PoincarCs lemma, i.e. Poincar~'s 
lemma for polynomials  in the variables [,~] = (gO, 8r~, 8~8~e0 . . . .  ). It reads 

d r / =  0 ¢~ rl = d x  + . ~ ' d ° x  + const .  (6•1) 

where .£.q? has nonvanishing Euler derivative• We find it easier to prove the dual 
version of (6.1) and explicitly construct X- 

Algebraic Poincarc; Lemma. If Tl r  .... ~,~l([q,]) is completely antisymmetric in l >/1 

indices, given by a polynomial in [q~] with a divergence vanishing identically in [,~], 
then it consists of a part  e[r .... ~,,I which is independent  of the fields and the 
divergence of a tensor X t r ° r ' ] ( [ ~ ] )  which is a polynomial  in [~]. Lorentz invari- 
ance requires err, ~,1 to vanish unless / =  D is the space-time dimension. 

{ 0~,0Xl~,o,l. rA if / < D 
l >1 1" 0 T l"'~'']  = 0 ** T [r~ . . . ,1  = " ( 6 . 2 )  

r t  
const • e [~'l ' r~l if 1 = D. 

Proof. To  prove the lemma we introduce the linear operator  t" (Its[ = 0) by 

t " , = o ,  t r*=SX* " tot ,  . . 2 , ,o  (6.3) 
i 

where 0r, denotes omission of 0,,. t" acts algebraically on [qo] as lowering operator  
to the raising operator  0~,, i.e. " t  ~= 0 /0 (0~ )" .  The commuta tor  yields the number  

opera tor  Nt.  I = F. ..... oN0,,.~, 

I t ' .  0r] =~NI¢,  I , [ N , , , , O ~ ] = O = [ N I , , , t "  ] • (6.4) 

We decompose  7 "~', into pieces of definite homogeneity n in [~]. A piece with 
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n = 0 is numerical  and can occur only if l = D. If n ¢ 0 the algebra (6.2) implies 

1 1 + 1  1 1 
p,T~,, .. ~,, = O~,tl~,pjT u .... ~,,1 P j .  , T  ~'' " *" (6.5) 

n l + j  n I + j  ' 

with 

Pj = 8,,, . . .  8,,t'~' . . .  t%, (6.6) 

and the explicit solution X lu ..... ~,,1 is given by 

(1+1)! t,,,E ( - ) '  
nl t ,>" n ' ( l + j ) !  (6.7) 

The sum Y~;>0 is finite because T ~ ' ' ; ' ,  contains only finitely many  derivatives 
(loosely speaking.  Pj takes away j partial derivatives and redistributes them: it 

vanishes if T contains  less then j derivatives). Consequent ly  X;' ..... ~" is local. 
Eq. (6.2) does not cover the case l = 0, so in eq. (6.1) forms of maximal  degree D 

need a separa te  investigation. It is easily seen that /2 dDx is d-trivial if and only if its 

Euler  der ivat ive ,~/2/8q, vanishes 

/2([~a]) dDx = d x + const -  dDx ~ 0~2 /8~  = O. (6.8) 

T o  prove  the nontriviai  implicat ion ~ ,  we decompose  Q into pieces of definite 
homogene i t y ;  /2 = Y~2,,. G o is the constant  and we evaluate the counting opera tor  N 
for n ¢ (} 

1 1 0ga. 1 b # .  
/2,, = - N ( 2 , ,  = -  Y[. O. O,# ,# + d x , .  (6.9) 

, ,  , ,  " "  , ,  77 

Thus  if its Euler derivative vanishes then /2,, is a d x , .  This completes  the proof.  

The  algebraic Poincard lemma in part icular  implies the existence of the Chern 
form qO and the descent equations (2.15) because in sufficiently high dimension fK 
is not  a vo lume form and the ladder q,{ exists. One is then free to consider these 

forms  in lower dimensions without violating (2.15) even if f x  and q~- for g ~< gcritical 
vanish.  

The  comple te  solution to eq. (5.17) is contained in the following crucial lemma.  
Covar iant  PoincarO L e m m a .  If a l e m  ",'I([F. 4,]) has vanishing divergence (for 

p >/ 1) or if (for p = 0) ao([F,  4']) = 3~ X" ,  then it is of  the form 

" V I O l  "11 , i l  ale~' ,  . , , I ( [ F .  4 , ] )  = --1 a [ ' ~ ' , ~ ' , , i ( [ I : . ~ . ] ) +  . ~ , . . , o ,  . . .  " ,  p~l ' i  .... i, e~'' " /;,,,, F,.,o,, (6.10) 

where  D = p  + 2 / a n d  c,, .... are constants.  
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Proof. The lemma is true for p = D by the algebraic Poincar6 lemma. We prove 
it by induction for p - 1 assuming it to hold for p, p + 1 . . . . .  D. 

ap 1 is so-invariant and a divergence either by the algebraic Poincard lemma or, 
for p = 1, by assumption (we suppress indices) 

ap_ 1 = 3ap ,  Soap_ 1 = 0. (6.11) 

As for the Chern forms (2.15) we obtain descent equations 

So~:lp_g=Oap,g+l.  O < ~ g < N ,  soae, ,v  = 0. (6.12) 

at, .~ is a tensor with p + g antisymmetric indices and ghost number g. The solution 
to the last equation is (see eq. (5.10)) 

%~. , ,  = c ' ,  . . .  c ' , , s ~  ~ ,,, ([ F,  ~, 1),~ ..... 

By a redefinition 

- -  S 0 b p  + N " 

a ~ , , ~ . = a p ~  +sobp,  N, a'p_~, l = a p , . ~ _ l + O b p , , v ,  (6.13) 

we can go over to an equivalent ladder of tensors ap ~g without changing ap 1" 

Thereby we absorb bp. x completely. The descent equation for ap ~ N- ~ reads 

s o a p _ . , ,  l = O(C...C~p.u) 

= s o ( N A C . . . C ~ 2 p , N )  + C . . .COf2p ,  ,v. (6.14) 

It implies that O$2p~ x vanishes because the terms which are independent of O,C' 
have to cancel separately in eq. (6.14). The solution to (6.14) is then (because of eq. 

(5.10) and absorbing the s0bp, N I term) 

a t , , N _ , = N A C  'v l /2p+., ,+C '~ q2p,~, l ( [ F , ~ ] ) ,  3 /ap+. , ,=0.  (6.15) 

Iterating the procedure, the complete ladder a v , ,~ is given by 

N g 

=) k . 

where X2 is a tensor which is antisymmetric in p + g + k Lorentz indices and in 
g + k Lie algebra indices. In addition, the recursive conditions 

(?i( t 0 ' g + k ) A k ~ p . ~ g ,  = 0  (6.17) 
k k, 
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have to hold which are equivalent to 

O$2p,~-- ~ ( g +  l ) F Q t , , g + l ,  1 < ~ g < N .  (6.18) 

For  ap ~ we obtain 

N ) 
= l ap , = 8ap 8 ~ A~Qp.k = OQ~,- -,.F~Qp+,. 

k = {} 
(6.19) 

Let us solve eq. (6.18): The divergence of ~?e. N vanishes, so by the induction 
hypothesis  (6.10) it is of the form 

$2p+.~, = 8 X  x + t.~., (6.20) 

where X x depends on [F, ~p] and 

(e.v)I~,: " " ' '  = e" .... " , "  "'~ ...... '°'F~, F h c (6.21) ~'] . . . .  ulol l-,-~vlJl-- I¢" 

For  g = N - 1 eq. (6.18) leads to O~?p.. N 1 = ~Nk'OX~. + Fe~. or 

O( f2p, N_ l - ~,NFXv ) = FLv,  (6.22) 

because the Bianchi identities imply FOXy = O ( F X N ) .  From eq. (6.22)it  follows that 

Ft: x has to vanish because the right-hand side has only as many derivatives as 

powers of A ,  while the left-hand side has at least one derivative more. Iterating the 
a rgument  the solution to eq. (6.18) is given by g2p. = ~ ( g + I ) F X g .  I + O X ~ + ~ . ~  

for g >/ 1, where for i >/2 k't~ = 0. So FS2 r .  i = O(FXI)  + F~l and eq. (6.19) can be 
evaluated 

aj, i = 0 X ( [ F , ~ p ] )  - ~_/"e,. (6.23) 

Thus  the induct ion hypothesis for p '  > p implies the induction hypothesis for p - 1 
and the lemma (6.10) is proven. 

The covariant  Poincarfi lemma (6.10) and eq. (5.17) provide the justification for 
using differential forms A and F in the calculus of chiral anomalies. By eq. (5.17) 

expressions which are total derivatives of  X~'([ ~\ ~p]) or ¢o~"'([ F, q,]) are trivial; by eq. 

(6.10) the nontrivial case occurs if /;~'~ enters a tensor like a two-form 
F i=  ~F~', ,dx"dx ~ and A'~ as a one-form A'=A'~,dx ~'. 



240 F Brandt et al. / Consistency condittons 

By l emma (6.10) all abelian solutions (5.17) are given - up to trivial solutions - by 

. ~ d D x  =..~¢,~¢~ "F .~%hiral (6.24) 

• --qgt . . . .  = C"  . . .  C",c~, ..... ,,i Xx([ F, 4' ]) d ° x ,  (6.24a) 

" ~ c h i r a l  = C ' l " "  C'¢FJ'... FJ'cIi~ ...ixl(j, . Jr)" if D = 2l. g > 0.  (6.24b) 

..¢¢~hi~ = Ci ' . . .  CqAi'-  1Fi~... F2'c[,~ ,~. ~l(i,... J,}' if D = 2 / +  1, g >/0.  (6.24c) 

Let us first discuss eq. (6.24a). Xx([F, q~]) is a polynomial  in F, ,  = OuA, - O,A~. ~b 
and their derivatives with nonvanishing Euler derivative (or for g > 0 also a 

constant) ,  t ransforming  as an irreducible representat ion X under 8,. c~, .... ,,] is the 
co r respond ing  C l e b s c h - G o r d a n  coefficient. To  see that d t ~  ~ is s0-nontrivial, 

consider  the trivial terms s o X + d Y + c o n s t ,  as polynomial  in CI,,) (eq. (5.6)), in 
par t icu lar  for the case that the variables C(,) vanish for n > 1. The trivial terms have 

the form ( s o X + d Y + c o n s t ' d O x ) l  >.1=S£C'~. C'..dZ,, , + c o n s t . d / ~ x .  ( ' ( , , )  = O, Vn  . " " . 

The  local polynomials  XxdDx are not of this form if their Euler derivative does not 
vanish.  In the case that the X x are constant,  they contr ibute  to nontrivial  solutions 

if the p roduc t  

(6.25) 

is nonvanishing.  
Eqs. (6.24b) and (6.24c) can be shown to be nontrivial  if and only if the constants  

ctq. . l(j ,  j o can be symmetr ized in l +  1 indices. A powerful criterion for this 

p rope r ty  will become impor tant  in sect. 7. 

7. Nonabelian extension 

We first show that the head JaCtr~¢ ~ corresponds  to a nonabel ian solution only if 

X x is invar iant  under  the adjoint t ransformat ion 8,. 
The  invar iance of Xa follows from eq. (4.6) with l =  lmi ", Ja¢ / ..... =Jaet ...... 

slzactr~c e = d X  + soB. 

This  has to hold as an identity in the variables C,,,}. 

conta in  only C = C(0 } 

Sp.~trac~lC,, =0, V, ~] = d X .  

For  8,-invariant polynomials  it is useful to observe that s t 

{7.1) 

We consider the pieces which 

(7.2) 

= ~ - C i S i  [10]. At 
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(~,,) = O, Vn > I ~ coincides with - s  on C'  and annihilates +(,,), A(,,) and ki,,): 

~C' = - s C ' .  gA = 0, ~dA'  = - d C J A a f j k  ' = 0]( . , ,=0 .v ,a~.  (7.3) 

Then  eq. (7.2) implies 

C ' ° " "  C"f,o,~mc~,,,2 .... , lXx  = 0, (7.4) 

because X x is not a dX. If aCt . . . .  is of the form ~elc,,)=0.w>~l then it corresponds 
to a s-trivial solution, so in addition we require 

c , , . . ,  c ' .4 , , , ,  .... c ' , # ,  ..... .,) 

= - ~ ( g -  l )C". . .C' , f~ , , , 'c* '~,  ....... o X ~ .  (7.5) 

Using the notat ion f~  (6.25) the conditions (7.4) and (7.5) are equivalent to 

sf~ = 0, f~  ~ sf ,  a l (7.6) 

(the Xa are linearly independent).  By eq. (4.18) the only solutions to (7.6) are 6, 
invariant 

s f ( C )  = 0 = f ( C )  = s F ( C )  + O ( C ) ,  (7.7) 

where 

sO(( ' )  = 0, 8 , 0 ( C )  = O, O ( C )  • s x ( C ) .  (7.8) 

We show in a second paper [4] that all solutions to eq. (7.8) are given by 
polynomials  in 0 s. as defined in eq. (2.19). Then eq. (7.7) implies that the head 
(6.24a) of aCt ..... has to be of the form 

aCt ...... =/Sfl(0x . . . . .  0~, [q,, F ] ) ,  (7.9) 

where £/" is a 8,-invariant superfield in OA., K = 1 . . . . .  R and the coefficients are 
either constants  or have nonvanishing Euler derivatives with respect to ~, or A~,. No 
more  restrictions on aC t .... occur because its complet ion is obvious: replace F by 
the nonabel ian field strength and replace partial derivatives of + and F which have 
a symmetr ic  index picture by symmetrized covariant derivatives, then act ....... be- 
comes a solution of eq. (2.3), which is nontrivial because the head is nontrivial. 
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Let us discuss the chiral anomaly  in even dimensions D = 21 (eq. (6.24b)). 

,SJchiral = Xg(C, F ) ,  F =  d A .  (7.10) 

Cons ider ing  F '  as commut ing  variables which are not subject to a ni lpotency 
relation, i.e. ( F ) ~ +  1 4: 0, one can introduce well-defined differential opera tors  

0 0 
r--  C ' - -  t = 1 : ' - -  (7.11) 

c)F' ' 0C i 

which decompose  each polynomial  X, uniquely into 

x~ = t x~ ,  ~ + rxz  1 "t- const ,  (7.12) 

where the constant  can occur only if g = O. This follows because 

0 0 
r , t}  = C  i + F  i -  = N c + N  F. (7.13) 

OC t OF t 

and each polynomial  P can be decomposed  P = F~P,, into pieces of definite 
homogenei ty .  

The  par t  tx~  . ~ considered as a 2/-forms is s0-trivial: 

t x = d A ' o - C  - T X = d , A  f fC  ;X + A  d~ o c T X J  

O ) O O 
d A ' ~ 7  x + A ' d C  jOC ~ 0 c i X  

( o o) 
= d A ' ~ - T X  + 2so OC j eg~-~X = 0 (7.14) 

[the last step used soAJ = - d C  ~' (eq. (4.3))]. 
Vice versa all s0-trivial terms of the form (6.24b) are of the form tx:  a term soZ 

can cont r ibu te  to (6.24b) only if Z contains A. s0Z yields a d C  which by partial  
integrat ion has to generate a function of C and F =  d A. Therefore  Z has to be of 
the form 

and 

Z = ~"l'dqAi"Oia'" ~ • . . . . .  ('-'~gFJt l"'Ylc'it t # l . .  /i 

soZ = A'~ dC'2C'3"'" Ci"FI* ""  FJ'c,, .... ~J~ . I, " 

The  coefficients c have to be ant isymmetr ic  not only in ill  2 and in i3 . . .  i ,  but  also 
in i2 . . .  i ,  for partial  integration of d C  to be possible. But then the coefficients are 
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complete ly  antisymmetric  in i ~ . . . i ~  and therefore Z is of  the form Z =  

A ' A f f O / O C ~ ) ( O / O C ' ) x .  Reading eq. (7.14) backwards one identifies all s0-trivial 

terms of  the form (6.24b) as t x. 
The head X ~ = rx¢ ~ can be completed to a nonabelian solution (4.6) if and only 

if the next member  of the ladder can be found. This is so because if a¢~,,,,,,_ ~ exists, it 

contains  one power A~, more and one derivative less than the head eae~hi~] =..~,,,,,. So 

does sl.,~' / ...... ,1 which is s o invariant by the equation S0.~/r,,, , l + Sl"~e~hi~l = dZ/,,,,~-i 
(assuming the solution --"4/~:°.~ to exist). Such terms "~6,,,,, ~ are not in the list 

(6 .24a-c) :  There all terms have at most one power of  A more than derivatives. 

Adding  or subtracting terms s0Z + dY does not change the difference between 

powers of  A~, and derivatives. So .-~'~n,,,,_ ~ is trivial and the next equation so..~m,, ' , 2 

+ s].~),,,, _ ] = dZ~,,,, , .  2 has a solution. Iterating this argument one can construct the 

complete  ladder if .u/~,o,,. ] exists. 
This is the case if and only if S]ZaC~hi~l is so-trivial. To calculate S~..ae~hi~. which is 

a 8- invar iant  polynomial  in C and d A we recall that s] = ~ - C'8, ,  where g is given 

by eq. (7.3). Therefore. S~Zg~.hi~ I = g"~C~.hi~ 

"~ ~qCCchiral l'g Cq'" C'" dA/ '  d a h r ' " ' "  = - -  . " . . . .  ~ J q ~ t ]  ~ [ ' t ' z  %1(./].-h) 

.... . (7.]5) - ( - ) ~1 d C ' " C  '~ . . .  Ci~A I~ d A 12...  d A L,,I~ [ . . . . .  , I~,, J . . . .  /,) 

Both terms arc separately s o invariant and by eq. (5.10) the second term is trivial. 
The first term is of the form (6.24b) and is trivial if and only if it is of  the form 

t X ~ _ 2 ( C .  F ) l F = a  ~. This term is obtained from X~ ='-~¢~hi~l as S'Zae~hir~l which acts 
on the ghosts like - s  but does not act on F. So S ~ h ~ l  is S o trivial if and only if 

s 'xg + tX~, 2 = 0, (7.16) 

s ' C ' =  - s C  i,  s ' F = 0 .  (7.17) 

If eq. (7.16) holds. "~h ,~  can be completed to a nonabelian solution. The solution 

is s-nontrivial  if "qg~h,~l is not a sum t x ~ . ,  + s 'xs_] ,  

X g ~ s ' X ¢ - I  + t X g s l -  (7.18) 

The solution to eqs. (7.16) and (7.18) is given by [4] 

1 [ 0 } 
X g ( C .  F )  = Y'. Z Z -: - - P , , , . g ' ( f l  . . . . .  f R ,  gtl . . . . .  {tR) (7.19) 

,,, ~ ' = ~  l K: , ,~J , ' )=, ,qK ofA " .~ 

P,,,. , is a polynomial  in the R commut ing  variables f ,¢=  t r F  ' ' (u)  and in the R 



244 k: Brandt et al. / Consisten W conditions 

a n t i c o m m u t i n g  variables $/K (eq. (2.17)) 

, , ,-t  m ! ( m -  1)! 
?/K=~K[4=O = y '  strCBiF m i I B = C  2 

/=0 ( m + l ) ! ( m - l - 1 ) !  
m = m ( K ) ,  

(7.20) 

which is a l inear combinat ion  of monomials  

M., ,g ' . .K., ,~= I- [  (fx)"~(YtK) ~ , (7.21) 
K<~K<~R 

with n~>_- 0, a K ~  {0,1}, n ~ +  %K > 0, m = m(_K) and g ' =  ~ . K ~ K _ O g K ( 2 m ( K  ) -- 1). 
The  ghost  number  g and the form degree (or space- t ime dimension) D are related 

by g = g '  + 2 l -  1 and D = 2~K>~nxm(K)--  21. 
Eq. (7.19) enumera tes  all possible heads of solutions of the consistency condit ions 

in even dimensions.  The complet ion of the heads (7.19) is obta ined if one replaces 
E/K by qK- This is verified by the explicit calculation (eqs. (4.5) and (4.6)). So eq. 

(4.1) is proven for even dimensions.  
We now investigate the chirai anomaly  in odd dimensions D = 2k + 1 [eq. 

(6.24c)]. The  head --~¢~,2k-1 is obta ined from a function X.., l,~( C, F )  which is 
homogeneous  in F of degree k and has ghost number  g + 1: 

0 
aC~,zk+ ~ = A ~ X ~ - , , k  • (7.22) 

Us ing  the opera tors  t and r (7.11) (which treat A as a constant)  we show: Jacg.2 k , ,  

is so-trivial if and only if 

• "~g,2k ~ I = tB .  (7.23) 

If d Z  is to contr ibute  to -~,,.2a • ~ then Z has to contain A • A, because d contains 
only one A. d Z  also contains terms dCAA which can be written as soY only if Y 

conta ins  A 3. 

soY = s , , ( C . . . C A A A F . . .  F )  = ( - ) ' ~ 3 ( C . . .  CdCAAF.. .  F) .  

If and only if Y is completely ant isymmetr ic  in the g - 1 + 3 variables  C and A, 

only then can C . . . C d C A A F . . .  F be combined  into 

( (_  ) ~ - I / g ) d ( C . . .  CAAF...  F) 

and one can proceed further 

gsoY = - 3 d ( C . . . C A A F . . . F ) + ( - ) ~ 6 ( C . . . C A P - . - F ) -  
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So all aa¢ = C . . . C A F . . .  F which can be written as 

O 0 
F--Aoc ~ ( C ' " C F " ' F )  

and only such ~ are of the form soy + dZ .  l ,O/aC is the opera tor  t. It commutes  
with A 8 / 8 C .  So .~ .2~ .  1 = A ( a / a C ) x ~ + l . k  is so-trivial if and only if X~. l,k is of 
the form tx~-2.~-~.  

W e  now turn to the first ladder equation (4.6) / =  l . ,  m. 

S l ~ . q . 2 / ,  . 1 = d X +  soB. (7.24) 

We take only the terms of eq. (7.24) which contain no derivatives of  C: 

Sl'N~.g.2/, ,  1[(,,,~ O . V n ~ l  = ( " ¢ "  ~dX (7.25) 

More  explicitly. 

s v * / , . 2 ~ ,  ,I = - ~gC' " . . .C" f , , , , , " 'C l , , :  .... . . , , . , I , ,  . . . . .  /,, A ' ' ~ F ' ' ' ' "  F i '  

= C ' " . . .  C'~ d X, ..... . (7.26) 

A :.F':,... l.'/,c/ .... /: is a d X if and only if its Euler derivative vanishes, which holds if 
and only if the completely symmetr ic  part  of c/ ...... h vanishes. Therefore,  eq. (7.26) is 
satisfied if and only if 

0 = C ' " . . .  C',f , , , ," 'c l , , , , :  '~,~..,l~:, J,I F ' ~ ~ F : ' ' ' '  F : * "  ( 7 . 2 7 )  

Here  we achieved the symmelr izat ion in A F . . .  F by replacing A by the 
c o m m u t i n g  variable F. Eq. (7.27) is required as an identity in C and F ir- 
respective of  the dimension of space-time. We rewrite (7.27) in terms of X , .  1.~ = 

k ~C'" . . .  ("~/-': '  . . .  F/~c I ...... ~1~ : , .  :,~ (7.22). Then (7.27) is just the condit ion 

s ' t xv+ l .k  = 0, (7.28) 

where  s' is defined in eq. (7.17) and t in (7.11). In ref. [4] we have shown that eq. 
(7.28) holds if and only if there exists a X.~. ~,k ~ such that 

S ' X g .  l , k  -I- t x~ ,  3.k 1 = 0. (7.29) 

This  is the same  equat ion as (7.16) for ghost number  g + 1. If 

' ~ ' , 2 k  , , = S l , ~ f  , . 2 k -  1 -t- s o B  -t.- d X ,  (7.30) 
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then the abelian head corresponds to a s-trivial ladder (eqs. (4.8) and (4.9)). This is 
the case if c t ....... ,1~ .... j,~ is antisymmetrizable in more than g + 1 indices or if it is 

of the form 

E (  . . . .  " 

To exclude s-trivial ladders one therefore has to require 

X ~ - l , k  ~ s'X~,k + t x ~ - 2 ,  k - - l '  (7.31) 

Therefore, in odd dimensions one is led to the same problem (7.29) and (7.31) as in 
even dimensions with ghost number increased by 1. The head can always be written 
as A ( O / O C ) x ~ .  1,k, where X~- l,k is a head in even dimensions given by eq. (7.19). 
The nonabelian completion is obtained by replacing in eq. (7.19) (7/K by 'TA 
( K  = 1 . . . . .  R )  as the explicit calculation (eqs. (4.5) and (4.6)) confirms. This 

completes the discussion of eq. (6.24c). 

8. Conclusion 

We have shown that the solutions to the consistency equations for the case of a 
compact  Yang-Mil ls  group are given by a generalization of lagrangians or trace 
anomalies and by generalized chiral anomalies. Geometrical structures such as 
differential forms, Chern-Simons forms, invariant lagrangians have been shown to 
emerge from the consistency equations, i.e. these structures do not have to be 
assumed and are more than just an ansatz to obtain solutions. For high dimensional 

m o d e l s -  which are not renormal izable  our proof on the completeness of the 
solutions (3.11) and (3.14) provides the missing link to the proof that anomalies are 

absent in a given model if the coefficients in front of these solutions vanish. The 
extension of our methods to the gravitational case can be found in ref. [11 ]. 

We would like to thank L. Bonora for a helpful discussion. 

Appendix 

For g = 0 our result (4.13) implies that s-invariant actions are the sum of a gauge 
invariant action depending only on gauge and matter fields and a s-trivial gauge-fix- 

ing term (the superscript indicates the ghost number) 

I ( A , ~ b , C , B , C ) = I i , , ( A , ~ ) + s a - I ( A , ~ b , C , B , C ) .  s l = 0 .  (A.I )  

We investigate the consequences of additional anti-BRS invariance (g invariance). 
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The  ant i -BRS operator  g [3] is defined by 

= a S ' +  = c s,  ' 

gC'= ~C'Cafja '. g C ' = k ' -  -B'+CaCafja ', g k ' = 0 ,  (A.2) 

such that 

s 2 = g2= (s + g)2 = 0 .  (A.3) 

Changing to the basis [A, ~, C, B, C] and repeating the argument (4.10)-(4.13) with 
s. B and C replaced by their bared quantities, one can show that the cohomology of 

is trivial on polynomials with positive ghost number.  Thus for s- and g-invariant 
actions s l  = gl  = 0. we conclude that 

1 = Im,(A, ~) + a° (A ,+ ,C ,  B ,C) ,  

a °=sa  ' ( A , q ~ , C , B , C ) =  -~a I (A ,q~ ,C ,B ,C) .  ( a . 4 )  

Due to the nilpotency of s and .q 

.q(sa ' ) = - s ~ , a - ' = 0 ,  s ( g a l ) = - ~ ( s a t ) = 0 ,  (A.5) 

and since the cohomology of s (g) is trivial for negative (positive) ghost number  we 
can derive the following ladder of equations 

sa21 I + ~a21-1 = 0 .  (A.6) 

As a ° splits into pieces with different eigenvalues to N[B 1 + NtU 1 

a ° = Y'. a ° , (NIB I + N[(~I) a',, ) = na, o, (A.7) 
n~> 1 

so does the whole ladder 

sa~/ /+~._21+~ = 0 ,  O_sa ; ,1  - s a l .  l ,  S¢d,/_/_ 1 a ,  - = (A.8) 

where 1 - n  ~</~< n - 1 .  This follows because s (g) increases the eigenvalue of 

NIB ] +N[c I (Ntt~] + N[g:I) by 1 and commutes  with NtB 1 + N[~ I (N[B 1 + NIc]) 

[Nit  el + N[6: ],s] = 0, [N[B l + U[c ],s] = s ,  

[N[t~]+N[cl,g]=O, [N[.I  + Niel.g] = s. (A.9) 
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For  the gauge-fixing part  a ° (eq. (A.4)) of a s- and ~-invariant action we now 

prove the following theorem. 
Theorem.  Contr ibut ions to a ° either are of the form a(t)rivial = sgX ° or are in 

one- to-one  correspondence to nontrivial solutions to the consistency condit ion 

sa(] " - ~ =  0 with odd ghost number  2 n - 1 .  Using the decomposit ion (A.8) the 

cor respondence  is explicitly given by 

'E 
- g I 2 - '  , ( A . I O )  .4,? (n - 1) !  q , , , ,  , . < ~ , ,  l 

m>o °qC(,,,) 

where a,,° = .fag, l, and a0" ~ = ,fs£,'-"0 -~ and s¢¢~ "-~ is a term of the form (3.2) with 
odd ghost number  g = 2n - 1 and thus does not depend on B or C. In particular for 

anomalies  (with g = 1) eq. (A.8) reads 

ga t = 0 ,  sa l + g a  a = 0 ,  sa l = 0 ,  

which are the consistency equations for a s- and g-invariant theory and the theorem 
guarantees  that for each s-anomaly a ~ there exists a corresponding g-anomaly a 

Proof .  To prove the theorem we note that a ladder (A.8) is trivial, i.e. all = sg x °, 

if 

= + = 0 ( A . 1 1 )  

is trivial for some k. This follows by inserting eq. (A.I 1) into the ladder equations 
-1  = 2k (A.8) for l = k  (resp. l = k +  1). Then s(a,]kk - s X , , _ k _ l ) = 0  (resp. ~,(a,]~ },3.2 - 

sX,7-k 2 2) = 0). These equations have only s- (resp. ~,-) trivial solutions because the 

eigenvalues of the brackets to N[B 1 + N[<=. I (resp. N[B 1 + NIcl) do not vanish. So one 
gets eq. ( A . I I )  for a 2~ ' 3 (resp. a 2k l) and verifies (A.11) by iterating the argument.  

0 For  a ,  ¢ sgX ° it is necessary and sufficient that a 2'' ~ as a nontrivial solution of  
sa  = 0 (or equivalently, that a ~--2" is a g-nontrivial solution of ga = 0). because if 

the ladder would end with lower ghost number,  i.e. sa2l+,, ll- ~ = 0 for l < n - 1, then 

a z/ '1  would be trivial due to eq. (4.13). 
The explicit formula (A.10) is verified by observing that the operator  r defined in 

eq. (4.11) fulfills Is. {r.~}] = g which implies that 

_ _ ) n  l 

..~4,2/~1 _ (n - 1)! { r , g } " - l d ( 2 "  i (A.12) 

is a solution of  eq. (A.8). Further, 

( o 
{r.g} = -  ~ Q ' ~ ' O Q . , ,  

m ) 0 

0 \ 
- -  + ( g C ) ( , , , i  ] .  ( A . I 3 )  

OB~,,,) , l 
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The second term on the right-hand side of  eq. (A.13) does not contribute because B 

cannot  contribute to nontrivial solutions of the consistency conditions.  

As  an example  we start from a 3 = trC 3 and calculate the corresponding contribu- 

tion a ° =  gC(O/c)(_')a 3 = 3 s g tr C-C-  3 t r B  2 = - 3 t r B  2. On dimensional  grounds 

trB 2 is the only  nontrivial term which can contribute to renormalizable s- and 

~;-invariant nonabel ian Y a n g - M i l l s  actions in four dimensions.  For abelian factors, 

- B" = ~;C" is an even simpler example. 
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