FOURTH GENERATION EFFECTS IN B PHYSICS

David LONDON ${ }^{1}$
Deutsches Elektronen Synchrotron - DESY. D-2000 Hamburg 52, FRG

Received 29 August 1989; revised manuscript received 4 November 1989

Abstract

Effects of a fourth generation in $\mathrm{B}_{s}^{0}-\overline{\mathrm{B}_{s}^{0}}$ mixing $\left(x_{s}\right)$ and $C P$ violation in the B system are discussed. Although four-generation models can accomodate practically any value of x_{s}, most of the four-generation parameter space predicts x_{s} to be in the standard model range. At most $\sim 1 \%$ of the parameter space predicts small $\mathrm{B}_{s}^{0}-\mathrm{B}_{5}^{0}$ mixing ($x_{s}<2$). The effects are much more striking in $C P$ violating hadronic decay asymmetries. The $C P$ asymmetry in $B_{d} \rightarrow \Psi \mathrm{~K}_{\mathrm{s}}$ is found to be negative in about half of the fourgeneration parameter spacc. and $\sim 40 \%$ of the space predicts an asymmetry $\left|A\left(B_{s} \rightarrow \Psi \phi\right)\right|>0.2$.

It is well known that the measurement of $\mathrm{B}_{s}^{0}-\mathrm{B}_{\mathrm{s}}^{0}$ mixing will be an important test of the threc-generation standard model (S.M) [1] ${ }^{\# 1}$. In the $\mathrm{SM}, \mathrm{B}_{\mathrm{q}}^{0}-\overline{\mathrm{B}_{4}^{0}}$ mixing is dominated by t -quark exchange [3] (fig. 1), so that $\frac{x_{\mathrm{s}}}{x_{\mathrm{d}}}=\left(\frac{\eta_{\mathrm{B}}, M_{\mathrm{B},} \tau_{\mathrm{B},} f_{\mathrm{B}}^{2} B_{\mathrm{B}_{\mathrm{B}}}}{\eta_{\mathrm{B}_{\mathrm{d}}} M_{\mathrm{Bd}_{\mathrm{d}}} \tau_{\mathrm{Bd}} f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}}\right)\left|\frac{V_{\mathrm{is}}^{*} V_{\mathrm{Bb}}}{V_{\mathrm{dd}}^{*} V_{\mathrm{tb}}}\right|^{2}$.
where the mixing parameter $x_{4}=\Delta M_{\mathrm{B}_{q}} / \Gamma_{\mathrm{B}_{\mathrm{q}}}$. In eq. (1), $\eta_{\mathrm{B}_{\mathrm{q}}}$ are QCD corrections, $f_{\mathrm{B}_{4}}^{2} B_{\mathrm{B}_{\mathrm{q}}}$ represents our lack of
 Maskawa (CKM) matrix elements. Using the Wolfenstein parametrization of the CKM matrix [4].

$$
V=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \rho \lambda^{3} \exp (-\mathrm{i} \delta) \tag{2}\\
-\lambda\left[1+A^{2} \lambda^{4} p \exp (\mathrm{i} \delta)\right] & 1-\frac{1}{2} \lambda^{2}-A^{2} \rho \lambda^{6} \exp (\mathrm{i} \delta) & A \lambda^{2} \\
A \lambda^{3}[1-\rho \exp (\mathrm{i} \delta)] & -\lambda \lambda^{2}\left[1+\lambda^{2} p \exp (\mathrm{i} \delta)\right] & 1
\end{array}\right) .
$$

where $i=0.22,4 \simeq 1.00$, and $\rho \leqslant 0.9$ [5], one would naively expect $x_{\mathrm{s}} \sim x_{\mathrm{d}} / \lambda^{2} \sim 14$. In fact, taking all uncertainties into account, and assuming that $\eta_{\mathrm{B}_{s}}, M_{\mathrm{B}_{s}} \tau_{\mathrm{B}_{s}}, f_{\mathrm{B}_{s}} B_{\mathrm{B}_{s}} \simeq \eta_{\mathrm{B}_{\mathrm{d}}} M_{\mathrm{Bd}_{d}} \tau_{\mathrm{B}_{\mathrm{d}}} / f_{\mathrm{B}_{d}}^{2} B_{\mathrm{B}_{d}}$, the SM prediction for x_{s} becomes
$2 \leqslant x_{s} \leqslant 35$.
(SU (3) $)_{\mathrm{f}}$-breaking effects generally act in favour of increasing. x_{s} - for instance. lattice calculations [6] indicate that $f_{\mathrm{B}}^{2} B_{\mathrm{B}} / f_{\mathrm{BA}_{d}}^{2} B_{\mathrm{Bd}} \sim 1.5$.) Therefore a measurement of $x_{\mathrm{s}}<2$ would be a clear indication of physics beyond the standard model.
1.Address after October 1. 1989: Nuclear Physics Laboratory, Université de Montréal. Montréal, Quebec. Canada H3C 3J7
$\$ 1$ For an overview of mixing in heavy quark systems with three and four generations. see ref. [2].

Fig. 1. Standard model contribution to $\mathbf{B}_{\mathbf{q}}^{0}-\overline{\mathbf{B}_{9}^{0}}$ mixing.

How can one obtain values of $x_{s}<2$ ', Apart from certain extremely fine-tuned left-right symmetric models [7], the only possibility is to add a fourth generation [8]. In this case, the expression for $\mathbf{B}_{9}^{0}-\overline{\mathbf{B}_{4}^{0}}$ mixing is altered. In addition to the SM contribution, one must also consider diagrams in which one or both of the \mathbf{t} quarks in fig. I are replaced by t^{\prime}-quarks. Ignoring again $\mathrm{SU}(3)_{\mathrm{f} 1}$-breaking effects. and assuming all QCD corrections to be equal. one has

where $r_{i}=m_{i}^{2} / M_{w}^{2}$, and
$E\left(y_{i}, y_{j}\right)=y_{i} y_{j}\left[\left(\frac{1}{4}+\frac{3}{2}\left(\frac{1}{\left.1-y_{j}\right)}-\frac{3}{4} \overline{\left(1-y_{i}\right)^{2}}\right) \frac{1}{y_{j}-y_{i}}+\left(y_{i} \rightarrow y_{j}\right)-\frac{3}{4}\left(1-\frac{1}{\left(1-y_{i}\right)\left(1-y_{i}\right)}\right]\right.\right.$.
Here it is possible to obtain small x_{5}. First of all. in the three-generation SM. CKM matrix unitarity constraints gave $I_{i d} \sim \lambda V_{1 s}$, which led automatically to large x_{5}. With four generations. these constraints are relaxed, so that the 1 -quark contribution to $B_{s}^{0}-B_{s}^{\overline{0}}$ mixing need not be sizeable. Secondly, one can have cancellations among the terms in the numerator of eq. (4). It is clear. therefore. that small values of $x_{\text {s }}$ are possible in fourth-generation models.

One might wonder, however, how likely this is. That is, what fraction of the allowed parameter space actually predicts small x,? In a recent paper [9]. it was claimed by Hewett and Rizzo that this fraction is quite large. Lising $x_{\mathrm{s}} / x_{\mathrm{d}}<1$ to be their definition of small x_{5}, they found that. depending on the t - and t^{\prime}-quark masses. between 20% and 45% of the parameter space gave $x_{s}<x_{\mathrm{d}}$! This is an extremely surprising result. First of all, one would expect the cancellations needed in eq. (4) to give $x_{s}<x_{d}$ to be rather delicate, and therefore less probable. Secondly, the experimental limit on the CKM matrix element $\left|V_{\text {os }}^{\prime}\right|$ is rather weak: $\left|V_{\text {cs }}^{\prime}\right|>0.66(90 \% \mathrm{CL})[10]$. It is only unitarity which restricts it to the range $0.9733 \leqslant\left|V_{c s}\right| \leqslant 0.9754$ in three generations $[10]$. With four gencrations, this unitarity constraint no longer applies. In fact. large values of $I_{i s}$ (and $V_{i s}$) are allowed. Therefore, one would guess that four-generation models favour larger values of x_{s} than the S. M, not smaller values. For these reasons it seems worthwhile to repeat this analysis, and it is this work which is the main point of this paper.

I will use the Botella-Chau [11] parametrization of the four-generation CKM matrix shown in table 1. This parametrization is particularly convenient because the allowed ranges of the angles are casily obtainable from experimental information about the $V_{i,}$. That is, $s_{2} \simeq \lambda$ (from $I_{\text {us }}$), $s_{2} \leqslant i^{3}\left(V_{\text {ub }}\right), s_{1} \simeq i^{2}\left(V_{\text {ch }}\right)$, and $s_{\mathrm{n}} \leqslant i^{2}$ (unitarity). Since, in four-generation models, $I_{\text {cs }}^{\prime}$ can be as small as $0.66 . s_{t}$ can be as large as $0.72 . s_{u}$ and the phases $\dot{\varphi}_{t}$ are free. The t and t masses are taken in the ranges
$78 \mathrm{GeV} \leqslant m_{1} \leqslant 200 \mathrm{GcV} . m_{1} \leqslant m_{\mathrm{t}} \leqslant 400 \mathrm{GeV}$.
The lower m_{t} limit comes from the latest CDF measurements [12]: the upper bound comes from considering

Table 1
The four-generation CKM matrix.

$$
\begin{aligned}
& c_{n} c_{s} c_{z} \quad c_{w} s_{s}=c_{w} s_{2} \exp \left(-i 0_{1}\right) \quad s_{w} \exp \left(-i \sigma_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -s_{4} c_{1} s_{n} c_{1} c_{2} \exp \left(i o_{2}\right)+s_{4} s_{1} s_{3} c_{v} \exp \left(i o_{3}\right) \\
& -s_{u} c_{i} s_{w} s_{s} c_{c} \exp \left(i \delta_{2}\right)-s_{k} s_{2} c_{i} s_{1} \exp \left(i \rho_{3}\right) \quad s_{u} c_{k} s_{k} s_{z} \exp \left[i\left(\delta_{2}-o_{1}\right)\right] \quad s_{s_{1}} c_{1} \delta_{m} \\
& +s_{s_{2}} c_{1} s_{s} s_{3} \exp \left[i\left(o_{3}+\phi_{1}\right)\right]+c_{4} s_{3} s_{r} \\
& -\epsilon_{u} c_{i} c_{1} s_{s} \exp \left(i_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -c_{w} s_{r} c_{i} s_{z} \exp \left(\mathrm{i}_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +s_{u} c_{i} c_{i}, s_{i} \exp \left(i o_{1}\right) \quad+s_{w} s_{x}, c_{i} s_{i} \exp \left(i o_{1}\right)
\end{aligned}
$$

radiative corrections to the ρ parameter [13]. The upper bound on m_{t}. comes from perturbative unitarity [14]. Above this valuc perturbation theory breaks down and the simple box diagram approximation is no longer valid. Note that the upper bound of 200 GeV from the ρ parameter applies also to the $t^{\prime}-b^{\prime}$ mass difference. Thus, unless the t^{\prime} and b^{\prime} quarks are fairly degenerate (which seems somewhat unlikely, based on our experience with t and b quarks), the bound of 200 GeV applies to the t as well.

The above angles, phases and masses must also satisfy constraints from $\Delta M_{K}, \epsilon$ and x_{d}. The theoretical expressions are

$\epsilon=\exp (i \pi / 4) \frac{\left(i_{\mathrm{F}}^{2} M_{\mathrm{K}} M_{\mathrm{W}}^{2} f_{\mathrm{K}}^{2}\right.}{12 \sqrt{2 \pi^{2} \Delta M_{\mathrm{K}}}} B_{\mathrm{K}}\left|\sum_{1,1=\mathrm{c}, \mathrm{t}, \mathrm{i}} \eta_{i j}^{\mathrm{K}} E\left(y_{i}, y_{j}\right) \operatorname{Im}\left(V_{d \mathrm{~d}}^{*} V_{\mathrm{ss}}^{\prime} V_{d \mathrm{~d}}^{*} V_{\mathrm{s}}\right)\right|$.

The experimental values are \#2
$\Delta M_{\mathrm{K}}=(3.521 \pm 0.014) \times 10^{-12} \mathrm{McV}, \quad|\epsilon|=(2.28 \pm 0.02) \times 10^{-3}, \quad x_{\mathrm{d}}=0.70 \pm 0.13$.
In the above equations, the η° s are QCD corrections. For the kaon system, they are taken to be ${ }^{* 3} \eta_{c c}^{\mathrm{K}} \simeq 0.7$. $\eta_{t 1}^{\mathrm{K}} \simeq 0.6 . \eta_{\mathrm{ct}}^{\mathrm{K}} \simeq 0.5, \eta_{\mathrm{ct}}^{\mathrm{K}} \simeq 0.5, \eta_{\mathrm{tt}}^{\mathrm{K}} \simeq 0.5, \eta_{t^{\mathrm{t}}}^{\mathrm{K}} \simeq 0.6$. In the B system, $\eta_{11}^{\mathrm{B}} \simeq \eta_{11}^{\mathrm{B}} \simeq \eta_{t_{1}}^{\mathrm{B}}$ is assumed and a value $\eta_{\mathrm{tt}}^{\mathrm{B}} \simeq$ 0.85 [3] is used, although it must be noted that a recent calculation [17] obtains a lower value, $\eta_{11}^{\mathrm{B}} \simeq 0.63$. (The difference is basically due to the scale at which the QCD corrections are evaluated.) In eqs. (7). (8), the bag parameter B_{K} denotes our ignorance of the hadronic matrix element $\left\langle\mathrm{K}^{0}\right|\left[d_{i}^{\prime \mu}\left(1-i^{\prime} s\right) s\right]^{2}\left|\overline{\mathrm{~K}^{\prime \prime}}\right\rangle$. Reasonable ranges for the hadronic uncertainties are
$\frac{1}{3} \leqslant B_{\mathrm{K}} \leqslant 1, \quad(100 \mathrm{MeV})^{2} \leqslant f_{\mathbf{B d}_{d}}^{2} B_{\mathrm{Bd}} \leqslant(200 \mathrm{MeV})^{2}$.
In the case of $\Delta /_{K}$. long-distance effects are important, so that considering only the short-distance contributions (eq. (7)) is not a good approximation. However, it is reasonable to demand that the short-distance contributions do not exceed the experimental value.

In principle, there are other experimental data which could further constrain the four-generation parameter space. For example, the NA31 group has measured $\epsilon^{\prime} / \epsilon$ to be $(33.3 \pm 1.1) \times 10^{-1}$ [18]. Theoretically, however, the hadronic uncertainties are enormous, making it very difficult to relate the experimental value to the CKM matrix elements. In fact, realistically, the only information which is useful is the sign of $\epsilon^{\prime} / \epsilon$. But this only has the effect of cutting the allowed parameter space in half: the fraction of this space which predicts any particular range for $x_{\text {s }}$ is unchanged. Furthermore, preliminary results from Fermilab [19] give $\epsilon^{\prime} / \epsilon=(-0.5 \pm 1.5) \times 10^{-3}$. in mild conflict with the above measurement. For these reasons. $\epsilon^{\prime} / \epsilon$ is not included in the analysis. Other processes. such as $D^{0}-\overline{D^{0}}$ mixing (given a value for the b^{\prime} mass), $K \rightarrow \pi v \bar{v}$, etc., constrain the parameter space very little (if at all), and are likewise not included.

One problem is that the criteria for deciding which points in the parameter space satisfy experimental constraints are somewhat arbitrary. For example, should one require that the central values of $|\epsilon|$ and x_{d} be reproduced exactly, or should one take a 90% CL (or 3σ) region? Similarly, one must deal with the fact that some of the $V_{"}^{\prime \prime}$ have only 90% CL limits, while others have been measured.

One possible prescription is to use only 90% CL limits. The angles and phases $\left(s_{k}, o_{k}, k=x, y, z, u, v, u ; l=1\right.$, 2,3) are required to reproduce the V_{1} within their $90 \% \mathrm{CL}$ ranges. m_{1} and m_{1} are varied randomly within their

[^0]allowed ranges. This set of points ($s_{k}, o_{k}, m_{t}, m_{1}$) is then considered to satisfy experiment if there exist values of B_{K} and $f_{\mathrm{B}_{d}}^{2} B_{\mathrm{Bd}}$ in their allowed ranges such that the calculated value of ΔM_{K} is less than the experimental value. and such that the calculated $|\epsilon|$ and x_{d} fall within their 90% CL ranges. (In this paper, this will be referred to as the "90\% (L prescription".) Using this set of points. the value of the ratio x_{s} / x_{d} is then determined (eq. (4)).

Another possibility is to assign a statistical weight to each set of points [20]. In this case. SU(3$)_{n}$-breaking is ignored, and it is assumed that all values of B_{K} and $f_{\mathrm{B}_{d}} B_{\mathrm{B}_{\mathrm{d}}}$ in the ranges of eq. (11) are equally likely. Each set of points ($s_{k}, \phi_{k}, m_{k}, m_{i}, B_{\mathrm{K}}, f_{\mathrm{B}_{\mathrm{d}}}^{2} B_{\mathrm{B}_{\mathrm{d}}}$) is required to satisfy the constraint from $\Delta .1_{\mathrm{K}} .|\epsilon|$ and x_{d} are calculated and this set of points is then assigned a weight $\exp \left(-\gamma^{2} / 2\right)$, where
$x^{2}=\left(\frac{|\epsilon|_{\text {calc }}-|\epsilon|_{\text {exp }}}{\Delta|\epsilon|}\right)^{2}+\left(\frac{\left(x_{d}\right)_{\text {calc }}-\left(x_{\mathrm{d}}\right)_{\text {exp }}}{\Delta r_{\mathrm{d}}}\right)^{2}$.
(This will be called the " χ^{2} prescription".) The value of x_{5} calculated from this set of parameters is given the same weight: when the entire parameter space is integrated over, this yields a probability distribution for the prediction of x_{s} in the four-generation SM. That is, the probability of finding x_{s} with the value x_{s}^{0} is
$P\left(x_{s}^{0}\right)=\frac{\mathrm{d}=, \exp -\frac{\left.\chi^{2}\left(z_{i}\right) / 2\right] \delta\left(x_{s}\left(z_{1}\right)-x_{s}^{0}\right)}{1 \mathrm{~d} z_{1}} \exp \left[-\chi^{2}\left(z_{1}\right) / 2\right]}{}$.
where the $=$ are the parameters in the space. (The shape of the distribution is, of course. somewhat dependent on the assumption that all values of $m_{1}, m_{1}, B_{\mathrm{K}}$ and $f_{\mathrm{Bd}}^{2} B_{\mathrm{Bd}_{\mathrm{d}}}$ are equally probable within their allowed ranges.) From this. the fraction of the parameter space which has $x_{s}<x_{d}$ (or $x_{s}<2$ or $x_{s} \sim 35$) is easily obtained.

In this paper the results using both prescriptions will be presented. There turns out, however, to be little difference between them. The parameter space is sampled using a Monte Carlo lottery technique. 10^{7} sets of (s_{k}. $0 . m_{1}, m_{\mathrm{t}}$) are generated. consistent with experimental limits on the $\left|l_{\|}\right|$, and tested against ΔM_{K}. $|\epsilon|$ and x_{d}.

Let us first consider the 90% CL prescription. s_{x} is taken to be equal to 0.22 . Values for $\left|I_{\text {cd }}\right|$ and $\left|V_{\text {cb }}\right|$ are generated according to [10]
$\left|r_{\mathrm{cd}}\right|=0.2 I \pm 0.03 . \quad\left|V_{\mathrm{cb}}\right|=0.046 \pm 0.010$.
except that values more than $1.64 \sigma(90 \% \mathrm{CL})$ from the central values are not allowed. $\left|F_{\mathrm{cs}}\right|$ and $\left|F_{\text {ub }}\right|$ are generated in the ranges
$0.66 \leqslant\left|V_{c \mathrm{c}}\right| \leqslant \sqrt{\bar{l}-\left|\bar{V}_{c \mathrm{~d}}\right|^{2}-\left.\overline{\mid}_{\mathrm{cb}}\right|^{2} . \quad 0 \leqslant\left|V_{\mathrm{cb}}\right| \leqslant 0.2\left|V_{\mathrm{cb}}\right| . ~ . ~ . ~}$
From the $r_{1,}$, values for $s_{y .} s_{z} . s_{1}$ and s_{n} are obtained. Random values of s_{l} and the ϕ_{1} are also generated, as are m_{t} and m_{t}. Each set of points is tested to see if it passes the constraints for $\Delta .1_{\mathrm{k}}$. $|\epsilon|$ and x_{d}. This was done for two cases: first. when the upper bound on m_{1}. was the unitarity bound (400 GeV) , and second, using the bound from the ρ parameter (200 GeV). The number of sets which had $x_{s}<x_{\mathrm{d}}$ was counted, as were those with $x_{\mathrm{s}} /$ $x_{\mathrm{d}}<2.2$ (minimum SM value) and $x_{\mathrm{s}} / x_{\mathrm{d}}>71.4$ (maximum SM value).

The results are as follows. For $m_{\mathrm{t}} \leqslant 400 \mathrm{GeV}$, of the 10^{7} initial sets. ~ 12000 satisfied the constraints from $\Delta .11_{\mathrm{k}} \cdot|\epsilon|$ and x_{d}. Of these.
0.09% had $x_{\mathrm{s}}<x_{\mathrm{d}} . \quad 0.7 \%$ had $x_{\mathrm{s}} / x_{\mathrm{d}}<2.2 . \quad 3.3 \%$ had $x_{5} / x_{\mathrm{d}}>71.4$.
In the case of $m_{\mathrm{r}} \leqslant 200 \mathrm{GeV}, \sim 16000$ sets of points passed the $\Delta .1_{\mathrm{k}},|\epsilon|$ and x_{d} tests. Here.
0.03% had $x_{\mathrm{s}}<x_{\mathrm{d}}, \quad 0.2 \%$ had $x_{\mathrm{s}} / x_{\mathrm{d}}<2.2 . \quad 0.3 \%$ had $x_{\mathrm{s}} / x_{\mathrm{d}}>71.4$.
From these numbers, it is obvious that. even with four generations, small values of x_{5} are quite unlikely. I find that $x_{5}<x_{\mathrm{d}}$ less than 0.1% of the time, which clearly contradicts the results of ref. [9$]$. In fact. most of the parameter space predicts $x_{\mathrm{s}} / x_{\mathrm{d}}$ in the SM range. And. consistent with expectations. those sets of points in which larger values of m_{t} are allowed predict $x_{\mathrm{s}} / x_{\mathrm{d}}>71.4$ more often.

Similar results are obtained when the χ^{2} prescription is used. In this case. the parameters are generated as in
the $90 \% \mathrm{CL}$ prescription, except that $\left|V_{c d}^{\prime}\right|$ and $\left|V_{c h}\right|$ are not restricted to be $\leqslant 1.64 \sigma$ from their central values. Since we have no other information, $\left|I_{\text {cs }}\right|$ and $\left|V_{\text {ub }}\right|$ are still taken to be in their 90% CL ranges. Probability distributions are obtained as detailed above for the two cases $m_{1} \leqslant m_{1} \leqslant 400 \mathrm{GeV}$ and $m_{t} \leqslant m_{\mathrm{t}} \leqslant 200 \mathrm{GeV}$. These are shown in fig. 2. The curves are clearly quite similar. For the $m_{1} \leqslant 400 \mathrm{GeV}$ distribution. of the total area under the curve.
0.1% has $x_{s}<x_{d} . \quad 1.2 \%$ has $x_{s}<2, \quad 7.0 \%$ has $x_{s}>35$.
In the second ($m_{t} \leqslant 200 \mathrm{GeV}$) distribution.
0.07% has $x_{s}<x_{d} . \quad 0.6 \%$ has $x_{s}<2 . \quad 1.1 \%$ has $x_{s}>35$.
Again, small values of x_{s} are disfavoured - at most 0.1% of the parameter space predicts $x_{\mathrm{s}}<x_{\mathrm{d}}$. Furthermore. $x_{s}>35$ is more likely than $x_{s}<2$ (particularly for $m_{\mathrm{t}} \leqslant 400 \mathrm{GeV}$), which is precisely what one expects. However, the three-generation prediction (eq. (3)) is largely reproduced even with four generations.

Another area which is of great interest is (P violation in the B system. Because of mixing. an initial B^{0} or $B^{\overline{0}}$ state will evolve in time into a mixture of B° and B°. A nonzero value of the asymmetry
$. \mathrm{A}_{\mathrm{f}}=\frac{\Gamma\left(\mathrm{B}^{0}(t)\right.}{\Gamma\left(\mathrm{B}^{0}(t)\right.} \cdot \frac{\mathrm{f})-I \mathrm{f})+\frac{\left(\mathrm{B}^{0}(t), \overline{\mathrm{f}}\right)}{\left(\mathrm{B}^{0}(t)-\cdot \overline{\mathrm{f}}\right)}}{}$
will indicate (P violation. The most interesting $(P$ asymmetries are those in which the final state f is purely hadronic and a (P eigenstate $(\bar{f}= \pm f)$ [21.22]. In this case, the asymmetries measure the quantity
$\alpha_{\mathrm{f}}=-\operatorname{Im}\left(\rho_{\mathrm{f}} \frac{p}{q}\right)$.
where
$\rho_{\mathrm{f}}=\frac{A\left(\mathrm{~B}^{0} \rightarrow \mathrm{f}\right)}{A\left(\mathrm{~B}^{0},\right.} \cdot \frac{q}{\mathrm{f})} \simeq \sqrt{\frac{\mathrm{M}_{12}^{*}}{\mathrm{M}_{12}}}$.
where M_{12} is the off-diagonal element of the $B_{9}^{0}-B_{9}^{0}$ mixing matrix $\left(1, M_{4}=2\left|, M_{12}\right|\right)$.
In the SM. for each of B_{d} and B_{s}, there are only two distinct classes of asymmetries - those which involve the quark-level decays b, ces. ced (Cabibbo allowed), and those which have $b \rightarrow$ uūs. uūd (Cabibbo suppressed) [22]. Although the (P asymmetries in Cabibbo suppressed B_{d} and B_{s} decays may take any value in the three-

Fig. 2. The probability distribution for the four-generation standard model prediction of x_{5}. The solid (dashed) line is for $m_{1}<400 \mathrm{GeV}(200 \mathrm{GeV})$.

Fig. 3. The probability distribution for the four-generation standard model prediction of the (P asymmetry in the decay $B_{s} . \Psi Q$.
generation $S M$, the asymmetry in (abibbo allowed B_{d} decays (e.g. $\mathrm{B}_{\mathrm{d}}, \Psi \mathrm{K}_{\mathrm{s}}, \mathrm{D}^{+} \mathrm{D}^{-}$) is predicted to be positive. Furthermore, the $C P$ violation in Cabibbo allowed B_{s} decays (e.g. $B_{s} \rightarrow \Psi \circ, \Psi K_{s}$) should be \sim zero!

These simple predictions should be altered in models with four generations [23]. First of all, because of the two extra phases in the CKM matrix, one would guess that all values of the CP asymmetries in Cabibbo allowed B_{d} and B_{s} decays would be possible. Secondly, since the phases of the matrix elements $V_{c d}$ and $V_{c s}$ are, in general neither equal to one another nor zero. the asymmetries $A\left(B_{d}, \Psi K_{S}\right)$ and $A\left(B_{d} \rightarrow D^{+} D^{-}\right)$are not expected to be equal (and similarly for $A\left(B_{s} \rightarrow \Psi \varphi\right)$ and $A\left(B_{s} \rightarrow \Psi K_{S}\right)$). However, it would be interesting to see if these expectations are indeed born out. and how much of the parameter space predicts unequal asymmetries in the above decay modes.

As in the case of x_{s}. the parameter space is sampled using one of the prescriptions described earlicr. The limits on m_{t} are taken to be $m_{t} \leqslant m_{t} \leqslant 400 \mathrm{GeV}$. For Cabibbo allowed B_{d} decays, the $90 \% \mathrm{CL}$ prescription is used. I find that. as expected. all values of the asymmetry in $B_{d} \rightarrow \Psi K_{s}$ are allowed, with about equal probability, so that roughly half of the parameter space predicts $A\left(B_{d} \rightarrow \Psi \mathrm{~K}_{s}\right)<0$. However. a difference in the asymmetries in $B_{d} \rightarrow \Psi K_{s}$ and $B_{d} \rightarrow D^{+} D^{-}$is rather rare. Only about 3.5% of the parameter space fulfills the requirement that

$$
\begin{equation*}
\left|\frac{A\left(\mathrm{~B}_{\mathrm{d}}+\Psi \mathrm{K}_{\mathrm{s}}\right)-1\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-}\right)}{1\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \Psi \mathrm{~K}_{\mathrm{s}}\right)}\right| \geqslant 10 \% \tag{24}
\end{equation*}
$$

Thus, although negative values of $A\left(B_{\mathrm{d}} \rightarrow \Psi \mathrm{K}_{\mathrm{S}}\right)$ are quite likely, the SM expectation $A\left(\mathrm{~B}_{\mathrm{d}}, \Psi \mathrm{K}_{\mathrm{s}}\right) \simeq$ $A\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-}\right)$is reproduced in most of the four-generation parameter space.
For Cabibbo allowed B_{s} decays, it is convenient to use the χ^{2} prescription. A probability distribution of the four-generation prediction for $A\left(B_{s}, \Psi \phi\right)$ is obtained as in eq. (13). This is shown in fig. 3. As expected, all values are allowed, although the distribution is still peaked at $0 .\left|A\left(B_{s} \rightarrow \Psi 0\right)\right|>0.1$ occurs in $\sim 60 \%$ of the parameter space, and $\sim 40 \%$ of the space gives an asymmetry larger than 20%. In other words, a large fraction of the four-generation parameter space predicts the asymmetry in Cabibbo allowed B_{5} decays to be significantly different from 0 . I also find that $\sim 12 \%$ of the allowed points predict $A\left(B_{s} \rightarrow \Psi_{0}\right)$ and $A\left(B_{s} \rightarrow \Psi K_{S}\right)$ to differ by more than 10%. However, this is rather uninteresting, since a nonzero measurement of either of these asymmetries would by itself indicate new physics.

In conclusion. although essentially any value of $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing can be accommodated in models with a fourth generation. small values of x_{s} are unlikely - they occur in a very small region of the allowed four-generation parameter space. At most $\sim 1 \%$ of the parameter space predicts $x_{5}<2$ (the minimum value in the SM). And $x_{\mathrm{s}}<x_{\mathrm{d}}$ in at most 0.1% of the space, in sharp contrast to the claim of Hewett and Rizzo[9]. In fact, four-generation models are more likely to give larger values of x_{s} than the $S M$. in accord with naive expectations. It is more probable that C P violating hadronic decay asymmetries will show effects of a fourth generation. A much larger region of the parameter space predicts non-SM values for these asymmetrics. About half of the space predicts the asymmetry in $B_{d}, \Psi K_{s}$ to be negative. (However, only about 3.5% of the allowed points yield values for the asymmetries $A\left(B_{d} \rightarrow \Psi^{\prime} K_{S}\right)$ and $\left.A\left(B_{d} \rightarrow\right)^{+} D^{-}\right)$which differ from one another by more than 10% (they are equal in the $S M$).) Furthermore, the asymmetry in the Cabibbo allowed B_{s} decay $B_{s} \rightarrow \Psi \Psi_{\phi}$ is found to be larger than 20% in $\sim 40 \%$ of the parameter space (it is $\simeq 0$ in the $S M$). Thus. although a measurement of x_{s} is not likely to reveal the existence of a fourth generation. measurements of (P violation in the B system may well do so.

I wish to thank Paul Langacker for helpful discussions, and for the hospitality of the University of Pennsylvania, where part of this work was done.

References

[1] See. c.g., G. Belanger et al., DESY preprint DESY 88-181 (1988), in: Proc. IPPF Summer Study on High energy physics in the 1990's (Snowmass, CO, 1988), to appear;
P. Krawczyk, D. London and H. Steger, Nucl. Phys. B 321 (1989) 1.
[2] E.A. Paschos and U. Türke, Phys. Rep. 178 (1989) 145.
[3] A.J. Buras. W. Stominski and H. Steger. Nucl. Phys. B 238 (1984) 529: B 245 (1984) 369; J. Hagelin, Nucl. Phys. B 193 (1981) 123.
[4] L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.
[5] For a recent analysis, see C.S. Kim and A.D. Martin, Phys. Lett. B 225 (1989) 186.
[6] C. Bernard et al., Phys. Rev. D 38 (1988) 3540.
[7] D. London and D. Wyler, DESY preprint DESY 89-099 (1989).
[8] I.I. Bigi and A.I. Sanda, Phys. Lett. B 194 (1987) 307; W.S. Hou and A. Soni, Phys. Lett. B 196 (1987) 92; A. Datta, E.A. Paschos and U.' Türke, Phys. Lett. B 196 (1987) 376.
[9] J.L. Hewett and T.G. Rizzo. Mod. Phys. Lett. A 3 (1988) 975.
[10] Particle Data Group, G.P. Yost et al., Review of particle properties, Phys. Lett. B 204 (1988) 1.
[11] F.J. Botella and L.-L. Chau. Phys. Lett. B 168 (1986) 97.
[12] P. Sinervo. talk Lepton-photon Symp. (Stnaford, CA. 1989).
[13] U. Amaldi et al., Phys. Rev. D 36 (1987) 1385.
[14] M.S. Chanowitz. M.A. Furman and I. Hinchliffe, Nucl. Phys. B 153 (1979) 402;
[15] K. Kleinknecht, Proc. XXIV Intern. Conf. on High energy physics, eds. R. Kothaus and J.H. Kühn (Springer, Berlin, 1988) p. 98.
[16] F.J. Gilman and M.B. Wise, Phys. Rev. D 27 (1983) 1128.
[17] W.A. Kaufman, H. Steger and Y.P. Yao. Mod. Phys. Lett. A 3 (1988) 1479.
[18] NंA31 Collab.. H. Burkhardı ct al.. Phys. Lett. B 206 (1988) 169.
[19] B. Winstcin. talk Lepton-photon Symp. (Stanford. CA. 1989).
[20] D. London. DESY preprint DESY 89-048 (1989).
[21] A. Carter and A.I. Sanda. Phys. Rev. Lett. 45 (1980) 952: Phys. Rev. D 23 (1981) 1567:
I.I. Bigi and A.I. Sanda, Nucl. Phys. B 193 (1981) 85: B. 281 (1987) 41:
I. Dunietz and J. Rosner. Phys. Rev. D 34 (1986) 1404:
Y. Azimov, V. Khoze and M. Uraltsev, Yad. Fiz. 45 (1987) 1412,
D. Du, I. Dunietz and D. Wu. Phys. Rev. D 34 (1986) 3414.
[22] P. Krawezyk. D. London, R.D. Peccei and H. Steger, Nucl. Phys. B 307 (1986) 19.
[23] M. Tanimoto. Y. Suetaka and K. Senba. Z. Phys. C 40 (1988) 539; M. Tanimoto. Ehime Úniversity preprint EHU-07-88 (1988): T. Hasuike, T. Hattori, T. Hayashi and S. Wakaizumi, University of Tokushima preprint TOKUSHIMA 89-01 (1989).

[^0]: ${ }^{*}$ 2 For $\Delta M_{k} \cdot|c|$, see ref. [10]; for x_{d}, see ref. [15].
 ${ }^{* 3}$ Standard model QCD corrections in the kaon system have been calculated in ref.[16].

