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We formulate and describe a renormalization-group transformation for classical A¢*-field theory
on a lattice. The main idea is to divide the angle variables of the oscillators into the fast ones (large
momenta) and the slow ones (low momenta) and to average over the fast ones. This results in an
effective Hamiltonian for the remaining slow modes, which can be compared with the starting Ham-
iltonian. We derive fixed-point conditions and obtain a scaling law for those classical solutions for
which the renormalization step can be iterated. There is a striking resemblence between our classi-
cal treatment and the analogous procedure in quantum field theory, which we discuss in some detail.

I. INTRODUCTION

Renormalization-group transformations provide one of
the most powerful tools for studying systems with very
large numbers of degrees of freedom such as in statistical
mechanics or quantum field theories near phase transition
points.! 73 Following the review article of Kogut and
Wilson,! a renormalization-group transformation of the
parameters of a theory is obtained by integrating out the
high-momentum (or small-scale) degrees of freedom. In
other words, a change of the ultraviolet cutoff leads to a
modification of, say, masses and coupling constants in a
quantum field theory. At or near a phase transition
point, these changes become particularly simple, and the
systems exhibit a scale invariance. Although all these
features are not limited by perturbation theory, it is often
useful to rephrase them in the language of perturbation
theory. Since near a phase transition point the Hamil-
tonian of the system looks the same after a
renormalization-group transformation, it is possible to re-
peat this transformation many times and one thus
effectively carries out the perturbation theory to a very
high order.

It is in this spirit that one might ask similar questions
about classical systems with large numbers of degrees of
freedom. To be definite, we have in mind classical Ham-
iltonian systems consisting of N weakly coupled harmon-
ic oscillators, such as in a classical field theory on a spa-
tial lattice in a finite volume. In the absence of any in-
teraction such a system is integrable and its trajectory
moves on N-tori in 2N-dimensional pg space. When the
interaction is turned on, many of these tori are destroyed
but the majority is preserved. The preserved tori are
those whose frequencies are sufficiently incommensur-
able. It has been shown*® that for such frequencies
canonical perturbation theory provides meaningful pre-
dictions. With increasing strength of the interaction
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more and more tori are destroyed, and the system eventu-
ally becomes chaotic. Now suppose that the parameters
of the system are given special values (quite similar to
those which make the quantum analog of this system crit-
ical), and assume that the coupling is still sufficiently
small such that not all Kolmogorov-Arnold-Moser
(KAM) tori are destroyed. Then one might ask whether
among the preserved tori there are special classical orbits
which show some sort of a scaling behavior when looked
at at different length scales. Could one use
renormalization-group transformations to get informa-
tion on these trajectories to very-high-order perturbation
theory?

The key observation in trying to find an answer to this
question is that canonical perturbation theory in classical
Hamiltonian mechanics involves time averaging over fast
degrees of freedom. It thus very naturally provides a
mechanism to do something analogous to the “integra-
tion over large momentum degrees of freedom” in
Wilson’s renormalization-group transformation. For an
(oscillating) system which is close to an integrable one

H(1,6)=H(I)+AH(I,6) (1.1

(I,0 are action and angle variables, H, is integrable, and
A <<1), the slow (fast) variables are the I’s (the 6’s) and
obey

. oH
._I _ = }\' , 1.2
X 26, (A) (1.2)
. oH
6":—67,:20)":0“) (1.3)
(k=1,...,N). Canonical perturbation theory is based

upon averaging over the 6’s. If, moreover, there is a
strong ordering in the frequences

0 <KW, << - <oy, (1.4)
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then we have an additional division of the angles into fast
and slow ones. It is then very suggestive to first average
over a certain group of the fastest 0’s (large w), then to
move on to a second group of slower 6’s, and so on.
After each step, one ends up with a reduced Hamiltonian
which describes the effective interaction of the remaining
slower modes in the presence of the (averaged) fast
modes. Following  the  spirit of  Wilson’s
renormalization-group analysis in the vicinity of a critical
point, one then might search for a situation where this re-
duced Hamiltonian is of the same form as the one before
the averaging. One would expect that this leads to re-
strictions on the parameters of the systems, but one may
also single out a special subset of classical solutions (i.e.,
with special initial conditions). In analogy to what has
been said above about the quantum-field-theory case,
such a procedure would allow one, at least for this select-
ed set of classical solutions, to carry out perturbation
theory to very high orders. We would, therefore, be in a
much better situation than by applying canonical pertur-
bation theory in (1.1) to all angle variables at the same
time, because such an approach would have to stop at
some finite order in A.

In this paper we attempt to apply this idea to a system
of weakly coupled harmonic oscillators, namely, a classi-
cal A¢* field theory on a lattice (with a finite spatial
volume). This model is sufficiently simple for us to carry
out low-order calculations easily, and it has widely been
studied in quantum field theory and statistical mechanics.
In order to obtain a nontrivial fixed point for the cou-
pling constant, one has to work in D =3 — ¢ spatial di-
mensions. This has to be done in the limit of very large
lattice volumes where sums over discrete momenta can be
approximated by momentum integrals. More interesting
models are lattice gauge theories, but the complications
connected with the gauge invariance suggest that it might
be a better idea to start with a less sophistical toy model.

The main purpose of this paper is a detailed descrip-
tion of renormalization-group transformations in this
classical Hamiltonian system. As it was said before, its
main part consists of averaging over a set of fast angles
(which belong to the large-momentum degrees of free-
dom). This results in an effective Hamiltonian for the
remaining slower variables (belonging to small momenta).
In order to be able to compare this new Hamiltonian with
the starting one, two further canonical transformations
and a rescaling of momenta are necessary. It turns out
that details of all these steps are very similar to the analo-
gous renormalization-group transformation in A¢* field
theory: this includes the appearance of diagrams with
closed momentum loops (Feynman diagrams) and the
concept of mass and wave-function renormalization. The
question about under what conditions the resulting Ham-
iltonian has the same form as the starting Hamiltonian
leads to fixed-point conditions on the coupling constant
and on the mass. The detailed form of these equations is
again very similar to those obtained in the quantum field
theory. The further requirement that this renormaliza-
tion step can be iterated without leaving the fixed point
leads to a restriction on those classical solutions for
which this procedure works: we obtain a scaling law for

the field amplitudes which is reminiscent of the scaling
laws for the Green’s functions in quantum field theory (or
the correlation functions in statistical mechanics) near a
critical point.

We interpret this result as follows. Among the KAM
tori which are preserved in the presence of the interac-
tion terms AH, there seems to exist a special set of regu-
lar classical solutions which, at or near the fixed point,
behave the same way as the quantum system does near
the critical point. In this sense the classical system (i.e.,
some of its solutions) seems to “know” about the critical
behavior of the quantum system. We cannot say at the
moment how important these solutions are for the com-
putation of a partition function, but questions along this
line certainly deserve further attention.

It should be stated rather clearly that our analysis does
not attempt to provide any rigorous proof for the ex-
istence of these special classical solutions. In this paper
we rather intended to formulate the ideal and to work out
in some detail how renormalization might work in a clas-
sical lattice field theory. A more rigorous analysis would
certainly be difficult. Apart from the fact that the exist-
ing proofs of KAM theory*> for systems with N >2 de-
grees of freedom do not allow us to take the limit N — o,
our model also has the slight complication that the fre-
quencies of the free Hamiltonian are constants, i.e., they
do not depend upon the action variables. Since such a
dependence will come in as a result of the interaction
term, one should redefine the free part of the Hamiltoni-
an by absorbing parts of the interaction into it. In order
to keep our calculations as easy as possible, we have
chosen to ignore this complication for the moment. But
we feel that at some later stage our analysis should be
refined to take care of this feature.

This paper will be organized as follows. We begin (Sec.
II) with a simple example which illustrates how averaging
over a fast mode leads to a renormalization for the pa-
rameters of the slow mode. Section III contains the main
part of this paper: it describes one complete renormaliza-
tion group transformation for the A¢* model. In Sec. IV
we derive scaling laws for those trajectories for which a
fixed-point situation can be reached. Section V contains
a discussion of our results. Some details of our calcula-
tions are put into two appendixes.

II. COUPLED OSCILLATORS

We consider a pair of coupled harmonic oscillators de-
scribed by the Hamiltonian,

A
H=ipi+iolqi+ipi+iogi+7(qi+g3).

7 2.1
The equations of motion for g, and g, are
4, +oiq, +Algt +43)9,=0, 2.2)
4, towiq, +ig} +43)9,=0 . 2.3)

We assume that o? <<®3, and that the energy of the sys-
tem is small such that A(g? +¢3)=~w? <<w}. Under these
assumptions, the motion of ¢, is much slower than that
of g,. We shall refer to g, as the slow mode and g, as the
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fast mode. The relative time scales are characterized by a
small parameter

€=w,/w,<<1 . (2.4)
We first consider the fast motion and write (2.3) as

G, +Q%,+1q3=0, (2.5)
with

Qr=wi+Arg, (1) . (2.6)

Comparing with the fast motion of g,, we can view () as
a function of a slow time scale, f=€t. To the lowest ap-
proximation, we can treat (}(7) as a constant. Then, the
solution to (2.5) with an appropriate initial phase is an el-
liptical function®

g, = A(Den(B(7),0(1)) , 2.7

where A4, v, and B are functions of .
Comparing (2.5) with the identity

f%—i’;’—”H1—2v>cn<x,v)+zvcn3(x,v>=o, 2.8)
we obtain the relations
QYD) =[1—2wD)]B(T)*, 2.9)
AA(F)?P=2uD)B(T)* . (2.10)
We can solve for v and B in terms of Q(7) and A4(7) as
AA(T)
20UFR+H20 AT}
B(I)=Q(T)?+LA(1).

v(f)= (2.11)

(2.12)

To determine the slow time dependence of A(f), we
evaluate the action

. 1
Iz(t)EEﬁpquz
=1LA@)?B(I)IC(WD) , (2.13)
with
C(v)zifK(V)du sn?(u,v)dn(u,v)
Tvo
_ 4
=—[(1=v)K(v)—(1—=2v)E(v)]
3y
=1=3yv—3v+ -, (2.14)

where K (v) and E(v) are the complete elliptical integrals
of the first and the second kind. Using (2.11)-(2.13), we
can determine A, v, and B as functions of  and I,. The
adiabatic invariance theorem®’ tells us that 8I,, the
change of I, per slow cycle, vanishes to order €. Actually
for an analytic Q(7), 8], vanishes exponentially as
exp( —const/€). In particular, the faster the variable ¢,
is, the better the adiabatic invariance I, becomes. Thus
we can treat I,(7) as a constant even for the slow motion
of q,.

For the motion of ¢, in (2.2), we can separate the g3
term into an averaged value (g% ) and a fluctuation term.

The fluctuation term gives only a small effect on the
motion of ¢,, and may be ignored.® We obtain an ap-
proximate equation for g,
g+ (wi+r(g3))q, +rqi=0. (2.15)
The expectation value of g3 is
(g3)=A4%*(cn’(B,v))
=1A(F)’DWv), (2.16)

with

K(v)
f du cn*(u,v)
0

Ko [E(v)—(1—=v)K(v)]

v—%vz-i- SR (2.17)
Since A(t) and v(z) depend on g¢,(¢) through Q(t),
A{q3)q, represents an additional interaction due to the
fast mode g,. The above result is valid for all A and de-
pends only on the smallness of €. In the following, we
find it instructive to treat the reduction problem as a per-
turbation in A. For small A, (2.11)—(2.16) give

AT
v=""1+0()}),

(2.18)
@3
21 SAL,  Agi
=" 1 =222 M 000 |, 2.19)
(23] 8602 2(1)2
. 21
B2=wl+ 2 +rg3+0(AY), (2.20)
2
I 3M,  Agi
(r="21-2-liony|. @2
W, 4w; 205
The g, equation becomes
. 2 }LIZ }\'2]2 3
g+ |oit—|g,+ [A——= |91=0 (2.22)
(05 2[02

Equation (2.22) indicates that the most important effect
of the fast mode on g, is to change the effective frequency
w? and the coupling constant A. These are the analogs of
the mass and the coupling constant renormalization.

Physically, we can also understand the separation of
coupled fast and slow oscillators into two independent
motions as follows. For small A and e, the system is near-
ly integrable. We can treat the fast mode as a clock, and
describe the motion of the slow mode by a sequence of
points at 6,=0, mod2w, as in a Poincaré return map.9
Then, the motion of g, is one dimensional if its trajectory
lies on a KAM curve, and is approximately one dimen-
sional if its motion is trapped between two adjacent
KAM curves. Since most of the trajectories are on or
near a KAM curve for small € and A, we expect our ap-
proximation to be good.

In the following, we shall treat our system by the
canonical perturbation theory.® We write H as

H=Hy,+AH, , (2.23)
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with as,(1',6")
H=H,I')+A |0,———— +H,(I',0')
Hy=1p}+lelgl+1ipi+1iwigs, (2.24) a6;
— 1,24 ,2)2 aS, as
H =g} +q27 . (2.25) 2o a?;' [ - 135 85, 2]+ ’
Introducing the action and angle variables I; and 6; for i
H,, (2.33)
¢, =V 2, /w;cosb, , (2.26)  with
==V 20,I;sinb, , 2.27 9S
pi vV 2w,1;sinb; (2.27) H,= {Sle'*'%“’i '—,l , (2.34)
we have a0;
HyD=I,0,+1,0,, (2.28)  and the curly brackets represent the Poisson brackets.
) We now separate H, into an expectation value with
I I ’ . . ry
H(I,0)= —1—003291+ __2_005292 (2.29) respect to 6, and an oscillating part H,
1 @2 H,=(H,)+H,I,8), (2.35)
We assume as before that w?<<w3. We shall make a i
canonical transformation to remove the fast variable 6, in with
H. We introduce a generating function I} I
(H)=—cos*6}+ cos?0{ cos’6})
Fy(I',0)=I,6,+150,+AS (I',0)+AS,(I',6)+ - - - . Ion ®10;
2
.30
2.30) +—22(cos46'2)
The generating function F, leads to the canonical trans- 2
formation 12 e 12
=—5cos*6,+ cos’0)+— . (2.36)
, ., 95,U,6)  35,(I',6) o7 010, 8w3
IL=I/+A +A + 0, (23D _
a6, 96; We choose an S; to cancel the oscillatory part H,.
, , Given S, we can compute H,. We choose an S, to can-
6,=6,+A a5,I',6) 422 95,(I,6) + .-+ . (232  cel the oscillatory part of H,, etc. In the following, we
oI/ oI} shall suppress the primes on these variables, and just
remember that all variables are primed variables. We can
In terms of the new variables I’ and 6, we have obtain S, and ( H, ) straightforwardly as
J
I,1,sin(26,)(cos(26,) | I,I,cos(26,)  I,I I3 I3
§i= 0 Al 2 l6in(26,)— —5sin(46;) (2.37)
4&)2(&)1 _Cl)z) 4(0]((01 _Cl)z) 4(()10)2 4(02 32(!)2
1713 I3, |[cos(26))
(Hy)=———+ L2 12270 L4 cos20,)]
64w; 8wiw, | w1—wW; ;3
III% 1+COS(26l) COS(291) 1 3
7 3 2 2 7 32 ——7[1+COS(291)] . (2.38)
16(01(02 W] Wy W)W, (05} y
To O(A?) and in terms of I, p, and g, the new Hamiltonian is
H'=Hy(I)+MH,)+A*H,)
L ER
— 2 22 2 2 2.1 4
=Lo,t3pi+iwigi+A 8a)§+ 02‘11"'4‘11
2|V gt 1 9] 305 D U I £U3 O N S
6403 3203 0l—0) o} 3200} | 0i—w? o2 160, | 0—03 o3
I 2.2
~ar) 1 Lo 2.39)
16(1)1(02 W] — w3 @y
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The absence of 8, in H' indicates that to this order I, is a
constant. It is pleasing to see that the (H,) term gives
rise to the mass (frequency) renormalization as shown in
(2.22). The first terms in (H,) and (H,) contribute to
the adiabatic invariance associated with 6,. They change
the frequency w, but do not affect the equation of motion
of q,. The second term of (H,) gives a second-order
mass renormalization, and the third term gives a wave-
function renormalization. The fourth term leads to a
coupling constant renormalization, which, in the limit
w?} << w3, reproduces the correction in (2.22). The last
term represents a new kind of vertex which is intrinsic to
the use of the Hamiltonian formulation and the old
fashioned perturbation theory. All the terms mentioned
above will appear in the reduction of classical field
theories which will be the topic of Sec. III.

III. A RENORMALIZATION-GROUP
TRANSFORMATION

We now turn to classical A¢* theory. By putting the
theory on a spatial periodic lattice with lattice spacing a,
and by keeping the volume finite [length of the cubic lat-
tice is L =a(2N +1)], we have both an ultraviolet and an
infrared cutoff. The Hamiltonian is

) 1 1 1 23 A
"= 1 E’W%+3m2¢%+zi=1(¢l+i_¢1)2+z¢?
(3.1

The summation extends over all lattice points / and for
convenience we have put a=1. A Fourier transforma-

tion

F%% e™igy (3.2)
with

k=*2L£n, n=(n,,ny,ny), In|<N (3.3)

diagonalizes the free part of the Hamiltonian:

1
H:Z_D 3 Hma o' (K)dd ]
L3D = zd,k K, - (3.4)
Here D =3 and
3 k;
WX k)=m2+4 s sin2—2~ . (3.5)

i=1

The complex-valued variables ¢, and m satisfy 7_, =y,
¢ _r=¢¢. In the interaction part of (3.4), the summation
symbol includes a momentum-conserving 6 function

S 8%k, +k,+k;+k,+2mn) .
n
In principle, we could write our Hamiltonian in terms of

real and imaginary parts of ¢ and , and all calculations
would give real-valued results. However, it turns out to

be much more convenient to switch to other, complex-
valued variables a(k) and a *(k), which are the classical
analogs of annihilation and creation operators in quan-
tum field theory.'® For each k one defines

-D/2

_ L

ST 1

4 ———

and, correspondingly, its complex conjugate a*(k). The
canonical transformation which takes us from ¢,,m, to
a(k),a*(k) [a(k) plays the role of new coordinates,
ia*(k) are the new momenta] has the generating function

.

T L Po(k)dd

a*,p)= 3

kez

+iV20(k)L ~22a*(k)p,

—la*(k)a*(—k) (3.7
The new variables have canonical Poisson brackets
fa(k),a*(k')}|=—id , (3.8)
and the free part of the Hamiltonian takes the form
Ja*(k) . (3.9)

=¥ wlkla(k
k
For these new variables we now introduce action and an-
gle variables I(k),8(k) (both real-valued)
a(k)=VIk)e % (3.10)
such that

Ho=3 o(k)I(k) .
k

(3.11)

Connection with the variables ¢,, 7, is made through

LD/Z .
¢k:W[‘/1( )e—l9(k)+‘/1(_k)e16(4k)]
(_l)LD/z\/a) /2[\/1 —iO(kl
—\/I(—k)e""_k’]. (3.12)

The Hamiltonian becomes
H=73 ok)(k)
k

—10(k,)

[\/1

JA LS
TL %l;l \/2(0

+‘/——I(_ki)ei9(—kl)]

(3.13)
This defines our starting Hamiltonian. It will sometimes
be convenient to write H in terms of variables a,a *:

H= Ew(k)a(k)a*(k)

1
[ (k;)+a*(—k;)] .
4'LD % ,I:Il Vv 20(k;)

(3.14)
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In the main part of our paper, we shall use action and an-
gle variables I,6. Calculations which are described in
Appendix B are carried out in terms of the a and a*’s

In the following we will apply the idea of Sec. II to the
Hamiltonian (3.4): we will average over the “fast” modes
(large momenta), and this will lead to an effective Hamil-
tonian for the “slow” modes (low momenta) with renor-
malized parameters A and m. Our aim will then be to
bring this Hamiltonian into a form which allows a com-
parison with out starting Hamiltonian (3.4). This can be
done through a few canonical transformations which turn
out to be the classical analog of “wave-function renor-
malization” and “‘mass renormalization” in quantum field
thoery. Together with the averaging procedure, these
canonical transformations define what we will name a
“renormalization-group transformation.” In Sec. IV we
then will study under what conditions the new Hamil-
tonian is the same as the old one: this requires that mass
m and coupling A take certain fixed-point values which
depend upon the adiabatic invariants of the fast modes.
In order to obtain a nontrivial fixed point for our A¢*
model, we have to invoke Wilson’s idea of working in
D=3—¢ (spatial) dimensions: for sufficiently large
volume (L >>1) all sums over momenta can be approxi-
mated by integrals which allow a continuation in D away
from D =3. Finally, the requirement that after several
renormalization transformations we are still on the fixed
point imposes certain restrictions on the classical trajec-
tories: the type of scale invariance that we are looking
for only works for special classical orbits.

“Fast” and “slow” modes (“large” and “small” mo-
menta) are defined as follows. Let A denote the full range
of momenta:

klo< k|, Ik, |, [k, | < = (3.15)

The ‘“‘slow” modes are defined to belong to “low” mo-
menta kE A _, where

(3.16)

klosIkXI,ikyI,lkzlSp% } :

Correspondingly, “fast” modes belong to ‘“large” mo-
menta kE A, with

A, =A—A_ (3.17)

To be definite, we take p=1. In order to make the fol-
lowing presentation as transparent as possible we proceed
in two steps: first we give a general description of the
transformations which go into a renormalization-group
transformation, and in the second part we present the
necessary calculations.

A. General description of a renormalization-group
transformation

The renormalization-group transformation, which we
will describe in the following, consists of four steps: (i)
the averaging over the fast modes (large momenta); (ii)
mass renormalization; (iii) wave-function renormaliza-
tion; and (iv) rescaling of momenta. The first three steps

are canonical transformations, whereas the fourth one in-
volves rescaling of all dimensional quantities.

We begin with the first step, the integration over the
large-k modes. Write (3.13) as

H=H(D+AH,(I,6) (3.18)

and decompose H, into an averaged part and the
remainder (oscillatory part)

H,(1,6)=(H,(1,0))+HI,6) . (3.19)

In the first term, the averaging prescription only refers to
those (k) for which kEA.; as a result of this, (H)
will still depend upon the (k) with k€ A _. For simpli-
city, we use the subscripts < and > to distinguish be-
tween the two sets of degrees of freedom. We seek a
canonical transformation of the form

S(I',0)= 3 I'(K)6(k)+AS,(I',0)+12S,(I',6) ,  (3.20)
k
with
I(k)=I"(k)+A 951 2 %% (3.21)
36(k) ' 36(k)
and
0'(k)=6(k)+A 05, 55 (3.22)
ar'k) ' ark)

Insert (3.21) into (3.18) and express everything in terms of
the new (primed) variables. Up to order A* we find

H=Hy(I')+A{S,,Hy} +H,)

as, as,
+22

,—L
2 % aI'(k) 36'(k)’

+{SI,H,]+%{SI,{S,,HO]}‘ , (3.23)
where {} denote Poisson brackets with respect to the
primed coordinates 8’ and momenta I’. Equation (3.23)
and its generalization to higher order in A can be derived
more effectively by means of Lie-algebraic methods,'! as
described in Appendix A. We introduce H,(I',8') for
the last two terms of the A? coefficient in (3.23),

={S,H,} +1{S,,{S|,Ho}} , (3.24)
and perform a decomposition similar to (3.19). Then
(3.23) becomes
H=HyI')+A{H,(I,6"))+A*(H,(I',6"))

dH,(I') as, AT e
2 ark) ao) THULE)
+22 aH° 5: & (I',0") | +0(A%)
2 ae'(k) 20,6') (A
(3.25)
with
si=5,—13 —o1__95, (3.26)
: 2 7% aI'(k) 96'(k) '
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This gives the conditions on S, and S:

s,
Eco(k)ae,(;() +H,(I',6)=0, (3.27)
k
as;
: (3.28)

% w(k) 5+ Hy(I',6)=0.

This eliminates the expressions in large parentheses in
(3.25). The main feature of the resulting Hamiltonian is
that the dependence upon the 6’, has been removed up to
the order A°, i.e., the I ', are constants (adiabatic invari-
ants) up to this order. It is clear that this procedure
could, in principle, be carried through in higher order A,
but we will argue below that, when working in 3—e di-
mensions, there will be a fixed point in A of order €. Near
or at this fixed point we are justified to restrict ourselves
to the two lowest-order terms in A. In the following we
shall drop those terms of the Hamiltonian (3.25) which
depend only upon the 7., but not on I_ or 6_.. This
defines an effective Hamiltonian H . which describes the
motion of the low-momentum degrees of freedom in the
presence of a set of adiabatic invariants for the large-
momentum modes:

H_=H, (I'N+AHI',6))+A{H,(I',0)) .
(3.29)

The prime symbols { )’ indicate that contributions in-
dependent of I'. and 6', are left out.

Before we continue it may be useful to say a few more
words about the averaged terms { H,) and {H,). From
the definition of H, (3.13) one sees that by averaging over
all 6(k) with kE A, many terms in the sum over momen-
ta are left out. Only those terms where for each
e Yk EA. ) we also find that an e'® ¥ with k= —k’
(and similarly for the complex conjugate) will contribute
to (H,). In other words, in the four external lines of
this four-point vertex either all four-menta belong to A _
[Fig. 1(a)], or two momenta belong to A_ and the other
two momenta (which then belong to A, ) must be equal
and opposite [Fig. 1(b)]; or all momenta belong to A,
and we must have two pairs of equal and opposite mo-
menta [Fig. 1(c)]. The case where all four-momenta be-

(a) (b) (c)

FIG. 1. Contributions associated with {(H,) fall into three
classes. (a) All four lines belong to A . (slow modes) which are
treated as external lines. (b) Two of the lines belong to A. and
the other two belong to A . (fast modes). The contraction of the
fast lines gives rise to a loop. (c) All four lines belong to A, and
their contractions give rise to two loops. In these and the subse-
quent graphs, dashed lines represent slow modes and solid lines
represent fast modes.

long to A, and all four are equal to one another will be
suppressed in the limit N—o. In Fig. 1 we illustrate
these cases by drawing ‘“Feynman” diagrams: the
averaging procedure which we are using in order to elimi-
nate dependence upon the 8. leads to expressions which
are identical to “loops” in perturbation theory of quan-
tum field theory. For an exact comparison one has to use
“old-fashioned” perturbation theory (and not covariant
perturbation theory), because we are working with the
Hamiltonian and not the Lagrangian formulation. The
fact that “loops” appear in our classical treatment may,
at first sight, look somewhat surprising. One should,
however, bear in mind that the main effect of these
“loop” corrections is a modification of oscillation fre-
quencies and the nonlinearity parameter A, and not the
introduction of higher harmonics. The latter one would
rather associate with “tree diagrams.” A detailed deriva-
tion and listing of “Feynman rules” is given in Appendix
B.

The remaining three steps of our renormalization-
group transformation will be designed to bring the Ham-
iltonian (3.29) more precisely into a form which allows
comparison with the starting Hamiltonian (3.13). Let us
first look at the free part H,_(I’) and all those terms in
(H,) where two of the external legs carry momenta of
A .. They are of the form

Hy.= ¥ olk)a'(k)a’*(k)

KEA_

tr 2

kEA _

1
2w(k)

[a'(k)+a’*(—k)]

X[a'(—k)+a’*(k)]Z(k,I. ) (3.30)

[2(k,I.) will be given below]. Here we have used the
variables a’(k),a’ *(k) rather than I'(k),6'(k), because it
will simplify our calculations. We perform the Bogo-
liubov transformation (which is canonical),

a"(k)=a(k)a'(k)+B(k)a’ *(—k),

aX(k)—pAk)=1, .
and (3.30) becomes

Hy.= 3 o’(k)a"(k)a”*(k), (3.32)

KEA_

with

0" Hk)=wXk)+3(k,T.) . (3.33)
The transformation (3.31) has the property that
T/—z_;ﬁ_)—[a’(k)—ka’ “(—k)]

=7ﬁ[a"<k)+a"*(—k)]. (3.34)

This implies that the other parts of ( H,;) and { H,) will
not change under this transformation (up to corrections
of order A*). We mention that contributions from ( H, )
with two external low momenta are not exactly of the
form (3.30), but can also be handled by a Bogoliubov
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transformation (see Appendix B). The main result of the
transformation (3.31) is a change in the frequencies w(k)
forkeA_:

3 k;
o"(kP=m>+3(0,1% )+4  sin’ - +3(k, I, )

i=1

—3(0,1,) . (3.35)

The second term defines a change of the mass; that is why
this canonical transformation is called “mass renormal-
ization.” To make the definition of the renormalized
mass precise, we also have to look at the last terms of
(3.35). Although in the actual calculation presented
below it will turn out that under our approximation
3(k,I . ) does not depend upon k, let us pretend, for the
general argument, that 2(k)—=(0)#0. Let us further
anticipate that eventually the volume of our lattice will
be large (i.e., N>>1) and the renormalization-group
transformation will be repeated many times. Then the
momenta k€ A . will eventually be very small and (3.35)
will approximately be

o"(k)?=m*+2(0,I, )+k>+k?2'(0,I', )+ O[(k?)?]
~Z Y[m?+2(0,1)]Z+K*}, (3.36)
with
Z '=1+30,1%) . (3.37)
So we define the renormalized mass and frequency:
mi=[m?+2(0,1,)]Z , (3.38)
ok (k)=m}+k’=Zow" ¥k) . (3.39)

For small momenta k, w%(k) is of the same form as our
“bare” frequency (k) in (3.5). Inserting this into our
Hamiltonian (3.29), we obtain the new free part of Hamil-
tonian (3.23) as

(H )=Z7'* 3 wgkI"(k).

kEA

(3.40)

Obviously, another canonical transformation (‘“‘wave-
function renormalization”),

S(Iul,enr)zzl/z 2 I(k)”’e(k)” ,

KEA

(3.41)

is needed in order to make (3.40) look like the free part of

(3.13). Then (3.40) becomes
= 3 wp(KI"K), (3.42)
kEA

which is (almost) of the form we want. Note that under

(3.41)

0'(k)=2Z"1%0""(k) , (3.43)
we then rescale the time variable

tr=2Z V% (3.44)

and rename 6"'(k)Z ~'/2 as 6(k)"”’. The transformation
(3.41) also affects those parts of {H, )’ and { H, )’ which

we have not discussed so far: these are contributions
where four or six external lines have low momenta €A _.
It will be shown below that for each such line there is a
factor V'2I''(k)/w"'(k) [before the transformation (3.41)].
Using (3.39) and (3.41), each line obtains a factor Z!/%,
This suggests that one defines renormalized four and six-
point interaction terms:

=z, ,
=Z%,

V n
bre (3.45)

V6 ren

where V, and V will be given and discussed below.

These last two canonical transformations, (3.31) and
(3.41), are the classical analogs of renormalizations in
quantum field theory. As we have made clear, these
transformations have been motivated by our demand that
the new Hamiltonian (3.29) should be cast into a form
where it can be compared to the starting Hamiltonian
(3.13). The final step in our renormalization-group trans-
formation consists of a scaling of all dimensional quanti-
ties by a factor 2¢, where d is the canonical dimension [we
use (length)=—1, (momentum)=1]. The reason for this
lies in the fact that in (3.40) the summation over k ex-
tends over a region different from that in (3.13). We
therefore rescale

%E (3.46)

(3.47)

_ 3 k;
aXk)=4m}i+16 3 sinZT . (3.48)

i=1
In (3.48) we again anticipate that k will eventually be so

small that the second term in (3.48) becomes k 2. The free
part (3.40) of the Hamiltonian then reads

13 a®riK) .

kEA

(3.49)

The prime at the summation symbol indicates that in the
summation over k the density of points has been thinned
out:

k= n=(n,nyn;),|n;| <N (3.50)
with n; taking only even values. Since the new Hamil-
tonian describes the physics on a lattice with only half
the length of the old one, we simply rewrite (3.50) as

k= ~—2L” A=(7,,A,,75),|7,| <N /2
T — L
=—f, L=—. .
i 5 (3.51)

Similarly, in the interaction part of our Hamiltonian
(3.13) we rescale all dimensional quantities by 2¢ where d
is the canonical dimension. [Note, in particular, that
with our definitions (3.6) and (3.10) the action variables
I(k) are dimensionless]; the dimension of the coupling
constant is
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[A]=3-D, (3.52)
which would be [A]=4—D if D were the number of
space dimensions + 1.

This completes our general description of a
renormalization-group transformation. The differences
between our starting Hamiltonian (3.13) and the new
Hamiltonian are the renormalization of frequencies and
the coupling constant and the appearance of a higher-
order interaction term with six external legs. Before we

B. One-loop calculations

We begin with (H, ), the average over the fast 8’s in
the interaction part of (3.13). The three contributions are
illustrated in Figs. 1(a)-1(c). In order to contribute to
(H,), one of the three conditions must be satisfied. (a)
All external lines belong to A _. (b) Two of the lines be-
long to A, say k; and k,. Then we must have k;= —k,.
(c) All four momenta belong to A,. We then need two
pairs of equal and opposite momenta, sat, k;= —k, and

discuss this in more detail we first have to carry out the k3= —k4. The corresponding expressions are [cf. Eq.
actual calculations. (B6)]
J
4 4 — e
(H, Y= 11) S I [\/1 e M TR T Y, (3.53)
4 ke, j=1 \/2(0
1 I'(k) 2 Ok,) | e i0(—k,)
<H1>l(b)=— 2 2 H [‘/Il(k ! +VI’( —ki)e ! ] N (354)
LPX2 (EX 20(k) £y \/260
[
and H,=Y{S,H }+{S,(H} . (3.59)
' 2
(H )= _ 1 b I'k) (3.55) Details of the following calculations are described in Ap-
PANe pDxn KEA 20(k) |’ pendix B. Here we only give a qualitative description of

for Figs. 1(a), 1(b), and 1(c), respectively. Obviously, the
last of these contributions does not depend upon any of
the variables with k€ A _, and hence does not contribute
to our new Hamiltonian (3.29). Our expression for
>(k,I.) [cf. Eq. (3.30)] follows from (3.54):

I'(k)
D kez/\ 20(k)

(3.56)

As it had been said before, 3 does not depend upon the
external momenta; such a dependence would only occur
at the two-loop level (see Appendix B).

For the calculation of {H, ), we need to know H, and
S,. The oscillatory part 171 can be written as (B13)
=7, &(r;k,)

VT(rk, e

L Vg 77 i=1 \/260(1(
(3.57)

The symbol ¥’ indicates that we should leave out all
those momentum configurations which have contributed
to {H,). The 7; take the values +1 and —1, and we
sum over all possibilities. The function S, follows from
(3.27) [cf. (B16)]:

1 1
S, =i !
! ILD4! % % ‘le(kl)- ) _T4ﬂ)(k4)
4 1 — —ir,0(7k,)
X[l ——=——=VTI'(rk)e = "
i=1 V2w(k,)
(3.58)

We now turn to (H,), where H, is defined in (3.24).
With (3.27), H, is conveniently written as

the calculations and quote some of the results. The
second term in (3.59) does not contribute at all to {H, ),
so we only discuss the first Poisson brackets. Before tak-
ing the average over the fast angles, it can be viewed as a
six-point vertex (Fig. 2), where the “‘internal line,” which
connects the four vertex H, with the four-point function
S, represents the contraction due to Poisson brackets.
Graphically, we denote this by a cross. The momentum
along this line can be fast or slow, and the action and the
angle variables of this line cancel out as a result of taking
the Poisson bracket. Because of the summation over the
7’s in both S, and H |, there are two contributions to the
internal line. If in Fig. 2 time goes from left to right, and
if e 7% (e *%) denotes an incoming (outgoing) line, then
the contribution with 7=+ at the S, vertex will be
named “positive energy,” and the contribution with
7= —, “negative energy.” The six external lines in Fig. 2
can be either fast or slow, and, because of summation
over the 7’s, all possible time orderings have to be drawn
(Fig. 3). Finally, one has to remember that certain
momentum configurations at the A, and S, vertex have
to be left out.

Next when we come to the averaging over the fast an-
gles (kE A, ), we find four classes of diagrams (Figs. 4-7):

FIG. 2. Graphical representation of H, before contraction.
The summation is taken over momenta belonging to both the
fast and the slow modes.
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FIG. 3. Decompositions of H, according to the fast and the
slow momenta, and according to the directions of propagation.

graphs with zero, two, four, or six external slow lines.
Graphs of the first type (“vacuum diagrams”) are not of
immediate interest for us: similar to those of Fig. 1(c),
they have no dependence upon the I . and 6 _. The next
graph (Fig. 5) provides a two-loop contribution to the
two-point function 2(k,/. ). This graph gives the first
k-dependent contribution to =, but in order to be con-
sistent with our treatment of the four-point function, this
two-loop contribution will not be kept. Most important
for our goals are the graphs shown in Fig. 6, in particular
that of Fig. 6(a). When going from Figs. 2 or 3 to Figs.
4-7 (i.e., when averaging over the fast angles), we again
encounter a contraction of two lines (‘“contraction due to
averaging”). The details of this contraction are slightly

4

1 —_—
—————VI'(r)k;)e
fajeA extezrna] \/2w(k,)

linesi=1

constA? 3

(klE€A_

L2D

\@/
\N‘-X"”

(a) (b)

FIG. 4. Graphs with zero external (slow) lines are called vac-
uum diagrams. These diagrams contribute to the background
energy density of the system, and do not affect the dynamics of
the slow modes.

different from the Poisson-bracket contraction, but there
are again two possibilities for such an internal line: it can
have either ‘“positive” or ‘“negative” energy (for the
definition see above). Graphs with one positive and one
negative energy internal lines have no counterpart in
quantum field theory. Later on we shall argue that these
“wrong” graphs, although they are present in classical
canonical perturbation theory, are irrelevant near a fixed
point. The same applies to the four-point vertex graph,
Fig. 6(b), and the six-point vertex, Fig. 7, which therefore
will not be discussed here.

Results for the different time orderings (Fig. 10) of the
external lines in Fig. 6(a) are given in Appendix B. Each
of them has the form

—ir, @7k,

1 o,I(0,q,)

20(q)2w(q,)

Discrete variables 7 (o) are associated with external
(internal) lines, and k; (q;) are external (internal) momen-
ta. In particular, one notices that the sum over all the
time orderings cannot be written in the same form as H,
in (3.53) with A being replaced by some more complicated
one-loop expression because for different time orderings
the energies for the external lines come with different
signs. In particular, there are “wrong” graphs with
0,=—0,. In order to arrive at the final expression for
V4ren in (3.45), we have to take the sum of (a) the graph
Fig. 1(a) [Eq. (3.53)] and (b) all orderings of Figs. 6(a) and
6(b) [Eq. (3.60)]. We then have to apply the two canoni-
cal transformations associated with the “mass” and the

(a) (b)

FIG. 5. Graphs with two external (slow) lines are known as
self-energy diagrams.

o] —0,0(q,)—0,0(q,) —T;0(ky) —T40(k,)

(3.60)

~
“wave-function” renormalization to the I’,0’ variables of
the external lines. The former one does not affect the
contributions from Figs. 6(a) and 6(b) which have already
been of the order A2, and because of (3.34) it does not
alter the structure of the contribution of Fig. 1(a). The
wave-function renormalization pulls out an overall factor
Z'7? for each external line which is used to convert ¥, to
Varen in (3.45). The final rescaling of momenta (3.46) and
(3.47) for the external momenta, and
1/LP—1/(L 72)?X27P in (3.53) and (3.60) produces an
overall factor 1 X232, where 1 accounts for the overall
dimension of H and 2°~? for the dimension of A.

Our final result for the H _ is then of the form

FIG. 6. Graphs with four external lines are known as four-
point vertices.
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—— o

|

FIG. 7. Graphs with six external lines. The graph with a
low-momentum Poisson-bracket contraction is absent in ( H, ).

H_.= 3 oI+ Vien+ Veren »
kEA

(3.61)

where V, ., and V. ., are defined to include the summa-
tion over the external momenta k,. We further remark
that all the terms in (3.61) depend upon the I',, the adia-
batic invariants of the fast modes.

IV. FIXED-POINT CONDITIONS

We now turn to the comparison of our starting Hamil-
tonian (3.13) with the new Hamiltonian (3.61). Under
what conditions are they identical (up to the fact that in
the first case the lattice length is L, and in the second
one, L /2)? In answering this question we will follow the
arguments outlined in the review paper of Kogut and
Wilson.

Let us begin with the free part of the Hamiltonian and
compare the frequencies w(k) and @(k) [(3.5), (3.39), and
(3.48)]. Through our  construction of  the
renormalization-group transformation we have already
accomplished that they both have the functional form
o?=mass>+k? (for small k?). Equality of the masses re-
quires that

1 1

m2=4Z[m*+32(0,1)] . 4.1)

Note that T is of order A and also depends upon m?.

This is the analog of Eq. (4.26) in Ref. 1.

Next we turn to the four-point vertex in (3.13) and in
(3.61). The contribution corresponding to Figs. 6(a) and
6(b) depends upon the external momenta k,,...,k,
(through the energy denominators), and this dependence
differs from one time ordering to another. Since eventu-
ally we will be interested only in the region of small exter-
nal momenta, we approximate this momentum depen-
dence by a Taylor expansion around the renormalization

point k3= - - =k2=0. As to the leading term of this ex-
pansion where the value of our graphs is evaluated at
ki= - =k2=0, we immediately notice that all contri-

butions to the graph, Fig. 6(b), vanish because of momen-
tum conservation. Their expansions therefore start with
terms proportional to k? or k;'k;. Following Wilson’s €
expansion and his arguments on irrelevent operators, we
shall argue below that such terms are not important near
a fixed point. We therefore will not discuss them any fur-
ther. The same also holds for the six-point graph of Fig.
7.

Before we can state our final results for the diagram,
Fig. 6(a), we have to discuss those contributions where
one of the internal lines has “negative energy.” We shall
argue that they also turn out to be unimportant at the
fixed point, although for different reasons. We have to
remember that in both S, and H, we were instructed to
leave out all those momentum configurations where
q,= —q, (they are part of (H,)): this only applies if
k;+k,=q=0, and it guarantees that there are no diver-
gent terms in the sum over momenta. Now let us antici-
pate that the lattice is taken so large that sums over mo-
menta are approximated by integrals. A typical example
is (—k,—k,=q=k;+ky):

[0(q—q,)—w(q)][I'(q—q,)—1I'(q;)]

3
fql€A>d 9 2

At =0 we are instructed to subtract from (4.2) the same
expression, so the value is zero. On the other hand, if we
make the assumption that I(k) is a reasonably well-
behaved function of k, both the numerator and the
denominator in (4.2) vanish at the same rate as q—0, and
the integral is finite and generally nonzero at q=0.
Therefore, the subtraction is not relevant in the large-
volume limit, as a result of (k) being a smooth function.
This seems to imply that those ‘“wrong” contributions to
Fig. 6(a) (which have no counterpart in the quantum field
theory) give a finite contribution at the point
kf= -+ - =k;=0. Note, however, that when q—O0 in
(4.2) the numerator is proportional to 3/(q,)/dq?. For a
general trajectory this derivative will be of the same order
as I itself, but below we shall find that near a fixed point
only those trajectories with small 3 /3q, [of order O(€?)]
will survive. This makes (4.2) much smaller than the oth-

7)} 20(q;)20(q—qy) [w(q_‘h)—ﬂ’(‘h)]2—[0’(1‘3)“"0(1(3_‘1)]2 .

(4.2)

f

er contributions to Fig. 6(a) and we will not consider
them any more.

At the point ki=--- =k}=0 we are then left with
only those contributions to Fig. 6(a) where the internal
lines have either both positive or both negative energies.
From the energy denominators of the external lines we ei-
ther have 2m? or zero, so different time orderings still
give different results. This difference will disappear if ei-
ther m? is zero or small compared to the rest of the ener-
gy denominator, w(q,)+o(q,)~q?+q3. We shall argue
below that, in order to get our fixed point of interest, we
have to work in D =3 —e dimensions and to use the € ex-
pansion. Then the fixed-point value for m? will be of the
order € and, hence, small against w(q,)+w(q,). Under
this condition it is then self-consistent to drop m? every-
where in all our graphs contributing to Fig. 6(a). Now
they all are of the same form and can be summed up to
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)

j=1 1/2w(kj)

X fql€A> (277')3 Zw(ql) Zw(q*ql) w(q,)+w(q—q1) ’

If we denote the integral in the last line by (I, ), we
have, as a condition for a fixed point

A=23"DPZ2 A —A2m(I’)] . (4.4)

This is the analog of Eq. (4.26) in Ref. 1, and again we
have indicated that M depends upon the invariants of the
fast modes.

An obvious but trivial solution to Egs. (4.1) and (4.4) is
m =0, A=0. A more interesting situation arises if we
continue all our expressions (where, in the large-volume
limit, all discrete sums over momenta are written as
momentum integrals) to D =3 — e dimensions and expand
in powers of €. To lowest order we find the fixed-point
values

m**=—43(0,1,),
. In2

=g

M)

4.5)

[note that 3=0(A), hence m**=0(¢e)]. The most re-
markable difference between our result (4.5) and the
analogous result in Ref. 1 is that our fixed-point solution
depends upon the invariants of the fast modes which, so
far, can be chosen freely.

Let us come back now to all the other contributions to
the four-point vertex described in Figs. 6(a) and 6(b) that
we have disregarded so far, and also to the six-point func-
tion in Fig. 6. As we have already mentioned before,
Ref. 1 contains a detailed discussion about why those
contributions, to the leading order in €, do not affect the
fixed-point values (4.5). The same arguments can also be
applied to our situation, and there is no need to repeat
them here.

This then completes our answer to the question which
we have raised in the beginning of this section. Under
the condition that the parameters A and m? are tuned to
the values (4.5), we have found that our new Hamiltonian
(3.61), describing the dynamics of the I _,6 _ variables, is
of exactly the same form as our starting Hamiltonian
(3.13) which described all the I’s and 6’s. The fact that
m*,A* in (4.5) depend upon the I', merely says that the
behavior of the I _,0_ cannot be independent of the fast
degrees of freedom which form part of the initial condi-
tions.

Let us now turn to the second question: Under what
condition can we iterate this renormalization-group
transformation without leaving the fixed point? From the
fixed-point conditions (4.5) it is quite obvious that such
an iteration can only be performed if the action variables
I obey a certain restriction. Suppose that A and m? have
been tuned to satisfy (4.5) for a certain set of 7. ’s. Then
after the first transformation the Hamiltonian is essential-

4 —— —iflk, — 6k,
] ———1VTpe /T e T

dq;, 1 1 I'(qy)

(4.3)

—

ly unchanged. Now repeat the renormalization-group
transformation, and again arrive at the conditions (4.1)
and (4.4). But now the I, which enter into these condi-
tions belong to a set of smaller momenta A‘?,

AD=AD—AD | 4.6)
where A=A from (3.16) and

AP = kIOSIkXI,lkyI,IkZISpZ% 4.7)

[compare (4.7) with (3.16)]. But now A and m? have been
fixed already. They will satisfy the fixed-point conditions
(4.1) and (4.4) of the second step only if 2 and M calcu-
lated with the I'(k€ A'?’) are the same as those calculat-
ed with the I'(kEAY’). So there must be some relation
between the invariants I of kEA' and that of kEA?
or, more generally, a restriction on the field variables ¢,
as a function of k.
To discuss this in some detail, we introduce

AP = kIOSIkxi,IkyI,IkZISp"% , p=1 4.8)

and
A‘;”=A‘f TH_ A 4.9)

With the nth renormalization-group transformation we
then average over the angles 6 belonging to momenta
k€A™ (we have to assume that our lattice is large
enough such that after the nth step there are still
sufficiently many degrees of freedom left). Let us now
follow what happens to our field variables ¢, when we
iterate the transformation described in Sec. III. Begin
with the region A'!’ (which is our former A. ). Its field
variables ¢, are initially given by (3.12). After the first
step of the first renormalization-group transformation it
changes to

LD/2 . . -
¢k=m[‘/11(k)e—10’(k)+‘/11( _k)ele’(—k)]
+0(e) . (4.10)

The term O(A) contains higher harmonics which mix
slow and fast angles, but its overall strength is of order ¢,
and we will not discuss them further. The I’ for k€ AV
are invariants (up to order €’). They enter into expres-
sions for =(I') and M(1I'), and they will not be affected by
any of the subsequent transformations. For all the other
k (i.e., k€AY which is our former A_) the remaining
three parts of our first renormalization-group transforma-
tion change the ¢, from (4.10) into
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“O1+o0(e
(4.11)

(here k=%lz, and, for the sake of the argument, we in-
clude Z, although in our one-loop approximation Z=1).

Equation (4.11) is the starting point for the second
renormalization-group transformation, and we drop the
bars on I, 6, and k. For the region k€ A'?, the averag-
ing part of the second renormalization-group transforma-
tion changes (4.11) to

_ (L/2)° _\aaD s VT (Ke 00
OV ey s
VTR Y]
+0(e) , (4.12)

where a new term of order O(€) which we shall not ana-
lyze here has been added. As before, the I' for k€ A'Y
are invariants, and they enter into the subsequent calcula-
tions of 2 and M. In order to stay on the fixed point,
these new 2 and /M must be the same as in the first
renormalization-group transformation, so the I' appear-
ing in (4.12) must be related to the I's of (4.10). Since
both = and J! involve integrations over internal momen-
ta q, we cannot immediately conclude that the I’s of Eq.
(4.12) and (4.10) are the same. However, after many
iterations of the renormalization-group transformation
the integration intervals A" become smaller and smaller,
and we come closer and closer to a strict equality of the

J

Is in (4.10) and (4.12). After the second renormalization
group has been completed, for k€ A'?) the ¢, of (4.12) are
changed into

D/2 —_— __ O
b= (\1}/4)_ Z2PVT(K)e 04V T(—k)et® 0]
2o(k)
+0(e), (4.13)

where now k =4k.

Now it is easy to generalize this to n iterations. For
ke A" we find

1 1

______¢ :(Zl/ZzD/Z)ﬂ*l__:___
(L/2n P2k V20(k)
X[\/I K)e 00
\/I( E (- k)]+0(6)

(4.14)

where k=k/2" 'k and the I' are (approximately) in-
dependent of n. Here we have taken the volume factor to
the other side. (L/2")” is the lattice volume after n
steps. Note also that w(k) appearing in (4.14) does not
change with n. By construction, it is always of the form
#2=m2+k? and m? stays the same because_of the
fixed-point condition. If instead of ¢, we write ¢(k) (with
k=2""'k), then (4.14) takes the simple form

1 —

i (K)=(ZVR0P2)n~1r(k)+0(e) , (4.15)

with f being independent of n. From (4.14) we obtain for
the small-k behavior of ¢,:

4 =constli| 1720112y Y I (e 'M)“/’ —Re " e, (4.16)
vV 2a@(k)
I
with the anomalous dimension To complete this part of our analysis we say a few
words about the angular velocities and the action vari-
:M 4.17) ables. In (4.13), the velocities of the s with respect to
4 In2 ’ the original time variable ¢ are

[We again remind the reader that Z=1+0(}?%), i.e,
y=0(€?). Therefore, in our approximation y=0.] In
(4.16) we have assumed that k is continuous, and ¢ only
depends upon |k| rather than k. Equation (4.16) contains
the answer to the question that we have raised above: in
order to remain on the fixed point m*,A* after many
iterations, the invariants I, of the fast modes cannot be
arbitrary. The restriction is expressed most easily for the
amplitudes ¢, and it selects those classical trajectories
for which our renormalization procedure can be carried
out. From (4.16) we also derive a scaling low for time
averages, i.e.,
(pt)=const|k| P77, (4.18)

which is the analog of the scaling law of a Green’s func-
tion in quantum field theory near a critical point.

B(k)=2Z""21a(k)+0(e) .

(4.19)
After n iterations (k=k /2"), we have
6k)=(z~"*Lya(k)+0(e) , 4.20)

where @(k) is independent of n. From this it follows that
the angular velocities of ¢, in (4.16) with respect to the
original time variable ¢ scale in k as

0'(k)~ |k|'T 1 D5(k) . 4.21)

For the action variables we find, after n steps,
A—]El‘—‘(ZZ )"AE—) , 4.22)
w(k) o(k)

with /& being independent of n.

For small k [but
k| >>m*=0(¢)]
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I(k)~|k|77. (4.23)

The important implication of this result is that for
those trajectories for which our iterative renormalization
procedure is applicable the action variables depend only
weakly on k: 3I/0k*=0(€?). In our discussion after
(4.2) we have use of this property for arguing that the
“wrong” contributions to Fig. 6(a) are small at a fixed
point.

Some of the results presented in this section still de-
pend upon the partitions of the range of momenta: p=1
in (3.15)—(3.17). For many purposes it is much more con-
venient to introduce infinitesimal renormalization-group
transformations and to obtain Callan-Symanzik—type
equations. Let us indicate briefly how this is done for our
case and how our results change. We have to take the
infinite volume limit and replace the discrete momentum
variables by continuum momenta. Denote the upper
momentum cutoff by A and proceed to transform away
all modes within the momentum shell A—8A < k| <A.
Intuitively, one expects that every loop integral (e.g., = or
M) is proportional to 8A. In an actual computation,
however, one encounters infrared divergences which re-
quire a careful handling. As an example, consider the
one-loop contribution to the four-point vertices, as de-
scribed in (B26)-(B28) of Appendix B [Figs. 10(a)-10(c)].
To obtain the renormalized coupling constant, we evalu-
ate these diagrams at small but nonvanishing external k’s
and then send these k’s to zero. Contributions with
T, =T, cause no problems and can be evaluated straight-
forwardly. The “wrong” term with 7,=—r,, however,
can lead to infrared divergences [for example, the denom-
inators of (B27) vanish as k; and k,—0]. By taking suit-
able combinations of such graphs, one arrives at an ex-
pression of the type (4.2) which is finite. As 8A—0, a
surface term remains which gets canceled only after a
slight shifting of the integration boundary surface. We
believe that this kind of cancellation occurs in all cases,
but we have no proof for that. The deeper reason for this
kind of difficulty is the sharp division between momenta
which are integrated over and those which are not. This
problem is also present in the renormalization procedure
of quantum field theory (see Ref. 1), but in our “wrong”
contributions which have no quantum analog it appears
to be more acute.

Assuming that these difficulties can be handled suc-
cessfully, we arrive at a well-behaved correction to the
four-point function, —}»ZM(A,I> )8A, where M(A,I . ) is
the derivative with respect to the lower cutoff A—8A of
our integrals. A similar calculation can be done for the
self-energy diagrams. As we have mentioned before, in
the one-loop level the self-energy does not depend upon
k? and, hence, does not lead to a wave-function renormal-
ization. In the two-loop approximation, k? dependence
comes from Fig. 5. Expanding around k?=0, we have

(k) =6m2+(Z '—1)k*+0(k*), (4.24)

mi=Z(m*+6m?) . (4.25)

The B function follows from

Ar=ZA—AM(A,I)SA], (4.26)
_ .0
B= A—GSA Ag . (4.27)
The anomalous dimension [cf. (4.17)] is
d
=— ~—A—(Z—-1). 4.28
Y ABSA InZ A88A(Z ) (4.28)

We have worked out the one-loop contributions and
found that they have the same functional form as those of
the quantum A¢* theory, with the replacement of
#—2I(k).

A few words should be said about the dependence of y
and B upon the action variables. As we have said, B de-
pends upon I(A), so does the fixed-point value A* (zero of
the B function). The speed by which A*A* either ap-
proaches or leaves the fixed-point value A*, therefore, de-
pends upon the value I(A). In ¥, however, the two I fac-
tors inside the integral cancel against the I factors from
replacing A—A*, and ¥ is universal.

V. DISCUSSIONS

The main results of our paper are the fixed-point condi-
tions (4.1) and (4.4) and the scaling law (4.14) for the am-
plitudes ¢,. We interpret them as follows. For values A
and m? sufficiently small (or oder €) there exists a special
set of classical trajectories for which the iteration of our
renormalization-group transformation allows us to carry
out perturbation theory to very high orders. The result
of these calculations is the behavior (4.14) for ¢, in the
region of small k. These are regular periodic solutions
which differ only slightly from those of the unperturbed
Hamiltonian. KAM theory tells us that, when going
from the free Hamiltonian to the full Hamiltonian, many
of the tori are destroyed, but as long as the perturbation
strength is not too large, the majority is preserved (with
slight distortions). The solutions which we have been
considering belong to the preserved ones, but very likely
there are many others to which our method does not ap-
ply.

It is crucial to address the question of how rigorous
our results can be made. The intention of this paper
clearly was to outline the idea of renormalization in a
classical lattice field theory rather than to present a
rigorous proof. As it is well known, KAM theory*> pro-
vides rigorous proofs of the existence of KAM tori for
systems with a finite number N of degrees of freedom and
small perturbation of strength A. Upper bounds A, on A
can be given, such that for A <A, the existence of KAM
tori can be proven. These critical couplings A, however,
go to zero when N — .!'? On the other hand, general
experience based upon computer calculations seems to in-
dicate that, for finite N, the estimates for A. are rather
pessimistic; i.e., at values A for which proofs of existence
cannot be given, KAM tori are still preserved. So it may
be that (under favorable circumstances) KAM tori exist
even in the limit N — o. We do not know whether at-
tempts in this direction have been made at all.

Actually we think that it may very well be that in the
infinite-volume limit the situation is even better than for
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a system with a finite number of degrees of freedom. In
classical field theory, the problem of small denominators
turns into the problem of (mainly infrared) divergences of
momentum integrals. In contrast to quantum field
theory, such divergences may arise even in a massive
theory. Dangerous diagrams are those where we have
combinations of internal lines with both positive and neg-
ative energies (examples are given in the preceding sec-
tions). We named these diagrams the “wrong” graphs,
since they have no counterparts in quantum field theory.
However, our analysis has shown (at least for (H,) and
(H,)) that canonical perturbation theory provides a nat-
ural principal-value prescription. Furthermore, when
suitable combinations of different time orderings are tak-
en, and reasonable assumptions about the smoothness of
the functions I(k) are made, then all divergences are suc-
cessfully avoided. We have checked this only for the first
nontrivial order of perturbation theory, but we see a good
chance that this will persist to higher orders.

In any case, our analysis can be refined in the following
sense. Throughout our paper we have completely ig-
nored the fact that our free Hamiltonian is intrinsically
degenerate, i.e., its frequencies do not depend upon the
action variables and 3°H,/dI ,dI,=0. This has prevent-
ed us from being able to follow the line of arguments usu-
ally used in KAM theory: one divides the set of all fre-
quencies into “good” ones (sufficiently incommensurable)
and “bad” ones (commensurable or weakly incom-
mensurable); then pick a “good” one and adjust, order by
order in A, the action variables accordingly. We believe,
however, that this difficulty of our model can be over-
come by reordering the perturbation expansion. Namely,
we could absorb all vacuum diagrams [e.g., Figs. 1(c) and
4] into the unperturbed Hamiltonian. Then the frequen-
cies acquire a dependence upon the action variables
which is of order A and may be sufficient to avoid the
problem of small denominators. We feel strongly that a
repeat of our analysis which takes into account these
modifications would be very desirable.

Let us next discuss a few implications of our results. A
main point is certainly the correspondence between our
classical lattice model and its quantum analog (or
statistical-mechanics analog). First, it may be worthwhile
to again emphasize the close resemblance between the
classical canonical perturbation expansion and the per-
turbation theory in quantum field theory. In both cases,
terms in the expansion can be pictured as diagrams with
closed momentum loops (Feynman diagrams). Since we
are using the Hamiltonian formulation, the exact com-
parison has to be made with the old-fashioned perturba-
tion theory rather than with the covariant perturbation
theory. Furthermore, the expressions for the classical
mechanics graphs contain action variables I(k) at exactly
those places where in quantum field theory # would ap-
pear (which, however, is usually set=1 and thus not
seen). Secondly, moving somewhat deeper into the dy-
namics, our analysis shows that certain solutions of the
classical system respond to a change of the momentum
cutoff in very much the same way as in the quantum sys-
tem. In particular, the change of the coupling constant A
is governed by a [ function which is (up to the appear-

ance of action variables) identical to that of the quantum
field theory. The main conceptual difference between the
two approaches is that in the classical system we are deal-
ing with individual trajectories. For example, the I(k)
dependence of the 8 function implies that the extent to
which A changes as a function of the momentum cutoff
also depends upon the trajectory. The statistical-
mechanical system, on the other hand, deals with ensem-
ble averages (expectation values) and, hence, contains less
information. The fact that the classical system ‘“knows”
about the fixed points, and that on (or near) such a fixed
point a distinguished set of classical solutions exhibits a
scaling behavior reminiscent of the critical behavior of
the quantum system near a critical point hints at a deeper
connection between the quantum field theory and the
classical field theory than thought previously. Here again
our analysis raises questions which should be studied in
more detail.

A possible application is the use of the semiclassical
approximation for studying the dynamics of quantum
field theories such as the confinement problem of Yang-
Mills theories. It has been suggested!’ that we use this
approximation method for investigating the weak-
coupling limit of lattice gauge theories. For small values
of the lattice coupling g quantities of physical interest
(e.g., the string tension of the mass gap) follow the scaling
behavior predicted by the renormalization-group equa-
tion and the property of asymptotic freedom. Our
findings (when properly generalized and applied to classi-
cal lattice gauge theories) seem to imply that, once the
renormalization-group equation is already at work at the
classical level, there is a good chance to obtain these scal-
ing laws from the semiclassical approximation.
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APPENDIX A: LIE ALGEBRAIC METHOD

For the development of perturbation expansion, it is
more convenient to introduce the Lie algebraic method.
The derivations are nearly identical to those which ap-
pear in quantum perturbation theory. Consider

H(q,p)=H,(q,p)+AH (q,p) . (A1)

We wish to construct a canonical transformation to re-
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move the fast angle variables. Using the Lie algebraic
method, we can introduce a canonical transformation by

q———(expC)(q')Eq"+'{C,Q']‘*‘%{C’{C:‘I'”'F B
(A2)

p=(expC)(p’)Ep'+{C,p']+%{C’{Cx1"”+ B

(A3)
where {, ] stand for Poisson brackets,
04A 0B 0A OB

A,B}= — (A4)
{ } ; dg; Ip; dp; 9q;

and C=C(q',p’) is a function to be determined. Under
the canonical transformation (A2) and (A3), the Hamil-
tonian in the new coordinates becomes

H'=(expC)H(q',p"))
=H(q',p")+{C,H(q',p")] +"2‘IT[C,{C,H(q’,p')} ;

+ o (AS)

A nice property of the Lie algebraic method is that we ar-
rive automatically at an expression of H in terms of the
new variables. Since there are no dangers of mixing the
new and the old variables, we shall omit the ¢’,p’ depen-
dence in (A5) and keep in mind that H and C depend only
on the new variables in (AS5).

For small A, we choose C as

C=AC,+AC, +A3C3+ -+ - .

The new Hamiltonian becomes
H'=Hy+{C,H,) +%{C,{C,HO} I+ - +AH,

+A{C,H}+ -+,
=H,+A{C,,Hy} +H,)+AX{C,,Hy} +H,)

+A({Cy, Ho} +H)+ -+, (A7)
where
H,={C,H}+1{C,{C\,H,}}, (A8)
Hy=3{Cy,{Cy,Ho}} +3{C\{Cy,Ho}}
++{C1, {C1,{C 1, Hol )
+{Cy,H} +3{C,{C},H, }} . (A9)

To remove the fast angle variables in H', we separate
H, i=1,2,3,..., into

(A10)

where ( ) stands for averaging over the fast angle vari-
ables, and H; has zero average value. We shall choose

[Ci,Hy 1+ H,=0 (A11)
giving
H'=Hy(q',p")+A(H ) +AX(Hy)+ -+ . (A12)

The new Hamiltonian H’ depends only on the slow vari-
ables and on the action variables associated with the fast
variables. Note that variables C; are related to S; in Sec.
III by

C,=S,,

C.=5 1 S, 9§,
2772 9 31, 36,

APPENDIX B: SECOND-ORDER PERTURBATION
CALCULATIONS IN THE A¢* FIELD THEORY
AND THE DIAGRAMMATICAL RULES

1. Diagrammatical rules

In this appendix, we work out the second-order pertur-
bation calculations in the A¢* field thoery. The Hamil-
tonian for a discretized version of the A¢* field theory is
given in Sec. III as

H=H,+AH, (B1)
with
H,= Zw(k)a*(k)a(k), (B2)
k
__1 £ 1 .
1= > 11 [a(k,)+a*(—k))], (B3)

LP4 {1 75 vV 20(k;)

where a 8%(3 k) is included in the definition of 3 (4.
Complex variables @ and a* are the classical analog of
the quantum annihilation and creation operators.

To first order, the removal of the fast angle depen-
dences leads to A{H,), where { ) denotes the average
over the fast modes. In computing the average, we only
need to consider terms with an equal number of fast
modes a and a*. The averaging process follows Wick’s
expansion

(a(k))a*(ky))=83(k,~k)I(k,) ,

(a(k))a(ky)a*(ky)a*(k,)) (B4)
=(a(k,)a*(k;)){a(ky)a*(k,))
+{alk))a*(ky))alky)a*(ks)) . (BS)

In (BS), we have ignored a term due to k;=k,=k;=k,.
This term is negligible in the infinite-volume limit.

The average of AH, has already been computed in Sec.
III. It can be summarized as
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A I(k)

1

AMCH,)=AH,(all k’s EA_)+

N I(k,) 1(k,)
2LD k1§\> 2a)(k1) k€A, Za)(kz) )

2

2LP kéa, 20k), 23 20(k)

[a(k)+a*(—k][a(—k,)+a*(k,)]

(B6)

These three terms are represented diagramatically in Figs. 1(a)-1(c). In the infinite-volume limit, we replace the loop

summation L ~ 23, by the loop integral d3k[1/(27)*], giving

1 I(k)

(H)=Hall ks EA)+L[ _ d%k

L? 1 I(k)
+= | [d%k
2 f 27)} 20(k)

The volume factor drops out in the second term which

describes a mass term. The third term is a vacuum dia-

gram and is proportional to volume as expected.
Knowing ( H, ), we obtain H, trivially as

H,=H,—(H,) . (B8)
From H, we can compute S, and H, through
{S,,Hy}+H,=0, (B9)

Hy=1{S,H }+{S,,(H)} . (B10)

We find it more convenient to introduce a new set of vari-
ables b(k, 1),

b(k,1)=a(k), (B11)

b(k,—1)=a*(—k). (B12)
The discrete variable 7 takes on values =1, and describes

the sign of the frequency (phase factor) of b(k,7). In
terms of k and 7, H, has a compact form,

H,=1({S,H})=—1({H,S})

—i

(2m)® 20(k)
1

1

*(— —_ *
2 G ek te(Tklla(—k) et k)
(B7)
[
1 ’ 4 |
o= 2 211 b(k;,7;) . (B13)

L2 50 17 5 V20(k,)

The symbol ¥’ indicates that we have subtracted from
H, terms associated with (H,). The Poisson brackets
between the products of b’s and H, are

i{b(k,7),Hy} =70(k)b(k,T),

I b(k,,7,), Hy ]= S 00k [1 b(k,,7;) -
J i J

(B14)

i

(B15)

Using (B9), (B13), and (B15), we obtain an S, easily as
1 i 4 1

23

S, = —
1 LD4| TR - szw(kI) il;Il \/260(1(,)
J

b(ki,‘ri) .

(B16)

We associate mode b(k,7) with a wave vector (momen-
tum) k and a frequency (energy) To(k).

The second term in (B10) vanishes after averaging over
fast modes. We only need to evaluate the first term
1{S,,H,}, obtaining

1 , ' _
- 2 2 —Zr-w(kj)

2L2P40* 57 17 e 7 j

J

><<[1

1 1
————b(K, 7)), [] —=—==b(k,,7;) )
iV 20(k)) j )oY ]

(B17)

As before, the symbol 3’ indicates that we need to subtract terms associated with (H )
We first look at the Poisson brackets in (B17) before averaging over the fast angle variables,

Mok, ), [Tbk,,r) =3 3 T bki,r) TT bk, 7){b(K;,7)),b(Ky,7,)) -
i J I m i

i(#1) j(#Fm)

(B18)
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Expansion (B18) leads to 16 identical contributions which
cancel the 42 term in 1/(4!)%. There are two nonvanish-
ing types of Poisson brackets: one arises from 7= +1
through {a*(—k’),a(k)}=i8%(k+k’), and another from
7=—1 through {a(k’),a*(—k)}=—i8k+k’). To-
gether with the 1/V2w(k) factors, this leads naturally to
a 7/2w(k) factor associated with the Poisson brackets.

We introduce the following graphical representations.
We assign the direction of time as running from left to
right. We associate H, and S, with two different ver-
tices. We denote @ *(k) as an outgoing line, a(k) as an in-
coming line, and the Poisson brackets by a line with a
cross on it. See Table I for these graphical representa-
tions. The left-hand side of (B18) is a polynomial in b of
degree 6. Each of the b’s is represented by an external
line. Thus, before the average over the fast modes is tak-
en, H, is represented by a double cross as shown in Fig.
2.

Next, we consider the average over the fast modes. We

615

need to evaluate the expectation values of b’s in (B18).
They can be evaluated by Wick’s expansions described in
(B4) and (B5). We refer to the individual {a*a ) factor in
this Wick’s expansion as a contraction due to the averag-
ing process, and denote it graphically by a solid line
without a cross. There are also two kinds of contribu-
tions: {(a*(—k’)a(k))=I(k)8*k+k’) for 7=+1 and
(a(k")a*(—k))=I(—k)8*k+k’) for 7=—1. This con-
tribution is similar to that of the Poisson brackets except
that the amplitude is I(7k). In Fig. 8, we describe the
contraction diagrams both as old-fashioned perturbation
diagrams and as new perturbation diagrams. In our new
perturbation diagram, we have subtracted from the old-
fashioned diagram a wave from t=— o to «. In Fig.
8(b), the absence of a wave between two interactions with
momentum —k and energy w(k) is now interpreted as
the presence of a wave with momentum k and energy
—o(k). Note that the momentum is conserved at each
vertex. In Fig. 8, if we interchange the time ordering, the

TABLE I. Diagrammatic rules for computing A" H, ) in the A¢* field theory.

Process

Graphical Representation

Amplitude

k,7=1 a(k)/y/2w(k)
External Mode @ TT T T T -
(slow mode)
k,7=-1 a*(k)/\/2w(k)
Contraction due to k,r 7/2w(k)
Poisson brackets %
Contraction due to k,7 I(tk)/2w(k)
average over fast modes
Vertex >< /< AG3(Sk)/4!
/N /N
|
: kl 1
Energy denominator | k2, T2 1
|
: - 3 final w(k) — ine. Tw(k)
[
_-I—— k'l’ T’I

nt* order prefactor

(L-2)/n!
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0ld-fashioned diagram New perturbation diagram

k,w(k)

k,wik)
—
k,w(k) ()
//—k.w(k) AT
'ka(k)
(b)

FIG. 8. Graphical representations of contractions in the old-
fashioned perturbation diagrams vs those in the new perturba-
tion diagrams. (a) Diagrams with r=1. (b) Diagrams with
7=—1

two diagrams will interchange (71— —7) if we also change
k to —k. Thus the sum over 7 implies a sum over
different time orderings.

In (H,), each of the slow modes (kE A _) appears ei-
ther as an a(k) or an a*(k). We denote these slow modes
graphically by dashed lines and associate them with am-
plitudes a(k)/V'2w(k) and a*(k)/V 2w(k).

Combining the extra factor i/ from the Poisson brack-
ets, we have an energy denominator 1/[—3,; r,0(k;)]
which depends only on the momenta of the S, vertex. To
express the energy denominator in terms of the final and
the intermediate energies, we put the S, vertex to the
right of the A, vertex. A summation over 7 variables en-
sures us that we have included contributions for both
time orderings. Outgoing particles leaving the S, vertex
have 7= —1 and are counted in the final states. All in-
coming and internal particles entering the S, vertex are
counted as the intermediate states. Other particles not
interacting with the S, vertex do not contribute to the
energy denominator. Then, we can rewrite the energy
denominator as

1
S ok)—F to(k) ’

final inter

(B19)

which has the same form as in the old-fashioned pertur-
bation theory. The summation over the 7’s implies that
the intermediate loop energy is not always positive.
When all 7’s are positive, the energy denominator is the
same as the usual old-fashioned perturbation result.
When all 7’s are negative, it corresponds to the old-
fashioned perturbation result with time reversed. The
amplitude with a mixture of positive and negative 7’s has

(0) (b) (c) (d)

FIG. 9. These four two-loop self-energy diagrams have
different time propagation directions of the external legs.

no simple old-fashioned perturbation interpretation, and
it represents a special feature of our theory.

Finally, we need to mention the counting of the
equivalent diagrams. The number of possible permuta-
tions of the vertices and the contractions cancel part of
the factor 1/(4!)%. The remaining factor is 1/S, where S
is the degree of symmetry of the diagram, as is the usual
perturbation theory.

We summarize these rules in Table I. In computing
H', we need to sum over both the internal and the exter-
nal k and 7 variables. Note that the external legs have a
and a* factors attached. We can read off the n-point am-
plitudes from the coefficients of the approprate a and a*
monomial terms.

2. Self-energy diagrams

In Fig. 9, we denote the external momentum by
k(k€EA_) and the internal momenta by q;, q,, and qj.
The momenta q, and q, are fast momenta (q;,q, EA ),
but q; can be either fast or slow. There are four different
time-ordered diagrams as shown in Figs. 9(a)-9(d).
These bubblelike diagrams have a symmetry factor 1.

2
The amplitudes associated with these diagrams are

q, +
s

- ke -i: \\\\\ k3 _/i‘
(b)
S N — Ky
Ny v/ o 2
ke quzk + ke quz + 277 0‘42
::::: [, -k s
) ke g
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FIG. 10. These nine four-point vertices have different
external-leg propagation directions. Diagrams within each
category [(a)—(c)] have the same amplitude.
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Sw=3 573 2 =8 [k+2q]
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1
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_1 1 D3 o 1
2g(q) 2 212D 23 38 [k Eq] 20(k)
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% 3 T3I(qul)I(T2q2)
l—II 2a)(q,) o(k)—10(q,)—70(q,)—T30(q3)

a(kla(—k) . (B23)
It is important to note that if we change q;, — —q;, 7, — —7;, amplitudes 2., and 244, will have the same form as Z,,,
and 24, Thus we have

E:29(a)+291b)+29(c)+29(d)

1 | m3l(71q,)1(7,q,)
= 53 [k+ ]
22 L 2D % % % ’[ 2955k III Za)(q, —o(k)—71,0(q;)—T0(q,) — T30(q;)

X[a*(k)a*(—k)+2a*(k)a(k)+a(k)a(—k)] . (B24)

In addition, if I(k)=1I(—k), then the amplitude is the same for k and —k. Then, we can replace the 2a *(k)a(k) term
in (B30) by a*(k)a(k)+a*(—k)a(—k), giving

= Lite 33 30 3al gty o

k (q} (7]

731(7,q,)1(7,q;)
20(q;) —w(k)—70(q)—T0(q,)—T30(q3)

X[a(k)+a*(—k)][a(—k)+a*(k)], (B25)

which is proportional to ¢(k)@¢( —k) as in the mass term.

3. Four-point vertices

There are nine different time-ordered four-point functions as shown in Fig. 10. We group them into three different
sets with the same amplitudes within each set. The external momenta k, k,, ks, and k, are all soft (k; EA _), and obey
the constraint 3 k;,=0. The internal momentum q, is fast, and q, may be either fast or slow. The momenta are con-
served at each vertex. There are no symmetry factors associated with the internal loop. However, there are symmetry
factors associated with the extenal legs which will be included in front of the appropriate a and a * factors.

The amplitudes for these diagrams are

1 4 1
- 53[ k] —_—
202D % p> 111 V20(k;)

Xy 283(‘11""12‘1‘1_1‘2)
{a} (7}

I‘10(3)

T1(71q,)

2
X 11 a(k,)a(kz)
1

20(q;) o(k))+o(k,)—T10(q,)—T0(q,) 2
X[+a(kj)a(ky)+a(ksa*(—ky)+Ia*(—kjla*(—k4)], (B26)
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I110(b) LZD 283 [Zk ] I;I \/20)
x>y 261((11""12"1‘1—1‘2)
fa} I}
<11 ! a(k,a*(—k,)
L 20(q,) ok)—ok,) —T0(q)—T0(q,) 2
X[1a(kyla(ky)+a(ky)a*(—ky)+1a*(—kyla*(—k,)], (B27)
4
3
IQIO(C) ZLZD 28 lzk] I;I \/2(0“(
X 3" 3 81(q+q,—k,—k;)
fal {7}
2 Tzl(qul)
X k k
I;I Zw(q,) —W(kl)_w(kz)—’rl(u(ql) Tzw(qz) ( 3) ( 4)
X[%a(k3)a(k4)+a(k3)a*(—k4)+%a*(—k3)a*(—k4)] . (B28)

We encounter here three amplitudes different only in the energy denominators and the a and a * factors.
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