Computer Physics Communications 69 (1992) 173-181
North-Holland

Computer Physics
Communications

Calculation of long traces of y-matrices in the dimensional

regularization scheme

Dirk Graudenz !

II. Institut fiir Theoretische Physik der Universitdt Hamburg, Luruper Chaussee 149, W-2000 Hamburg 50, Germany

Received 24 May 1991

We describe the program DTRACE that is capable of calculating products of traces of y-matrices in d dimensions,
DTRACE gives the result in a form suitable as input for algebraic manipulation programs.

PROGRAM SUMMARY

Title of program: DTRACE

Catalogue number: ACBX

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this
issue)

Licensing provisions: none

Computer: Micro VAX

Operating system: UNIX

Programming language used: C

Memory required to execute with typical data: 3000 kBytes

No. of bits in a word: 32

Number of lines in distributed program, including test data, etc.:
3000

! Supported by Studienstiftung des deutschen Volkes

Keywords: Dirac algebra, gamma matrices, symbolic calcula-
tion

Nature of physical problem

The calculation of the multi-particle cross-section involves the
calculation of long traces of Dirac matrices. Even symbolic
manipulation programs are not capable of doing this because
of the large number of terms.

Method of solution
The terms of the trace of a y-string are generated recursively.

Restrictions on the complexity of the problem

Applicability depends on the available computing power;
traces of 18 y-matrices can be calculated in a reasonable time.
The length of the output depends on the number of free
vectors,

Typical running time
Depends on the length of the trace, 30 minutes for 16
matrices.

0010-4655 /92 /$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved

174 D. Graudenz / Calculation of long traces of y-matrices

LONG WRITE-UP
1. Introduction

For the calculation of cross-sections of pro-
cesses involving fermions and multi-particle final
states, the calculation of long traces of y-matrices
is necessary. The calculation of five-jet cross-sec-
tions and four-jet one-loop contributions involves
traces of up to 16 y-matrices leading to 2027025
terms that must be summed. On the tree-graph
level, no regularization is needed, and in 4 di-
mensions, there are very efficient algorithms by
Kahane and Chisholm that simplify the calcula-
tions considerably (see a recent review by Velt-
man [1] and references therein). These methods,
however, do not work in d dimensions. Here it
seems to be that using the general relations

{v", v} =2g", (1.1)
gl =d, (1.2)

one has to anticommute the matrices in the trace
and use the cyclic invariance to reduce the prob-
lem to the calculation of shorter traces. These
formulae finally lead to the expression

Tr(d, d; -.. ¢5,)
2n)
‘_‘22 (_1)1(“1"’1)
ji=2

XTr(dy ds ... & ...), (1.3)

where the factor under the ~ has to be omitted.
Algebraic manipulation programs like RE-
DUCE [2] and SMP [3] use eq. (1.3) and do this
task very well up to a certain number of vy-
matrices where the limitation is available memory
and computer time. General traces of 16 and
more y-matrices in arbitrary dimensions d cannot
be calculated by these programs in a reasonable
time. ,
This paper describes the program DTRACE
that can calculate these traces by using a limited
amount of computer memory giving the result in
a form that may be read in by SMP for further
calculations. The principle of DTRACE is the
following. The evaluated trace is a sum of prod-

ucts of a polynomial in the space-time dimension
d=4—2¢ and a product of inner products of
d-vectors. Here the polynomials have integer co-
efficients. These integer coefficients are calcu-
lated by using the algorithm given below.

The outline of the paper is as follows. In
section 2, we describe the general method. Sec-
tion 3 contains a description of the algorithm,
section 4 briefly describes details of DTRACE
and section 5 gives a simple example.

2. Calculation of traces

First we will describe the method if only one
trace has to be calculated. Later we will general-
ize the method to a product of several traces.

Let p,...,p,, be a set of momenta and
Hi,..-, 4, a set of indices that are summed im-
plicitly from 1 to d, the space—time dimension.
Each of these indices has to appear exactly twice,
so that the trace consists of 2n=m + 2k y-
matrices. We assume that m is even, otherwise
the trace vanishes. For an arbitrary index we have
a situation like

Yyoro) (2.1)

The bracket on the top of the trace indicates the
implicit sum and will be called an upper contrac-
tion. During the calculation, the upper contrac-
tions are fixed since the positions of the summed
indices do not change.

A well known formula [4] that can be derived
from (1.3) states that

Tr(d, d; ... d2,)
=4Ze(i, j)(a,-l-ajl "'(afn'ai,.)’ (2.2)

where (i}, j;),...,(,, j,) runs over all 2n)!/2"n!
pairs such that :

Tr(...y“

1=i,<i,<...<i,<2nand i, <j,, (2.3)

and €(i, j) is the signature of this permutation.
If §is y*, then a-b:=a", if d=v", B=1y",
then a -b:=g#”.

D. Graudenz / Calculation of long traces of y-matrices 175

Every permutation will be symbolized by a
complete lower contraction (i, j):

Trhy, .. by, by). (2.4)

iz..

It is easy to see that the sum over all permuta-
tions satisfying (2.3) is equivalent to a sum over
all complete lower contractions. Of course, the
sign of each permutation has to be determined
separately.

Now, a typical term in the sum of
(2n)! /2"n! = 105 contributions is

Tr(ﬂl'}"i,ﬂz Y d3 d4 'Yp,')’.,)y (2'5)

which is equal to
—(P1"P3) P4 D4, 8]

= —(p, P3)(py py)d Tr(1), (2.6)

where Tr (1) =4.

The inner product p,-p; is the result of one
lower contraction. The product p,-p, comes in
because of the lower contraction (y*, p,), the
upper contraction (y*, y,) and the lower contrac-
tion (p,, 7v,). The factor d is the result of g,
which comes from the lower contraction (y”, v,)
and the upper contraction (y”, v,).

Of course, this is not the only contribution
proportional to (p, - p;) (p, - p,). If all these terms
are summed, we obtain (16 — 16€2) (p, *p;) (p,-
py).

These relations hold in general: We may start
with an external d-vector g, in the trace. Then
we have to follow a continuous line of lower and
upper contractions until we reach another exter-
nal d-vector p;. Clearly this will contribute a
factor of p,-p;. The other possibility is a closed
loop of upper and lower contractions. Here, no
d-vector may occur. Finally, these closed loops
reduce to factors g, each giving a factor of d. In
addition we have to determine a sign.

In the example above, the sign is (—1), be-
cause the permutation

(12345678)
1 5 2 3 4 8 6 7

is odd.

(2.7)

3. The algorithm

Now the algorithm for the calculation of the
traces may be formulated. ’

Given a distinct complete lower contraction,
determine continuous lines connecting two exter-
nal d-vectors p;, p; giving a factor p;-p;. Deter-
mine the number ¢ of closed loops of upper and
lower contractions, resulting in a factor d°. De-
termine the sign of the permutation. Now sum
over all possible complete lower contractions of
the trace.

- The generalization to a product of several
traces is straightforward. If there are summed
indices p in two different traces, there is an
upper contraction between them. Again, accord-
ing to the rule (2.3) we have to sum over all
possible complete lower contractions, but we have
to restrict ourselves to the case that the lower
contractions do not connect different traces. The
rules for the various factors are the same-as
above.

If the lower contractions are generated recur-
sively, then there is a very simple rule to deter-
mine the sign of the permutation. We will de-
scribe the case of one trace, the case of a product
of traces is then a straightforward generalization.

Obviously, all we need is a recursive algorithm
generating all (i, j) that satisfy (2.3).

We define L,:=(1, 2,...,2n}.

In the kth step we assume that (i}, j;),...,(i,_},
Jx_1) is already constructed.

Define Ly ==Lo\{i}, jis- vy ig_1s Jeoihs
ik = min Lk’ L,k = Lk\{lk}

Now let A, be the unique strongly isotonic map
he:{1,2,...,2(n—k)+ 1) > L.

There are 2(n — k) + 1 elements left in L), corre-
sponding to 2(n — k) + 1 different choices for j,
=h(a,), 1 <a,<2(n—k)+ 1. We fix an «a,.

If £ # n, we continue with step k£ + 1.

This generates all complete lower contractions.
The sign of the permutation is simply

(i, j) = g(—l)“k+1. (3.1)

176 D. Graudenz / Calculation of long traces of y-matrices

4. DTRACE

The program DTRACE is written in C [5]. It
consists of three parts:

(1) a parser [6] that reads a program in the file
PROG formulated in a context-free language
(7],

(2) a part that calculates the traces according to
the instructions from a parameter file PAR
using the algorithm described in section 3,

(3) a “pretty printer” that prints the result to an
output file RES in a form suitable as input
for SMP (in principle, it is possible to modify
the pretty printer such that REDUCE input
is generated).

DTRACE creates some more files, one con-
tains information concerning the parsing process
(e.g. a symbol table) and the internal form of the
traces that were calculated, a temporary file used
for storing some intermediate results and a file
for error messages. All file names are declared at
the beginning of PAR.

In PROG, vectors, indices, fermion lines and
Lorentz scalars have to be declared. Then there
follows a list of factors (called TERMs) that
represent products of +y-matrices in different
fermion lines, scalars, inner products, compo-
nents of vectors, and so on.

The parameter file is simply a list of expres-
sions (¢,,...,t,), where ¢, are TERMs defined in
PROG. DTRACE then calculates the relevant
traces of ¢, 1, ... ¢,.

In the Test Run section we give an SMP
program SUMO1 that sums all contributions lead-
ing to a result in the file SMPRES.

5. A simple example

We will calculate the trace for the cut vacuum
diagram with massless fermions, given in fig. 1.
Using the Feynman rules, we obtain

Tr(#iy, (B —)y~ (F+ E))y'Har*)
= TY(Y'%(— B, By — By’

+y, kv, Y + vvkn’””)lfz)-

Fig. 1. A cut vacuum diagram.

We split this sum into four terms. Each of
them is calculated separately. The PROG-file for
this example is given in the Test Run section as
PROGO01. Comments are enclosed in [I’s.

The parameter file for the calculation is
PARO1. The LOOP(1, 1, 1, 4) statement counts
the symbolic variables $1 and $2 from 1 to 1 and
1 to 4, respectively, and replaces $1 and $2 by
numerical values in the following term. Text that
appears in between double quotes is copied to
the output file. An exclamation mark in the file
creates a new line in the output file.

The program SUMO1 sums the terms from the
output file RES. The final result is in the file
SMPRES.

In a similar manner, arbitrary products of
traces may be calculated. On a uVAX, the 15!! =
2027025 terms of a trace with 16 y-matrices are
calculated in 27 minutes. Traces of 18 y-matrices
need approximately 9 hours CPU-time. Another
limit is the number f of free d-vectors in the
trace. There will be (f — 1)!! terms in the output
file, and f=10 seems to be a reasonable limit
(9!! = 945).

6. Summary and conclusions

In this paper we have described DTRACE. By
using this tool, very long traces of y-matrices in
the dimensional regularization scheme may be
calculated. The algorithm is a straightforward
implementation of the well known formula (2.2).

D. Graudenz / Calculation of long traces of y-matrices 177

Acknowledgements

I would like to thank Prof. G. Kramer who
brought this problem to my attention and M.
Ernst from RO1 /DESY for solving problems con-
cerning the uVAX.

References

[1] M. Veltman, Gammatrica, UM-TH-88-17, and references
therein

[2] A.C. Hearn, REDUCE User’s Manual, Version 3.2., Rand
Publication CP78 (Rev. 4/85).

[3] S. Wolfram, SMP User’s Manual.

[4] C. Itzykson and J.-B. Zuber, Quantum Field Theory, (Mc-
Graw-Hill, Singapore, 1985), Appendix A-2.

[5] B.W. Kernighan and D.M. Ritchie, The C Programming
Language (Prentice-Hall, Englewood Cliffs, NJ, 1978).

[6]) N. Wirth, Compilerbau (Teubner, Stuttgart, 1981).
A.V. Aho, R. Sethi and J.D. Ullman, COMPILERS: Prin-
ciples, Techniques and Tools (Bell Telephone Laborato-
ries, 1986).

{7] J.E. Hopcroft and J.D. Ullman, Introduction to automata
theory, languages and computation (Addison-Wesley,
Reading, MA, 1979).

178 D. Graudenz / Calculation of long traces of y-matrices

TEST RUN

PROGO1

BEGIN

[Declarations]
SCALAR minusi;
VECTIOR p1, p2;
VECTOR k;

IRDEX my, ny;
FLINE 11;

[-------=~mmmmem o -—-= e) 1
[Propagators]

TERM PR_1 {
GSTRING(11, p1);
Y

TERM PR_2 {
GSTRING(11, p2);

TERM tleft {
GSTRING(11, my);
};

TERM tright1 {

FACTOR minus1;

GSTRING(11, ny, pl, my, p2, ny);
};

TERM tright2 {

FACTOR minus1;:

GSTRING(11, ny, pl, my, k, ny);
1

TERM tright3 {
GSTRING(11, ny, k, my, p2, ny);
};

TERM trightd {
GSTRING(11, ny, k, my, k, ny);

[mm oo -

D. Graudenz / Calculation of long traces of y-matrices

PARO1

[Parameter file for Example 1]

[Pilenames of external files]
"progol"

"res01"

"pinfo01"

"fitemp0O1"

BEGIN

[determines which information is printed to the file pinfo01]

I R A AR]

[-mmmmm s mmmm s ---- s]

"/#==> Example 1... <==#/"!

[Sum over the four contributions, the $2 is replaced by the numbers 1..4,
respectively]

"procto”!

LooP(1, 1, 1, 4)

(tleft, PR_1, tright$2, PR_2)
“procli"!

[-mmmmm oo ---- -

pProc00;

factl:minust;

fuctﬁ:ltFF;

fact3[1]: \
1*h[(p1.p1)1«h[(p2.p2)];

fact4[1]: \
£1[(-8)+6+DD+(-1)+DD"2];

fact3[2]: \
1sh{(p1.p2)1*h[(p1.p2)]1;

fact4([2]: \
£1[16+(-10)«DD+1+DD"2];

fact3{3]: \
1sh((p1.p2))*h{(p1.p2)];

fact4[3]: \
£1[(-8)+6=DD+(-1)+DD"2];

nos:3;
dol1l:1;

179

180 D. Graudenz / Calculation of long traces of vy-matrices

SUMo01

Pproc00;

factl:minusi;

fact2:1sFF;

fact3[1]: \
1sh[(p1.p1))*h{(x.p2)];

fact4[1]: \
£1[(-8)+6#DD+(-1)«DD"2];

fact3{2]: \
1eh[(p1.X)J*h{(p1.p2)]};

fact4([2]: \
£1[16+(-10)«DD+1+DD"2];

fact3[3]): \
1*h[(p1.p2))*ni(p1.X)3;

fact4[3]: \
£1[(-8)+6#DD+(-1)+DD"2];

nos:3;

doli:1;

dol2:2;

procOl;

fact2:1FF;

fact3[1]: \
1*n[(p1.X)]1«hi(p2.p2)];

factaf1]: \
£1[(-8)+6+DD+(-1)+DD"2];

fact3[2]: \
1sh{(p1.p2)1shl(k.p2)];

facta[2]: \
£1{16+(-10)=DD+1+DD"2);

fact3[3]: \
1#h[(p1.p2)1*h[(k.p2)};

fact4[3]: \
£1[(~8)+6#DD+(-1)*DD"2];

nos:3;

doli:1;

dol2:3;

factl:1;

fact2:1«FF;

fact3[1]: \
1«h[(p1.x)]*h[(x.p2)]);

fact4a[1]: \
£1[(-8)+6¢DD+(-1)»DD"2] ;

factd[2]: \
1eh[(p1.x)Jeh[(Xx.p2)];

fact4[2]: \
£1[16+(~10)*DD+14DD"2];

fact3[3]: \
1sh[(p1.p2)1*h[(k.X)];

fact4[3]: \
£1[(-8)+6+DD+(-1)*DD"2];

nos:3;

doll:1;

dol2:4;

procidl;

L e it Dt Dl Dl el «/
procii A\

/#--> End of File <—-#/ \

D. Graudenz / Calculation of long traces of vy-matrices

/* Sum up all contributions s/

DD:4-2eeps; /+* dimension of space-time ¢/
FF:4; /¢ trace of 1 ./
minusi:-1;

h(#$x]:8x;
£1[$x]) :¢x;

/» massless particles =/
pl1.p1:0;
P2.p2:0;

/% relativistic invariants */
pl.p2:812/2;
P2.p1:812/2;

Run["rm smpres"];

procil: :Procf Lpr["(proc10)"]; A
sum:0; \

);

procil: :Proc[Lpr["(proci11)"}; \
Put [sum," smpres”]; \
1;

Pproc00: :Proc[Lpr["(procoo)"]; \
1;

procO1: :Proc[Lpr["(procot)"]; \
Put [nos];
For{ ic:1, ic<=mos, Inc[ic],
Put [ic];
a:Ex[factisfact2+fact3[ic)efactda[ic]];
sum:sum+ta;

1

-~

Pl

1;

Lpr["Start reading.."];
<"resO1";

SMPRES

sum : -8(eps*s12°2) + -16(s12¢k.p2) + 16(s12+p1.k) + -32(k.p2+p1.k)\
+ B(eps*s12ek.k) + 16(epses12+k.p2) + ~16(eps*s12+p1.k)\
+ 32(eps*k.p2+p1.k) + -8(eps~2#s12sk k) + 8(s12°2)

