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We study a theory of chiral fermions coupled to quantum gravity in two dimensions. It is
shown that the theory can be made unitary and contains two massless excitations which
correspond to the Weyl and the Lorentz degrees of freedom. We compare this model with the
chiral Schwinger model and reveal some remarkable similarities between them, although the
respective mechanisms which render both theories consistent are slightly different.

1. Introduction

Recently, two-dimensional quantum gravity, which has been advocated by
Polyakov [1] in his approach to noncritical strings, attracted much attention. One of
the remarkable features of his quantum gravity resides in the fact that the theory is
nontrivial only at the quantum level, and not at the classical level. This is because in
two dimensions the usual Einstein action is a topological invariant and thus admits
no dynamical excitations at the classical level. However at the quantum level, there
exist Weyl anomalies which permit us to have a nontrivial gravity, the quantum
gravity. This two-dimensional quantum gravity was reformulated later by Polyakov
et al. [2] in the light-cone gauge and was shown to be governed by SL(2,R) current
algebra, which allows us to derive the correlation functions explicitly. This result
was subsequently confirmed by David [3] and by Distler and Kawai [4] in the
conformal gauge (see also ref. [5]).

Besides the above algebraic aspect, the two-dimensional quantum gravity deserves
interest as a typical example of an anomalous gauge theory. From this viewpoint,
the theory was studied by Fujikawa et al. [6], who argued that conformal anomalies
vanish for any d < 26 if one treats the Weyl degrees of freedom dynamically. It is
thus natural to ask whether the two-dimensional gravity is still consistent when
chiral fermions couple to it, which may give rise to gravitational anomalies in
addition to Weyl anomalies. The main purpose of the present paper is to answer this
question. A chiral gravity theory has already been discussed by Li [7] and by
Fukuyama and Kamimura [8], but they employed a gravity action different from the
one Polyakov advocated. Here we adopt Polyakov’s quantum gravity to be coupled
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to chiral fermions, and shall refer to our theory as “chiral quantum gravity” (CQG).
We will confine ourselves to the condition of unitarity of the theory, as was
originally done by Jackiw and Rajaraman [9] for the chiral Schwinger model (CSM)
where the consistency of the anomalous model was suggested. It is then shown that
the CQG can be made unitary if the number of fermions of each chirality is less
than or equal to 24, and contains two massless excitations.

In sect. 2, the CQG is defined and a simple way to derive the effective action is
described. In sect. 3 we discuss anomalies contained in our theory and clarify a
subtle point associated with the Weyl anomaly in the localized action which is
employed in refs. [7,8]. In sect. 4 the condition which ensures the unitarity of the
CQG is studied. In sect. 5 we compare the CQG with the CSM and uncover
remarkable similarities and decisive differences between these two models. Sect. 6 is
devoted to our conclusion and outlook. In the appendix, we provide a discussion of
a formal derivation of the Liouville action in the path-integral formalism, which is
available for theories which contain Lorentz anomalies.

2. Effective action of chiral quantum gravity

We start by defining the theory of chiral fermions coupled to gravity in two
dimensions. The classical action is given by*

[=1,+I,
= Gfdx,/ g(R+24),

Iy = fdx\/——géez(iv“ixp), (2.1)

where ¢ denotes a set of ny right-handed and n; left-handed chiral fermions.
Besides having the general coordinate symmetry, the action [/ is invariant under
local Lorentz transformations

8{‘_# =~ aZe: ’ Sy = —la,0%, SL‘—[; = %JU Pt (2.2)

as well as under local Weyl transformations

Sweﬁl: %pe:, Sy = —1oy, GWJZ — 0¥, (2.3)
if the cosmological constant A vanishes. After integrating the fermionic degrees of

* Notation: Y() =q, _Yl - iGz, ,YS — 770.},1 =0, (()l =1, c,uh — %[Ya’,yh] - 'euh_YS 'YS\PR‘L = i‘PRAL’
xt=(x" 1 xNy/V2.
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freedom, we get the effective action I

gilert = f dy dy e’ (2.4)

By adopting a regularization which preserves the general coordinate symmetry, it
has been obtained exactly [10]:

1 1
R R

+uy—g +say— gg“”w#wy} . (2.5)

where a« = ny +n;, f=ng—ny, and two arbitrary parameters p and a represent

- . - . . _ b _ b v
regularization ambiguities. Here we define w, =¢%w, ,, =€¢"e; Ve, where o, ,,
is the spin connection.

It is not difficult to see that the effective action should have the form (2.5). For
this, we first consider the action of a single right-handed fermion

! — .
In=[dxy=g Set{¥rr due)- (2.6)
If we choose the conformal gauge

coshiF  —sinhjF

- e‘P , e? = e‘f’/2 , 2.7
Bur v * —sinh {F  cosh iF 27)
the action (2.6) becomes
i —_ Rd
1R=fdx56(¢7p)/2(¢RY+a~‘{’R)' (2.8)

(Note that ¢ and F represent the Weyl and the Lorentz degrees of freedom,
respectively.) Then the theory appears to be free, Iy = [dx 4i dy% with Yj =
el®~F)/4y . This triviality is however an illusion because of the Weyl and the
Lorentz anomalies, and from eq. (2.8) the effective action I}, may be evaluated as a
functional of ¢ — F, up to possible counterterms.
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Another property to be realized by I5 is that it should produce the correct

Lorentz anomaly, known from the index theorem [11], as

SIE, 1 R
[ — —_— + P
5F 1927V &

1

= - O¢+ --- 2.
1927 ¢ ’ (2.9)

where the dots indicate terms allowed by the counterterms. Upon integrating (2.9),
we obtain

1
zg}f=4—8;fdx§(¢-F)m(¢—F)+c.t. (2.10)

Analogously, since the action of the left-handed fermion depends on the zweibein
only through the combination ¢ + F, we get

1
I§f=E;fdx§(¢+F)D(¢+F)+c.t. (2.11)

In egs. (2.10) and (2.11), we may admit general coordinate invariant counterterms,
a’fdx‘/—gg”"wﬂwv=a’/dx(¢D¢—FDF), (2.12)

ufdx/;:u/dxed’, (2.13)

’

with regularization-ambiguity parameters a’ and p. Combining the results
(2.10)—(2.13), we finally arrive at the effective action for the general case with ny
right-handed and n; left-handed fermions:

1 2 2
Ly= E;/dx{— Hla+a)(de) +pe*+1B(3,9)(3"F) + ta(d,F) }
(2.14)
where we set ¢’ = a + a/4. Since in the conformal gauge we have
w,=0,F+e, 39, (2.15)

eq. (2.14) proves to be the familiar expression (2.5) if we go back to arbitrary
coordinates.
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Of course, the conformal gauge is available only for surfaces which have genus
zero. However, since we expect that the result for surfaces of higher genus is not
essentially different, we will restrict ourselves to the genus-zero surfaces in this
paper. (In fact, eq. (2.5) was originally obtained in the conformal gauge [10].)
Choosing the conformal gauge simplifies our work drastically so that the effective
theory can be described by only two scalars, ¢ and F. In the following we prefer eq.
(2.14) to (2.5), because the former is a local expression in contrast to the nonlocal
one (2.5). Accordingly, we may directly study the model without going into an
alternative localized version by introducing an extra scalar as has been done in refs.
[7,8]. This choice is important since the Weyl anomaly is partly concealed in the
localized theory, which may consequently modify the physical content as we will see
in sect. 3.

3. Lorentz and Weyl anomalies

Since we have presupposed a general coordinate invariant regularization for the
theory, the effective action is general coordinate invariant but contains anomalies
for other symmetries. These anomalies are easily derived as follows. As the local
Lorentz transformations (2.2) can be expressed simply as 8;¢ =0, §  F=¢ with
a,, = —e€,6/2, the Lorentz anomaly reads

8 Lo = /dxv —gaab‘MIIjb >

1
ab ab v
A= 907 ¢ (BR-4ag” v,w,). (3.1)

Analogously, observing that the Weyl transformations (2.3) are realized by 8 ¢ = p,
8w F =0, we have the Weyl anomaly

0
8W[eff=fdxv_g Zﬂ/w >

Ay = — (a+2a)R+1Bg" v, —2u}. (3.2)

244 {
In fact, as a consequence of the two anomalies, the two corresponding degrees of
freedom, F and ¢, appear in the effective action (2.14). It is interesting to note that
the intrinsic part of the Lorentz anomaly, which is unchanged by regularization,
is the term proportional to the curvature R. On the other hand, the intrinsic part of
the Weyl anomaly consists of the term g*” V,w,, in contrast to its usual form, which
is R. Furthermore, if 8 =0, any of the anomalies (3.1) and (3.2) can be eliminated
by adjusting the parameters a and p, but not both simultaneously. This is another
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manifestation of the known incompatibility of general coordinate and Weyl invari-
ance. Due to our regularization scheme, the part of general coordinate invariance is
played by local Lorentz invariance.

When we study the theory in a localized action by introducing a scalar, we should
pay special attention to the anomalies. The localized action, which may be used
instead of the nonlocal one (2.5), is given by

1
I..= Efdx\/ - g {%g’” dedp+pt (p(cR + bg"’ V”wy) + %a’g’“’w“wv} .
(3.3)

The constant parameters ¢, b, @’ are determined so that one regains the effective
action (2.5) after the integration of ¢:

b=i(fre=1 =0 —1), c=4(fmr—1+n—1). a'=a+b’. (34)
Although [, . gives a Lorentz anomaly which coincides with (3.1), it does not

possess the correct Weyl anomaly. That is, under Weyl transformations consisting of
(2.3) together with 8¢ = 0, the change of the localized action becomes

1
= - — — 4 . S
Swlioe 4877-/dx‘/ go(a’R+cvip—yp). (3.5)
Using the equations of motion for ¢,

Vi =cR+bg" v,0,, (3.6)

and eq. (3.4), we have
P loc
8W110c: fdxy—g Z.,Q{W s

1
=~z {la+ 2Aa=DIR+3Bg* Vo, ~ 2} (37)

Comparing eq. (3.7) with (3.2), one sees that the localized action gives the Weyl
anomaly in a slightly different form, which amounts to a shift of the parameter
a = a — 1. Although the difference “—1" may be compensated if the Weyl anomaly
of the scalar ¢ is taken into account appropriately, we have no need to introduce
the scalar thanks to the gauge we chose.
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4. Condition for consistent quantum theories

We now proceed to quantize the gravitational sector of the theory. The path-
integral formulation is given by

7 = /E‘L e’L(i+ichf, (41)
VGC

where V5 represents the volume of the integration over the diffeomorphism group
manifold. In eq. (4.1) the zweibein measure may be effectively rewritten as [4, 5]

a

€ .
L =dpdFe®i, (4.2)
GC
where I is the Liouville action
1L=—1—fdx{%(8 9) +iiet), (4.3)
487 o

which arises through the Weyl anomaly of the gravitational sector. The number 24
in the coefficient of the Liouville action in eq. (4.2) is realized by the sum of the
contributions from the Weyl sector, — 1, from the Lorentz sector, —1, and from the
usual ghost sector, 26. (A detailed discussion of eq. (4.2) can be found in
the appendix.) As a result, the path integral becomes

Z= qus dFe'lr, (4.4)

where I = I + 14+ 241 is the total effective action.
It is easy to see that for a = 0 a negative norm state appears unless 8= 0. For
a # 0, the total effective action can be diagonalized,

1
Ir= g [ax(304~ ta=a)(3,9) +ue* + 1B(3,0)(9"F) + 1a(a,F )’}

1 ~\2
=Ig;/dx{%b(ﬁu¢)z+,ue¢+lga(ayF)}, (45)
where
1 18y . . B
b—(24—5a—a)—;(z) , F=r+ Za—(,‘b (4.6)

We have dropped the topological term in [; and absorbed the constants A and
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into p. The resultant action (4.5) then turns out to be the Liouville action plus that
of a massless free scalar. It is however argued that the Weyl degrees of freedom
become ill behaved for g+ 0 due to the corrections of conformal anomalies [4, 5].
Thus we may choose =0 in eq. (4.5) by assuming a suitable regularization, which
consequently renders the Weyl degrees of freedom massless. Now the crucial point
whether the theory admits only positive norm states depends on the signs of the
kinetic terms of ¢ and F. It then follows that the theory becomes unitary if

ng<24, n; <24, (4.7
and
m,—m my+m
A2 G<a< A2 G’ (4.8)

where m, and m are the arithmetic and the geometric means of 24 —ny and
24 — n, respectively:

e (24-nR);r(24—nL) . mg={4—ng)(24—ny). (49

We therefore conclude that the theory can be made unitary if the number of
fermions of each chirality is less than or equal to 24. For this, it is crucial to have
the Weyl anomaly in the ghost sector, which brings the number 26. In particular,
when the number of fermions of either chirality is exactly 24, a is determined
uniquely and the Weyl degrees of freedom ¢ disappear.

5. Comparison with the chiral Schwinger model

In this section we compare the CQG with a well-studied anomalous gauge theory,
the CSM [9]. In order to illuminate some remarkable similarities between these
models, we begin by repeating the known analysis for the CSM, and then reveal the
mechanisms of ensuring unitarity in each of the theories.

We define the CSM by the action

I=1Ig+Ig,
Ig= =} [dxE,F*,

In= [dxde(i§+2e/m 4)¥n. (5.1)

which is invariant under the chiral transformations ¢ — el L, A,—A,+ a0
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In two dimensions, we are allowed to set
J— 13
ed,=d,0+¢,3,
which enables us to rewrite the interaction as

edp = tev, (8" — ) A b =J(o —p)¥r-
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(5.2)

(5.3)

The theory then appears to become free, Ip = [dx Y4i dyy with Y} =
e~ 2¥m(o=pr)y, . This is a situation analogous to the one encountered in sect. 2 for the
CQG. Indeed, the same procedure employed there also provides the effective action

of the CSM. That is, from the known chiral anomaly [11],

alv:?f
So

= _%HWFM_}_ o= —0p+ -+,
one has

IR = %fdx(p —o)d(p—o)+c.t.
Admitting a possible counterterm with a parameter «,

a/dxA#A"= aezfdx(pljp —o0a),

one obtains the well-known effective action

3,9
Lty = éezfdxAu{ag"” — (g*+ ) —F (g7 - fB”)}Ay-

For the general case with ny and n chiral fermions, one has

Lo %fdx{a(p[lp-i— o0o) —2Bp06 + a(plp — oo )}

2
= 1fdx{m—pljp-i- (a—a)&D&}
2 €2 °

where

m?  a’—(a*-pB?) a’—4dngn;
2

e a—a _a—(nR+nL)’

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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We therefore find that the CSM and the CQG strongly resemble each other through
the correspondence: p <> ¢, ¢ « F. This, however, is not surprising because in two
dimensions the Lorentz transformations (2.2) are nothing but axial Weyl transfor-
mations due to 69" = —¢%?y3 /2.

A difference appears when we study the spectrum of the theories by taking into
account the gauge (gravitational) action. For the CSM, the gauge action reads

1
I, = ——/dxpljzp (5.10)
G 2e2 ’

which gives the total effective action as
1
1T=—2——2fdx{pl](l'_'l+m2)p+e7‘(a—a)&EI(i}. (5.11)
e

Then we conclude that the effective theory admits a massless mode 6 and a massive
mode contained in p. It is quite interesting to realize that the parameter a should
fulfill a condition somewhat similar to the one we found in the CQG, ie.

ng+ng

5 (5.12)

=

a
2
for the positivity of ¢, which automatically guarantees a nontachyonic pole for p by

> ynghy . (5.13)

In contrast to the CQG, g has no upper bound, and in particular there appears
no limitation for the number of fermions of either chirality. Remarkably, both
theories become nonunitary were it not for the contributions of the gauge (gravita-
tional) part, since the signs of the kinetic terms of p and o (¢ and F) cancel each
other in the fermionic effective action. In the CSM, the gauge action provides a
higher-derivative term and thereby saves the theory. On the other hand, in the CQG
the Weyl anomaly of the gravitational sector helps both kinetic terms to become
positive, although the gravitational action itself does not play any role.

NS

6. Conclusion and outlook

In this paper we have seen that the CQG can be made unitary if the number of
fermions of each chirality is less than or equal to 24. For this, the contribution from
the ghost sector, which introduces the number 26, is crucial. Although the fermionic
effective action shares the structure with that of the CSM, the dynamical contribu-
tion of the gravitational and the gauge sector of both models makes the difference in
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yielding consistent theories. As a consequence, an upper limit of the number of
chiral fermions arises in the CQG, which is absent in the CSM.

We have supposed a general coordinate invariant regularization throughout this
paper, which enables us to choose the conformal gauge and thereby simplifies our
analysis considerably. However, it is well known that general coordinate anomalies
and Lorentz anomalies are equivalent in the sense that we can shift one anomaly to
the other by adding local counterterms [11,12]. Accordingly, if we adopt another
regularization scheme, for instance, one which preserves local Lorentz invariance
but breaks general coordinate invariance, we will get a different effective action.
Actually, such an effective action was obtained by Sanielevici et al. [13], where a
possible quantization was briefly discussed for it. It then becomes necessary to
check whether the local Lorentz invariant CQG yields a unitary theory as our
general coordinate invariant CQG does, because in the former case two variables
referring to the general coordinate degrees of freedom may become alive, in contrast
to the one variable referring to the Lorentz degrees of freedom, F, in our case.

It may also be interesting to study the CQG in the light-cone gauge following
Polyakov and uncover its algebraic structure. Investigations in this direction remain
to be done.

We would like to thank Professor G. Kramer for a careful reading of the
manuscript and helpful comments. I.T. is grateful to D. Dalmazi, S.-L. Nyeo and
W. Ogura for enlightening discussions. His work was supported by funds provided
by the Alexander von Humboldt Foundation. T.B. thanks the Studienstiftung des
deutschen Volkes for financial support.

Appendix

PATH-INTEGRAL FORMULATION AND THE LIOUVILLE ACTION

In this appendix we study a formal mechanism to generate the Liouville action
with corrections induced by the Lorentz anomaly, and thereby give support to the
path-integral formulation employed in sect. 4.

Consider an action [I[g, p] of a generic field @ coupled to gravity (zweibein) in
two dimensions, which is general coordinate, local Lorentz and Weyl invariant. The
path integral of the theory is defined by

Z= fde:[dqo]ge’”g"”]

= [dg,[dF][dg] e, (A1)

Owing to the local Lorentz invariance, the action can be made to depend on the
zweibein e only through the metric g,,. This is done by a suitable local Lorentz
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transformation of ¢, which, however, may introduce nontrivial dependence on the
Lorentz degrees of freedom F through the Lorentz anomaly. The measure [de], is
understood to bear the dependence implicitly. The integration over the Lorentz
degrees of freedom [dF], is thus necessary to quantize local Lorentz anomalous
theories consistently, which otherwise could be discarded as a mere constant [14].
The integration of the metric dg,, is defined by two successive integrations, namely,
the one over the diffeomorphism group manifold and the one over the Weyl degrees
of freedom. Each of the measures are rather involved because they depend on the
metric so as to be general coordinate invariant [4-6,15], which is presupposed in
our formulation. In the following, we will proceed in two steps; first choose the
metric in the conformal gauge g, = e¢§w - nfj,, = e"’nw, then cast it into the flat
form e*n,, - n,,.

For this purpose, we adopt the conventional Faddeev—Popov procedure, and
insert the identity

1=fdh8(f[g'f‘])Af[g] (A2)

into eq. (A.1). Here h denotes group elements which act as a general coordinate
transformation, and f[g] = 0 prescribes the conformal gauge fixing §,, = 7,,. After
changing integration variables as g,, = g:V, ¢ — 9", we have

z=[dns(flgDa,[g"] dehldF][dg] pete), (A3)

where the general coordinate invariance of the action, I[g" ¢"]=1I[g. ¢], is em-
ployed. As the measures are assumed to be general coordinate invariant, we have

z= [8(71g))4,[8]dg,[dF] [dg] oo, (A4)

where the irrelevant constant f{d# is factored out. Exponentiating the jacobian in
eq. (A.4) to be a ghost action,

A,[g1= [ldb],lde] elmlera, (A.5)

we obtain

Z= [8(/18]) dg,[dF][db],dc] ldp] et tesPel, (A-6)

with I'[g, @, b, c]=1[g, ]+ I,[g. b, c]. After setting g,, =%, and replacing
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8(flghdg,, with [d¢],., we get a simple expression,
7= [ldg]p[dF],pldb] pldc]p[dp],p e/t e:0ocl. (A7)

(We omit the integration of the moduli, for simplicity.) Further, by the Weyl
transformations ¢ — g%, eq. (A.7) reads

Z= /[d¢],,¢[dF],,¢[db],,¢[dc],,¢[d(p“’],,«,ei"[”"’"”*"]. (A.8)

The Liouville action I; comes into the theory when we rescale the measure in eq.
(A.8). Being prescribed to be general coordinate invariant, the measures cannot be
Weyl invariant [4—6,15]. The ghost measure transforms as

[db],eldc)e =[db],[dc],etulel, (A9)
and the matter measure transforms as

[dg?] = [de]yexp(~icn I [¢) +il.[$, F]), (A.10)

where ¢, is the central charge of the matter ¢ and I, represents corrections due to
Lorentz anomalies. Since I” is free from the Lorentz degrees of freedom, one may
expect that only the Liouville action survives when the matter and ghost integrations
are carried out. This is true for local Lorentz invariant theories. However, for local
Lorentz anomalous theortes, the interaction gives rise to local terms of F as well as
¢, which yields the change shown in eq. (A.10). Thus eq. (A.8) becomes

Z= [[do]pldFlpexp(i(26 = co) I [¢] +il[6. F]). (A1)

The rescaling property for ¢ and F may be determined from eq. (A.11). However,
there remain some subtleties concerning the definition of the measure of ¢ and its
rescaling property [4-6,16]. Here we assume a suitable regularization in which ¢
gives the usual Weyl anomaly of a scalar as well as F:

[de ] = [de], e "o,
[dF)p=[dF],e e, (A.12)

Then we end up with

7= fd¢ d Felltle. 71, (A.13)
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where

It[¢, F1= (24 = ¢, ) I.[¢] + L[, F] (A.14)
is the total effective action, which corresponds to eq. (4.5) for the CQG. (We set
[do],=d¢ and [dF], = d F, for brevity.)

Finally, let us reconsider the quantization of the theory from the viewpoint of the

modified scheme for anomalous gauge theories developed recently [14,17]. In that
context, one inserts the identities

1=fd¢'8(¢-¢'), 1=de’8(F-F’) (A.15)
into eq. (A.13), and changes variables as ¢ = ¢ + ¢’ and F — F + F’. One then finds

Z= qub d¢'dFAF 8(¢)8(Fexplilt[o + ¢, F+ F'])

= [ 4 dgdF dF8(¢)8(F)exp(ill 9, F]+ilyzl ¢, &', F, ]}, (A.16)

where [y, is the Wess—Zumino action,
Iyz[¢. ¢ F. Fl=I:[¢p+ ¢, F+ F] - I:[¢, F]. (A.17)

The action in eq. (A.16) exhibits trivial invariances under Weyl and Lorentz
transformations:

¢ d+p, o' = —p, F— F+e, F>F—-¢. (A18)

If we undo the matter and the ghost integrations in place of the total effective action
in eq. (A.16), we acquire

Z= [d¢'dF 8(¢)8(F)[de]pldF]ldb]pldc]pldg]ye

X exp(il'[n%, @, b, c] +ilyz[9, ¢, F, F1]). (A.19)

This expression is the one advocated by Faddeev and Shatashvili [17] for anomalous
gauge theories and referred to as the “gauge invariant formulation”, since the
invariances are recovered at the effective action level as we have seen in eq. (A.16)
with (A.18). While we arrive at the formulation after taking the conformal gauge, it
can also be realized before fixing a gauge as has been done in ref. [7]. If one follows
this procedure for the CQG, one has an expression which is equivalent to the one
obtained by converting eq. (A.19) into that of arbitrary coordinates. Thus the
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difference of the procedure does not alter the physical content. However, in our
conformal gauge expression (A.19), it is obvious that this formulation is a redundant
device because the integrations of F” and ¢’ are trivial. (This triviality also arises for
the CSM if we use the parametrization of eq. (5.2).) One thus prefers to simplify it
by integrating them out and return to the original expression (A.7), which is called
the “gauge noninvariant formulation” and was employed by Jackiw and Rajaraman
[9] for the CSM.
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