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Abstract. We present a new method to deal with the 
endpoint ambiguities which arise in the calculation 
of Poisson brackets of monodromy matrices in the 
principal chiral model. In contrast to previous pro- 
posals our prescription yields the Yang-Baxter equa- 
tion already at the classical level. 

Despite the recent surge of interest in the theory of 
integrable systems (for reviews, see e.g. [1] and refer- 
ences therein) there remain some "old" problems for 
which a satisfactory solution has not been found so 
far. One of them is the emergence of ambiguities in 
the calculation of Poisson brackets of nonlocal 
charges in nonlinear a models. This difficulty was first 
noticed by Pohlmeyer and Liischer in their study of 
the S0(3)/S0(2) model [2] and later further analyzed 
in [3-5] for the principal chiral model. A central fea- 
ture of these models is the "non-ultralocality" of their 
current algebras, which contain derivatives of f-func- 
tions sufficiently singular to render the evaluation of 
certain integrated quantities ambiguous whenever the 
endpoints of an interval of integration coincide. This 
difficulty is also present in the evaluation of Poisson 
brackets of the monodromy matrix. If one tries to 
define these brackets through a limiting procedure 
the result turns out to depend on the order in which 
the limits are taken [2, 3] and moreover violates the 
Jacobi identity [3]. Attempts to resolve this difficulty 
were made by Faddeev and Reshetikhin [4] who re- 
store the ultralocality of the current algebra by hand 
(arguing that the non-ultralocality is a consequence 
of choosing the "wrong-vacuum" for the classical ap- 
proximation) and by Maillet [5] who defines '~ weak" 
Poisson brackets by a symmetric point-splitting meth- 
od. In this article we propose a new solution to this 

problem which resembles the prescription given in 
[5] in that we also use point-splitting, but differs from 
it in that we employ neither a limiting procedure nor 
symmetrization. The crucial idea is to define a "re- 
tarded" monodromy matrix (see (15) below) which 
is itself discontinous. And whose value at the discon- 
tinuous point is chosen in such a way that the Jacobi 
identity is preserved and the usual Yang-Baxter equa- 
tion is obtained. As a consequence we perceive no 
need for new integrable structures of the type pro- 
posed in [5]. 

As the basic results are well known and are sum- 
marized in several articles, we here recall only the 
basic features of the linear system approach to two- 
dimensional field theories [1]. Given an internal sym- 
metry group G and a Lie-algebra valued conserved 
current A, with vanishing field tensor 

Fol =do Ai - -01Ao- [Ao ,A1]  =0  (1) 

one constructs a linear system 

O~, T= L. T (2) 

with 

L. (x; 2) = ~ - - 1  (2Au (x) - e~,. A v (x)). (3) 

The consistency conditions for (2) are precisely equiv- 
alent to conservation and flatness of the basic currents 
A u. Accordingly, the monodromy matrix T is path- 
independent and the solution of (2) may be written 
as 

y 
T(x, y; 2 ) = P  exp ~ L.(z; 2) dz" (4) 

X 



148 

where the integral may be taken along any path con- 
necting x and y and the symbol P denotes path order- 
ing�9 This immediately leads to the conservation of 
T for a path along the x-axis, i.e. from x = ( - - ~ , t )  
to y = ( + m, t), if the fields vanish at spatial infinity. 

Now suppose that the basic currents A, = t"A~ sat- 
isfy a "non-ultralocal" classical (Poisson bracket) al- 
gebra 

{a~ (x), Abo (y)} = 6 (x -- y) f~b~ A~ (x) (5) 

{A~(x),Aba(y)}=b(x--y)f"b~A](x)--6"bb'(x--y) (6) 

{A~ (x), A~ (y)} = 0 (7) 

where, of course, [t ~ t b] =f"b~tq In (5-7), equal time 
brackets are implicit, and only spatial coordinates are 
(and wilt be) exhibited. The corresponding algebra 
for L u is readily calculated. In particular, ~' 

{L a, (x; 2), L~ (y; 12)) 

-2--122" 3 ( x _ y ) f , b c ( ~ E , ( x ; 2 ) _ 2 z l _ l L C ( x ; 1 2 ) )  

(2+Ix)2Ix 6~ (8) 
(22 _ 1) (122 _ 1) 

At this state the algebra is still a perfectly consistent 
one: in particular, one may check that the Jacobi- 
identity is still satisfied in a distributional sense, that 
is, for any smooth test function h(x, y, z) 

~dxdydzh(x, y, z) 
�9 ({{L~(x;A),L~(y;#)}LC~(z;v)}+cyclic)=O (9) 

provided h(x, x, x) vanishes for x ~ _+ oe or is appro- 
priately periodic if the spatial coordinates are. This 
consistency does not immediately carry over to the 
monodromy matrices which, being path-ordered, con- 
tain 0-functions which are certainly not smooth. As 
is already mentioned the preservation of the Jacobi- 
identity, which ensures the Yang-Baxter structure, be- 
comes delicate in the event that the endpoints of the 
monodromy paths coincide. The resulting ambiguities 
are a direct consequence of the factor 6' ( x - y )  in (6). 
This can be seen as follows. In the computation of 
the Poisson bracket of T(a, b;2) with T(a, c;12), the 
presence of the highly singular 6 ' (x -y)  factor means 
that the region a < x < a + e  in T(a,b;2) and 
a < y < a + e  in T(a,c;#), nominally of measure e2, 

1 
contributes a finite amount to the result as 3'.-~-- 

~ 2  

for ultralocal models there is such contribution no 

because ~., 1) .  So the way the Poisson bracket is 
- /  

interpreted precisely at the endpoint of the mono- 

dromy path may alter the final result. Quite explicitly, 
the ambiguity is of the type 

j d x  d y , ~ ' ( x -  y) 
a 

b 

= ~ dx (3 (x -a ) -b (x -c ) )=O(O)-O(b-c )  (10) 
a 

so the result contains the ambiguous quantity 0(0). 
Provided the endpoints of the monodromy matri- 

ces are kept distinct, ambiguities of the above sort 
do not arise and we expect a consistent algebra�9 Using 
the standard formula for the Poisson bracket of two 
path-ordered quantities [1, 6, 3, 5] 

{ T(a, b; 2), T(c, d; 12)} 
b d 

= I dx I dyT(a, x; 2) | r(c, y; 12). {L, (x; 2), L1 (y; #)} 
a c 

�9 T(x ,  b; 2) | T(y ,  d; 12) (11) 

together with (8) and the defining equation for T one 
finds 

{ T(a, b; 2),p, T(c, d; #)~} 

=r(2, #) ( ~ 2 - ~  O(d- a) O(a-c) (t ~ T(a, b; 2))~ 

�9 (T(c,  a; #) t" T(a, d; #))~ 
1 

#z _ 10(d-b)  O(b-c) (T(a, b; 2) t")~r 

�9 (T(c,  b; Ix) t ~ T(b,  d; Ix)),o 

1 
+ 2yZT_I 0 (b-c)  0 ( c -  a)(r(a, c;2) t ~ r(c, b; 2))~a 

�9 (t a r ( c ,  d; #)),6 

1 
) 2  10(b-d)  O(d-a) (T(a, d; 2) t ~ T(d, b; 2))~ a 

�9 ( r ( c ,  d; Ix) t~),~]. (12) 
/ 

Here the round brackets on the right-hand side 
indicate the objects associated with the matrix indices 
of T(a, b; 2) and T(c, d; #) which we have written out 
explicitly but will suppress in the sequel. Furthermore, 
we have defined 

212 
r(L 12)- (13) 

2--12 

satisfying the Yang-Baxter consistency condition [1, 
7] 

r(2,12)r(12, v)+r(12, v)r(v, 2)+r(v, 2)r(2,12)--O. (14) 
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The appearance of 0-functions on the right-hand side 
of (12) suggests the introduction of a "retarded" 
monodromy matrix 

b 
P exp ! L1 (z; 4) dz 

~(a, b; 4 ) = i f ( 4  ) 1 

if a<b 

if a = b (15) 

if a>b. 

Notice that at the point of discontinuity we only spec- 
ify that Tshould be field independent and proportion- 
al to the unit matrix with a 2-dependent coefficient 
f (2)  which will determined shortly. We emphasize 
that this freedom is precisely associated with the am- 
biguity described above. In terms of the "retarded" 
monodromy matrix the algebra (12) takes the form 

{T(a, b; 4), T(c, d; #)} (1 
=r(4,  #) ~ (t" T(a, b; 4)) T(c, a; #) t" T(a, d; #)) 

b; 2) t") (T(c, b; #) t ~ T(b, d; #)) 1 (T(a, 
#2__ 1 

1 
+ ~ ] - 1  (T( a , 

1 (T(a, 
4 2 - 1  

c; 2) t ~ T(c, b; 2)) (t" T(c, d; #)) 

d;4)t"~F(d,b;4))(TF(c,d;#)t~)) (16) 

if the points a, b, c, d are kept distinct. A lengthy but 
entirely straightforward computation now shows that 
the algebra (12) (or equivalently (16)) satisfies the Ja- 
cobi-identity 

{{r(a, b; 4), r(c, d; #)}, T(e,f; v)} + cyclic = 0 (17) 

provided the points a, b, c, d, e , f  are again all kept 
distinct. In the course of this computation one uses 
only the Yang-Baxter consistency relation (14) and 
complete antisymmetry of the structure constants 
f,bc. It has been argued that the ambiguities inherent 
in the coincident limit destroy the Yang-Baxter struc- 
ture even at the classical level for non-ultralocal sys- 
tems. Indeed, if one naively sets a=e, b=d in (12) 
and puts T(a, a; 4)= 1 the resulting algebra is not of 
Yang-Baxter form and does not even satisfy the Jaco- 
bi identity regardless of the value assigned to 0(0) 
[3]. Since the cancellations involved in establishing 
(17) are purely algebraic, it must therefore be that 
the replacement T(a,a;4)=l is not consistent with 
the basic algebra (16) used to verify the Jacobi identity 
in the non-coincident case. 

The origin of this inconsistency may be isolated 
by examining special cases. Take for instance 
a < c < b < d in (16). The only terms which remain are 

{T(a, b; 2), T(c, d; #)} 

= r(2, # ) ( 2 2 ~ -  (T(a, c; 2)t a T(c, b; 2))(t" T(c, d; #)) 

1 (T(a,b;2)ta)(T(c,b;#)t~T(b,d;#))). (18) #2--1 

If we now put a = b = c < d the left-hand side should 
vanish since T(a, a; 2) is field independent and there- 
fore has vanishing Poisson-bracket with any function 
on phase space. Inserting (15) on the right-hand side 
we see that this leads to the condition 

f(2)  f (#)  
22 - 1 - # 2  _ 1 (19) 

whence 

f(4)  = const. (42 -- 1). (20) 

We therefore conclude that the above consistency re- 
quirement fixes the value of T(a, b; 4) at the point 
b = a up to an arbitrary constant which can be elimi- 
nated by an overall rescaling of the monodromy ma- 
trix and hence be taken equal to one. One can check  
that any other order of the points a, b, c in (18) leads 
to the same result for f(4). 

We can now also take a=c and b=d in (18) and 
use the result (20). This gives 

{T(a, b; 4), T(a, b; #)} 

=r(2,  #) ((t" T(a, b; 2))(t ~ T(a, b; #)) 

- (T(a, b; 2) ta)(T(a, b; #) t")) (21) 

which is just the classical Yang-Baxter equation. This 
is in contrast with the prescription of [5] which does 
not lead to the Yang-Baxter equation. We remind 
the reader that the above equation satisfies the Jacobi 
identity only if r(4, #) is given by (13) [1, 7]. 

We can now summarize our prescription for calcu- 
lating the Poisson bracket (16) for an arbitrary ar- 
rangement of the points a, b, c, d. If all points are dis- 
tinct we use formula (12) or (16) as it stands. If any 
two or three points coincide we again use formula 
(16) as if all points were distinct and put coincident 
values equal only in the final result (this prescription 
is somewhat reminiscent of Dirac's formalism for con- 
strained Hamiltonian systems where the constraints 
are likewise only to be used after the calculation of 
Poisson brackets). The consistency of this procedure 
now requires that the final result should be indepen- 
dent of the order in which coincident points are split, 
and we have verified that it is indeed. In this way, 
inconsistencies and ambiguities are avoided. As a final 
example, we mention the result for two contiguous 
intervals which reads 
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{T(a, b; 2), ~'(b, d; #)} =0. (22) 

This result can be obtained by taking either 
a < b < c < d  or a < c < b < d  in (16) and putting b=e 
afterwards. We note that this result differs from the 
one given in [5] which does not vanish. 

At the quantum level, the monodromy operator 
(15) will require regularization and renormalization. 
Possibly the result (20) will then emerge in a more 
natural way. It is far from obvious, however, whether 
and how the monodromy matrix (15) can be given 
any meaning as a quantum operator, and to our 
knowledge its explicit construction from the local cur- 
rents remains an open problem (in [-3] the quantum 
monodromy matrix is defined by its action on the 
asymptotic states). For the matrix 7"(a, b; 2) we do 
not expect the difficulties to disappear after quantiza- 
tion, at least for finite a, b. This expectation is not 
necessarily in conflict with the statement implicit in 
the existing literatur according to which the quantum 
monodromy operator is somehow better behaved 
than its classical counterpart [-3, 4]. There, the prima- 
ry objects of interest are T ( -  ~ ,  + ~ ; 2) and its ma- 
trix elements between localized (or asymptotic) states. 

On such states the endpoint ambiguities in the com- 
mutator of two such operators should be irrelevant 
if the correlation functions decay sufficiently fast (i.e. 
if there is a mass-gap). Although this can be checked 
in principle for the first quantum nonlocal charges 
[-8] (from which all higher charges and hence T itself 
should be obtainable through iterated commutators), 
it would be nice if one could explicitly verify this ex- 
pectation for the monodromy matrix itself. 
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