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Abstract. A correspondence between spectral properties of modular operators 
appearing in quantum field theory and the Hamiltonian is established. It allows 
to prove the "distal" split property for a wide class of models. Conversely, any 
model having this property is shown to satisfy the Haag-Swieca compactness 
criterion. The results lead to a new type of nuclearity condition which can be 
applied to quantum field theories on arbitrary space-time manifolds. 

1. Introduction 

The physical significance of the modular operators appearing in quantum field 
theory is still a mystery: given the von Neumann algebra d((9) of operators which 
are associated with a space-time region (9 and given the vector O representing the 
vacuum state, the Tomita-Takesaki theory I-3] provides us on the one hand with 
a one-parameter group of unitaries A it, t ~  (the modular group) which induces 
automorphisms of ~r Moreover, the restriction of the vacuum state to d((9) 
behaves like an equilibrium state under the action of these automorphisms (it 
satisfies the KMS-condition). These mathematical facts seem to suggest that the 
modular group is some kind of dynamics of an observer in the region (9. 

On the other hand, all attempts to justify such a physical interpretation in 
general have failed so far. There is only a single, though important special case 
where this interpretation is known to be correct: if (9 is a wedge-shaped region 
which is bounded by two characteristic planes, it can be shown that the 
corresponding modular group is the dynamics of a uniformly accelerated observer 
1-21]. But for arbitrary regions such a clearcut interpretation is out of sight. 

As a step towards a clarification of this point we exhibit in the present 
investigation a tight relation between spectral properties of the modular operators 
and the Hamiltonian H. Although our results do not solve the problem of the 
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interpretation of the modular operators, they are perfectly consistent with (and in 
fact were suggested by) the idea that these groups are perturbed dynamics. 

Our starting point is the observation made in [17, 9] that in theories with a 
physically reasonable number of local degrees of freedom the set of vectors 

e-#n~r fl > 0, (1.1) 

where all(@) denotes the unit ball of ~r should be "small" (i.e. compact or 
nuclear) if the region (9 is bounded. A heuristic argument leading to this conclusion 
is the following one (cf. [9] and Sect. 5): the operator e -an in (1.1) is restricted to 
excitations of the vacuum in a bounded region, properties at spacelike infinity are 
not tested. Disregarding boundary effects the size of the set (1.1) should therefore 
not change very much if one proceeds from the original theory to the corresponding 
theory in a sufficiently large but finite volume V (a "box"). In this passage the 
operator e -#n, which has continuous spectrum, is replaced by the operator e -pnv, 
which in the physical setting is to be interpreted as the density matrix of the 
Gibbs-ensemble in the volume V at temperature fl-1. It therefore ought to be of 
trace class. The smallness of the set of vectors in (1.1) in the sense indicated is then 
an immediate consequence. 

We note that if one proceeds from (1.1) to the corresponding expression in a 
representation of the local algebras which is induced by an equilibrium state at 
temperature T, one arrives at a similar result (cf. Sect. 5): if s now stands for the 
cyclic vector representing this equilibrium state and H for the generator of the 
time translations (which is no longer bounded below in this case), then the set of 
vectors (1.1) should still be small, provided fl is restricted to 0 < fl < 1/2T. 

Taking the idea seriously that the modular group is some kind of a dynamics, 
one would expect that an observer in the region @, whose time evolution is given 
by the modular group, comes to a similar conclusion about the size of the set of 
vectors which, according to his view, corresponds to (1.1). In order to find the 
appropriate counterpart of this set two remarks are in order: first, the special 
example of the uniformly accelerated observer suggests that the boundaries of the 
underlying region (9 should be regarded as horizons, playing the same r61e as 
infinity for an observer in Minkowski space. Second, the vacuum state is not a 
ground state for the generator K = - In A of the modular group. But, as already 
mentioned, it can be interpreted as an equilibrium state whose temperature is 
normalized to one. Taking these remarks into account we were led to consider as 
analogue of (1.1) the set of vectors 

e-~K'~Cl((9o).Q, 0 < 2 < 1/2, (1.2) 

where (90 is any bounded region whose closure is contained in the interior of (9. 
The restriction of (90 arises from the condition that e-~K should only locally be 
tested, but not at the horizon, and the limitations on 2 conform with the previous 
comment on the properties of the set (1.1) in the case of equilibrium states. 

The main result of the present investigation is the observation that the sets 
(1.1) and (1.2) have indeed comparable sizes. Namely there exists a tight relation 
between their respective e-contents. For a brief explanation of this notion and 
some related material cf. Sect. 2. The precise quantitative information about the 
relation between the sets (1.1) and (1.2) is given in Sect. 3. 
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Besides the more speculative aspects connected with the interpretation of the 
modular groups there are several concrete consequences of our results which 
we want to indicate now. The first application relates to the question of whether 
a quantum field theory has the split property, i.e. whether for given regions (91 c (q2 
there exists a factor d / /o f  type I such that 

d((91)" c d / / c  d((92)". (1.3) 

If (91 is bounded and (92 is any region containing the closure of (91 in its interior, 
then this question is known to have an affirmative answer whenever the sets (1.1) 
satisfy the condition of nuclearity proposed in [9, 5]. Theories with a maximal 
(Hagedorn-) temperature violate this condition, but the present results allow to 
establish the existence of intermediate type I factors also in these cases, provided 
the distance between the boundaries of the regions (91 and (92 in (1.3) is sufficiently 
large. Simple examples of such models have been studied in [8] and [11]. The 
present results show that the connection between the rapid growth of the 
energy-level density in these models and the existence of a maximal temperature 
and minimal splitting distance is in fact a quite general phenomenon. 

A partial converse of these results is the observation that the sets (1.1) must 
be compact in all theories having the (distal) split property. This is of interest since 
it provides evidence to the effect that relevant information about the energy- 
momentum spectrum of a quantum field theory is encoded in gross properties of 
the underlying net of local algebras. A better understanding of this point is a 
prerequisite for the general solution of problems relating to the particle interpreta- 
tion of a quantum field theory [4]. As another application we find that interacting 
theories in 2 dimensions, such as the ~b~-theory and the Yukawa-theory satisfy the 
Haag-Swieca compactness criterion [17]. These results which are related to the 
split property will be discussed in Sect. 4. 

Finally, we reconsider in Sect. 5 the nuclearity condition proposed in [9] in 
the light of the present results. We propose an alternative formulation of this 
condition which is based on the notion of ~-content. This formulation has the 
advantage that, on the one hand, it contains more detailed information about the 
sets (1.1), on the other hand it carries directly over to the sets (1.2) involving the 
modular operators. In the latter case our nuclearity condition is strictly local in 
the sense that it only requires information about the restriction of the vacuum 
state to the local algebras. In fact the vacuum does not play any special r61e and 
can be replaced by a dense set of vectors. It is therefore possible to extend our 
nuclearity condition to quantum field theories on arbitrary space-time manifolds. 

We will supply some heuristic arguments, based on a discussion in [9], which 
make plausible that our condition ought to be satisfied in theories of physical 
interest. For the simple example of a free field theory we will establish this fact also 
by explicit calculations which are relegated to the Appendix. 

The setting used in the present investigation is the familiar framework of 
algebraic quantum field theory [15] amended by some information about the 
modular operators for wedge-shaped regions, which has been obtained by 
Bisognano and Wichmann using Wightman fields [2]. In order to establish our 
notation we briefly list the relevant assumptions. 

We consider a net of C*-algebras d((9) assigned to the space-time regions (9 
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and acting on a Hilbert space fig. We assume that isotony holds, i.e. 

,5~((91) C ~r if (g 1 c (92, 

but we will make no explicit use of locality. The Lorentz-transformations A and 
space-time translations x are represented by automorphisms ~a,~ of the net which 
act according to 

aa,x(sr = d ( A  (9 + x) 

and which are unitarily implemented on ~f'. The generator H of the time 
translations with respect to a fixed Lorentz-frame (the Hamiltonian) is assumed 
to be non-negative and to have the simple eigenvalue 0 with corresponding 
normalized eigenvector K2 (vacuum). This vector is assumed to be cyclic for sJ((9) 
and d((9)' (the commutant of d((9) in ~(ffg)) whenever the region (9 has a spacelike 
complement with open interior. The specific information about the modular 
operators for the algebras ~r corresponding to wedge-shaped regions W and 
f2 will be recalled at the place where it is needed (Sect. 3). 

We conclude this introduction with the remark that several of our results (in 
particular in Sect. 4) illustrate the general findings in [6]. But the present paper 
is self-contained and does not rely on details of that study. 

2. Nuclear Maps 

We will make use of various concepts and results from the theory of nuclear 
mappings, as described for example in the monograph of A. Pietsch [20]. For the 
convenience of the reader we recall here some relevant facts. Most of the subsequent 
material is well known, but some of the results are only implicitly contained in 
the literature. 

Let g be any (real or complex) normed vector space with norm I1"[I. The unit 
ball of o ~ will be denoted by o~1, and the (topological) dual of ~ by o r We will 
discuss various properties of continuous linear mappings O from ~ into some 
normed space o~. The norm of these mappings is given by 

II O II = sup {110(E)II :Ee~fa}. (2.1) 

We adopt the following terminology from [20]. 

Definition. A continuous linear mapping O:~--,o~ is said to be 

i) compact if the image of ~1 under the action of O is a precompact subset of ~ .  
ii) type l p, p > 0 if there exists a sequence of linear mappings O,:d~--* o ~ of rank z 

such that 

Il O -  O, II p < ~ 
/=0  

iii) type s if it is of type I p for all p > 0. 

We note that each mapping O of type I v, 0 < p _-< 1, is nuclear [20; Proposition 
8.4.2]. In fact, there exist sequences of linear functionals e, eg* and of elements 
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F , ~  such that (in the sense of absolute convergence) 

O(E) = ~ e,(E)'F, for all E~g  
~=1 

and 

(2.2a) 

Definition. Let O : ~  
number (if it exists) 

In In N(e) 
q = lim sup 

,~0 In 1/e 

is called the order of O. In order to simplify terminology we frequently say 
(somewhat sloppily) that a map is of order q if its order is not larger than q. 

In the subsequent lemma we establish some useful connections between the 
type and the order of a mapping. 

Lemma 2.1. Let 0 : ~  ~ ~ be a continuous linear mapping. Then: 
i) O is compact iff its e-content N(e) is finite for every e > O. 

ii) O is of type l p, p > 0 if its order is smaller than p/(2p + 1). Conversely, any 
mapping 0 of type I p, p > 0 is at most of order p. 
iii) O is of type s iff it is of order O. 

Proof. The first part of this statement is trivial, and the third part is an immediate 
consequence of the second part. For the proof of the second assertion we heavily 

II e, II p- II F, I1" < oo. (2.2b) 
~=t 

One can therefore introduce a quasi-norm on these maps (called p-norm), setting 

, ,O,,p= inf(,=~ 1 [' e,'[ p" [' F, [ " )  l/p, (2.3) 

where the infimum is to be taken with respect to all possible representations of O 
of the form (2.2). There is also a certain converse of these statements: if a map O 
has finite p-norm for some 0 < p < 1, then O ~l pt~I -P). In particular O is of type s 
if II O IIp < oo for all p > 0  [20; Theorem 8.5.6]. It is also noteworthy that all 
mappings of type l p, p > 0 are compact [20; Proposition 8.2.6]. 

We will frequently make use of the fact that the type of a given mapping can 
be determined if one has sufficient information on the size of its range. As a 
convenient measure for this size we introduce (by a slight abuse of the terminology 
in [203) the notion of e-content of a mapping. 

Definition. Let O:8--* o~ be a continuous linear mapping and let, for given e > 0, 
N(0 be the maximal number of elements E,~81, t = l , . . . , N ( e )  such that 
II O(E, - E~)II > e if l # k. (Note that N(e) is finite if O is compact.) The number 
N(e) is called the z-content of O. 

It is clear that the e-content N(e) of a mapping increases if e decreases, and 
N(0 tends to oo (unless O is the zero-map), if e approaches 0. 

be a continuous linear mapping. The non-negative 
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rely on the basic results expounded in [-20]. Combining Lemma 2 in Sect. 9.6.3 
of [20] with Lemma 9.1.6 it follows that for every compact mapping O there exists 
a family of mappings O, of rank t such that the inequality 

1([ I[ O - O, II < 2[(n + l)!]2e"+lN(e) 
z=0 

is valid for all n~N and e > 0. Since one may always choose mappings O, such that 
II O - O,+111 < IJ O - O, fl we see from the above estimate and Stirling's formula that 

N 0 -- 0 n[I < (n + 1)2~N(c) 1/(n+ 1). 

Setting e = (n + 1)- 1/r where q' is any real number which is larger than the order 
q of O, we arrive at 

[10 - O,][ < const-(n + l) 2-1/r 

This shows that O z l  v, p > 0 if q < p/(2p + 1). Conversely, if Or v, i.e. if there exists 
a sequence of mappings 6), of rank l such that 

t=0 

there holds for any n~N the estimate 

(n+  1 ) ' l I O -  OnlJP<C. 

Hence II O - O. II < c/3 if n + 1 > c(3/e) p and it then follows by combining Lemma 
9.1.6 with Lemma 1 in Sect. 9.6.3 of [20] that 

N(a) < (3 I] O II/e + 2) c(3/')P. 

The statement about the order of O is an immediate consequence of this 
estimate. �9 

The relation between the order and the type of a mapping given in the second 
part of this lemma leaves a certain margin which can be narrowed down with some 
effort in the case of the mappings considered below. Since these improved bounds 
have little effect on our final results we refrain from giving details. 

For  later reference we need also 

Lemma 2.2. The continuous linear mappinos 6 ) : ~  of fixed type lP, p > 0 
(respectively of fixed order q > O)form a linear space. 

Proof. The first half of this statement has been taken from [20, Proposition 8.2.2]. 
For  the proof of the second half we note that if O,:g ~ t =  1, 2 are maps with 
c-contents N,(e), t = 1, 2, then the c-content N(8) of the map O = O1 + 02  is bounded 
by N(0 < N1(c/2)+ Nz(e/2). From this estimate it follows at once that the order 
of O is less than or equal to the maximum of the orders of O1 and 02 ,  
respectively. �9 

We conclude this section with a brief discussion of a special class of mappings 
from a normed space g into a Hilbert space ~ .  These mappings are of the form 
( 0 < 2 <  1) 
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O~(E) = T 2.O(E), E e g ,  (2.4) 

where O : g ~ d g  is some bounded mapping, and T is some positive selfadjoint 
operator which contains the set of vectors O(g) a dg in its domain. 

Lemma 2.3. Let 04,  0 < 2 < 1 be the mappings defined in relation (2.4). 

i) I f  01 is compact, then each 04, 0 < 2. <- 1 is compact. 
ii) l f  O 1 is of order q, then 04,  0 < 2 <  1 is of order q/L 

Proof. Let P(z), z ~  be the spectral projections of T, and let dl~(r)=d(O(E), 
P(z)O(E)) be the corresponding measure induced by the vectors O(E)~df ,  where 
E e E  is kept fixed for the moment. Using H61ders inequality we obtain 

II Ok(E)II 2 ~.~ ~ dy(~.)z22 ~ [-~d#(75)] 1 - 2 [~dy(z)zz]2, 

and hence 

110~(E)It _-< II O(E)II ~-~" II O~(~)112. 

Denoting by N2(e) the e-content of the map O k we see from this estimate that 

Nz(e) < Nl(e1]2/[2 II O 11 ]114- 1). 

The first statement now follows from the first part of Lemma 2.1, and the second 
statement is an immediate consequence of the definition of order of a mapping. �9 

3. Modular Structure and Energy Level Density 

In this section we compare the sizes of the two sets of vectors (1.1) and (1.2). It 
will be convenient to regard these sets as ranges of certain maps, mapping the 
local algebras into dr. The order of these maps will then be taken as a measure 
for the size of the respective sets. 

To begin with we introduce some notation: let (91 be any region in Minkowski 
space and let (_92 be another region which contains C 1 . We keep these regions fixed 
in the subsequent discussion, but our results depend on the shape of (91 and (92. 
There are two parameters entering: the first one, denoted by 6 and called inner 
distance, is the supremum of all z > 0 for which the time translated regions 
(91 + t.n, Itl < z are contained in O z. We assume that 6 > 0. The second parameter, 
called time-like extension of (_92, is denoted by d and is determined as follows: let 
W,, z > 0 be the wedge-shaped region of Minkowski-space given by 

W~ = {XZXa +'c >= Ixol}, (3.1) 

where xo, x I are the time and first spatial coordinate of x with respect to our fixed 
Lorentz frame. We then define d as the infimum of all z > 0 for which (92 a W~n 
(-We).  We assume that d < oo. Note that in more than two dimensions (92 may 
still be unbounded. 

Since the vacuum vector O is cyclic for the algebras d((92) and d((92)' we can 
define an antilinear involution S, 

S A n  = A'g2, Aesl((gz) (3.2) 



122 D. Buchholz, C. D'Antoni and R. Longo 

familiar from the Tomita-Takesaki theory. The closure of S (which we denote by 
the same symbol) has the polar decomposition S = J.A 1/2. The antiunitary operator 
J is called modular conjugation, and the positive selfadjoint operator A modular 
operator. We will make use of the basic facts (cf. for example [3]) that J d  a = A - i j  
for 2 > 0, and that there holds the equality 

Jd((-gz)"J = ~((~2f-  (3.3) 

With the help of A we define as in [6] a family of mappings ~;:d((91)--,~ct ~, 
0 < 2 <  1/2, 

~,~(A) = A~A.Q, A e d ( ( g j .  (3.4a) 

For the natural value )~ = 1/4 we set ~ = - = 1 / 4 .  We also consider the mapping 
3, :d((91)-~d((92)  . (where ~r , denotes the predual of the yon Neumann 
algebra ~'((92)' ) given by 

S,(A) = (,Q, "A.Q), A e d ( ( g j .  (3.4b) 

Finally, there appears in our investigation the map 6:  d((91)-~ Jg, 

S(A) = (1 + A - 1/2)- 1.A.Q, Aed(01) .  (3.4c) 

Our first result shows that for the sake of estimating the order of these mappings 
it is sufficient to analyze either one of them. We choose ~ as our standard map. 

Lemma 3.1. Let % S,,, and S~, 0 < 2 < 1/2 be the mappings defined in (3.4). 
i) I f  one of these maps is compact, then all other maps are compact. 

ii) Let q, q,,  and qx be the respective orders of these maps (in an obvious notation). 
Settin9 q"= ql/4 there hold the inequalities 

q~/2 <= q. < q <= qa <- max 1 22 

In particular, all maps are of finite order (respectively of order O) if anyone of them has 
this property. 

Proof. We prove the second part of this statement, the first part can be established 
along the same lines. Let Aed((91), then there holds the equality IIz$1/4AOII 2= 
(~, JAJ" Ag2). Since JAJeeuC((gj' it follows that II S~(A)II z < 11A I1"1[ S,(A)II. Denot- 
ing by N"(e), N,(e) the t-contents of the maps ~ and ~ , ,  respectively, we thus see 
that N"(e) < N,(e2/2), hence q~ < 2q*. In the subsequent steps we proceed in a similar 
manner: let Ae~r and B 'ed( (g j ' .  Then 

(.(2, B'AJ2) = ((1 + a - 1/2)B'*12, (1 + a - 1/2)- 1A~ ) 

= ((B'* + JB')J2, (1 + A - 1/2)- iA.Q) ' 

and consequently [[ S,(A)I[ < 2"1[ ~(A)[1. This shows that q,  < q. Next, for A e ~r 
we have 

(1 + A - 1/2)- 1Al 2 = (d~ + A i -  1/2)- 1.AIAI2. 

Since the operator (A 4+ A ~- 1/2)~-1 is bounded, we conclude that q _< q~. Finally, 
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if 0 < 2 < 1/4, we write A~AI2--A4gI/4A.Q, and it then follows from Lemma 2.3 
that q~ < q~/42. The case 1/4 < 2 < 1/2 can be reduced to the preceding one by 
making use of the equality A ZAg2 = JA 1/2- ~A*I2. This completes the proof of the 
statement. �9 

We will show that the order of these mappings, in particular the question of 
whether it is finite, is governed by spectral properties of the Hamiltonian. To this 
end we consider the family of mappings O~: ~r ~ J g, fl > 0 given by 

Op(A) = e-PnAI-2, Aesr (3.6) 

Making use of Lemma 2.3 and the fact that e -an is bounded, we see that all maps 
(ga are compact (respectively of finite order) if anyone of them has this property. 
More specifically, if qp denotes the order of 0 a we have that qa > qa' and 
fl.q~ < fl'.q~, if fl ~ fl'. 

Let us analyze now the consequences of the assumption that the maps O~ are 
compact or of finite order, respectively. For this purpose we need two technical 
lemmas. 

Lemma 3.2. Let f :  ~ -~ ~ be any function of the form 

1 ~ 

where g is the Fourier transform of an arbitrary real continuous function which has 
support in the interval [ - 6 ,  8], and let g(O)= 1. Then there holds for A~s4((_91) the 
equality 

R. A[2 = R. f(H)Ag2 + JR" f ( H ) A * ~ ,  

where 

R = ( 1  + A - i n )  -1. 

Remark. It follows from this result and the arguments in [5, Sect. 2] that the map 
is nuclear if the theory satisfies the nuclearity condition in [9]. If in addition J 

commutes with the Hamiltonian (which is the case if 02 is a wedge-shaped region 
of the form {3.1) [2]) one can also show that H~ is nuclear. 

Proof. Let r be any vector in the domain of S*. Then there hold for Aed((Pl) 
and ]t[ < 8 the equalities (since d(6nl + t.n) ~= d((_gz) ) 

(cI), U(t)SAI2) = (~, ~t(A*).Q) = (~, S~t(A).Q) 

= (a,(A)~, S*~)  = (AO, U(t)- ~S*q)). 

Moreover, since H is a positive operator, the function t~h+(t)=(cI),  U(t)SAg)) 
can be analytically continued into the upper complex half-plane, and similarly the 
function t ~ h _ ( t ) =  (AI2, U( t ) -1S*~)  can be continued into the lower half plane. 
Thus we see that the two functions h+ are the boundary values on the reals of a 
single function h which is analytic in'the cut plane C\{z: Imz = 0, ]Rez] > 6}. 

Since the operators U(t) are unitary, the functions h+ are bounded, hence we 
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can apply the arguments in [5, Lemma 2.3] leading to the identity for arbitrary 
~ e [ - 6 , ~ ]  

h+(0) ~ dq~ h+ + _ . 

After multiplication of this equation with the Fourier transform ofg and integration 
with respect to ~ we arrive at 

(el), SAO) = (~, f(H)SAF2) + (AO, f (H)S*~) .  

Choosing t0 = R" ~, ~ ' ~  the statement then follows. �9 

Lemma 3.3. There exists a numerical constant e > 0 such that for any fl, 0 < fl < 6/c 
and any @~J~ff there holds the inequality 

inf IJ f (H)  (I)l] < k-  1 "ll e -  pn ~ II k'[I ~ I[ 1 - k, 
f 

where k = (1 + cfl/b)-1, and the infimum is to be taken with respect to all functions 
f of the form 9iven in (3.7). 

Remark. We will show that c < ~/ln 4. The smallest possible value for e in the 
above statement is not known to us. We acknowledge discussions with J. 
Michali6zek on this point. 

Proof. We will exhibit an explicit sequence of functions f , , n ~  of the form (3.7) 
which leads to the estimate given in the lemma. 

To begin with we consider functions s . : ~  ~ given by (cf. [19]) 

s,(co) = sin ~co 1 - = l - , 

7~(.0 j = l  j = n + l  

where the second equality follows from the well-known factorization formula for 
the sine function. Using the Paley-Wiener theorem it is not difficult to see that 
the Fourier transform of each s,  has support in [ - ~ , ~ ]  and is continuous; 
moreover, s ,(0)= 1. 

We need bounds on the functions s,. From the second representation of s, we 
see that l s,(co)[ < t if ]~ol < n, and from the first representation we get by an 
elementary calculation that ]s,(co)] < (n/2]m]) 2"- 1 if Icol => n. These two estimates 

lead to the uniform bound 

Is,(o~)l < 1, coc~. 

Moreover, we obtain for any ~1 >= 0 

inf sup Is,(co)l < 4 x-~'. 
. io~1_>_ ~ , ,  

We will subsequently make use of this information. 
Next we consider the scaled functions 9,(o)) = s,(6~o/g). In view of the support 

properties of the Fourier transforms of s, and the normalization s.(0) = 1 it follows 

that the functions 
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f" (o)  = 5 dgog, 

are of the admissible form (3.7). 
After these preparat ions we can now establish the desired estimate: let o~ > 0 

and let P ( o i )  be the spectral project ion of H corresponding to the spectrum in 
[0, col ]. Then  

]1 f,(H)q)L] 2 = l] f ,(H)P(o~l)O II 2 + II f , (H)(1 -- P(a)l) ) q)II 2 

< e 2e'~' sup If,(o~)l 2. I[ e -# '@l l  2 + sup If,((o)l 2 II t/)tl 2. 

Making use of the specific form of f ,  and the bounds on s, given above we see 
that for arbi t rary  co 1 > 0, 

inf I1 f , (H)  4)II 2 _--< le2~O, "II e - ~" tb I[ 2 + 4e -(21, 4/•)6(al. II (/) ]] 2. 
t l  

If 6/fl > c = ~z/ln 4 the r ight-hand side of this inequality has a minimum for some 
~ol > 0 (since IIe -~"(/) it < I14)II), and it is straight-forward to calculate its value. 
The upper  bound  for inf II f(H)@ll obtained this way is as given in the lemma. I 

f 

Combining the preceding two lemmas we can establish the desired connect ion 
between the mappings Or fl > 0 and E I. 

Proposition 3.4. 
i) Let 0~, fl > 0 be compact. Then 3 ~ is compact. 
ii) Let 0~, B > 0 be of finite q~. Then 3" is of order q~ < 4q6/c, where 6 is the inner 
distance between (91 and (9 2 and c is the constant in Lemma 3.3. 

Remark. We recall at this point  Lemma  3.1 from which an analogous result follows 
for all maps defined in (3.4). 

Proof. To begin with we represent the map ~ as the sum of two real linear maps 
-=+ : W ( ( g l ) - ~  ~ , 

= (A) = �89 + A*)12, 

where R = (1 + A-~/2)-1.  F rom Lemma 3.2 we get 

S+(A) = �89 + J ) R f ( H ) ( A  + A*).Q, 

and consequently 

II S+ (A)II < inf [I f (H)(A  +_ A*).Q IL, 

where the infimum is to be taken with respect to all functions f of the form (3.7). 
Applying to the r ight-hand side of this inequali ty Lemma 3.3. we see that  for 
fl < 5/c and I1A II < 1, 

[[S+(A) H < 2 .k -1 .  []e-an�89 +_ A*).QI] k, 

where k = (1 + cfi/6)-L Now let qa < oo. Then  we conclude that  the order  q+ of 
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6+ satisfies 

q_+ < inf (1 + cfl/f)'qp < 2q~/c. 
O<-p<~/c 

The same bound holds for the order of 3 = 3+ + S_ because of Lemma 2.2. 
The second part of the statement then follows from Lemma 3.1, and by the same 
method one can prove the assertions about compactness. �9 

Having analyzed the implications of spectral properties of the Hamiltonian for 
the modular operators we want to proceed now in the opposite direction and study 
how spectral properties of the modular operators lead to restrictions on the 
Hamiltonian. At this point we have to make use of the explicit form of the modular 
operators associated with wedge-shaped regions of Minkowski space. This form 
was found by Bisognano and Wichmann under very general assumptions I-2]. 

Let W 0 be the wedge-shaped region defined in (3.1) for T = 0. This region is 
invariant under the group of velocity-transformations (Lorentz-boosts) in the 
Xo-Xl  plane. We denote these transformations by A(u), u~E and define their 
action on the space-time point x by 

\ s h  (2nu)'x o + ch (2gU)'X 1/1 (3.8) 

all other components of x remain unaffected by this transformation. Denoting by 
U(A, a) the representation of the Poincar6 group on ~ ,  we introduce the notation 

V(u) = U(A(u), 0), U(a) = U(I, a), (3.9) 

where a is an arbitrary space-time translation. These operators satisfy the equation 

V(u) U(a) = U(a(u) ) V(u), (3.10) 

where we have put a(u)= A(u).a. 
We anticipate in the following the results of Bisognano and Wichmann, quoted 

above, according to which the group u ~ V(u) is the modular group corresponding 
to the couple d(Wo),.(2. In other words, the operator V(i) is the modular operator 
associated with ~'(Wo),-Q. This input provides the link, as we shall see, between 
the modular operator A and the Hamiltonian. 

Because of the Poincar6 covariance of the theory it follows that the modular 
group corresponding to the transformed couple d ( A ' W o  + a),g2 is given by 
u-o U(A, a)V(u)U(A, a)-1. We are in particular interested in the modular groups 
V+ (u) corresponding to d (  + W0, g2 for arbitrary �9 > 0. These groups are given by 

V+(u) = u ( -  ~ )V(u)U( -  _r) - 1  = V(u) U(~_ - ~ ( -  u)), 

v (u) = u(~_)v(-  u)U(~) -1 = v ( -  u )U(z (u ) - , ) .  ( 3 . 1 1 )  

Here _~ denotes the spacelike vector whose components are 0 apart from _~ = ~. 
Now let B~d(W,) .  Then it follows from the modular theory that the function 

z -o V+ (z)BI2 is analytic in the strip 0 < I m  z < �89 and continuous at the boundaries. 
Next, since z ~ ~ - ~( - z) is analytic and Im (_r - !(z)) is a positive time like vector 
if 0 < Im z < �89 it is an immediate consequence of the spectrum condition that the 
function z ~ U(_z - _,(z)) BO is likewise analytic for 0 < I m  z < �89 and continuous at 
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the boundaries of this strip. Finally, if P denotes the spectral projection of the 
generator of u ~ V(u) corresponding to any bounded subset of the spectrum we 
have that z ~ P" V(z) is entire analytic. Hence we obtain from the first equation in 
(3.11) by analytic continuation 

e" V+ (z)BO-= P. V(z)U(z_ - ~_(- z))B$2 (3.12) 

for 0 < Im z < �89 Since BI2 is in the domain of V+ (z) for the given range of z we 
may proceed in (3.12) to the limit P .* 1. This proves in particular that the vectors 
U(r_- "c(- z))BI2 are in the domain of V(z). An analogous discussion applied to 
B e d ( -  W~) leads to a relation similar to (3.12), where on the left-hand side V+ 
has to be replaced by V_, and on the right-hand side _z by - _~, and z by - z (with 
the same restrictions on z as before). We thus obtain for any B e d ( W ~ ) m  d ( -  W~) 
and any z, 0 < Im z < �89 the two equations 

Ve (z)Bl2 = V( + z) U( + [~_ - r_( -T- z) ])B.Q. (3.13) 

Specializing to z = iv, 0 < v < �89 we see that 

e-sln2~v-rH.u( ~ [-1 -- COS 2rw]~_)BO = V(-T- iv) V +(iv)B.Q, (3.14) 

and making use of the fact that these equations hold for any B e d ( W ~ ) c ~ d ( - W ~ )  
we can proceed to 

e-  si, 2 ~v.~H As  2 = V(-~ iv) V+ (iv) U( -T- [ 1 - cos 2nv]_~)AO. (3.15) 

This equation holds for 0 < v < �88 and all operators 

A e d ( W ~ + [ 1 - c o s 2 r w ] ~ _ ) c ~ d ( - W ~ - [ 1 - c o s 2 r w ] ~ _ ) .  (3.16) 

(The more stringent restriction on v arises from the fact that the intersection of 
the algebras in (3.16) becomes trivial if�88 < v < �89 Denoting by P+, P -  the spectral 
projections corresponding to the non-negative and negative spectrum of the 
generator of u ~  V(u), respectively, the information contained in (3A5) can finally 
be combined into the equation 

e-si"z~v'~n Aff2 = P -  V(-- i v )U(-  z_)V(iv)U(cos 2rcv'z_)As 

+ P+ V(iv)U(~_)V(-iv)U(-cos 2rcv.~_)Ag2 (3.17) 

with the above mentioned restrictions on A and v. 
In order to get on we need the following 

Lemma 3.5. Let (9,, (fib be open regions of Minkowski space such that (9, c (fib and 
(fi'b has a non-trivial interior, and let d , ,  zl b be the modular operators corresponding 
to ~r $2 and ~r , respectively. Then dabA; x is a densely defined, bounded 
operator for any 0 < 2 < �89 and II zl~zl~ -x II < 1 

This result is a consequence of the fact that d((9,) c d((fib). It can be verified 
by a standard interpolation argument, cp. [6, Lemma 2.4]. Combining this 
information with relation (3.17) we arrive at the crucial 

Lemma 3.6. 
][e-t~z~'za~'A-'zl[<=2 for 0 < 2 < 1 / 4 ,  

where d denotes the time-like extension of (92. 
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Remark. Since  the logarithm is an operator-monotone function it follows from 
this result that 

K<-tan2~2"d 'H+~ I n 2 ' -  2 0 < 2 <  1/4, 

where K = - l n  A is the generator of the modular group. This bound provides 
some evidence to the effect that the appropriately rescaled generators K converge 
to the Hamiltonian H in the limit of large (02. 

Pro@ Choosing in equation (3.17) v = 2,z = (cos2~2)-l 'd we see that for each 

Aed((02) ~ d(Wa)c~ d ( -  Wa), 

e-tanZ'~'a'n A.Q = P -  V ( -  i2)U( d_ - v_)A ~+A.(2 + P+ V( i2)U( *_ - d)A ~ A~2, 

where A + are the modular operators corresponding to d (  + Wa), O. Since the norm 
of P + V(_+ i2)U(_ (_z - _d)) is hounded by 1 and since [1A ~ A - ~ [[ < 1 according to 
Lemma 3.5, we conclude that 

e-tan2x2"a'I-1h.Q = Q. A ~AO, 

where Q is a bounded operator with II Q II < 2. The statement then follows from the 
fact that the vectors AO, AeM((02) form a core for A ~. �9 

The desired relation between the maps S ~ and Oa, fl > 0  can now easily be 
established. 

Proposition 3.7. 
i) Let S ~ be compact. Then the maps Op, fl > 0 are compact. 

ii) Let E ~ be of finite order q". Then the maps O a , f l > 0  are of order qa<q ~. 
7r/2 Arctan (fl/d), where d is the time-like extension of (02. 

Proof. Let Aezr 0 and 0 < 2 < 1/4. Then there holds according to the preceding 
lemma the estimate 

I[ e-t~n2~:~'a'nA~2 I1 _--< 2 II A'~A[2 II : 2 II S~(A)I]. 

Setting 2 = (2re)-1 Arctan (fl/d) and making use of Lemma 3.1 the statement 
follows. �9 

We conclude this section with two remarks. First we notice that if the premises 
of the preceding statement are satisfied for a given region (_91 and some region 
(02 = (01 with finite time-like extension, then it follows from Proposition 3.4 that 
these premises are satisfied for any region (92 ~ (91, provided the inner distance 
between (0~ and (92 is positive. This means that one may assume without loss of 
generality that the regions (01 and (02 are bounded. 

Our second remark concerns the limit values of orders: let us fix a bounded 
region (01 and consider the properties of the standard maps =t and their (9 2 

respective orders q~02 in the limit of large (bounded) regions (02. Assuming that 
qe3 < q~2 if (03 ~ (02. Hence the net q~2 < o% it follows from Lemma 3.5 that ~ 

(02--'q~2 converges to some number q~ if (02 tends to the whole Minkowski 
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space. Similarly, the order qp of Oa, fl > 0 converges to some number qco if/~ tends 
to oo. These asymptotic values are, according to Propositions 3.4 and 3.7, related by 

q~ _-< q~ _-< 4qoo. (3.18) 

On the basis of the heuristic discussion in Sect. 5 it seems plausible that q~o = 0 if 
the maps Op, fl > 0 are of finite order. But we have not been able to verify this 
conjecture. 

4. Split Property and Energy Level Density 

It is worthwhile to reconsider the connection between the energy level density and 
the split property, disclosed in [9] and [5], in the light of the results of the preceding 
section. We recall that an inclusion of local algebras d(01)  c d(02)  is said to be 
split if there exists some factor s / / o f  type I such that d((~l)" c J / / c  d((~2)". We 
will, on the one hand, establish the existence of such factors dr' under conditions 
on the energy level density which cover a larger class of theories than those 
considered in [9] and [5]. On the other hand we will show that in theories having 
the split property the energy level density must comply with the Haag-Swieca 
compactness condition [17]. 

Proposition 4.1. Let (9 be any bounded region of Minkowski space and let 0~, fl > 0 
be the corresponding maps defined in (3.6). I f  the order qp of these maps is sufficiently 
small for large fl, then the inclusion ~((fll)C ~(02) iS split for any:region (~1 whose 
closure is contained in the interior of (9 and any sufficiently large region (92. More 
specifically: the inclusion is split if the inner distance ~ between (~1 and (fiE is such 
that q~/c < 1/12, where c is the constant in Lemma 3.3. 

Proof. Let q~/c < 1/12. It then follows from Proposition 3.4 that q~ < 1/3, where q~ 
is the order of the standard map ~ associated with the regions (P~ and (~2. From 
Lemma 3.1 we see that consequently q, < 1/3, where q,  is the order of ~ , ,  and 
applying Lemma 2.1 we conclude that 3 ,  is of type 11, hence nuclear. But the 
latter fact means (cp. [6, Remark 1]) that the functional to on d((~1)|162 
given by 

~o(A | B') = (~, AB's Aed((~l) , B' ed((92)' (4.1) 

extends to a normal state on the W*-tensor product d((~l)"~d((~2) ' .  If one 
applies now the arguments in [5, p. 129/130] the statement follows. �9 

Let us briefly discuss the significance of this result: if in a quantum field theory 
the maps 03, fl > 0 are of order 0 for all bounded regions (Pl, then it follows that 
the inclusions ~r c ~r are split, provided the closure of (Pi is contained in 
the interior of (92- In that case the theory is said to have the split property. It is 
essentially this class of theories which was studied in [9] and [5]. 

The present result also covers theories in which the orders of the maps O~, fl > 0 
are different from 0, but get small if fl becomes large. As will be clear from the 
discussion in the subsequent section, this ought to be the case in theories with a 
maximal temperature. In that situation we still find that for each bounded region 
(~ there exists some bounded region (~2 such that the inclusion ~ ( (~ )  c d((92) is 
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split. Since the inner distance 6 between the regions (91 and (9 2 must be sufficiently 
large one says in this case that the theory has the distal split property. Examples 
of such theories have been studied in [11]. We note that the results of the heuristic 
discussion in the subsequent section (in particular the bounds (5.5)) seem to imply 
that the minimal splitting distance is proportional to the maximal temperature in 
the theory. 

Having seen, how spectral properties of the Hamiltonian give rise to specific 
algebraic properties of the underlying net of local algebras, we want to discuss 
now how this algebraic structure leads in turn to restrictions on the Hamiltonian. 

Proposition 4.2. I f  a quantum field theory has the (distal) split property, then ~he 
maps 0#, fl > 0 defined in (3.6) are compact for all bounded regions (91 . 

Proof. The statement is based on the observation that whenever a theory has the 
(distal) split property, then the maps ~ defined in (3.4) are compact for any 
bounded region (91 and any (sufficiently large but bounded) region (92 = (91- This 
fact has been established in [6 Theorem 3.3]. For the convenience of the reader 
we give here an elementary proof: assuming that there exists some factor d{ of 
type I such that d((gt) ~ J# _-__ d((gz) we can represent the functional co defined in 
relation (4.1) according to 

r | B') = ~ go,(A)$,(B'), 

where ~Pi, @i are normal states on ~r162 and ~/((92)', respectively, and the sum 
on the right-hand side converges uniformly on ~'((91)" | d((92)'. Hence we see that 
for A~M((91) 

II A 1/4A~2 II 2 = (-O, JAJ.A~2) 

< sup {I co(A | n')l: B'~ sC((gz)', [I B' l[ =< [[ A [I} 

<(flq~,(A)l'll@i,l+e'llall)'llAIl,=~ 

for any e > 0 and sufficiently large N. Since the unit ball of ~r is weakly 
compact we infer from this estimate that the map E" has finite e-content, and hence 
is compact. The assertion about the maps O#, p > 0 then follows from the first part 
of Proposition 3.7. �9 

If in a theory the maps O#,/~ > 0 are compact for all bounded regions (91, then 
this theory satisfies the compactness criterion proposed by Haag and Swieca in 
[17]. These authors argue that their criterion ought to be satisfied in theories 
having a complete particle interpretation. The split property may thus be regarded 
as the appropriate algebraic version of this requirement. 

It is of interest in this context that the split property is known to be satisfied 
in many interacting theories, such as the ~b4z-theory [12], the Yukawa-theory in  
two dimension [22], and certain models exhibiting solitons [14]. 

If one looks at the proof of the preceding proposition more closely one may 
in fact expect that the split property comprises also some quantitative information 
about the maps @a,/~ > 0: in our argument showing that the maps ~ are compact 
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we did not make use of specifiC properties of the vacuum; it holds for any cyclic 
and separating vector ~.  On the other hand it follows from the generalarguments 
in [6] that under the given premises there exists a dense set of vectors ~2 for which 
the corresponding maps ~ are nuclear, respectively of finite order. In view of its 
distinguished r61e one may expect that the vacuum vector .(2 belongs to such a 
set. This would then provide more specific information about the maps Op, fl > 0. 

We conclude, this section by noting that in some models the inclusions 
~((91) C~((92) are split also for certain unbounded regions (91,(92, such as 
space-like cones [10]. In that case the corresponding maps ~ are still compact, 
although the maps Op, fl > 0 clearly fail to have this property if (91 is unbounded. 

5. Conditions of Nuclearity 

The notion of order of a mapping has proved to be a useful tool in the preceding 
analysis, and we want to discuss now how big the order of the various mappings 
studied above actually is in models of physical interest. This heuristic discussion 
is based on similar arguments as in [9]. 

Our first hypothesis concerns the nature of boundary effects: we anticipate that 
perturbations of H (and correspondingly of ~2) which are located in the distant 
spacelike complement of a bounded region (_9 have only marginal effects on the 
size of the set of vectors e-~Udl((9)~2. For the sake of estimating this size it should 
therefore make no substantial difference if one proceeds from the original theory 
to the corresponding theory in a finite spatial volume V which is sufficiently large 
compared to the extension of (9. To be more specific: let 2/f v, H v be the Hilbert-space 
and the Hamiltonian, respectively, of the finite volume theory. Then there should 
be a similarity transformation (i.e. a bounded, invertible map) S from Yfv onto 
Yg such that 

e-/m~r = Se-~t~ '%~v,1 ,  (5.1) 

where i f  v,1 denotes the unit ball in Wv. Moreover, since boundary effects are 
expected to be less significant (under normal circumstances) if one proceeds to 
larger systems, the similarity transformation S in relation (5.1) should stay bounded 
in the limit of large (9, provided the ratio V/r  s, where r denotes the diameter of (9 
and s the dimension of space, is kept large. 

Our second physically motivated hypothesis relates to the properties of the 
operator e - ~ m ' .  In the framework of statistical mechanics this operator is 
interpreted as the (unnormalized) density matrix of the Gibbs-ensemble in the 
volume V at temperature r -1 .  We therefore assume that in theories admitting 
thermodynamical equilibrium states for arbitrarily large temperatures the operators 
e -~m" are of trace class for all fl > 0. In theories with a maximal temperature this 
condition must be relaxed by the requirement that e - p u v  is a trace-class operator 
for sufficiently large ft. 

in either case the trace of this operator (the partition function) is to be interpreted 
as the exponential function of the free energy, multiplied by - f t .  One therefore 
expects that in theories with normal thermodynamical properties there holds for 
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large volumes V the bound 

Yr e -~m~ < e v '~) ,  (5.2) 

where 4~(/~) is some theory dependent function which tends to infinity as /~- 
approaches the maximal temperature in the given theory, respectively infinite 
temperatures. 

This heuristic input is the same as in [9]. But the mathematical implications 
which can be drawn from it about the nature of the maps Op,~:~'((9)-~ Yt ~ defined 
in (3.6) are more specific than those stated in [9]. (Since (9 is arbitrary we label 
these maps in the subsequent discussion by the region corresponding to their 
respective domains.) 

First we notice that relation (5.1) implies that the map ~v:Sr ~ v  given by 

q)v(A) = ePnVS - le-Pn Al2, A6d((9) (5.3) 

is bounded by 1. Second, the assumption that the operators e - '~v  are of trace 
class for any fl > 0 implies that these operators are, for fixed t ,  elements of all 
Schatten-von Neumann classes [-18]. 

Making use of the spectral theorem and the remark following after relation 
(2.3) we thus see that each map e-PHV:Wv~2/gv is of type s (order 0). But the 
maps of a fixed type form an ideal in the space of all bounded maps between 
Banach spaces [20]. Hence the map O,,~, which is obtained by composing e -puv 
with the bounded maps ~v and S, respectively, is of type s (order 0) too. We recall 
in this context that if O~,e is of type s for some value of t ,  then it is of type s for 

all f l>0 .  
On the basis of relations (5.1) and (5.2) one can also estimate the p-norms of 

these maps. From the definition (2.3) it follows by a straightforward calculation 
that for any p > 0, 

II Op,~ IIv < II S ]I'll 4~v ]i-(Tr e- vt3M~) x/p. (5.4) 

But [[ q~v [[ < 1, and by assumption the similarity transformations S stay bounded 
for arbitrarily large regions (9, provided V/r s is kept large. For large diameters r of 
(9 we can therefore proceed from (5.4) (by fixing the ratio V/r ~) to the estimate 

[I O~,~ lip < const e 's*~p'p)/p, (5.5) 

where we have absorbed the constant V y  in the function ~b. 
We note that in generic cases (e.g. if Stefan-Boltzmann's law holds at high 

temperatures) the function q5 should exhibit a power-like singularity at/3 = 0. For 
p = 1 the estimate (5.5) then reproduces the bounds on the nuclearity index given 
in [9]. 

The above reasoning can also be applied to theories with a maximal temper- 
ature, the only difference being that there e -am" is a trace-class operator only if 
13 > ]~min (the inverse of the maximal temperature). Relation (5.5) also holds in these 
cases if p > flmin/fl" From this we see that the order of the maps Oa,~ can still be 
made arbitrarily small provided fl is chosen to be sufficiently large. 

Let us briefly discuss how these conclusions have to be modified if one replaces 
in the above reasoning the vacuum state by some equilibrium state at temperature 
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T~ T'/~mi n < 1. We denote the corresponding cyclic vector by O r  and the generator 
of the time-translations annihilating ~2 r by H r. In analogy to the preceding 
discussion we consider the local excitations of O r , i.e. the set of vectors 
Al2r, Aedl((9) .  But now it no longer makes sense to restrict the total energy of 
these states (which is infinite) 1. Instead we restrict the energy transferred by the 
operators A to 12 r by taking time-averages ~dtf(t)~t(A) with a suitable testfunction 
f ( t )  whose Fourier transform f(c0) decreases exponentially. In view of the invariance 
of O r under time-translations we have that 

dt f(t)~t(A)12 r = f ( H r ) A l 2  r, (5.6) 

and we are thus led to consider as analogue of @a.~ the maps 

A e ~ ( ( 9 )  ~ e-#ln~tAl2r, fl > 0, (5.7) 

where IHTI denotes the modulus of H r. A similar argument as in the case of the 
vacuum state leads to the conclusion that these maps ought to have finite p-norm, 
p>2T'l~min, provided fl is sufficiently large, viz. fl>flmin/P, tf  there are no 
limitations on the temperature T, the maps (5.7) thus ought to be of order 0 for 
any T __> 0 and any fl > 0. 

If the latter condition is satisfied it follows that also the maps 

Aed( (9 ) - - , e -PnTAF2r ,  0 < fl < 1/2T (5.8) 

are of order 0, despite of the fact that the operator e -pn~ is unbounded. For the 
proof of this assertion we recall that e -nT/T is the modular operator associated 
with O r and the algebra a '  of all local operators (since the state represented by 
O r  satisfies the KMS-condition for temperature T) [3]. Let J be the associated 
modular conjugation and let P -  be the projections onto the positive and negative 
spectrum of HT, respectively. Making use of the Tomita-Takesaki  theory we have 
that for any A~sr there holds the equality 

J P  + e - PnTA *Or  = J P  + e -  BH~. en~/2 T j A I 2  r 

= P - e  (a- 1/2T)ttTA.-C2T. (5.9) 

Now if the map (5.7) is of order 0, then the map A e d ( ( 9 ) ~ P + e - a n ~ A I 2 r  is also 
of order 0 since P+e -a"T = P+e -atnTt. Moreover, since J is bounded, the equality 
(5.9) implies that the map Ae~r P - e  (a- t/2T)H~AF2T is, for any fl > 0, of order 
0 too. Bearing in mind that the maps of order 0 form a linear space we thus 
conclude that the maps (5.8) are of order 0 for the given range of ft. 

It is clear that these limitations on fl cannot be relaxed. Since e-n~/2TAl2r = 
J A * O T  the map (5.8) is not even compact if fl > 1/2T. In theories with a maximal 
temperature there arise further restrictions on the admissible range of fl: one finds 
by the same arguments as before that the maps (5.8) have finite p-norm if 
p > 4T'flmi . and if fi satisfies f l m i n / P  < fl < 1/2T - f lm in /P .  It is note-worthy that the 
latter condition is always satisfied for the (according to the Araki theory of cones 
[1] "natural") value fl = 1/4T. 

Having seen how in the case of temperature states the number of local degrees 

1 We recall that HT does not have the meaning of the observable "energy" [16] 



134 D. Buchholz, C. D'Antoni and R. Longo 

of freedom of a theory is encoded in properties of the maps (5.8), let us now turn 
back to the vacuum situation. The results of our heuristic considerations can be 
summarized in the following variant of the nuclearity condition in I-9]. 

Condition of Energy Nuclearity. Let 0 be any bounded region of Minkowski space. 
Then the maps @#,~:d(O)~ Jcf given by 

@#,e(A) = e-#nAS2; A~d((9) 

must be of arbitrarily small order if fl > 0 is sufficiently large. 

It is clear from the above discussion that there should hold a similar condition 
involving the temperature states. One can also give quantitative versions of this 
condition in terms of the p-norms of O#,r cp. relation (5.5). The above condition 
must therefor e be regarded as a very weak requirement. It does not seem, however, 
to follow from the nuclearity condition stated in [9], although it has the same 
heuristic basics. We therefore propose this alternative formulation since, on the 
one hand, it comprises more specific information about the properties of the maps 
0# , .  On the other hand, it seems to cover a larger class of theories of potential 
physical interest, including theories with a maximal temperature. 

Our condition can also be stated in terms of the modular operators associated 
with the local algebras and the vacuum state. 

Condition of Modular Nuclearity. Let (91 c @2 be arbitrary bounded regions of 
Minkowski space and let Sr162 1 : ~ r  be the maps given by 

Z~2.,I(A ) = A~'*A~, AEd((913, 

where do2 is the modular operator associated with the pair M((92), O. These maps 
must be of arbitrarily small order if the inner distance between (91 and (92 is 
sufficiently large. 

It is clear from the results of Sect. 3 that this condition is equivalent to the 
preceding one involving the Hamiltonian. Those results, combined with the bounds 
(5.5), also suggest obvious quantitative formulations of the condition which might 
be of use. 

What we would like to point out here is the fact that our modular nuclearity 
condition is local in the sense that it only requires information about the restriction 
of the vacuum functional 090 to the local algebras: given these partial states, the 
relevant modular operators are fixed and the nuclearity condition can be checked. 
This check does not hinge on the explicit knowledge of the Hamiltonian. 

The latter remark is substantiated by the following observation: if ~ complies 
with the condition of modular nuclearity, then the same condition is satisfied by 
a dense set of vectors ~ ~Jcf. To verify this we pick any unitary operator V with 
bounded localization region (90 and set ~ = V. 12. Given O 1 we choose (92 ~ (91 u (90. 
The modular operator zt~ corresponding to the pair d((92), ~ is then given by 
71e~ = VA~ V*, and consequently 

~1~4A~2 = V A ~ .  V*AVg2 (5.10) 

for all A~4((9~). But the map A ~  V*AV of z~4((9~) into M((ga u(9o) is bounded 
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and it thus follows from relation (5.10) that t) satisfies the condition of modular 
nuclearity if the vacuum vector .O does. Since the local operators act irreducibly 
on ~ the set of vectors of the form of ~ is dense, hence the assertion follows. 

The fact that the formulation of our condition of modular nuclearity does not 
depend on the existence of unitary time-translations (a Hamiltonian) suggests that 
it also prevails in theories where the underlying space-time manifold does not 
admit such a global symmetry. It therefore may be of interest in the structural 
analysis of generally covariant quantum field theories [13]. For example, it follows 
directly from the condition of modular nuclearity (i.e. without relying on the 
Hamiltonian) that the theory has the distal split-property if the local algebras are 
factors [6]. 

Appendix 

It is the purpose of this Appendix to demonstrate that the condition of energy 
nuclearity, as stated in Sect. 5, is satisfied in free field theory. We discuss here the 
theory of a scalar particle of mass/~ > 0. The case # = 0 is of particular interest 
since in that case the secondary r61e of boundary effects, anticipated in our heuristic 
discussion, is less obvious due to the presence of long-range correlations. 

Our reasoning is similar to the arguments in [9] and [7], and we therefore 
confine ourselves to indicating the necessary modifications. We adopt the notations 
in [7]. Let ~(( be a complex Hilbert space (the single-particle space), let J be an 
anti-unitary involution, and let co be some positive operator (the single particle 
Hamiltonian) commuting with J. 

The symmetric Fock space over oU is denoted by ~ and the distinguished vector 
representing the vacuum by 12. On J{ there act the familiar creation and annihilation 
operators a*(f) and a(f), f ~ K ,  and the corresponding unitary Weyl operators 

W(f)  = exp (i[a*(f) + a(f) ] - ). (A. 1) 

By second quantization of co we get a positive selfadjoint operator H (the 
Hamiltonian) for which we have HI2 = 0 and 

eitUW(f)e -i tn= W(em~ teR. (A.2) 

Let ~ and ~ be closed subspaces of ~( which are stable under the action of J. 
We consider the real-linear subspace 

= (1 + J ) ~  + (1 - J)_~,, (A.3) 

and the corresponding von Neumann algebra 

"r163 = { W(f): f ~ } " .  (A.4) 

This algebra is to be interpreted as the local algebra ~((9) attached to a given 
space-time region (9 for a specific choice of the spaces ~ and 5~ see below. We 
define for any fl > 0 maps ~gp: ~r ~ ~ ,  setting 

@~(A) = e-~nAl2, A~'1r163 (A.5) 

Denoting by Eo, E, the projections onto s and .L~~ respectively, we have in 
analogy to [7, Theorem 2.1]: 
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Lemma. Let [E~e-P'~ p and [E~e-a'~[ p be trace class operators for some 0 < p < 1. 
Then the map Op has finite p-norm and 

I[ Op lip < det(1 -IE~,e-P~'lp)-2/p.det(1 -IE~e-#~[P) -2/p 

Proof. Let T be the "least upper bound" I-7, p. 3163 of the operators IE,e-a~'l and 
I E~e- ~ l. As a consequence of the stated assumptions, I TI p is of trace class and 
[IT II < 1 (since r is positive). Choosing in 3r as orthonormal basis the eigenvectors 
ei of T corresponding to the eigenvalues t~ (counted including multiplicity) we 
obtain, by taking tensor products of these single-particle vectors, an orthonormal 
basis ~(,) in ~ .  Here (n)=(nl,nE,. . . ,ni , . . . )  is a multi-index specifying the 
"occupation numbers" n~ of the "modes" e~ in the state ~(,). On account of the 
equality 

O~(A) = ~ (q)(,), e-  t~nAl2)- cI)(,) 
(n) 

it is clear that 

II O~(A)lip --< ~ sup { [ (q)(.), e-g'AI2)[P:A~'IU(..Lf)I}. 
(n) 

Moreover, applying the arguments in the proof of Theorem 2.1 in [7] and 
Lemma 1 in the Appendix of [9] it follows that 

sup { I (~(,), e -  ariA.(2) I: A r ----~ I-I (hi -4- 1)t7', 
i 

where we adopt the convention that 0 ~ = 1. From this estimate and the fact that 
p < 1 we conclude that 

II O~ I1~, < det(1 - TP) -2 < ~ .  

As in [7; p. 318] the given bound on II ollp then follows from the fact that T is 
the least upper bound of [ Eye- P~'[ and I E=e- ~'[, respectively. �9 

With the help of this lemma we have reduced the problem of determining the 
nuclearity properties of the maps O~, fl > 0 to a standard problem on the single 
particle space. This result can be applied to models of an arbitrary number of free 
scalar Bose-particles. We study here only the case of a single particle of mass # > 0 
in s > 1 spatial dimension. In that case 3r can be identified with the space Lz(R ~) 
of single-particle wave-functions f ,  J is the operator of complex conjugation in 
configuration space, i.e. (Jf)(x) = f(_x)*, and the action of ~o is given by 

(~'-~)(p_) = (l_p12 + #2)1/2. ~(p_), (A.6) 

where f denotes the Fourier transform of f .  
It suffices to consider the local algebras zr associated with double cones (9 

whose bases ~ lie in the time zero plane. The corresponding subspaces ~eo, ~ 
are given by 

Lf~, = ~o- 1/2@(C), f ~  = o91/2~(0_). (A.7) 

where 9(_(2) is the space of all testfunctions with support in the bounded region 
~ R'; and the bar denotes closure. 
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Lemma.  Let E, ,E~ be the orthogonal projections onto the spaces .W<, and ~ ,  
respectively, defined in (A.7) and let co be the positive operator defined in (A.6). Then 
IEr and [E~e-#~ are, for any fl > O, elements of all Schatten classes (i.e. the 
pth powers of these operators are of trace-class for any p > 0). 

Proof. Let Xo~A:(R ~) be any test function which is equal to 1 on the region (9 and 
let X be the corresponding multiplication operator  in configurat ion space, 
(zf)(_x) = X0(x).f(x). A straightforward calculation shows that  for any n~N the 
operators  

h, = o91/2"(1 + co2)(n- 1)s~ (1 + CO2)-ns. CO-1/2 

kn = co-1/2"(1 + co2)(n-1)s Z (1 + co2)-nscol/2 

are in the Hi lber t -Schmidt  class. Moreover ,  it follows immediately from the 
definition of the spaces ~a,  and ~ that  there hold the equalities 

E<,e-#'~ = Er 1 .h2.." hn'(1 + co2)nse-#~ 

E~e- #,o = E~k 1" k2 " "" kn" (1 + co2)nSe- #~, 

Since co is positive, the expression involving co which appears on the r ight-hand 
side of these equalities is a bounded  opera tor  for any fl > 0. Hence the operators  
Ec, e -#~' and E,e -#~ can be represented as a product  of  an arbitrary number  of  
Hi lber t -Schmidt  operators.  This proves the statement. �9 

Combining  the previous two lemmas we arrive at the 

Proposition. In the quantum field theory of a free scalar particle of mass # > 0 in 
s > 1 space dimensions the maps @ # : d ( ( 9 ) ~  given by 

O#(A) = e-#nAl2, A~d((9)  

are of order 0 for any fl > 0 and any bounded space-time region (9. 

Remark. If / t  > 0 this result holds also if s = 1. Moreover ,  by a refined analysis one 
can give quantitative bounds  on the p-norms of  0# ,  fl > 0 which are consistent 
with the out -come of the heuristic discussion in Sect. 5. 
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