Nuclear Physics B332 (1990) 224-249
North-Holland

COMPLETENESS AND NONTRIVIALITY OF THE SOLUTIONS OF
THE CONSISTENCY CONDITIONS

Fricdemann BRANDT*, Norbert DRAGON and Maximilian KREUZER*

Institur fiir Theoretische Physik, Universitdt Hannover, Appelstral$e 2, D-3000 Hannover I, FRG

Received 3 July 1989

For the case of a compact gauge group we determine all solutions to the consistency
conditions. In particular, our results imply that the known list of anomalies is complete also for
nonrenormalizable models.

1. Introduction

Invariant local actions and anomalies can be constructed in terms of tensors and
forms. In this paper we show for the Yang-Mills case that these constructions are
complete. For the case of a compact gauge group we determine all nontrivial
solutions to the consistency equations sa = 0 [1--3] with arbitrary ghost number g.

In sect. 2 we introduce the basic notations. In sect. 3 we list our results and
discuss the cases g = 0 and g =1 (i.e. invariant actions and anomalies). In sect. 4 we
start our investigation with an appropriate extension of the algebra. We conclude
that nontrivial solutions are invariant under the adjoint action of the gauge group
and that antighosts only contribute to trivial solutions ¢ = s X. An expansion in the
number of ficlds allows us to start with the investigation of the linearized (abelian)
problem. In sect. S we calculate the solution of the abelian consistency condition
using a variational method. For a unique characterization of the (abelian) cohomol-
ogy classes we further need a covanant form of Poincaré’s lemma. which is derived
in sect. 6 (at this stage of our investigation one type of solutions emerges which
depends on forms only). In sect. 7 the nonabelian extension of these results is
performed using results on the Lie algebra cohomology. which are proven in a
separate investigation [4]. Omitting the detailed proofs, the results of the present
investigation and of ref. [4] have been described in ref. [5]. In the appendix we
impose in addition anti-BRS invariance. The nontrivial solutions are shown not to
be affected while the structure of the gauge fixing and ghost part of the action is
restricted.
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2. Notation

We consider local functionals

a=fdx.z7([¢]) (2.1)

of the gauge ficlds A,. matter fields ¢, ghost fields ', antighosts C* and auxiliary
field B'. where &/ is a polynomial in [¢],

o={A,.C.C.B Y}, [o]=1{9.0$.9,00....}, (2.2)
which satisfy the consistency condition [1] sa =0 or
s/ ([¢]) =dX([¢]). (2.3)

Eq. (2.3) holds identically in the fields [¢]. irrespective of the x-dependence of a
chosen element of [¢]. Note that the variables are not x*. J, acts on [¢] alge-
braically, it “creates an index p”. If we were to consider eq. (2.3) as equation for
(x)=([¢(x)]. then all & would satisfy eq. (2.3) and all &/ would be trivial
because cach volume form w(x) is closed and exact by Poincaré’s lemma for forms
in a star-shaped coordinate patch.

The BRS operator [2] s acts on the multiplets (A, ¢. C) and (C. B) according to

SAL=3.C+ CANVE . sCi=NCICH, . sy= 08y, sC'=B'.  sB =0.
(2.4)

/' are the structure constants of the gauge group with generators §,.[8.8,]=/,'6,.
s commutes with partial denvatives,

[s.d,]=0. (2:5)

and is extended to polynomuals by linearity and the graded product rule for
differential operators d applied to products

d(6,8,) = (do)) g, + (=) "¢, do, . (2.6)

The grading |¢| 1s zero for commuting fields A,. B and bosonic matter fields and
one for fermionic matter fields. the ghosts C, C and the operator s. Because of egs.
(2.4) and (2.5). s is nilpotent

s2=0. (2.7)
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So one immediately obtains solutions to eq. (2.3)

amvial(q))=sfdxX([¢])+const. (2.8)

For vanishing ghost number, eq. (2.8) is the gauge fixing and ghost part of the
action, for ghost number 1, eq. (2.8) corresponds to removable (nonanomalous)
symmetry breaking. We neglect trivial terms and write = to indicate equality up to
trivial terms

sX+dY +const. =0.

Whether there are nontrivial solutions at all depends decisively on the transfor-
mation (2.4). If ¢ contains a Goldstone field, 1.e. a field which transforms inhomo-
geneously, then each anomaly of the other fields can be cancelled by the
Wess—Zumino term [1]. If there 1s no Goldstone field, the group acts linearly [6]

dy=-Ty. (2.4a)

T, is a matrix representation of 8, [T, T}] =f,j"Tk. We assume eq. (2.4a) to hold and
classify the nontrivial solutions of eq. (2.3).

To describe our results we recall that for cach compact Lie algebra of rank R
there are R independent Casimir operators O, K=1,..., R

(9K=g/1 ~~~~~ /m(K)(Sj .8

0 (2.9)
of order m(K) with coefficients g/ /= which are completely symmetric. We
assume the labels K ordered such that K < K’ implies m(K ') < m(K’). For abelian
factors, m(K) = 1. All coefficients g are obtained from symmetrized traces

] =strT/ . T
m 1

S ek ?

(2.10)

taken in an appropriate matrix representation T, of the generators §, (either the

i

fundamental or the spinor representation [7]). To each Casimir operator 0, there
belongs a 2m( K )-form f;

fx=Fn.. Fhnog, =t (F)™%, (2.11)

..... j’,,,( X)

constructed out of the Yang-Mills field strength

F'=1F.dx*dx’, F=F'T,.

i

(2.12)
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Starting from the connection form A

A=A dx*, A=AT,. (2.13)

F is given by
F=d4 - 4% (2.14)
s anticommutes with the exterior derivative d and in our notation s4 = —dC +

{A.C),sC=C* Each f; is closed, d f; = 0 and s-invariant. sf; = 0. This holds in
arbitrary dimensions due to the Bianchi identity. Therefore, the algebraic Poincaré
lemma (eq. (6.1) below) implies the existence of a ladder of forms g§ with ghost
number g > 0 and form degree 2m(K) — 1 — g which satisfy the descent equations

(8]
fi=dgp. sgi+dgf =0, g>0. (2.15)

So gf solves the consistency condition with ghost number g. With the matrix
notation

5 2

C=CT. A=4+C. B=(A4+C) (2.16)

the g% are given explicitly by

nod m!(m— 1)

a= L ai= X

t [Ty (m A D (m—=1—=1)!

strAB'F™ |V, m=m(K). (2.17)

g% can be read off g, by collecting all terms with ghost number g. Eq. (2.17)
follows from the explicit formula for the Chern -Simons form ¢) by observing that
F=(d+s)A — A% [8]. For abelian factors § = 4 = A + € and the descent equations
read f=dA.sA+dC=0,sC=0.

gy, and all components ¢f anticommute. With the help of g, the descent
equations take the particularly simple form

(s+d)G,=fi- (2.18)
At highest ghost number g, is given by

(m-1)!
bp=qi" ' = nen e tn = 1) trCm b, m=m(K). (2.19)
(2m—1)

For abchan factors 6, = C“. As a consequence of egs. (2.18) and (2.19) one has
$8, =0, (2.20)

(6,.0.)=0. K.K'e{l.....R}. (2.21)
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A polynomial in 8, vanishes as a polynomial in C if and only if it vanishes as a
polynomial in the R anticommuting variables ;.. i.e. there are no algebraic relations
among the §; in addition to eq. (2.21) [4]. We can now state our results.

3. Results

The general solution of the consistency equation is
ZdPx =L(0,,....0p: (. F,])d"X + A - (3.1)

& is a superfield in 6, with 2% component fields which are 8 -invariant polynomials
in the matter fields . the field strength F,, and their covariant derivatives. & is
nontrivial if one of its component fields has nonvanishing Euler derivative with
respect to A, or ¢ or if, for positive ghost number, one of its components contains a
nonvanishing constant. % generalizes invariant lagrangians and trace anomalies.

& e €an be naturally written in terms of forms. Its general form with specified
ghost number g and space-time dimension D is

d
thral Z Z Z (iK—Pm.g'(fl """ ./R* Eil """ qR) . (32)
af
mog'=¢g 2m- 1L Kim(K)=m JK ¢
where P, . is a linear combination of monomials
Mm.g'.n,\,ak-= I_I (fK)"A([iK)OK* (33)
K<K
with
Zak 2m(K)~-1). 2Y nem(K)=D+g—g +1. (3.4)
e

and ng20, agx€{0.1}, ng+ag>0, m=m(K). The bracket [ ], in eq. (3.1)
denotes taking only the parts with ghost number g.

It is readily verified that #d”x and «/,,, are solutions of the consistency
equation. This is trivial for the trace anomaly £(8,[{. F]) because s, =0 and s
vanishes on 8 -invariant tensors. For the chiral anomaly &7, (2.18) and (s + d) f
= 0 imply that

a3 d d )
(s +d) > qKa—fKPmZ (ka'aq.’(l)(m(g qu 8f1< | . (3.5)

K:m(Ky=m
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The highest ghost number of this expression does not exceed g’. So the parts of

P g'+2m 1

Y Gxa > q,

m(K)y=m afK g=0
with ghost number not less than g’, satisfy the consistency equations
sq,+dq,., =0, g'<g<g +2m-1. (3.6)

.. 18 nontrivial if and only if it is nonvanishing,
In particular, eq. (3.1) states that antighosts C and auxiliary fields B and
derivatives of ghosts contribute only to trivial solutions. All nontrivial solutions
have non-negative ghost number.

For g =0 eq. (3.1) gives all integrands of BRS invariant actions up to s-exact
terms s X

‘M() d[)X :yinv([‘l/' f])de +ﬂch1ral N (37)
J \
=2 L dkamPulfi fe)]- (3.8)

m \ K:m(K)=m 8fK

9. ., contributes only in odd dimensions D =2k + 1. In that case P, ( f) defines a
2k + 2-form. For the monomials (3.3) this requires L, n,m(K)=k+ 1 and az =0.
In particular in three dimensions

Pl = Z écahfafb . Cab= Cha»
Py= Y cxfis (3.9)

m(Ky=2
where the sum 2’ extends over the U(1) factors and the quadratic Casimir operator
occurs in the nonabelian case where m(K)=2. The corresponding #" are the
topological mass terms

‘%d)ural D=3 Z‘ A S+ Z ('Kq;:-- (3.10)

/ m(K)=2

Eq. (3.7) states that all gauge invariant actions can be obtained from invariant
lagrangians and the generalization (3.8) of topological mass terms which exist in odd
dimensions only.

For ghost number 1 eq. (3.1) implies

‘W dl)tﬁ'}: Cuy [‘l/ F])+ thl’dl (31])

i = 2 Z )3

qK af Pm,g
m g’ =0 K:ni(K)=m K

f,q) . (3.12)

g=1
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The sum ¥’ in (3.11) runs over U(1) factors only, there 8, = C% &£, are constants
plus §-invariant polynomials in . the field strength F,, and their covariant
derivatives with nonvanishing Euler derivative.

For g’=1 P, (f,§) can depend only on abelian 4,

P, \( Z P (3.13)

and m=m(K) =1, ie. also the differential operator ¥4, d/df, applied to P, | =
P, | runs over U(1)-Casimir terms only. Therefore &}, , is given by

a .
thml Z (CuAb— I)A )8f Pb(f) + Z Z Pm.o(f)~ (3-14)

1
dk af
a.h a m K:m(K)y=m K

where we have used §,=A“+ C“ The first term occurs in odd dimensions D =
2k + 1 only. The second term contributes in even dimensions D = 2k. In each case
ﬁ,, or P, , have to be of form degree 2k + 2. Because of the antisymmetrization in
eq. (3.14), there is no anomaly in odd dimensions unless the gauge group contains at
least two U(1) factors.

4. Algebra

The algebra (2.4) can be suitably extended. Consider for example the number
operator N which counts powers of the fields [¢]. Each polynomial P can be
uniquely decomposed inte pieces of definite homogenity

P=YP,. N(P)=IP,. (4.1)

For each P the sum is finite and extends from /_; to /.. Wecall (P!, </<

o) the ladder corresponding to P and P, the head of the ladder.
The BRS operator is also decomposed: one has
s=so+s,, [N,;sg]=0, [N,s]=s5,, [§.4,] =0. (4.2)
where s, preserves the homogeneity.
sod, =3, sC'=0, s@=0, sC=B, s,B=0 (43)
and s, increases the homogeneity by 1
s AL =ClA S, s C=LCICh s =CTy,  sC=0. B=0.

(4.4)
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The nilpotency of s, + s, decomposes into the relations
s5=0. {sg.81) =0, si=0, (4.5)
as does the consistency condition
s=dX e s ), +5,%,=dX,.,. (4.6)
These equations imply

so, =dX, . (4.7)
Eq. (4.7) is the abelian consistency condition.

Consider the question whether o7 is equivalent to &/’ =2+ sB+dX with a
ladder «/; which is shorter, 1.e. for which 7 =0, ¥/ < /. Explicitly this requires
the existence of B, and X, such that

mn°

soB,+s,B, ,+dX,=0, I<I

min

A, +s,B, +s B, | +dX, =0, L=1.. (4.8)
Define o/ by the ladder &/, ., = —s,B, and &=/, +, |, B=Y, ., B. X=
L, .. X, Then eq. (4.8) reads

A =+ sB+dX =0, (4.9)

1.e. if the ladder can be shortened, .7, is the head of a s-trivial solution. This occurs
if and only if there is a head of a ladder B, which cannot be completed to a
nonabelian solution. Heads 7, which are s -nontrivial but s-trivial are in one-to-one
correspondence with heads B, (with gh(A) = gh(B)+ 1 and / < L) which cannot bhe
completed to a solution. We therefore first determine all abelian solutions and then
eliminate pairwisc the heads which cannot be completed and the ones which are
s-trivial. This principle is dealt with in more detail in sect. [4] of ref. [11].

s preserves separately the degree in (i) and in (C. B). increases the ghost number
Ni¢) = Ni& and preserves the degree in derivatives d, and A4,

[NMiey= Nigps] =50 [Npg+Nos| =00 [ Mg+ Nygpes] =00 [Ny).5] =0
(4.10)

Thercfore, the condition (4.6) splits into separate equations with fixed ghost
number, fixed homogeneity in . in (C, B) and in A, and derivatives. In eq. (4.6)
#,  has the lowest degree in A4, which increases with /, i.c. in the ladder (7))
derivatives are replaced by A, as [ increases.
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The number operator Nz + Nz can be written as anticommutator of s with a
suitably chosen operator r (|r| = 1) defined by

rd,=0, rC=0, ry=0, rB=C, C=0, [r.3,]=0. (411)
One checks that {r,s}A4, = {r,s}C={r,s}¢ =0, {r,s})C=C, {r.s)B=B, i.e.

(1.8} = Ny + Nigy.- (4.12)

From eq. (4.12) it follows that B and C cannot appear in a nontrivial solution of
s&/=d X because in polynomials they can occur only in pieces %/,, which satisfy
(Nipy+ Ne( &) =n,,. n=12,.... Because of eq. (4.10c) s/, , =d X,

Applying (4.12) one obtains

n)

1
{rs}, =nd,An+0=>4, = s(;m{m

1
+ d(— —rX(")) =0. (4.13)
n

Only .27, can be nontrivial, so the antighost C and the auxiliary field B do not
occur in nontrivial solutions. In particular, there are no nontrivial solutions with
negative ghost number. In the following we disregard the multiplet (C, B). For
ghost number O the nontrivial solutions do not contain ghosts (i.e. they are exactly
the gauge invariant classical actions).

Similarly one concludes that each nontrivial solution & has to be invariant under
the adjoint transformations §, of the group. To see this consider the operators §,

5=_15 i} 5I(Aﬁ)=f,*(A;JA

AL =T (419
c* c’

!

One readily checks that

[ac,.au]w. [s.81=0. [8,.8]=0. [8.8] =16, (415)

The Casimir operators (2.9) of the semisimple part of the group allow a unique
decomposition of &= %, 7,. where

Oy sty =c(K.\) o, (4.16)

(with eigenvalues ¢(K, A)) because the eigenfunctions of @, are complete. (This
follows because each finite dimensional representation of a semisimple group is
completely reducible [7.9]. &, is the piece of & which transforms according to the
representation A.)
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Because of cgs. (4.15b, ¢) the consistency condition decomposes
s=dXeso, =dX,. VA. (4.17)
If there exists a K such that ¢(K, A) # 0, then &/, is trivial because then

. d
_—— ohtami§ ...8 {_ PYar
A, (-(K.A)g fm(K) 2| 5 (9(”'} ’

d( PRI s -0 x|

; ] ’)
—g| ————— ot “‘mqk‘)s . 6 — ) 0. 4.18
S(((K.A)g [ i ')Cll A ( )

We made use of egs. (4.17) and (4.15) to evaluate (d/dC")s=7,. So only that piece
of &/ for which ¢(K, X) vanishes for all K is nontrivial. The only representation A
with this property is the trivial one. Thus we may assume §,5/= 0 for nontrivial
solutions .. §, preserves the homogeneity, so 8,.%7= 0 implies

8,,=0, Vil <<, (4.19)

for the ladder .7, (see eqgs. (4.1) and (4.6)).

5. Variational equations

We now consider variational derivatives of sa. We stress that the consistency
condition is an identity in the fields which holds for a(¢ + §¢) with arbitrary 8¢.
From eq. (2.4) one obtains

$84, = (DSC) + C/f, 845,  s8C'=C/f/8C*. s8¢ =CT8y+8CTY (5.1)

and calculates

5 A da o da " ,( 8a . TSG
5a—fdx A SW+C1, 8/1 +( ) 8\,/\5@*‘(7‘ E
5C Sa i . 8a Su T8a\ 5.2)
— ‘ —_— 4 - ! — . .
TR 5er T YTy (

sda has to vanish identically for all §4,, §C' and 8y, i.e. the parentheses in cq.
(5.2) have to vanish and the transformation of 8a/84,, 8a/8C' and 8a/8 is fixed.
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In particular, a corresponds to a ladder La, starting with @,  for which (we drop
the suffix /

min )

da da Sa da

S()'&TL:Q Soﬁzoe Sos 7

- = - —. 5.3
s8C! *d4, (5:3)

The first two equations are homogeneous. To determine their solution one can
consider separately terms with ghost number g and fixed degrees of homogeneity »
and »n’ in the fields A, and v, respectively. Each such term can be reconstructed
from the variational derivatives because

q (ASa C8a da (5.4
+ Va= — +C—+y—|. .
(n+g+na f x\ 8A+ 6C+¢8¢, )

We now show that eq. (5.3) implies

du du
S = OOl sV <7 =C"...Chp,

+5s,Y, 5.5
8/4;‘ 8'4/ 2 0] ( )

! Lot

where « and p depend only on [F,¢] ie F,=d,4,-3d,4,, ¢. and their
derivatives. Introduce the notation

C a, ...d C. A

tn = % Ha = a(m T d#n 1A#.,) '

F ] 3, (8,4,~8,4,). ¥,,=3, ...9,¥. (5.6)

o T Vgt Yy,

where complete symmetrization of 4, is understood. s, acts as

(n)

d
SO = Z C(n)(f)T_

nzl (n)

(5.7)

on these variables. In addition, one can define an operator r (which does not
commute with d) by

a
r= Y A, — (5.8)
nx>1 ( )aC(")
and calculate that
a a
LSo ) = A + C 59
reso) ,El (")OA(,,) (")’7Cfn) (:5)

So {r.s,} is the number operator which counts 4, and C,,,, with n > 1. Repeating

{(n
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the argument (4.13) one finds that
soX =0 X=X,(C.[F,¢])+s,7, (5.10)

and thereby eq. (5.5) is proven.

Extending the argument it is easy to sce that Goldstone fields ; (i.e. fields with
so¥; = C¢;) and the corresponding ghosts C; only occur in trivial solutions s,Y
because if s ¢ ; = C; then with r(; = ¥; and r{; = 0, the anticommutator {r,s} =
L,st(Ne + Ny Y+ Ny + N,y also counts these ghosts and the Goldstone
fields. If the ghost C; corresponds to global transformations, i.e. d,(; =0, then
nontrivial solutions can depend on derivatives of the Goldstone field since we then
have r, = C. 1y, =0.

We insert the solution (5.5) into eq. (5.3¢)

K—C“...C’f(? wh

[IAat TR

[ 8u
s(,( 5 + 8#)’,“) = -gd ChC=...Chaf

= so(—gAnCE . Clrwt )= €L CRa 0t (5.11)

Pt
As a necessary consequence

d w! =0, (5.12)

(et SIS

because the last term of eq. (5.11) does not contain derivatives of ghosts as all other
terms do (sce eq. (4.3)). With eq. (5.10) we can solve (5.11)

Sua
8C

= 9, Y- gALCh . Chol + X(CF ] +5,Y,.  (513)

Inserting cgs. (5.13) and (5.5) into (5.4) and absorbing normalization factors. one
obtains for the most general head with ghost number g = 0

W= APCh L Clt,H CCX, o At =00 (5.14)

. fq)

wf, ., yand X, depend only on [F. ¢} wfj ., is completely antisymmetric in

¥ . N . . - vl . . .

g + 1 indices and has vanishing divergence (5.12). Note that symmetrized derivatives
of A or derivatives of C appear only in trivial contributions to &.

Eq. (5.14) is a necessary consequence of the condition sya=0. It is readily
checked that its form is also sufficient. But (5.14) still contains trivial solutions. If
Wl ] is a divergence of an antisymmetric tensor which depends only on [F, ¥],
then the term can be rewritten

ApCh .. Cd 0ty =1Fowly O C (5.15)

[y = 200 O
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in the form (C)*X([F.¢)]. If X, ) is a divergence of a tensor which depends

only on { F, ¢ ], then the second term in eq. (5.14) is trivial:
C"...C‘f(')uX[“,lm,x]([F,x,'/])zO. (5.16)

So we can restrict the terms in eq. (5.14) and require

Bt =0,  wr#dw*([F.y]).  X(F.y])#a,x([F.¢]). (517)

6. Poincaré lemmas

To solve eq. (5.17) we need the algebraic form of Poincaré’s lemma. i.e. Poincaré’s
lemma for polynomials in the variables {¢] = (¢, d,9, 9,0,¢,...). It reads

dp=0en=dx+£d" + const. (6.1)

where % has nonvanishing Euler derivative. We find it easier to prove the dual
version of (6.1) and explicitly construct x.

Algebraic Poincaré Lemma. 1f T!* - #)([¢]) is completely antisymmetric in /> 1
indices, given by a polynomial in [¢] with a divergence vanishing identically in [¢],
then it consists of a part &* - #) which is independent of the fields and the
divergence of a tensor X!#o---#J([¢]) which is a polynomial in [¢]. Lorentz invari-
ance requires el* #! to vanish unless / = D is the space-time dimension.

(9, XWwom-ml §fI<D,

I>1: 9T rloe Tk wl=
= . “ .
l const - gm0l if [=D.

(6.2)

Proof. To prove the lemma we introduce the linear operator t* (|t*} = 0) by

e=0. 196=8%. - 19,..d,6=280, ..0,...9,6, (63)

where 9“ denotes omission of d, . t” acts algebraically on [¢] as lowering operator
to the raising operator d,, i.e. “t"=39/3(3d,)”. The commutator yields the number
operator N, =X, . Ny,

[V.8,] =8Ny [Nig)y 3,] =0=[Nyg."]. (6.4)

We decompose T* - # into pieces of definite homogeneity n in [¢]. A piece with
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n =0 is numerical and can occur only if /= D. If n # 0 the algebra (6.2) implies

PTH - # 1l+18“‘PT“ wl L1 P \TH—* 6.5
Lo b= — — gt . IR 7 S L B B
/ nil+; * nil+j /! (6.5)
with

P=23, ... 8alt“' . A (6.6)
and the explicit solution Xe-#! is given by

+ 1) /

XHoo b= ( D t(ro Z (-) PT“1~-~“I]. (6.7)
nl Sson/(l+j)’

The sum X, is finite because 7" " contains only finitely many derivatives
(loosely speaking. P, takes away j partial derivatives and redistributes them: it
vanishes if 7 contains less then j derivatives). Consequently X*o # g local.

Eq. (6.2) does not cover the case /=0, so in eq. (6.1) forms of maximal degree D
need a separate investigation. It is easily seen that £2d”x is d-trivial if and only if its
Euler derivative d£2/d¢ vanishes

2([¢])dPx =dx + const-d’x = dQ/Fp = 0. (6.8)

To prove the nontrivial implication <, we decompose £ into pieces of definite
homogencity 2 =3.8,. £, is the constant and we evaluate the counting operator N
for n+#0

~

2 =—17V.Q =—1 d d 982, =—1 a"+d 6.9
] E ...d¢ b= . .
" n " n d(d...0¢) n" d¢ Xn (6.9)

Thus if its Euler derivative vanishes then £, is a dx,. This completes the proof.

The algebraic Poincaré lemma in particular implies the existence of the Chern
form ¢ and the descent equations (2.15) because in sufficiently high dimension f;
1s not a volume form and the ladder g§ exists. One is then free to consider these
forms in lower dimensions without violating (2.15) even if fx and g§ for g < g.iea
vanish.

The complete solution to eq. (5.17) is contained in the following crucial lemma.

Covariant Poincaré Lemma. I a},“l ~#)([F.y]) has vanishing divergence (for
p=21)orif (for p=0) ay([F,¢]) = d, X" then it is of the form

al}m - u,,l([ F, 4,]) = 3»4}#:11 ~#,,1([1:’ 4,]) +e, /,5“" SBpYIO) - pO FT CFio (6.10)

noy -t v9;

where D=p + 2/ and ¢ are constants.

no.oon
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Proof. The lemma is true for p = D by the algebraic Poincaré lemma. We prove
it by induction for p — 1 assuming it to hold for p, p+1,..., D.

a, | is sy-invariant and a divergence either by the algebraic Poincaré lemma or,
for p = 1. by assumption (we suppress indices)

o Sod,-1=0. (6.11)

As for the Chern forms (2.15) we obtain descent equations

Sol,.,=da 0<g<N, $0d,. n=0. (6.12)

ptg+le

a,.,isatensor with p + g antisymmetric indices and ghost number g. The solution

to the last equation 1s (see eq. (5.10))
a4y = C O, v ([F D) = sobpan-
By a redefinition

a, y=a +sob ap_y 1 =a, N1+ 3b,, \, (6.13)

pHN pt N> p~N

we can go over to an equivalent ladder of tensors a,,, without changing a, .
Thereby we absorb b,  completely. The descent equation for a,,, 5. reads

Sodpen 1= H(C...CQP,N)
=5o(NAC...CR,,y)+C...CaQ,, . (6.14)

It implics that 3§, » vanishes because the terms which are independent of d,C"
have to cancel separately in eq. (6.14). The solution to (6.14) is then (because of eq.
(5.10) and absorbing the s4b,, v | term)

a/)L-\’—]:NACN 1S2p+.\'+("N lQprN l([F‘\{/])’ aS)p-‘.,’V=0' (6]5)

Iterating the procedure, the complete ladder a,,  is given by

gk
om0 5 (7

(6.16)
k=0 k

p-gtk>

where £ 1s a tensor which is antisymmetric in p + g + k Lorentz indices and in
g + k Lie algebra indices. In addition, the recursive conditions

a('%g(g:k)mnp?g,k):o (6.17)

k=0 :
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have to hold which are equivalent to

e, =g+ 1)FR,

prg 2

tg+le ISgSN (618)

For a, , we obtain

N
4p 1=8‘1p=a( ZAA‘Q;’%):‘?‘QP_%F“QPH' (6.19)
=0

h=(

Let us solve eq. (6.18): The divergence of §,., vanishes. so by the induction
hypothesis (6.10) it is of the form

Q=X +ey. (6.20)

P

where X, depends on [ F, ] and

(S.\.)[’::mtlﬁh“:eu]” “"”'Vm'”"l/olpy/ll.vl"‘F;/%/C[llwl\'|1|~ P (62])
Forg=N—1¢q. (6.18) leads 10 02,y = JNFIX, + Fey or
I(R2,, 5. — SNFX,) = Fey. (6.22)

because the Bianchi identitics imply Fo X, = d( FX, ). From eq. (6.22) it follows that
Fe, has to vanish because the right-hand side has only as many dcrivatives as
powers of A,. while the left-hand side has at least one derivative more. Iterating the
argument the solution to eq. (6.18) is given by £, = \(g+ DFX,  +dX, +e,
for g > 1. where for i>2 Fe,=0.So F§2,., = d(FX)) + Fe; and eq. (6.19) can be
evaluated

a, \=dX([F.y]) - L Fe. (6.23)

P

Thus the induction hypothesis for p’ > p implies the induction hypothesis for p — 1
and the lemma (6.10) is proven.

The covariant Poincaré lemma (6.10) and eq. (5.17) provide the justification for
using differential forms 4 and F in the calculus of chiral anomalies. By eq. (5.17)
expressions which are total derivatives of X*([ F, y]) or o*"([ F, ¢ ) are trivial; by eq.
(6.10) the nontrivial case occurs if F/ enters a tensor like a two-form
F'=3F,dx"dx” and 4, as a one-form A4'= A4, dx*.
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By lemma (6.10) all abelian solutions (5.17) are given — up to trivial solutions - by

A dPx =of

trace

+ Jychirall (624)
Hgee = C o Cruely XN, ¥ ]) dPx, (6.24a)

ifD=20.g>0.  (6.24b)

[

Jy‘himl = C'l e C"F‘I' e FJ’C[IL

,.lx](jl..._/,)‘

g = C . Clx A IFh_ Fhey, s HD=20+1,g> 0. (6.24¢)

Let us first discuss eq. (6.24a). X,\([F,y])is a polynomial in F,,=3d,4,— 3, A4,. ¢
and their derivatives with nonvanishing Euler derivative (or for g>0 also a
constant), transforming as an irreducible representation A under §,. Clxn-.'ig] is the
corresponding Clebsch-Gordan coefficient. To see that &7, ,. is s,-nontrivial,
consider the trivial terms s, X + dY + const. as polynomial in C,,, (eq. (5.6)), in
particular for the case that the variables C,,,, vanish for n > 1. The trivial terms have
the form (s, X +dY +const-d®x)|¢, _gvas1 =LC"...C*dZ, , + const: dPx.
The local polynomials X, d”x are not of this form if their Euler derivative does not
vanish. In the case that the X, are constant, they contribute to nontrivial solutions
if the product

fl=Ch. Cixcl, (6.25)

il
is nonvanishing.

Egs. (6.24b) and (6.24c) can be shown to be nontrivial if and only if the constants
Clo ¥ .. can be symmetrized in /+1 indices. A powerful criterion for this
property will become important in sect. 7.

7. Nonabelian extension

We first show that the head &, corresponds to a nonabelian solution only if
X, is invariant under the adjoint transformation §,.

The invariance of X, follows from eq. (4.6) with I=1/_,., &, =,

ann “trace

8,7,

trace

=dX+s,B. (7.1)

This has to hold as an identity in the variables C,,,. We consider the pieces which
contain only C = C,

SlﬂlracelC(,,\=0,Vn>1 =dX. (7.2)

For §-invariant polynomials it is useful to observe that s, =3§-— C's, [10]. At
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—_ i
Cny=0,V¥n>138coincides with —s on ' and annihilates {,,,, 4,, and F,:

§C'= —sC'. SA=0, §dA'= ‘deAAf,kl=O|c-m,=o‘v,,_21~ (7.3)
Then eq. (7.2) implies
cr...Ch -floll C|m12 . :RIXA = 0’ (74)

because X, is not a d X. If &, is of the form 84| _ova51 then it corresponds
to a s-trivial solution, so in addition we require

LCeh, X E X3(C e, )

=~ Hg-1)C"...CS,, "X (7.5)

([nrn

Using the notation fg" (6.25) the conditions (7.4) and (7.5) are equivalent to
s/g"=0, fg";ésfg" ) (7.6)

(the X, are linearly independent). By eq. (4.18) the only solutions to (7.6) are §,
invariant

sf(CY=0=f(C)=sF(C)+6(C), (7.7)

where

s0(C)=0, 84(C)=0, 6(C)#sx(C). (7.8)

We show in a second paper [4] that all solutions to eq. (7.8) are given by
polynomials in 6, as defined in eq. (2.19). Then eq. (7.7) implies that the head
(6.24a) of =7 has to be of the form

IFJLL
‘Mlmcc=°([(0l """ 0R*[‘r”*F])* (79)

where & is a d-invariant superfield in 8., K=1...., R and the cocfficients are
either constants or have nonvanishing Euler derivatives with respect to ¥ or 4,,. No
more restrictions on &/, .. occur because its completion is obvious: replace F by
the nonabelian field strength and replace partial derivatives of ¥ and F which have
a symmetric index picture by symmetrized covariant derivatives, then ¢/, be-

race

comes a solution of eq. (2.3), which is nontrivial because the head is nontrivial.
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Let us discuss the chiral anomaly in even dimensions D = 2/ (eq. (6.24b)).
Ly =X (C.F), F=dA. (7.10)

Considering F' as commuting vaniables which are not subject to a nilpotency
relation. i.e. (F)"+ 1 # 0, one can introduce well-defined differential operators

d
=C'——, t=F'— 1
r=C'o. Flo (7.11)

which decompose each polynomial x, uniquely into
Xg=1Xg. 1 T TX, | +cOnst, (7.12)

where the constant can occur only if g = 0. This follows because

Jd a
+F'— =N+ N,. (7.13)

) =C
r =5 Har

and each polynomial P can be decomposed P=YP, into pieces of definite
homogeneity.
The part tx,,, considered as a 2/-forms is sy-trivial:

a2y —df adl L)
i +
x=dAgEx=di 450X ( ac'x}
af a4l A'dCY
= + i
( ac X ) ac’ aC
9
—dl 4= oy ) 714
( ac'x) ( 9C7 aC X (7.14)

[the last step used s,47/ = —dC/ (eq. (4.3))].

Vice versa all s,-trivial terms of the form (6.24b) are of the form ty: a term s,Z
can contribute to (6.24b) only if Z contains 4. s;Z yields a dC which by partial
integration has to generate a function of C and F=dA. Therefore Z has to be of
the form

Z = LAMARCH . CFh L Fo,

et Nt

and

soZ=A"dCCH .. CFh .. Fic

hedgh-oo

The coefficicms ¢ have to be antisymmetric not only in /i, and in i,...7, but also
in i,...i, for partial integration of dC to be possible. But then the coefﬁuems are
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completely antisymmetric in i ...i, and therefore Z is of the form 7=
A'AN3/3C N 3/dC")x. Reading eq. (7.14) backwards one identifies all s -trivial
terms of the form (6.24b) as tx.

The head x,=rx, | can be completed to a nonabelian solution (4.6) if and only
if the next member of the ladder can be found. This is so because if @/, | exists, it
contains one power 4, more and one derivative less than the head 27, =%/, . So
does s;.»/, | whichiss, invariant by the equation s/, ., +s.&pa=dZ, _,
(assuming the solution &7, _; to exist). Such terms ./, ., are not in the list
(6.24a-c): There all terms have at most one power of A more than derivatives.
Adding or subtracting terms s,Z + dY does not change the difference between
powers of A, and derivatives. So &/, _, 1s trivial and the next equation $,.%7,
+s8,., _=dZ, _, hasasolution. Iterating this argument one can construct the
complete ladder if &/, . exists.

This is the case if and only if 5,97, is s,-trivial. To calculate s,.4,,;,,,. which is
a 8-invariant polynomial in C and d A we recall that s, =8 — C‘§,, where § is given
by eq. (7.3). Therefore. s, .2 = 5% piral

<

S/

chiral —

—1gCh.. Clxd AN dAf

”1]([m:: tltn o

—(=)dCHCh .. ClANd A dANf” . (7.15)

1)11(‘['1 o)
Both terms are separately s, invariant and by eq. (5.10) the second term is trivial.
The first term is of the form (6.24b) and is trivial if and only if it is of the form
tX,-2(C. F)pog4 This term is obtained from x, = a8 8" Fpypy Which acts
on the ghosts like —s but does not act on F. So 8.7, 1s s, trivial if and only if
Xt X1 2=0, (7.16)
$C'= —sC', sSF=0. (7.17)

If eq. (7.16) holds. .« can be completed to a nonabelian solution. The solution
18 s-nontrivial if &7, is not a sum tx, ., +s'x,_),

XgF S X1 T WX gi1- (7.18)

The solution to eqgs. (7.16) and (7.18) is given by [4]

g-2m -1 9
XJC.F)=% ¥ Y Gk PN SR GR) | - (719)
m og=gtl Kimi(K)=m a/l\

8

P, . 1s a polynomial in the R commuting variables fi = tr F™&) and in the R
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anticommuting variables g, (eq. (2.17))

G = G S Gl CBF" ' B=(? K
= = st m ] = ) — .
9k = d4xla-o Pt (m+l)!(m—1—1)!sr m=m(K)
(7.20)
which is a linear combination of monomials
My omeae= 11 (f)™(3)™. (7.21)
K<K<R

with n, >0, ax € (0.1}, ng+ay>0, m=m(K)and g’ =Y, gax(2m(K)—1).
The ghost number g and the form degree (or space-time dimension) D are related
byg=g' +2/—1and D=2Y  gnem(K)—2l

Eq. (7.19) enumerates all possible heads of solutions of the consistency conditions
in even dimensions. The completion of the heads (7.19) is obtained if one replaces
dx by k. This is verified by the explicit calculation (egs. (4.5) and (4.6)). So eq.
(4.1) is proven for even dimensions.

We now investigate the chiral anomaly in odd dimensions D=2k +1 [eq.
(6.24c)]. The head &/, ,,_, is obtained from a function x ., ,(C. F') which is
homogeneous in F of degree k and has ghost number g + 1:

d
ﬂg.2k+l=A%Xg—l,k' (7.22)

Using the operators t and r (7.11) (which treat 4 as a constant) we show: &, 5, ,,
is s,-trivial if and only if
A, 5,1 =B, (7.23)

8

If dZ is to contribute to &, 5, ., then Z has to contain A - 4, because & contains
only one A. dZ also contains terms dCAA which can be written as s,Y only if Y
contains A°.

soY =s,(C...CAAAF...F)=(—)*3(C...CdCAAF... F).

If and only if Y is completely antisymmetric in the g — 1 + 3 variables C and 4,
only then can C...CdCAAF... F be combined into

((=)*"'/g)d(C...CAAF... F)
and one can proceed further

gs,Y = —=3d(C...CAAF...F)+ (—)%6(C...CAF... F).
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So all o, = C...CAF... F which can be written as

and only such &7, are of the form s,Y + dZ. F3/9C is the operator t. It commutes
with 49/3C. So ., 5, .\ = A(d/IC)X 4.y 4 is Sytrivial if and only if x .,  is of
the form tx, .., ..

We now turn to the first ladder equation (4.6) /=1

min®

$19, -1 =dX +s,B. (7.24)
We take only the terms of eq. (7.24) which contain no derivatives of C:
$19g 25 1l 0wn e = ldX. {7.25)
More explicitly.

o _ 1 ‘ g m I T “i
Sp 1| = =800 Ol T A Fh L FR

[miz ot n

=Cv. Cld X (7.26)

APFn Fhie, o isad X if and only if its Euler derivative vanishes. which holds if
and only if the completely symmetric part of ¢, vanishes. Therefore, ¢q. (7.26) is
satisfied if and only if

0=Cm...C'f "¢ Flexph O Fh, (7.27)
gty s

dgte 1N )

Here we achieved the symmetrization in AF... F by replacing A by the
commuting variable F. Eq. (7.27) is required as an identity in ¢ and F ir-
respective of the dimension of space-time. We rewrite (7.27) in terms of x,., , =
k ICwo  CFn L Fhe, 1 (71.22). Then (7.27) is just the condition

,Ig]( n

$'tXer1.4 =0, (7.28)

where §” is defined in eq. (7.17) and t in (7.11). In ref. [4] we have shown that eq.
(7.28) holds if and only if there exists a Xg. 3. 1 Such that

SXgrx W34 1=0. (7.29)
This is the same equation as (7.16) for ghost number g + 1. If

H 1= 9%, 11 HSeBHAX, (7.30)
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then the abelian head corresponds to a s-trivial ladder (eqs. (4.8) and (4.9)). This is
the case if ¢, is antisymmetrizable in more than g + 1 indices or if it is
of the form

(A e

7 ”
Z(‘) f-n(l(,)‘n(ll) ('[/mr(l:).“w(ikj}(/l. AN

To exclude s-trivial ladders one therefore has to require
Xe-1.6% S Xg bt 4241 (7.31)

Therefore. in odd dimensions one is led to the same problem (7.29) and (7.31) as in
even dimensions with ghost number increased by 1. The head can always be written
as A(d/9dC)x, ..« where x ., is a head in even dimensions given by ¢q. (7.19).
The nonabelian completion is obtained by replacing in eq. (7.19) g, by g
(K=1..... R) as the explicit calculation (eqs. (4.5) and (4.6)) confirms. This
completes the discussion of eq. (6.24c).

8. Conclusion

We have shown that the solutions to the consistency equations for the case of a
compact Yang—Mills group are given by a generalization of lagrangians or trace
anomalies and by generalized chiral anomalies. Geometrical structures such as
differential forms, Chern-Simons forms, invariant lagrangians have been shown to
emerge from the consistency equations, i.e. these structures do not have to be
assumed and are more than just an ansatz to obtain solutions. For high dimensional
models — which are not renormalizable - our proof on the completeness of the
solutions (3.11) and (3.14) provides the missing link to the proof that anomalies are
absent in a given model if the coefficients in front of these solutions vanish. The
extension of our methods to the gravitational case can be found in ref. [11].

We would like to thank L. Bonora for a helpful discussion.

Appendix
For g = 0 our result (4.13) implies that s-invariant actions are the sum of a gauge
invariant action depending only on gauge and matter fields and a s-trivial gauge-fix-
ing term (the superscript indicates the ghost number)

(A 4.C.B.C)=1,(A ) +sa (A, $,C.B.C). sI=0. (A.)

We investigate the consequences of additional anti-BRS invariance (§ invariance).
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The anti-BRS operator § [3] i1s defined by
§4L=0,C'+CAkf,  sy=C8y,
SC'=1C'CH SC'=B'= -B'+C/C','.  §B'=0, (A2)
such that
2=82=(s+35)°=0. (A.3)
Changing to the basis [4.¢.C, B, C] and repeating the argument (4.10)-(4.13) with
s. B and C replaced by their bared quantities, one can show that the cohomology of
$ is trivial on polynomials with positive ghost number. Thus for s- and $-invariant
actions s/ =5/ = 0. we conclude that
I=1,(A,¢)+a’(A4.y.C.B,C),
a®=sa "(A4.y,C,B,C)=-54a"(4,¢,.C,B.C). (A.4)
Due to the nilpotency of s and §
S(sa )= —-ssa'=0, s(3a')= —5§(sa') =0, (A.5)

and since the cohomology of s (5) is trivial for negative (positive) ghost number we
can derive the following ladder of equations

sa¥ 14+ 54¥1=0. (A.6)
As a" splits into pieces with different eigenvalues to Nig+ N

a’= Y al, (N +Ng)al=na! (A7)

n?
nzl

$0 does the whole ladder

TR U TP S [
sa;’ f+3sat =0, a,=sa,' = —sa., |, (A.8)

n

where 1 —n </<n—1. This follows because s (5) increases the eigenvalue of
Nigy+ Ni¢) (Nig+ Nig)) by 1 and commutes with N g + Nz (Ng + Ny

[Nioy+ Nicyos] =0, [Nigy+ Niepos] =ss,

[N[B]+N[Cl‘§]=0* [N[B]+N[E]»§]=§~ (A9)
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For the gauge-fixing part a° (eq. (A.4)) of a s- and S-invariant action we now
prove the following theorem.

Theorem. Contributions to @ either are of the form al. . =ssX? or are in
one-to-one correspondence to nontrivial solutions to the consistency condition
sal"'=0 with odd ghost number 2n — 1. Using the decomposition (A.8) the

correspondence is explicitly given by

n—1

A (A.10)

d
maCE

{(m)

o_ -
‘%n_

S| X ¢

m>0

1
(n=1)"

where ¢ = (/P and a}" '= [277""" and 7" is a term of the form (3.2) with
odd ghost number g = 2n — 1 and thus does not depend on B or C. In particular for
anomalies (with g = 1) eq. (A.8) reads

sa '=0, sa '"+54' =0, sa' =0,

which are the consistency equations for a s- and S-invariant theory and the theorem
guarantees that for each s-anomaly a' there exists a corresponding S-anomaly « .
Proof. To prove the theorem we note that a ladder (A.8) is trivial, i.e. ¥ =ss X",
if
2kl oy 2k Sy2k-2 o
uni-l_sxn-k-lh*_sxn I 2_0 (All)

1s trivial for some k. This follows by inserting eq. (A. 11) into the ladder equations
(A.8) for I =k (resp. =k +1). Then s(a2*;'—sX2%, ) =0 (resp. s(a}* .}, -

s X%, %,) = 0). These equations have only s- (resp. §-) trivial solutions because the
cigenvalues of the brackets to Ny + Nig (resp. Ny + Ni¢) do not vanish. So one
gets eq. (A.11) for a** ' ? (resp. a** !) and verifies (A.11) by iterating the argument.
For a”# s X" it is necessary and sufficient that «>” ' is a nontrivial solution of
sa =0 (or equivalently. that ¢' 2" is a s-nontrivial solution of S« = 0). because if

the ladder would end with lower ghost number. i.e. sa2*' ;=0 for / <n—1, then

a* 1 would be trivial due to eq. (4.13).
The explicit formula (A.10) is verified by observing that the operator r defined in

€q. (4.11) fulfills [s. {r.8}] = § which implies that

(=)

.MZI_I
n ! (n_[)

{r.s)" lan ! (A.12)

is a solution of ¢q. (A.8). Further,

0 C d
= — + (53C)(my— |-
{r.s} sC), )OB(,,,,’

(”l)
mz=0 (9((,")

(A.13)
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The second term on the right-hand side of eq. (A.13) does not contribute because B
cannot contribute to nontrivial solutions of the consistency conditions.

As an example we start from a® = tr C* and calculate the corresponding contribu-
tion " =5C(3/3C)a’ =3sstrCC - 3tr B2 = —3ur B On dimensional grounds
tr B? is the only nontrivial term which can contribute to renormalizable s- and
s-invariant nonabelian Yang -Mills actions in four dimensions. For abelian factors,
— B“=35C“ is an even simpler example.
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