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In this paper I discuss the path integrals on three formulations of hyperbolic geometry, 
where a constant magnetic field B is included. These are: the pseudosphere /i’, the Poincare 
disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in 
terms of the path integral for the modified PBschl-Teller potential. The wave-functions and 
the energy spectrum for the discrete and continuous part of the spectrum are explicitly 
calculated in each case. First the results are compared for the limit B+ 0 with previous 
calculations and second with the path integration on the Poincare upper half-plane U. This 
work is a continuation of the path integral calculations for the free motion on the various 
formulations on the hyperbolic plane and for the case of constant magnetic field on the 
Poincart upper half-plane U. 0 1990 Academic Press. Inc. 

I. INTRODUCTION 

The technique of calculating path integrals explicitly has improved remarkable in 
the last 10 years. Since the invention of the path integral by Feynman [ 151 there 
has only been available the solution of the harmonic oscillator (or to be precise, the 
general quadratic Lagrangian [44]) and its special cases, the free particle, of 
course, included. A formulation in general coordinates, i.e., on curved manifolds, 
was first given by Dewitt [ 111, followed by several discussions refining and 
improving the path integral calculus, e.g., by McLaughlin and Schulman [35], 
Mizrahi [36], Gervais and Jevicki [17], Omote [37], Marinov [34], T. D. Lee 
[ 321 and later on by Grosche and Steiner [24]. 

The formulation of path integrals in polar coordinates by Arthurs [ 11, Peak and 
Inomata [40], Goovaerts [18], Steiner [47], and Grosche and Steiner [24] 
opened new possibilities in discussing path integral problems which can be 
reformulated in terms of the radial harmonic oscillator. Here a new technique 
originally developed by Duru and Kleinert [ 131 in their treatment of the hydrogen 
atom could be applied in its full power. The main idea in these “space-time” trans- 
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formations of path integrals is that a problem which is not tractable in its original 
coordinates can be made tractable in a new coordinate system, where in addition 
a non-linear transformation of the “old” time T into the “new time” s” must be 
performed. In fact, one uses specific symmetry properties of the problem in question 
to perform this combined “space-time” transformation. 

But not all problems possess the symmetry properties of the radial harmonic 
oscillator which in fact are all variations of problems which lead on the operator 
level to confluent hypergeometric functions (with Hermite- and Laguerre- 
polynomials, Bessel- and Whittaker-functions, respectively). Another type of 
solvable problems in quantum mechanics is closely related to the hypergeometric 
function (Legendre-polynomials and -functions, Gegenbauer- and Jacobi- 
polynomials) and can be set in relation with the (modified) PGschl-Teller potential. 
The “hidden” symmetry properties in these potential problems are the SU(2) and 
SU( 1, 1) symmetries, respectively. 

In this paper I want to continue previous work on path integrals on the hyper- 
bolic plane which can be formulated in various coordinates systems. 

(1) To discuss this in some detail let us start with the pseudasphere A* which 
is defined by 

A2 := (bw*,Y3)1 -y:+y:+y:= -1). (1) 

A2 can be visualized as a hyperboloid embedded in R3 [4]. But be careful: A2 has 
negative Gaussian curvature K = - 1, i.e., it is everywhere saddle-shaped. A more 
convenient description for ,4* reads in pseudospherical polar coordinates (z, 4) 
[4,49, 501: 

y, =cosh z, y, = sinh z cos 4, y, = sinh z sin 4 (z 3 094 E LO, 2x1). (2) 

The metric g, associated with the line element ds2 =gObdgodqh reads g,b = 
diag( 1, sinh* 5). 

(2) With the stereographic projection of A2 onto the complex (x,, x,)-plane 
we get the Poincart! disc D: 

z=x,+ix,=re’~=‘~=tanh~(sin(+icosI). 
1 +Yl 

Here the metric reads g,b = [2/( 1 - r’)]’ diag( 1, r*). 

(3) The Poincari: disc D can be mapped onto the Poincark upper half-plane 
U by the Cayley-transformation: 

The metric reads g,, = l/y*. 6,b. 
(4) With the help of the transformation 

q=X+iY= -ln(-ii) (= 2 arctanh z), (5) 
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we can finally map the Poincart upper half-plane (the Poincart disc) onto the 
hyperbolic strip S. Here the metric reads g,, = l/cos2 Y. a,,. 

The hyperbolic distance r = d(p”, p’) [p - any of the coordinates (r, d), (xi, x2), 
(x, y), (X, Y)] in these spaces is given by 

cash r = cash z” cash z’ - sinh Z” sinh r’ cos(#” - 4’) (on A2) 

(on D) 

(6) 
(on u) 

cosh(X” -X) = 
cos y’ cos Y 

-tan Y tan Y (on S). 

Recently these models for a non-Euclidean geometry have become important in the 
theory of strings, in particular in the Polyakov approach for the bosonic string (see, 
e.g., [20,41]), in the theory of quantum chaos and periodic orbit theory see 
[4,28,46,48]), and for non-Euclidean harmonic analysis [49]. In string perturba- 
tion theory one considers open or closed Riemannian surfaces of genus g, where the 
order of the perturbation expansion corresponds to g. For a closed Riemannian 
surface one has, e.g., for g = 1 the torus and for g = 2 the double doughnut. These 
surfaces are conformally equivalent to compact domains (polygons) with 4g edges 
and vertices in these Riemannian spaces (e.g., for g = 2 an octagon in D, say). 
Furthermore, these compact domains are fundamental domains of discrete sub- 
groups of PSL(2, R) [29]. The action of the group elements are for, e.g., z E D, 

az + b 
ZH 

a* + b*z 
(/al’- lb12= 1) 

which are isometries in D. Under the action of the generators of the group the 
polygons tessalate D, say, where PSL(2, R) is in fact the group SU( 1, 1). The 
periodic orbit theory in this case leads to the Selberg trace formula [29,45]. 

However, I do not consider the motion in bounded domains; for an attempt to 
calculate energy levels and wave-fucntions in bounded domains in D see Aurich, 
Sieber, and Steiner [2] and Aurich and Steiner [3]. 

In some recent publications we have studied the path integral formulations on 
the Poincare upper half-plane U [25], the d-dimension1 pseudosphere Ad- ’ [26] 
and on the Poincart disc D and on the hyperbolic strip S [23]. Further contribu- 
tions are due to Biihm and Junker [8], Gutzwiller [28] and Kubo [31]. In these 
papers the free motion has been studied. However, the path integral treatment 
including a (constant) magnetic field is more involved. The path integral treatment 
on U including such a magnetic field was discussed in Ref. [22]. In the present 
paper these discussions are completed for all the various formulations of hyperbolic 
geometry (the hyperbolic plane), i.e., I discuss the path integrals on the Pseudo- 
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sphere /1’, on the Poincare disc D and on the hyperbolic strip S including a 
magnetic field. The purpose is to give further contributions to an alternative 
complete description building up quantum mechanics from the point of view of 
fluctuating paths, i.e., path integrals [ 131. 

A discussion of /1* with a magnetic field is due to Oshima [38]. This author 
expanded, using results of Fay [ 141, the short-time kernel in terms of the eigen- 
functions of the corresponding Schrijdinger operator and exploited in each jth-step 
of the path integration the known completeness and orthogonality relations of the 
eigen-functions. Thus the calculation becomes trivial. But this procedure seems 
somewhat unsatisfactory because this is possible in every path integral problem, if 
one knows the solution from the operator formalism, and does nor solve the 
problem of calculating a path integral explicitly in an operator independent 
manner. 

However, in the present paper the path integrals in these spaces /1*, D, and S are 
calculated starting in their original coordinates. By Fourier expansion (and if 
needed an appropriate coordinate transformation) in each case the path integral of 
a modified Poschl-Teller potential is obtained. Using the results of this path 
integral problem (see below) the original problems can be solved successfully. 

In constructing the path integrals on A*, D, and S with a magnetic field the 
“product-ordering” prescription is used as discussed in Ref. [21]. Let us summarize 
the most important features of this prescription which must be only slightly 
modified in the cases here to include the magnetic terms. We start with the generic 
case, i.e., the classical Lagrangian and Hamiltonian is given by 

We rewrite the metric tensor g,, in the form (which under reasonable assumptions 
is always possible, e.g., positive definite scalar product) 

gab(q) = i L(q) h,,(q) (9) 

(d= dimension of the Riemannian manifold). The quantum Hamiltonian is 
constructed in the usual way by the Laplace-Beltrami operator d,, (e.g., [36], we 
use units fi = 1; in the following sums over repeated indices are understood): 

(10) 

(g = determinant of the metric tensor gab). We introduce momentum operators 

P, = - W, + r,/2), r,=d,ln&. (11) 
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Rewriting the Hamiltonian (10) in terms of the momentum operators pa we choose 
a product ordering prescription, 

with the well-defined quantum correction AF’ given by (h := det(h,) =&): 

4hachbc,ab + 2hnchbc +‘+ 2h”’ hbc,b 
h hb f + hbc,a L 

h > 
_ ho“j+‘C &c&b 1 h2 * 

(13) 

In the formulation of Eq. (12) we have assumed for simplicity that for the vector- 
potential we have A, = A,(qb) (b # a), which means that the &h-component of the 
vector-potentials does not depend on the ath-coordinate. This will be sufficient for 
our purposes. In the general case for arbitrary vector potential A, it is simpler to 
use the midpoint prescription in the path integral and evaluate A(q) at A(q”‘) = 
A[.L(~W + q(j- 1) )] or at A(q”‘) = t[A(q(j- “) + A(q”))] , respectively. See, e.g., 
[36,44]. 

There is an important special case of Eq. (13). Let us assume that g,, is propor- 
tional to the unit tensor, i.e., g,b = A *dab. Then A V simplifies into 

AV=$ [(4-d)A;+2A~A,,]. (14) 

This implies that if d = 2 the quantum potential A V vanishes! 
Using the Trotter formula e-“(A+B) = s - lim,, u3 (e-“A’Ne-itB”“)N and the 

short-time approximation for the matrix element (q” 1 e-i’H 1 q’ ) one obtains in the 
usual manner the Lagrangian path integral in the “product form” definition 
[Aq(A = qU) _ qtj- 1) ,q”‘=q(t”‘), t”‘=t’+j~, j=l,...,N, &=T/N=(t”-t’)/N, 

N + co, j22) =f(q(j- ‘I) f(q”‘), f any function of the coordinates]: 

Wq”, 4’; 0 

(15) 
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The expression in square brackets is nothing but the classical Lagrangian with an 
additional quantum correction potential A V: Y& = &, - A V. Clearly, one has to 
prove that with the short time kernel of this path integral the time-dependent 
Schrodinger equation 

(16) 

can be derived via the time evolution equation 

$(q”; ,,,I = J” &a K(q”, 4’; T) Nq’; t’) 4’. (17) 

This is in fact the case-see [21]. 
For successfully solving the various path integrals in this paper we need the path 

integral solution of the modified Poschl-Teller (mPT) potential pPT. The modified 
Poschl-Teller potential with some numbers r] and v is defined as 

drl-1) v(v-1) 
x---- cash’ r 1 (r > 0). (18) 

This kind of potentials get their name from the original work of Poschl and 
Teller 1421, where the hyperbolics are replaced by the usual trigonometric 
functions, so that the Pbschl-Teller potential has a “hidden” SU(2) symmetry. A 
classical study of this problem is due to Frank and Wolf [16]: The path 
integral problem for the SU(2) manifold was discussed by Duru [ 123 and Bijhm 
and Junker [S], whereas the SU( 1, 1) problem was discussed by Biihm and 
Junker [7, 81. The special case v(v - 1) = 0 can be studied with the help of the path 
integral on the pseudosphere [26]. Some care is needed in the path integral for- 
mulation for the modified Pbschl-Teller potential. Looking carefully at the lattice 
derivation [7, 81 for the path integral we see that we must use a functional measure 
formulation similar to the one used in the lattice formulation for the radial 
harmonic oscillator [24,40,47]. This has the consequence that the following 
interpretation scheme must be used, namely 

KmPT(r”, r’; T) 

= Dr(r)p,,.[sinhr,coshr]exp(Tjt:i2dr) 
s 

= lim N- ot, (&)N’2 zc,’ j: dr(j)j, p,,,[sinh r(l), cash r”‘j 

[ 

im x exp 2E (,(A - #- 1 I)* , 1 (19) 
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where the functional measure ps,” is given by 

pV.,[sinh r, cash r] 

= lim fi pq,,[sinh r(j), cash r(j)] 
N-cc. 

J=1 

(20) 

The first line in Eq. (19) has only the symbolic meaning that formally the potential 
appearing in the Schrodinger equation translates into j Dx exp(i x Action). We 
emphasize that only the functional measure formulation has a well-defined lattice 
formulation. The usual expansion of the modified Bessel function Z,(z) N (27t~)-‘/~ 
exp[z - (v2 - l/4)/22] [z + co, arg(z) # 0] (or Eq. (3.15) in Ref. [30], respectively) 
seems very suggestive but gives in the lattice formulation the wrong boundary 
behaviour of the corresponding short-time kernels and wave-functions because 
the condition arg(z) # 0 is violated. Instead of the correct behaviour we would 
get a highly singular one. But it is not the scope of this paper to discuss these 
features in detail; this will be done elsewhere [27]. Adopting the notation of Frank 
and Wolf the path integral solution reads [define 2s = q(r~ - 1 ), - 2c = v(v - 1) 
and introduce the numbers k,, k2 which are defined in terms of c and s as k, = 

$(1&/m), k2=f(lf,/m)]: 

Here NM denotes the maximal number of states with 0, 1, . . . . n < N, <k, - kz - f. 
The correct signs depend on the boundary conditions for r -+ 0 and r + co, respec- 
tively. In particular one gets for s = 0 an even and an odd wave-function corre- 
sponding to k, = 4, z, respectively. The bound states are explicitly given by 

‘JJI((1*k2)(r) = NLkI, kZ)(sinh r)2k2- l/2 (cosh r)-2kl + 3/2 

xzF,(-k,+k2+~, -kI+k2-K+1;2k2; -sinh2r), Wa) 
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2n!(2k, - 1) Q2k, -n - 1) 1’2 
= r(2k, + n) f(2k, - 2k, - n) 1 

x (sinh r)2kZ-“2 (cash Y) - 2n Zk,+3/2p[2k2-1.2(k,-kkz-n)-1] n 

1 N(h, h) = - (2k,-l)T(k,+k,-k)T(k,+k,+ic-1) I” 
n 

Wk,) 1 T(k,-k,+rc)T(k,-k,-K+l) ’ 

Pb) 

PC) 

(23) 

The continuous states read 

yFlrk2)(y) = N~kl,k2)(cosh r)Zkl- 112 (sinh r)2k2- l/Z 

x ?F,(k, + k, - K, k, + k, + K - 1; 2k,; - sinh2 r), Wa) 

x[T(k,+k,-rc)r(-k,+k,+ti) 

xT(k,+k2+k.-l)I’(-kl+k2-K+l)]1’2, Pb) 

where K = 4( 1 + ip) (k > 0) and E = p2/2m. 
In the formulation of the path integrals on A”, D, and S with a magnetic field 

we start from the formulation given in the coordinates of the Poincare upper half- 
plane U [9, lo]: 

where the vector potential is given by 

(26) 

The specific choice of the vector potential is not unique. By a gauge transformation 
it can be changed leaving the magnetic field unaltered. Introducing an arbitrary 
two-dimensional coordinate system (x,y) the magnetic fields described by the 
two-form B = dA = (a,,A, - a,A,) dx A dy. B is unaltered by the change A -+ A’ = 
A +VF, where F= F(x, y) is some arbitrary function FE C2( { (x, y)}) H R. Making 
the ansatz (with the same restrictions on A as above) 

a=~h”‘(y)(p,+~d,)(p,+~A,)h6’(y)+ V(q)+dV(q) (27) 
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we find AFE-O=eiF(we- . jFCq) Therefore the only change by the gauge transforma- 
tion A + A” is a (coordinate dependent) phase factor e” = e-jF in the wave- 
functions. Let, e.g., A = (A,, A,), F(x, v) = - jJO A,(x, y’) dy’ +f(x) with some 
arbitrary real valued function f depending only on x. Then we have A”, = A,- 
f (L4,) dy’ + f ‘(x), A”,, = 0. w e get the same magnetic field B = d4 = [(d,A,) - 

(&A”,)1 dx A 4 = CGQ,) - @xA,Jl d x A dy but the y-component of the vector 
potential is gauged away which is therefore always possible [lo]. By repeating the 
steps leading to Eq. (15) we thus get the well-known path integral equation [44]: 

ih,,(q)h,,(q)4”4b-~A,4”- v(q)--df’(q) dt > 1 
= eiF(q”) + iF(q’) 

We make use of these properties of the vector potential in the various calculations. 
The remainder of this paper is as follows: 
In Section II the path integral treatment on the pseudosphere A* with a magnetic 

field is discussed. We find a finite discrete and a continuous spectrum, where the 
discrete energy-levels are the same as in the treatment for the Poincart upper half- 
plane U. In the limit B -+ 0 the free motion on A* is, of course, recovered. 

In Section III the path integral treatment on the Poincare disc D with a magnetic 
field is discussed. It turns out the calculation is very similar to the one of the 
pseudosphere A*. 

In Section IV the path integral treatment on the hyperbolic strip S with a 
magnetic field is discussed. Here a coordinate transformation must be performed. 
We also note the correspondence to the path integral for the Kepler problem in a 
space of constant positive curvature. 

Section V summarizes the results. This includes a discussion of the equivalences 
between the various Feynman kernels in the spaces A*, D, S, and U and the expan- 
sions in the various coordinate systems. 

II. THE PSEUDOSPHERE A2 

To formulate the path integral on A* with a magnetic field we start by considering 
the Hamiltonian on the Poincart upper half plane U [9, 10,221: 

Here we have introduced the abbreviation b = eB/c. Without loss of generality let 
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us assume that b > 0. A direct transformation of variables U + ,4’ gives a 
Hamiltonian on A2 which is very complicated and in fact of no use. Let us intro- 
duce complex variables on U as z =x + i-v and define r(i, co) and e(i, co) by 

’ - To tanh r(c7 Co) e-l&;, io) 
i-i0 2 3 (2) 

where r(i, co) is in fact the PSL(2, R)-invariant hyperbolic distance of Eq. (1.6). For 
co = i we have the following relation with the coordinates on A2 : r([, i) = r and 
19({, i)=#+n/2 [cf. Eq. (I.3)]. Let us now construct the PSL(2, R) invariant 
Hamiltonian on U with an arbitrary co E U [ 141: 

=v[-&$+b(&$+&$) 

b2 (Co-ib)(i-0 b2 
(i-~oo)(io-o+2m 

a = ar2i2 i )+coth r(L Co)- 1 a2 
2 0 WL lo) ’ sinh’ r(i, lo) ae2K, Co) 

2 a 
+ 1+ cash r([, Co) 

b2+ibaofi, ro) -b2 > 1 . 

(3) 

(4) 

Choosing to = i we get for Hb(i, co) in the coordinates on U, A*, and D, respec- 
tively 

-b2 NC-1) 
(i+i)(i-[)+b2 1 (on u) (5) 

= -LJkp($ +fg+f$)+(l-r’)(b’+ib$)-b’] 

(OnD). (7) 
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The two Hamiltonians on /i2 and D are appropriate for our purposes. In this 
section we consider only A*. Introducing the momentum operators 

p,=$” 
z a& (8) 

which are hermitian with respect to the scalar product 

sinh r dz Y,(z, 4) Y’:(z, 4) cy'1, ~2E~2(‘42n (9) 

we rewrite the Hamiltonian (6) yielding 

Here the vector-potential A is given by 

A= 
0 

=B(coshz-1) 1 . 
0 

(11) 

The magnetic field is thus calculated to read as dB = (d,A, - arAT) dT A dq3 = 
(m/2) B sinh r dz A dd which has the form constant x volume-form and can therefore 
be interpreted as a constant field on A*. The classical Lagrangian and Hamiltonian 
are given by 

9;: = 5 (f’ + sinh2 rd2) - b(cosh 7 - 1) 4, 

(12) 

Constructing the path integral for ,4* we follow the prescription given in the Intro- 
duction and get 

Icqz", 7', I$", (8'; T) 

= s sinh 7 Dz(t) D#(t) 
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N 

(I ( 

n 
xexp i 1 ,= 1 E (A*r”’ + sinh* r(j)d2q5(j’ 

> 

- b(co~~~’ - 1) A#“’ - 8m siTh2 T(j))]. (13) 

We perform a Fourier expansion according to 

This gives for K$: 

K&z”, r’; T) 

exp( - iT/8m) = 
27c 

liyw (&)” >: j: sinh ,(j)dT”’ 

N 

x n exp j=l lE 

8m sinh’ z(j) 

=&exp[ -g(b’+t)] 

x (sinh z’ sinh ,“)-l’* lim 
&‘-.a (G)N’2 jj,‘f; dr”’ 

ANT-- E 2;?-;;itcj, -; 1 :ro;;;cj,)] 

=&exp[ -$(b’+t)l 

x (sinh T’ sinh t”)- ‘I2 lim 
,%‘+a (&)N’2 ;!,I I,,= dr”’ 

I2 - l/4 
~A2r”‘-E2Msinh*r”“E 

l’-;+4b(b+1) 

2M cash’ r(j) >I ’ (15) 
595/201/Z-4 
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where we have scaled r = 2r and A4 = 4m. Furthermore we have assumed that in the 
limit E -+ 0, i.e., N + co, the integration region [0, 2x1 can be extended to ( - co, co) 
which is standard in path integration technique. From Eqs. (1.19) we read 

l+f 
k,=.Z+b, 2 - k =l+’ 

2 ’ 
NM<b-;, 

and we get with Eqs. (1.22~(1.23) the bound state wave-functions and energy 
spectrum on the pseudosphere A2 with a magnetic field, respectively, 

Yg!,b, 4) = 
n!(2b + I) Q2b -n + I) “* 

47r(n + I)! r(2b - n) 1 
xe~~~(tanhf)i(I-tanh2~)6~‘P’/2i2”~1~(l-2tanh2~), (17) 

En=&[b2+i-(b-n-f)21 (n=O, l,...,SN,<b-i). (18) 

Similarly we get with Eqs. (1.24) for the continuous states the wave-functions and 
energy spectrum, respectively, 

x 2F1 i--ip+b+l,k+ip-b;l+(;tanh2f (19) 

Ep=&(p2+b2+$. (20) 

Here, in the p-integration of Eq. (1.21) a resealing p -+ 2p must performed. The 
spectrum coincides, of course, with the results of Refs. [ 14,221. For B= 0 the 
discrete spectrum vanishes and the continuous spectrum can be written in terms of 
the free motion on the pseudosphere A2 [26], i.e., 

Here use has been made of some well-known properties of the Legendre-functions 
(e.g., CI9, p. 9981, we use P:(z), 5?:(z) for ZE C\[ - 1, l] and P:(x), Q:(X) for 
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x E ( - 1, 1) for the Legendre functions of the first and second kind, respectively). 
Alternatively one can rewrite the potential term in Eq. (14) as 

l2 - l/4 l2 - l/4 I2 - l/4 
2M sinh’ Y - 2M cash* r = 2m sinh’ t 

which is just the correct partial-wave term of the path integral on A2 with 
B = 0 [23,26]. Finally we write down the complete Feynman kernel for the quantum 
motion on A2 with a magnetic field which therefore reads as 

(22) 

with wave-functions and energy spectrum given in Eqs. (17), (18) and (19) (20) 
respectively. 

III. THE POINCAR~ DISC D 

The calculation for the Poincare disc D is very similar to the one in the previous 
section for the pseudosphere ,4’. We introduce the momenta 

1 a 
“$=w 

(1) 

which are hermitian wit respect to the scalar product for functions Yy,, Y2 E L*(D) 

(2) 

Rewriting the Hamiltonian (11.7) in the product ordering prescription yields 

~=~(l-r2)[p:+;(p,+fA1)2](1-r2)~, (3) 

where the vector-potential A reads as 

A=(;,)=&(;). (4) 

The magnetic field is thus calculated to read as dB = (a,A, - a,A,) dr A d+ = 
4Br/( 1 - r*)* dr A d+ which has the form constant x volume-form and can therefore 
be interpreted as a constant field on D. The classical Lagrangian and Hamiltonian 
are given by 
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t2 + r2tj2 r2 . 
GFXr,~,$,*)=2m ~1-r2~2-2~~tk 

JYC~,(r,p.,~,p*)=~[~:+;(p~+~Ai)l]. 

(5) 

Constructing the path integral for D we follow the prescription given in the 
Introduction and get 

KDB(r”, r’, $“, *‘; T) 

(6) 

We perform a Fourier expansion according to 

~Dyf, f, $11, $1; T) = g Kfb(f, ,.‘; T) ,-u(ti”-#‘) 

I= --CD 
(7) 

Kfh(r”, f; T) = & j-I* KDB(f, f, ,)‘I, $‘; T) @(J/“- $‘) d,)“. 

Insertion gives therefore for Kf’ 

Kp(r”, r’; T) 

=&;5 (&)7i11 J; c1 4:l::1212drcj) 

N 2m 
xexp iI 7 

[ ( 

A+“’ 
- 

+ E (1 - r(jJ2 

j=l (1 -r(j-l)2 2 
A 

32mr”” )I 
zrn r(i)2 A2*(j) 

x fi J2Rd+(j)exp [ -z--i 
( 

2br(j- 1 $.(A 

-1 A*“’ 
j=l 0 (1 -rw1)2 2 (l-3, > 1 

= exp( - iT b2/2m) (1 - ri2)( 1 - r”‘) 1’2 lirn 
2X [ 

4r,r,, ]  )j-m (2)“” ;ij; J; $drcji 

A2r”’ p _ f 1 _ r(j)2 

(1-3112 2 
1 

-8m 
,“ii-+cv(1-r(i)2)]}. 

(8) 
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Here we have again assumed that in the limit E + 0, i.e., N + co, the integration 
region [O, 2n] can be extended to (-co, co). We perform the coordinate transfor- 
mation 

l+r 
z(r) = In ~ 

1 -r’ (9) 

z(r) has the property [0, 1) H [0, co). Note that z(r) is essentially the hyperbolic 
distance of an arbitrary point in the disc from the origin [see Eq. (1.6)]. The inverse 
transformation reads r(z) = tanh(z/2) and maps [0, co) ++ [0, 1). For the various 
terms in the path integral (8) we have 

(1) (1-r (iV)2/y(jQ = 4/sinh 2 t(J), 1 - r(j)2 = 2/(cosh z(j) - 1); 

(2) 2dG/( 1 - W ) = &“‘; 

(3) For the term A’@/[( 1 - r’j12 1 )( - r(j- lb2)] we have to perform a Taylor 
expansion up to fourth order in AZ(~) and get 

4(r’~) _ r(i- 1) 1 2 
(1 _ $)2)(1 _ &- 112) 2: ( 

,Ci)-,Ci-1))2+ 
(,(A _ T(i- 1) 4 

12 ) ; (10) 

(4) Inserting Eq. (10) into the exponential in (8) yields, together with the 
identity (we use the symbol L -following Dewitt [ll]-to denote “equivalence 
as far as use in the path integral is concerned”) A4rCi) A 3(i&/m)2, 

[ 

im 4A2).“’ 
exP 5 (1 -r(jP)(l -rCi-lP) 1 [’ k exp !p’L; . 

‘I 
(11) 

Thus we get for the path integral (8): 

KfB(r”, r’; T) 

=-&exp [ -g(b2+t)l[ 

2m sinh2 r(j)- m 1 + cash r(j) 

which is equivalent to the path integral (11.15). We can thus immediately write 
down the bound state wave-functions and energy spectrum on the Poincare disc D 
with a magnetic field, respectively, yielding 

T$(r, b+) = 
n!(2b+I)ZJ2b-n+l) ‘/’ 

4n(n + I)! F(2b - n) 1 eiWrl(l -r2)b-np$.26-2n-1)(1 -2r2), (13) 

E,,=&[b2+i-(b-n-f)‘] (n=O, l,...,<N,<b-i). (14) 
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Similarly we get for the continuous states the wave-functions and energy spectrum, 
respectively, 

Y,q;(r, *)=-g-=pr(y+b+l) (Y-b) 

x eil#rl( 1 _ r2)iP + l/2 ,F, 1 - ip 
2+b+l, 

1 - ip 
--bb; l+E;r’ 

2 
, (15) 

Ep=+-(p2+b2+;). (16) 

For B = 0 the discrete spectrum vanishes and the continuous spectrum can be writ- 
ten in terms of the free motion on the Poincart disc D [22, 261: 

The complete Feynman kernel for the quantum motion on the Poincart disc D with 
a magnetic field thus reads 

KDB(r”, r’, tj”, $‘; T) = y f CiTEn!Q*(r’, I)‘) YEJr”, J/“) 
n=O /=-cc 

+ low dp f e-iTEp!PiT l (r’, $7 YEW’, VI (18) I= --m 
with wave-functions Eqs. (13) and (15), respectively. Clearly, the Feynman kernels 
on A2 and D are equivalent. 

IV. THE HYPERBOLIC STRIP S 

To formulate and calculate the path integral on the hyperbolic strip S with a 
magnetic field the original formulation of the problem on U is most appropriate, 
where we just make a transformation of variables. We get by transforming the 
Lagrangian of Eq. (1.25) onto the coordinates on S: 

mk2+ p2 
yg,=----- 

2 cos2 Y 
bp+b tan Y.2. (1) 

Thus the vector-potential reads as 

(2) 
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For the magnetic field we find dB = (a yAX - 8,A y) dX A dY = B/cos2 Y) dX A dY 
which is once more of the form constant x volume-form and can therefore be 
intepreted as a constant magnetic field on S. We perform a gauge transformation 
of the vector-potential A with the function F(X, Y) = bY which gives effectively the 
new vector-potential A” 

with the same form dB for the magnetic field. In the following we now use A” = A 
and the corresponding classical Lagrangian and Hamiltonian are 

m.JF2+ L’ s&--- 
2 cos2 Y 

b tan Y.2, *:,=~[(px+~Ax)‘+p:]. (4) 

Introducing the momentum operators px and p ,, 

p,=12 
i ax’ P,=i(&+tan Y) (5) 

which are hermitian with respect to the scalar product 

we construct the Hamiltonian in the usual way and find 

b2 
+Gsin’ Y, 

=&co, yC(p,+b tan Y)‘+p$] cos Y. (7) 

Note that due to the product ordering prescription the quantum potential A V 
vanishes on S [cf, Eq. (1.14)]. Constructing the path integral on S we get 
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We perform a Fourier transformation according to 

K&(X”, X’, y”, y’; T) = fm KfE( y”, y’; T) e-ik(-y’ & 
-cc 

which gives for Kp, 

Kp( Y”, Y’; T) 

Xii Jr 

j=l p-m 
dX(j) exp -% A 

[ 

&y AZX"' 

- i(b tasj) - k) AX(j) 
cos2 Y(j) 1 

= exp( - iT(b2/2m)) 
2x 

(cos Y cos yn)l” lim 
N-m (~)N’2;fil’~:~,$ 

i 

N im Azy(i) ’ 
xev C - - 

j=l 2E cos2 Y(j) 
- E cos’ Y(j) [(k’ - b2) - 2bk tan Y(j)] 

= exp( - iT(b2/2m)) 
- 

2x 
(cos Y’ cos Y”p2 kp( Y”, Y’; T). (10) 

To make the last path integral @(T) manageable we introduce the variable 
P= Y + n/2 E [0, rr] and perform the transformation 

z=lntanh f_ =ln itan- -lntan-+i- 
(2’) ( :)- : 1. (11) 

This transformation looks somewhat artificial and in fact the coordinate z is 
complex, but leads nevertheless to the correct result. Let us note that the path 
integral (10) has a close relation to the Kepler problem in a space of constant 

positive curvature [perform the time transformation E + a(j) = E cos’ Y(j)]. This 
path integral problem was discussed by Barut, Inomata, and Junker [S], whereas 
the treatment by the factorization method is due to Schriidinger [43] and Barut 
and Wilson [6]. There also the transformation (11) is needed to make the SU( 1,1) 
symmetry of this Kepler problem explicit. 

For the various terms we now get 
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(1) The potential and measure terms 

~0s~ y(i) = sin2 j?j) = _ ’ 1 1 
sinh’ z(j) =4 cosh*(z”‘/2) - 4 sinh2(z”‘/2) 

-tan y(j) = cot g(i) = i cash z(i) = i co& T + i c&h2 T, 

(jy"' d$%j) 
cos = sin = dz”‘. 

(1.2) 

(13) 

(14) 

(2) In the kinetic term we have to perform a Taylor expansion up to fourth 
order in AZ(~) yielding 

A2 y(j) A 2 8"' A 4zw 
N A2z’/’ + - 

( 
l- 

1 
cos yCi- 1) cos y(i) = 

sin i;“- I) sin j?j) 12 sinh* z(i) ! 
. (15) 

Plugging these expressions into the exponential in the path integral (10) and using 
the identity A4z(‘) A 3(k/m) we get 

exp cos2Y(j)[(k2 - b2) - 2bk tan Y(j)] 

(ik - b)* - l/4 
2J,f sinh2 ,.I j) + iE ‘z”,‘pd,‘~~h~,!!]’ (16) 

where we have scaled A4 = 4m and z = 2r. Using Eqs. (1.19)(1.24) we thus get for 
the path integral g?(T), 

R;rB( Y”, y’; T) 

s K(r”, r’; T) 

+ijt dpexp[ -iT(&+&)] !?‘F13k2)*(rf) FF1.kz)(rrr). (17) 
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We read off 

k,=$(l+b+ik), k2=f(l +ik-b), N,<b-4. (18) 

Together with Eq. (10) and the Fourier expansion (9) we thus get the bound state 
wave-functions and energy spectrum on the hyperbolic strip S with a magnetic field, 
respectively, 

n!(b + ik) T(b + ik - n) 1 
112 

!P”(X, Y)’ 
S( 1 + n + ik - b) r(2b - n) 

2n-b 

xei/cA’(~e-iY)ik-n tcos y)n-b+l p~-b,2b--2n--l)(l +e-2iY) (19) 

E.=$-[b’+i-(b-n-f)21 (n=O, l,...,<N,<b-h). (20) 

Similarly we get for the continuous states the wave-functions and energy spectrum, 
respectively, where we have scaled p --f 2p in the p-integration 

x 2F1 1 @la) 
j’@ = ’ ,/y++ip-b)++ik-ip), (21b) 

p,k rcr(1 +ik-b) 

E,=+-(b2+p2+t). (22) 

The spectrum coincides, of course, with the previous results. Note the symmetry 
p = y/s which has the consequence that we must regard for the range of the 
pa:akmeter*i* the entire R. Therefore the complete Feynman kernel for quantum 
motion on the hyperbolic strip S with a magnetic field reads 

@(X”, X’, I”‘, Y’; T) = F j’” dk e-iTEnY~,$(X’, Y’) Yz:k(X”, Y”) 
n=cl --oo 

+jw dpim dke- iTEvP~$Y’, Y) Y;fk(x”, Y”). (23) 
-cc --co 

To discuss the case B= 0 one is best to go back to Eq. (10) of this section and 
perform the transformation z( Y) = In tanh[ i( Y + 7r/2)] instead of the transforma- 
tion (11) and apply the solution (1.24). With an appropriate linear combination (as 
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discussed in detail in Ref. [22]) the wave-functions and the energy spectrum turn 
out to read 

For the parameters p and k the entire R is allowed. 

In this paper I have completed the path integration on four realizations of hyper- 
bolic geometry with and without magnetic field. The four realizations are 

(1) the pseudosphere A2, 

(2) the Poincare upper half plane U, 

(3) the Poincart disc D 

(4) and the hyperbolic strip S. 

The problem of path integration on U with a magnetic field was presented in 
Ref. [22], whereas the free motion was discussed in Refs. [23,25]. The purpose of 
this paper was to present the path integrals on A2, D, and S, where a magnetic field 
is included. The motivation to do this comes from the approach to build up quan- 
tum mechanics explicitly by means of path integrals. 

Let us discuss as a last point the equivalence between the various Feynman 
kernels on A2, D, U, and S. In Ref. [22] the Feynman kernel on the Poincare 
upper half plane U with a magnetic field was calculated with the result that the 
Green’s function CUB(E) (resolvent kernel) reads as follows: We define GU( E) = 
sq dE epiTEK”( T), where we assume that in order to work with well-defined 
mathematical formulas that E has a smal positive imaginary part ie, and write 
E + i& (with real E) instead of E whenever necessary. Also, square roots will be 
positive. We have two contributions of CUB(E) of the discrete and continuous 
spectrum, respectively (N, < b - 4, p > 0, k E R\ { 0 } ), 
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with E, and Ep as in, e.g., Eqs. (11.18, 11.20), respectively, and the wave-functions 
on U as (n = 0, 1, . . . . N,, P>O, k-\(O)) 

~:~(x~ VI = (2b-2n-l)n! 

d- 4rrkr(2b - n) e 
-ikxe--ky(&,)b-- ,r;2b-2n-l)(2kv) (3) 

!f$(x,y)=/zr(ip-b+k) wb,ip(2jk\y)e-““. (4) 

The Lr) and W,,” denote Laguerre-polynomials and Whittaker-functions, respec- 
tively. The k-integrations can be performed giving (for details see [9]) 

Gj!%“, i’; E) 

=$/- (-1)” r(2b-n) 2b-2n-1 
xn! r(2b-2n)‘(b-n)(l-b+n)-2mE 

x(1-tanh’iy-*,F,(26-n, -n;2b-2n;cosh~(r,2)), (5) 

G?K”, i’; E) 
m l/2 + im (2s - 1) sin 271s 

c-e ~ 2ibb 

8n2i s l/2 - ice sin X(S - b) sin rc(s + b) ‘s( 1 -s) - 2mE 

~(l-tanh2~-1-S’~F1(l-,s+b,l-s-b;l;coth2~), 

where CD = arctan(x’ - x”)/( y’ + y”). Note the identity 

(6) 

(7) 

According to Refs. [9,39], Eqs. (4) and 
kernel on the hyperbolic plane [ 141 (p = 

GUB([“, [‘; E) 

m 
=2?re 

-,,,r($+b-ip)T(f-b-z@) 
r(l-2ip) 

Let us note that with the representation ([33, p. 1611) 

Q;(z) = 2”’ 
r(l+v)T(l+v+P) 

r(2 + 2v) 

x(~+l)~‘~(~-l)-~‘~----~F~ l+v+~,l+v;2+2v;+ , 
> 

(9) z 
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where Qf is a Legendre function of the second kind, we find that for B=O the 
result of [25]-i.e., free quantum motion on U-is reproduced (GE=‘(E) = G”(E)): 

GU(z”, z’; E) 

This representation shows clearly that G(E) has a cut on the positive real axis in 
the complex energy plane with a branch point at E = 1/8m and we recover the 
energy spectrum and the normalized wave functions of the free motion on the Poin- 
care upper half-plane, 

with p > 0 and kE R\ (0). Following the general theory the Feynman kernels on 
A2, D, and S must be equivalent with Eq. (8) up to the factor coming from the 
gauge-transformation of the vector-potential. Using Refs. [14, 381 we get that the 
Green’s function G(E) on A2 for the discrete and continuous contributions, respec- 
tively, read as 

G&r”, t’, qY’, 4’; E) 

(-1)” T(2b-n) =;n~oe-2~L 2b-2n-1 
nn! r(2b-2n).(b-n)(l-b+n)-2mE 

i-c’* (“+i -b 
X -.- 

i-c”* (‘+ i 
> 

G$(z”, t’, qY’, 4’; E) 

m z-e _ 2ibQ 
8n2i I 

112 + ia 
ds 

(2s - 1) sin 27~s 1 
l/2 - im sin rr(s - b) sin 11(s + 6) ‘s( I - s) - 2mE 

( 

i-i’* i”+i -b 
X -.- 

i-j”* c’+i 
> 

x(ltanhz~)l-s ,F, (1 -s + 6, 1 -s - b; 1; coth2(r/2)). 

(12) 

(13) 
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Thus the complete Green’s function on A2 reads as (p = ,/m) 

Gni(Tft 9 r’, f’, 4’; E) 

m -2ibQ i-c’* [“+i 
=iGe -.- ( i - err* [’ + i > 

-bIJf+b-ip)T(i-b-ip) 
r(l-2ip) 

(14) 

The equivalence of the Feynman kernel on the Poincart disc D with 
Eqs. (12)-(14) is, of course, obvious. The equivalence with the Feynman kernel on 
the hyperbolic strip S cannot be achieved by manipulations in the above equations, 
e.g., by just transforming variables. This is similar as for the free motion (without 
magnetic) field on S as discussed in Ref. [23], where also no obvious transforma- 
tion between the various Feynman kernels could be found. But this equivalence 
must, of course, exist. Respecting the gauge-transformation of Section IV, we thus 
can state that the Green’s function on S for the discrete and continuous contribu- 
tion, respectively, must read as 

Gp(X”, X’, Y”, Y’; E) 

=t F eib(y’-y”-2@‘) t-l)” r(2b-n) . 2b-2n- 1 

?I=0 nn! r(2b-2n) (b-n){1 -b+n)-2mE 

x(ltanh’fy-‘,f,(2b-n, -n;2b-2n;cosh~(r,2)), (15) 

GF(X”, x’, Y”, Y’; E) 

m  eib(Y’- Y-228’) 

s 

l/2 + im 

ds 
(2s - 1) sin 2ns 1 

- 8z2i l/2-ice sinn(s-b)sinn(s+b)‘s(l-s)-2mE 

x(l-tanh2~)1~‘2F,(l-sfb,l-s-b;l;coth2~). (16) 

Clearly (p = 2/2mE- b2 - l/4), 

GSB(X”, X’, Y”, Y’; E) 

_ m  eib( r’- Y” - 2125’) Q$+b-ip)r(;-b-ip) 
-27c r(l-2ip) 

x(~-tanhz~)ln-c2f,(~+b-ip,f-b-~;~-2ip:cosh~(~,2)). 

(17) 
These results complete the discussion. 
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