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The four-dimensional O(4)-symmetric q~4-model is numerically simulated on lattices L 3 - T 
with 4~< L~< 16 and T =  12,16 in the phase with unbroken symmetry at infinite bare quartic 
coupling. Physical observables, such as the renormalized mass and coupling, are determined with 
good precision by using a recently developed efficient cluster algorithm. Special care is taken to 
study the finite volume dependence in order to achieve a reliable infinite volume extrapolation. 
The finite volume behaviour of masses and couplings is well approximated by one-loop renormal- 
ized perturbation theory. The obtained infinite volume results agree with a recent analytical 
calculation based on a high-order hopping parameter expansion. 

1. Introduction 

The numerical simulation of four-dimensional scalar field theories with quartic 
coupling ("~4-theory") has recently received a lot of interest. The theory with a 
4-component scalar field in the phase with spontaneously broken 0(4) symmetry is 
the basis of the Higgs sector of the standard model, therefore it has an immediate 
physical relevance. Assuming that the influence of the Yukawa couplings of the 
fermions is small and that the gauge interactions can be dealt with in perturbation 
theory [1,2], one can obtain a non-perturbative upper bound on the mass of the 
physical Higgs boson [3-7]. 

More generally, the numerical simulation of four-dimensional q,4-theories is of 
intrinsic theoretical interest, because these are the simplest examples of four-dimen- 
sional renormalizable quantum field theories which can be fully understood by 
using non-perturbative analytical and numerical methods. Many interesting theoret- 
ical phenomena can be studied in detail and with sufficient precision in dp4-models. 
Several authors of our present collaboration recently performed a series of investiga- 
tions in the Ising limit (i.e. infinitely strong quartic self-coupling limit) of the 
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one-component q:-model [8, 9] which has many qualitatively similar features as the 
0(4) model, but also has some peculiarities, like e.g. vacuum tunnelling, having their 
own theoretical implications. In the present article we shall numerically study the 
O(4)-symmetric phase of the 4-component ~4-model at infinite bare quartic cou- 
pling (fixed length of the scalar field) in the same spirit as refs. [8, 9], namely paying 
special attention to the finite volume behaviour of the measurable physical quanti- 
ties. In addition, similarly to the one-component case, we can compare the infinite 
volume extrapolation of the physical quantities to the results of the non-perturbative 
analytical work of Liischer and Weisz [7]. 

In order to achieve sufficient precision in the simulation it is important to have an 
efficient numerical algorithm, if in particular one tries to determine quantities which 
involve a lot of cancellation as, for instance, the very important renormalized 
coupling. Recently new cluster algorithms for continuous spin models were invented 
by Niedermayer [10] and Wolff [11]. After starting this calculation on the smaller 
(T = 12) lattices by the conventional local Metropolis algorithm three members of 
our collaboration implemented and tested the non-local cluster algorithms, which 
were used previously in lower-dimensional models, in the four-dimensional 0(4) 
~4-model. The results of this investigation [12] showed that the "reflection cluster 
algorithm" of Wolff is the most efficient one. This is due to the fact that besides 
fighting critical slowing down it also allows for variance reduction in important 
measurable quantities. The gain in computer time for achieving the same precision 
is of the order of a factor of 10-100, therefore we performed the T = 16 runs with 
the reflection cluster algorithm and added a 124 run with this algorithm to the 
previous statistics. 

The plan of this paper is as follows: in sect. 2 basic definitions will be collected 
and the one-loop perturbative formulae for the volume dependence of the renormal- 
ized mass and couplings will be given. In addition, the connection of the two-par- 
ticle energies with the scattering lengths in the appropriate channels is discussed 
following ref. [13]. Sect. 3 is devoted to the presentation and discussion of the 
numerical results. The summary and conclusions are in sect. 4. 

2. Basic formulae and perturbation theory 

In this section we consider the theory of a real N-component scalar field ~ ,  
a = 1 . . . . .  N. We keep N arbitrary although in the numerical calculations discussed 
below N = 4 always. On a hypercubical lattice ]74 in four dimensions the O(N)- 
symmetric action of q:-theory is parametrized as 

( 4 } 
S - - ~  - 2 x  ~ - q ~ + ~ + q ~ . q ~ + X ( q a ~ - ~ - l )  2 , (1) 

- t t = l  
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where the lattice spacing a is set to 1 and/2 denotes the unit vector in the positive 
/*-direction. The O( N )-symmetric non-linear sigma model is characterized by the 
additional restriction of a fixed length for the field 

epx.q, x = 1 (2) 

and is equivalent to the q,4-theory in the limit of an infinite bare quartic self-cou- 
pling X = or. In the following, however, we also allow finite values of X. 

For  values of x below a certain critical K c the O(N)  symmetry is unbroken and 
the Green functions 

G,~ . . . . . .  .(  x 1 . . . . .  x , )  = dep~ e Tx, . . .  x° 

= -  ( . . . (3) 

are O( N )-symmetric. The spectrum has a gap m corresponding to the mass of an 
O ( N )  vector multiplet of particles. This mass is given by the pole of the propagator 
closest to the origin. Let G-B(P) be the propagator in momentum space. Then 

G ( p ) ~  = 0 ,  p = ( i m , O , O , O ) .  (4) 

The renormalized mass m R and the wave function renormalization Z R on the other 
hand are defined through the small momentum behaviour of the propagator: 

G(p)~- ;  = 2KZR 1 8,~fl( m~ + p2 + (_9(p4) } . (5) 

The renormalized and the unrenormalized vertex functions are related through 

F ~ " ) ( p l  . . . . .  p , )  . . . . . . . .  °=  (2xZ~ 1) - " / 2 F ( ' ) ( p l , . . . ,  p , ) , ,  . . . . . . .  . (6) 

The renormalized coupling gR is defined in terms of the renormalized 4-point vertex 
function by 

F~R4)(0, 0, 0, 0) -t~v~ = -- gaS, /~v8,  (7) 

where 

(8) 

As mentioned in sect. 1 we shall compare results from the Monte Carlo calcula- 
tion with predictions from perturbation theory in sect. 3. Since the four-dimensional 
non-linear sigma model is a perturbatively non-renormalizable field theory the 
reader might wonder how perturbation theory can be applied. This is possible in the 
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following way. For finite bare coupling X renormalized perturbation theory can be 
applied to the N-component C-theory. This means that physical quantities are 
expanded in powers of the renormalized coupling gR, the coefficients depending on 
the renormalized mass m R. Renormalized perturbation theory can be successfully 
used near the critical point where the renormalized coupling becomes small. Outside 
this scaling region non-perturbative effects dominate. 

The bare coupling and the renormalized coupling are numerically quite different. 
In particular gR remains finite even in the limit where X goes to infinity, which 
yields the non-linear sigma model. This gives us the possibility to apply renormal- 
ized perturbation theory in this case too. In this limit the coupling gg and the mass 
m R are related in a certain way, which cannot be calculated within perturbation 
theory. If, however, for a given gR one knows the value of m R from other sources 
one may use this as an input to the perturbative formulae. 

In this article renormalized perturbation theory is applied to the volume depen- 
dence of physical quantities. We consider a lattice with spatial volume L 3 and 
euclidean time extent T = oe, and with periodic boundary conditions. For fixed bare 
parameters ~ and ?t any renormalized quantity such as m, m R or gR will depend on 
L. We impose the renormalization conditions at L - - o e  which means that we 
identify 

gR~  g R ( ~ ) ,  mR-- r n R ( ~ )  (9) 

as the renormalized parameters. The finite L deviations 

3 X ( L )  = X( L ) - X(oe) (10) 

for various quantities X can then be calculated in perturbation theory as power 
series in gR" In the one-loop approximation the following loop integrals occur: 

1 -~" d k 4  ~2 - ~  
(11) 

where the sum over k goes over the Brillouin zone 

2v 
ki= ~ - n  i, n i = O , 1 , 2 , . . . , L - 1 ,  

and 

i = 1,2, 3 (12) 

~:~ = 2 sin ~k, .  
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The results are 

8mR_ gR N+26jl+(_9(g~) 
4m R 3 

gR N + 2  

4rnR¢l + m~t/4 3 

N + 8  

Z.(L) 
AZR= ZR (oO) 1 = O(g~) ,  (13) 

where 

6J,, = J , (mR, L)  - J~ (rnR, oo). 

Furthermore the mass m in the infinite volume is given by 

rn(oe) = 21og(¢I +m~/4 +½mR)+@(g~). (14) 

Also particularly interesting are the masses of two-particle states. The leading 
finite volume corrections for two-particle masses are due to scattering effects and 
can be expressed in terms of the S-wave scattering length a 0 as has been shown by 
Liischer [13]. For a two-particle state with zero relative momentum and mass M the 
shift due to the finite volume is given by 

M(L)-2m(L) 4~ra° ( ao (_~)2) m,L3 1 + q - ~ -  + c  2 -it- (_.0 ( L -  6) , (15) 

with the kinetic mass 

m,=sinhm+(9(g~) (16) 

and constants 

C 1 = -2.837297, c 2 = 6.375183. (17) 

A precise determination of the volume dependence of two-particle masses would 
thus allow us to obtain information about the scattering length. 
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We consider O(N)  scalar and tensor two-particle states with zero relative momen- 
tum. They are created from the vacuum by the operator 

S " B ( t )  = L -3 Y'. ep~q~y ~ , x = ( t ,  x ) ,  y = ( t ,  y ) .  (18) 
X, y 

Taking the trace in a and/3 yields a scalar state, whereas the traceless part yields a 
tensor multiplet. The corresponding masses in the case N = 4 are denoted M 1 and 
Mg, where the index equals the dimension of the 0(4) representation. 

The scalar and tensor S-wave scattering lengths a~ and a~ have been calculated 
by Liischer and Weisz [7] in two-loop perturbation theory in the continuum: 

N + 2 a R ~ r  { N + 2  ( N  2 ) ~t) 
s 1 aR + + 0.34325N + 0.47133 a (19) 

a° 6 m,  3 - -9  

a ~ -  13 aRTrm, (1 - 5aR+2 (0.027637N + 0.47133)a 2 } , (20) 

where 

a R = gR/16~r 2 . (21) 

We shall use these expressions later to compare the results from the Monte Carlo 
calculations with the perturbative predictions. 

We have calculated the two-particle masses M 1 and M 9 also directly in leading 
order perturbation theory on a lattice. The results agree with Liischer's formula as 
expected. 

For two-particle states with relative momentum 

2~  
p = - F n ,  n ~ Z 3 (22) 

the dominant finite volume effect 

4,/r 2n 2 

M ( L ) = Z m +  m L  ~ - + O ( L  -3) (23) 

is of purely kinematical origin. This case will not be considered here. 
Another quantity which is considered in this article is the six-point coupling h R- 

It is defined by 

2 1 hR=mR  E ..... o) ........ o .  lOg  (24) 
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and is proportional to the connected six-point-function at zero momentum. In 
perturbation theory one obtains in the infinite volume 

N +  26 
h e =  1 0 g ~ -  15g~m 2 27 J3(mR'  ~ )  

J + e(g , (25) 

The first two terms are from lattice one-loop perturbation theory, whereas the last 
term, taken from ref. [7], is the two-loop contribution in the continuum, i.e. 
neglecting scaling violations. 

The finite size effect on h R is in the notation of eq. (13) given by 

3. R e s u l t s  o f  t h e  n u m e r i c a l  s i m u l a t i o n  

As already mentioned in sect. 1, the simulations in the O(4)-symmetric model 
were done using partly the conventional Metropolis algorithm, with two hits per 
sweep and one measurement after every fourth sweep, and partly a cluster algo- 
rithm, where the number of measurements and the number of sweeps are identical. 
The Metropolis algorithm was applied to L 3 × 12 lattices with L = 4, 6, 8, 10,12 at 
x--0.290,  whereas the cluster algorithm was used for L3 ×  16 lattices with L - -  
8, 10, 12, 14, 16 at x = 0.297. In order to get precise values in the large volume limit 
at • = 0.290 an additional run with the cluster algorithm was made on a 124 lattice. 

3.1. REFLECTION CLUSTER ALGORITHM 

Cluster algorithms have been applied previously to different scalar theories, see 
refs. [8-11]. In particular, numerical aspects of the cluster algorithm used in this 
work are presented in ref. [12]. Therefore, only a very short description will be given 
here. A more detailed description can be found in ref. [11]. 

The cluster algorithm used in this investigation consists of four steps: 
- choose a random direction r ~ 0(4); 
- build clusters c by putting bonds between adjacent spins q'x and q~v with a certain 

probability p 

1 -  exp( n(0, - ; 

- choose randomly a subset of these clusters with probability 1/2;  
- reflect the spins in this subset with respect to the hyperplane perpendicular to r. 
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One site update with this cluster algorithm takes 7/~s, which corresponds to 3 -4  
Metropolis updates. But the cluster algorithm has much shorter autocorrelation 
times and, by using so-called cluster observables for variance reduction, one can 
achieve a saving of CPU time of about a factor 10-100 depending on the quantity 
chosen for measurement. In the reflection algorithm most of the program is fully 
vectorized and only the cluster search part has not been vectorized for clusters with 
more than two spins. The identification of the one- and two-point clusters, however, 
has been vectorized. 

3.2. ONE-PARTICLE MASSES 

Using the correlation function 

11( ) 
G(t) = -~ L----g E eP,~,xq'~,y (27) 

x, y 

the one-particle mass m is determined by means of a conventional fit 

G ( t ) = q ( e  m l + e - m ( v - O ) .  (28) 

In addition we define effective masses by solving eq. (28) for different pairs of 
time-slices during the run. This allows a more accurate estimation of the errors of 
the fit parameters, because the time-slices of the correlation function are highly 
correlated and therefore there is no simple way to determine the error of the mass 
from the errors of the correlation function. The corresponding cluster observable is 

defined as follows: 

with 

G(t) = -~ ~_, r"eO~,xrl~eOgyO(t, x; c)O(0 ,  y; c) 
x , y  

(29) 

1 i f x = ( t , x ) ~ c  (30) 
O(x ;  c) = O(t,x; c) = 0 otherwise 

It allows a determination of the mass, which is more precise by a factor 8-10. 

3.3. TWO-PARTICLE MASSES 

Using the operator S~t~(t) defined in eq. (18) we get for the scalar 1-dimensional 
representation 

Gl( t  ) = (S~(t)S~t~(O)) (31) 
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and for the tensorial 9-dimensional representation 

Gg(t ) = (( S°~(t ) - ¼S" ( t  ) 3°~)(S~°(O) - 4~ S~"(O) 3 ~°) ) .  

523 

(32) 

By means of a fit 

G(  t ) = c o +  cl(e-Mt+ e -M(r t)) (33) 

the m a s s e s  M 1 and M 9, belonging to the two possible two-particle scattering states 
for zero relative momentum are extracted. 

The cluster observables always measure the correlations between the components 
of the spins in the direction of r. Since this projection mixes the two-particle states, 
they can only provide a reducible combination and the extraction of useful physical 
information is difficult. Therefore, the two-particle correlations have not been 
considered in cluster observables. 

3.4. n-POINT FUNCTIONS 

The non-connected n-point functions at zero momentum can be defined in the 
spin representation as 

cp,,- N n / 2  V E ~ • (34) 

V = L 3 T  is the total lattice volume. However, we realized that for the determination 
of the non-connected n-point functions it is more convenient to use the following 
quantities: 

/ F G -  N "/a V ¢PY"~dP; " (35) 

Various correlations of different spin components, which average to zero because of 
the O(N)-symmetry, have disappeared. The ~, are related to the original quantities 
by certain group theoretical factors, e.g. 

3N 3N 5N 
~°2=~2' q°4- ( N + 2 )  U~4, q°6 ( N + 2 )  ( N + 4 )  Up6" (36) 

The corresponding connected n-point functions, the susceptibilities X n, which are 
needed for information on the physical couplings, are defined in the symmetric 
phase as usual by 

X2 = eP2, X4 = q°4 - 3V(q°2) 2, X6 = q96 - 15VeP2qv4 + 30V2(qo2) 3- (37) 
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Finally, the cluster representations of the n-point functions are as follows. Defining 
the quantity s ( c )  through 

s ( c )  = E r " , I , ~ O ( x ;  c )  (38) 
X 

we have 

i )) 
~192 = V $2 (  C , 

cp 4 - 

2 )2 
V ~, $4(C) -1- V Es2(c) 

C 

= 16 . _ 30 E s 4 ( c )  E s 2 ( c )  15(  / 
+ - V  Y"s2(c) . (39) 

C 

3.5. RENORMALIZED QUANTITIES 

From the measured values of the mass m and the susceptibilities X2, X4 and X6 
the renormalized mass m R, the wave function renormalization Z R and the couplings 
gR and h R are obtained in the following way (see also ref. [8]). We define 

~k n = m 2 n _  4 Xn  
(X2)"/2" (40) 

These quantities are dimensionless and the wave function renormalization cancels 
out in them. With the mass ratio 

r = m R / r n  (41) 

we have the relations 

gR = - r 4 X 4 ,  h R = r8)k6 , Z R = 2 x r 2 r n 2 x 2 ,  m R = r m .  (42) 

The ratio r ( L )  is close to 1 (a typical value is r = 1 . 0 0 4  at x=0 .297)  and its 
numerical value can be obtained from one-loop lattice perturbation theory, eqs. (13) 
and (14), with sufficient accuracy. This allows us to determine the remaining 
quantities from the Monte Carlo results using eqs. (42). 

3.6. RESULTS 

The results of our numerical simulations are collected in tables 1-4.  
Table 3 contains an explicit comparison of the three different methods of measuring 
the non-connected n-point functions discussed in subsect. 3.4. They exhibit the 
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TABLE 1 
The measured quantities at ~ = 0.290 for different lattices L 3 X 12 

525 

L Ms X: --X4 X6 m M 1 M 9 

4 4 5.44(2) 0.54( 2)E4 0.37( 2)E8 0.548(4) 1 .380 (8 )  1.179(3) 
6 4 7.54(3) 0.21( 2)E5 0.54(12)E9 0 . 4 6 8 ( 5 )  1 . 0 6 4 ( 7 )  0.974(4) 
8 4 8.18(3) 0.37( 3)E5 0.13(11)E10 0.451(5) 0.960(6) 0.922(4) 

10 4 8.34(4) 0.30(10)E5 0.48(58)E10 0 . 4 4 7 ( 6 )  0 . 9 1 8 ( 8 )  0.902(5) 
12 4 8.43(4) 0.26(20)E5 - 0.10(17)Ell 0 . 4 4 7 ( 6 )  0.904(8) 0.898(5) 
12" 0.5 8.40(1) 0.46( 4)E5 0.12(20)E10 0.4465(6)  0.91(1) 0.898(8) 

The simulations were done with a Metropolis algorithm. X2, X4, X6 are the susceptibilities, obtained 
according to eqs. (34) and (37), m is the one-particle mass, M 1 and M 9 are the two-particle masses in the 
1- and 9-representation. Ms means the number of million sweeps. The last row marked with a star is a 
run with the cluster algorithm. 

s u p e r i o r i t y  o f  the  c lus te r  observab les ,  wh ich  are  t h e r e f o r e  used  for  c o m p u t i n g  the  

p h y s i c a l  q u a n t i t i e s  in table  4. T h e  v o l u m e  d e p e n d e n c e  o f  the  phys ica l  mass  m a n d  

c o u p l i n g  gR o n  the  T = 16 la t t ices  is a lso shown  in fig. 1 a n d  fig. 2, respec t ive ly .  T h e  

e x t r a p o l a t i o n  o f  the  r e n o r m a l i z e d  mass  and  c o u p l i n g  to in f in i t e  v o l u m e  was  d o n e  

b o t h  in t ab le  2 a n d  tab le  4 by  m a t c h i n g  the  va lues  o f  the  M o n t e  C a r l o  analys is  a n d  

of  p e r t u r b a t i o n  theory  on  the  larges t  ( T  4) la t t ice .  T h e  p e r t u r b a t i v e  f in i te  v o l u m e  

b e h a v i o u r  o f  the  s ix -po in t  c o u p l i n g  h R was o b t a i n e d  by  t ak ing  the  in f in i t e  vol-  

u m e  l imi t  f r o m  p e r t u r b a t i o n  theory ,  eq. (25), and  a d d i n g  the  o n e - l o o p  f in i te  

v o l u m e  c o r r e c t i o n s  on  the la t t ice ,  eq. (26). As  can  be  seen f r o m  the  tables  a n d  

f igures ,  the  f in i t e  size effects  a re  wel l  r e p r o d u c e d  by  o n e - l o o p  la t t ice  p e r t u r b a t i o n  

TABLE 2 

The renormalized physical quantities at ~ = 0.290 derived from table 1 as explained in subsect. 3.5 

L m R gR h R Z R m PT gPT h PT 

4 0.555(4) 17(1) 0.21( 2)E4 0.97(2) 0.657 - - 
6 0.472(5) 19(2) 0.31( 7 ) E A  0,98(3) 0.483 16.1 - 
8 0.455(5) 24(7) 0.43(37)E4 0,98(2) 0.457 23.9 0.416E4 

10 0.450(6) 18(8) - 0.98(3) 0.452 25.9 0.578E4 
12 0.450(6) 16(10) - 0.99(3) 0.450 26 .6  0.630E4 
12" 0.4502(6) 26.6(2.1) - 0.988(2) 0.450 26 .6  0.630E4 

0.450 26.9 0.659E4 

m R is the renormalized mass, gR and h R the renormalized 4- and 6-point couplings, Z R the wave 
function renormalization, rapT, gPT and hpx are the values of mR, gR and h R from finite size 
perturbation theory. A dash (-) means that either the measured errors are too large or that finite size 
perturbation theory yields negative values due to a volume which is too small. The extrapolated values of 
mR, gR and k R at  infinite volume are shown in the last row. 
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TABLE 3 
The measured quantities at g = 0.297 for different lattices L 3 X 16 

L Ms X2 -X4  X6 m M 1 M 9 

8 0.4 15.66(10) 0.32( 2)E6 0.49(22)Ell 0.328(4) 0.73(1) 0.68(1) 
10 0.4 16.84(10) 0.46( 6)E6 0.78(86)Ell 0.307(4) 0.67(1) 0.63(1) 
12 0.4 17.46(10) 0,69(11)E6 0.12(30)E12 0.306(4) 0.64(1) 0.63(1) 
14 0.6 17.60(8) 0,60(14)E6 0.55(82)E12 0.307(3) 0.63(1) 0.61(1) 
16 0.5 17.69(8) 0.64(23)E6 0.02(16)E13 0.306(3) 0.61(1) 0.61(1) 

L Ms Xz -X4  X6 

8 0.4 15.67(8) 0.35( 2)E6 0.60( 5)Ell  
10 0.4 16.80(7) 0.53( 3)E6 0.16( 3)E12 
12 0.4 17.36(7) 0.62( 6)E6 0.15(10)E12 
14 0.6 17.70(6) 0.79(10)E6 0,09(20)E12 
16 0.5 17.73(6) 0.77(11)E6 - 0.01(45)E12 

L Ms X2 - X4 X6 m 

8 0.4 15.64(5) 0.34(1)E6 0.61( 4)El l  0.3244(7) 
10 0.4 16.84(5) 0.55(2)E6 0.13( 2)E12 0.3107(7) 
12 0.4 17.41(4) 0.68(4)E6 0.22( 7)E12 0.3069(6) 
14 0.6 17.64(3) 0.79(4)E6 0.25(14)E12 0,3052(4) 
16 0.5 17.75(3) 0.80(6)E6 0.66(26)E12 0.3039(4) 

The simulations were done with the cluster algorithm. The notation is as in table 1. In the first part the 
n-point functions are measured with the help of eq. (34), whereas in the second part they are determined 
via eq. (35). In the third part the corresponding values from the cluster representation are given. 

TABLE 4 
The renormalized physical quantities at K = 0.297 derived from the third part of table 3. 

The notation is as in table 2 

L m R gR h R Z R m PT gPT h PT 

8 0,3258(7) 15.6(0.5) 0,20( 3)E4 0.986(5) 0.3333 11.3 - 
10 0,3120(7) 18.5(0.8) 0.24( 4)E4 0.973(4) 0.3140 17.9 0.175E4 
12 0.3081(6) 20.3(1.2) 0.34( 6)E4 0.982(3) 0,3080 20.4 0.333E4 
14 0.3064(4) 22.2(1.1) 0.35(19)E4 0,984(2) 0.3058 21.5 0.401E4 
16 0.3050(4) 21.9(1.7) 0.88(35)E4 0.981(2) 0.3050 21.9 0.431E4 

o¢ 0.3044 22.4 0.461E4 
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Fig. 1. The  dependence  of the one-par t ic le  mass  m on the space extens ion  L of the L 3 • T la t t ice  wi th  
T = 16 at  x = 0.297. The open circles are the measured  values,  the full circles the results  of one- loop 

la t t ice  pe r tu rba t ion  theory. 

theory. Therefore, the extrapolation to infinite volume is on firm ground. The 
infinite volume results agree well with the analytical results of Liischer and Weisz 
[7], as is shown for instance for the renormalized coupling gR in fig. 3. In this figure 
are also shown the results of a previous numerical simulation at infinite bare quartic 
coupling [5], which agree within errors with ref. [7] and with our results. The fit 
curve in ref. [5] is actually somewhat lower than our points, but in this global fit 
different lattice sizes at different )~-values are included for two different definitions 
of the finite size couplings (which can have different finite size effects). 

As we discussed in sect. 2, the measured values of the two-particle masses M 1 and 
M 9 can be used to determine the scattering lengths in the 0(4) scalar and tensor 
channels respectively. The values of (M1, 9 - 2m) were fitted as a function of L with 

25 

gR 

2 0  

10 

t I i [ ~ , L i 

8 10 12 1/. 16 

Fig. 2. The  dependence  of the renormal ized  coupl ing  gR on  the space extens ion  L of the L 3 • T la t t ice  
wi th  T = 16 at  ~ = 0.297. The open  circles are the measured  values,  the full circles the results  of one- loop 

lat t ice pe r tu rba t ion  theory. 
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Fig. 3. Compar i son  of our  results (open circles) to the analytical work in ref. [7] (strip given by three 
lines) and to the numerical results of ref. [5]. The renormalized coupling gR is shown as a function of 

r = 1 - ~/~c with ~% ~- 0.30411. 

TABLE 5 

The S-wave scattering lengths a~ and a~) for K = 0.290 and ~ = 0.297 

= 0.290 ~ = 0.297 

- a ;  0.74(10) 0.92(7) 
0 .89(7)  1.14(9) 

- a~) 0 .32(7)  0.46(7) 
0 .35(7)  0.44(3) 

The upper  n u m b e r  in each entry results from a fit of the mass differences M1, 9 - 2 m  as a function of 
L according to eq. (15), the lower numbers  are the predictions from the per turbat ion theory, eqs. (19) and 
(20). 
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formula (15) in order to obtain the scattering lengths a6 't. The results of this fit 
together with a comparison with the perturbative two-loop formulae (19) and (20) 
are contained in table 5. Although the errors are not very small, the overall 
agreement is remarkable, showing that the lattices considered in this paper are large 
enough in order to contain also the lowest two-particle states in a relatively 
undistorted form. In other words, information about low-energy scattering can be 
obtained from these lattice studies, similarly to the case of a single-component 
q~4-theory [8]. 

4. Summary and conclusions 

The results of our numerical simulations of the O(4)-symmetric ~4-theory in the 
symmetric phase fit well into the recently emerging picture of the behaviour of 
lattice ~4-models at maximal (infinite) bare self-coupling [3-9]. In the scaling region 
near the critical point the renormalized coupling is always small enough for the 
applicability of renormalized perturbation theory. In particular, the finite volume 
dependence of the physical quantities is well reproduced and hence is fully under 
control. This allows for a reliable infinite volume extrapolation. Moreover, a careful 
study of the finite size effects yield useful physical information, for instance, on 
low-energy scattering. In this respect there is qualitatively very little difference 
between the four-component model and the previously studied single-component 
case [8]. 

An important aspect is the comparison to the analytical calculation based on 14th 
order hopping parameter expansion and three-loop perturbative renormalization 
group equations [7]. In general, there is good agreement between the results of ref. 
[7] and our numerical simulation. The estimated relative errors in the renormalized 
mass are up to a factor of 5-10 smaller in the numerical simulation but, as is shown 
by fig. 3, the errors of the renormalized coupling are somewhat worse here, in spite 
of the use of the cluster algorithm. Since the total computer time used in this project 
was about 550 CPU-hours on a CRAY X-MP, where 300 hours have been spent for 
the calculation with the Metropolis algorithm, a really large scale numerical calcula- 
tion by present day standards could, in principle, beat the analytical calculation also 
in the error of the renormalized coupling. 

The Monte Carlo calculations for this investigation have been performed on the 
CRAY X-MP/416 of HLRZ, Jtilich. 
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