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The one-loop damping rate of color oscillations in a QCD plasma has previously been 
found to be gauge dependent, with even different gauge independent frameworks yielding 
differing results. In this paper manifestly gauge independent QCD plasma parameters are 
derived from the structure functions of on-shell scattering amplitudes of test particles which 
are sufficiently heavy so as to permit the definition of an S-matrix in the usual sense despite 
the presence of a plasma, and suppressing on-shell infrared divergencies in the limit of inlinite 
masses. This provides an alternative to the usual linear response analysis based on the gluon 
propagator. The one-loop result coincides with the one based on Cornwall’s “gauge invariant 
propagator.” It is pointed out that higher-loop corrections will modify the one-loop result at 
the same order of magnitude, and an approximation towards inclusion of higher-loop effects 
is considered. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Quantum chromodynamics (QCD) is expected to undergo a deconfinement 
phase transition at a temperature T- AQcD N 200 MeV, and at sufficiently high 
temperature and density asymptotic freedom should provide room for a pertur- 
bative analysis of the resulting quark-gluon plasma [l-3]. 
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Certain collective phenomena can be studied by a calculation of the finite 
temperature one-loop gluon self energy, which is recapitulated in Section 2. This 
reveals that static color electric fields are screened through the appearance of an 
electric mass m,, - gT, while a corresponding magnetic mass is thought to be 
generated non-perturbatively at the order g2T, thereby solving the problem of 
infra-red divergences arising at higher loops [4]. Starting from a minimal frequency 
oPl N gT there can also be weakly damped plasma oscillations with decay rate 
y - g*T. 

In contrast to the leading order results m, and wP,, the one-loop plasmon 
damping constant y, however, has turned out to be gauge fixing dependent [l, 5-121, 
most often even carrying a negative sign which seems to signal instability of the 
perturbative vacuum. The only positive results have been obtained in the temporal 
axial gauge [6] and in the Coulomb gauge [7,8], where a direct connection 
between the gluon propagator and correlation functions for the color electric field 
strength can be established. In [9] the one-loop plasmon damping constant has 
been derived from background gauge invariant effective actions [ 133, which still 
depend on the gauge fixing parameters, and as in conventional covariant gauges 
[ 1 ] negative definite values have been obtained. In order to achieve manifest gauge 
independence, the concept of the off-shell reparametrization invariant effective 
action due to Vilkovisky and Dewitt [14] has been invoked [9, lo], still with 
negative result. Another manifestly gauge independent approach [ 1 l] based on 
Cornwall’s “gauge invariant propagator” [lS] also has led to a negative one-loop 
result, but differing in magnitude from the former. In the latter approach gauge 
independence is achieved by rearranging contributions to on-shell amplitudes such 
that a gauge independent propagator-like contribution is distilled out. This proce- 
dure, however, has recently been critized as being ambiguous [ 161. 

In Section 3 we extract plasma parameters from on-shell scattering amplitudes in 
a different manner. We consider scattering of tictitious test particles with masses 
MB T so that for these particles an S-matrix in the conventional sense can be 
defined. Even in QCD such a scattering amplitude exists in the limit of infinite mass 
M, because all problems with soft gluon bremsstrahlung from external lines disap- 
pear in this case [19]. Then we look for poles corresponding to collective modes 
in the analytically continued structure functions of this scattering amplitude. 
Thereby we again find a negative one-loop plasmon damping constant, coinciding 
with the particular value of Ref. [ 111. 

However, since in this context a one-loop calculation is inaccurate (cf. Section 4), 
the most important aspect of our approach is that it establishes an alternative to 
the usual linear response analysis based on the gluon propagator. Unlike the 
aforementioned attempts to achieve gauge independence, we do not single out one 
particular gluon propagator but focus on the naturally gauge independent scatter- 
ing amplitudes. 

In Section 4 we finally discuss higher-loop corrections, concluding that they still 
can modify the one-loop result at the considered order g2T. As an attempt towards 
inclusion of higher-loop effects, we consider an approximation to the dressed 
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propagator introduced in [6, 71, finding that the modified one-loop plasmon 
damping constant still is gauge dependent and negative in the covariant gauges, but 
zero in the non-covariant ones as well as for our scattering amplitude. 

In the Appendix we give the evaluation of the finite temperature gluon self energy 
in conventional and background Feynman gauge in the high-T expansion down to 
the order To. 

2. THE FINITE-T ONE-LOOP GLUON PROPAGATOR 

In linear response theory [ 17,223 the basic quantity from which plasma 
parameters are obtained usually is the propagator. In our case this is the gluon 
propagator 

(TA;(x) A~(Y))~ = Tr[ePSHT,4;(x) At(y)]/Tr[e-BH] 

= PbAUY(X - y), (2.1) 

evaluated at high temperatures T= l/j 9 nQcD. 
At finite temperatures, there is a preferred coordinate system, the rest frame of 

the plasma, and unless a non-covariant choice of gauge further reduces Lorentz 
symmetry, the general form of the (inverse) propagator is given by 

A,'(Q) = o(Q) A,, + b(Q) B,,, + c(Q) C,, + d(Q) D,iv, (2.2) 

where in momentum space (Q, = ( qo, qi)) we employ the following tensorial basis 

c,v = &[(dMo-y) ~.+8,(a,~-$$)l; (2.5) 

of which A and B are transverse with respect to Q,. 
In the following we shall restrict ourselves to the Feynman gauge, where the bare 

propagator is as simple as possible. In order to be able to make out potential gauge 
dependences, we shall consider the conventional Feynman gauge (FG) as well as its 
background covariant version [ 131 (BFG). 

In both, FG and BFG, the gluon self energy 

npv = A ,’ - A (o;,, (2.7) 
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turns out to be transverse, even at finite temperature. (In the case of background 
covariant gauges this is a consequence of background gauge invariance, while the 
conventional covariant gauges in general lose transversality at finite T.) As a conse- 
quence, there are only two independent structure functions in the corresponding 
gluon propagator, 

A,,(Q)=L,,+J- 
a(Q) 

B,, + ' D,, , 
b(Q) Q2 

with a describing spatially transverse, and b describing spatially longitudinal modes. 
In terms of the gluon self energy, a(Q’) and b(Q’) are given generally by 

(2.10) 

which in the case of a transverse self energy reduces to 

a,,,=Q'-@7,,,,-n,,], (2.11) 

b(Q’)=Q’+%n,. (2.12) 

The two relevant quantities n, and Z7,, are evaluated in one-loop approximation 
in the Appendix for the case of a purely gluonic SU(N) Yang-Mills theory. (We 
omit quarks as they play no role in the question of gauge dependence at one-loop 
order. For their contributions consult, e.g., Ref. [S].) 

The leading parts of order g2T2 in (2.11) and (2.12) are given by the gauge 
independent expressions 

a( Q2) = Q2 - g~{$+(l-$)~ln(~)}, (2.13) 

b(Qz)=Q’-F (I-$)(l-gin(E)). (2.14) 

In the static limit q. + 0, the results are 

g2NT2 
;1$7~(Q)=~+g~NqTx 

-a (FG) 
_ f (BFG) + ‘(ln T)y (2.15) 

,‘,‘T, n,,(Q) = g2NqTX 
-i (FG) 
z 
8 

(BFG) + Win 0, (2.16) 
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where the leading term in (2.15) is the well-known electric screening mass, whereas 
(2.16) does not give rise to a magnetic mass. Note that the terms O(T) are gauge 
dependent. 

The limit of long wavelengths, q -+ 0, is relevant for the study of plasma oscilla- 
tions. Since in this limit 

lim Il,, = lim i hi,, Hii, 
Y+O q-0 

(2.17) 

now the longitudinal and the transverse modes coincide, 

a(qO, o)=b(qO, O)=qi+ +nii(40, O), (2.18) 

and from the results of the Appendix we read off 

-5 (FG) 
_ 11 (BFG) + O(ln T) (2.19) 

Determing the pole in l/a(qO, 0) or equivalently in l/&q,, 0), 

0 = a(q,, 0) = b(q,, 0) = q; - (0 - iyy, (2.20) 

the real part of (2.19) yields the plasma frequency 

co’,, = g2NT2/9. (2.21) 

The dispersion relations for plasma oscillations with q # 0 is displayed in Fig. 1, 
where it is made evident by the quadratic scales for o and q that the dispersion 
relations are not Lorentz invariant for which they would have to be straight lines 
parallel to the diagonal. In other words, the plasmon “mass” is dependent on the 
momentum and it approaches zero for the spatially longitudinal mode, but is a 
non-vanishing constant in the case of the transverse one. 

The plasmon damping “constant” y is usually defined in the long-wavelength 
limit and is determined by the imaginary part of q. in Eq. (2.20). In contrast to the 
plasma frequency (2.21) it turns out to be gauge dependent, and in our case even 
becomes negative, 

P-G) 
(BFG)’ 

(2.22) 

In view of missing higher-loop results, which, as we shall discuss later, still can 
modify (2.22), there have been various attempts to ameliorate the lowest order 
calculation by methods which promise manifest gauge independence. 

Kajantie and Kapusta [6] have studied the gauge covariant correlation function 

W’(x) Ebb)>, 
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spatially longitudinal 

1 ¶ 
3 

x 
gT 

(quadratic scales) 

dynamical screening <+h plasmon propagation 

FIG. 1. High temperature dispersion relations for the spatially longitudinal and transverse gluonic 
modes. The enveloping straight lines correspond to the light cone and to the mass hyperboloid of mass 
fi or, (note the quadratic scales). 

which is simply related to the gluon self energy in the temporal gauge, and have 
obtained a positive one-loop damping constant y = +g*NT/24n. In response to 
questions concerning difficulties [23] with the temporal gauge, this result has been 
reproduced starting from the Coulomb gauge [7,8], but not in covariant gauges 
[24]. Indeed, a gauge covariant correlation function need not be gauge fixing 
independent. 

Alternatively, Hansson and Zahed [9] have studied background field gauge 
invariant effective actions’ to extract the plasma parameters. However, in spite of 
(background) gauge invariance, the problem of gauge fixing dependences remains, 
so these authors have appealed to the concept of the reparametrization invariant 
effective action due to Vilkovisky and Dewitt [14], which achieves gauge invariance 
and gauge fixing independence even off the physical mass-shell, and which singles 
out the background covariantized Landau gauge. To one-loop order the latter 
yields a negative damping constant, y = -45g2NT/96n. 

’ It has been overlooked in Ref. [9] that also the temporal gauge can be interpreted as a background 
covariant gauge, as is the case for all homogeneous axial gauges in Yang-Mills theories [18]. 
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Kobes and Kunstatter [lo] have pointed out that an application of the 
Vilkovisky-Dewitt effective action which is compatible with linear response theory 
necessitates a modification of the calculation of Ref. [9] resulting in the value 
y = -9g2NT/32z, which still is negative, though. 

Finally, Nadkarni [ 1 l] has argued in favour of Cornwall’s “gauge invariant 
propagator” [lS] which happens to coincide exactly with the one of the back- 
ground covariant Feynman gauge, where value and sign of g is bound up with the 
QCD p-function [ 121. In Cornwall’s approach gauge independence is achieved by 
rearranging contributions to on-shell amplitudes in propagator-like and vertex-like 
parts. However, this procedure has been criticized recently as having ambiguities of 
its own [16]. 

In the following we will adhere to a different strategy. Instead of investigating the 
gluon propagator as an ingredient of a linear response analysis, we will extract the 
plasmon parameters from the pole structure of on-shell scattering amplitudes. 

Neither the gluon potential nor even the gluon field strengths are observables, 
since they are not gauge invariant. A naturally gauge independent object (as 
opposed to the more or less artificial gauge independence of the aforementioned 
attempts) would be provided by a scattering amplitude. In order to be able to 
define an S-matrix in the usual (T = 0) sense, we resort to scattering of fictitious test 
particles with mass M$ T and by employing colored ones we can probe the 
dynamics of the QCD plasma. (As we shall show, the infrared problem of this 
process can be eliminated by the limit M -+ co.) By this we can deal with a simple 
and in-principle measurable process which should contain the information that our 
test particles exchange plasmons rather than T= 0 gluons. These should then 
appear as poles of the scattering amplitude in the (analytically continued) momentum 
transfer variable. 

3. QCD PLASMA PARAMETERS FROM AN ON-SHELL SCATTERING AMPLITUDE 

On-shell scattering of super-heavy test fermions in (T=O) QCD has been 
proposed some time ago by Kummer [19] to define a manifestly gauge independ- 
ent renormalization scheme, the “mass-shell momentum subtraction scheme” 
(MMOM). In the limit of masses A4 + cc the fictitious particles disappear [25] 
from the “low-energy” theory after having served their purpose as “observers.” 
Moreover, this limit provides a most simple kinematical situation where the 
fermions can be treated non-relativistically, with the additional advantage that the 
usual on-shell IR-singularities of the scattering amplitude are removed. In the cross- 
section these divergences are now suppressed by a factor Q2/M2 -+ 0, where Q is the 
momentum transfer. In a sense, MMOM thus provides an alternative to the Thom- 
son limit in QED, which is not viable in non-abelian gauge theories. 

In our generalization of the original MMOM scheme to T # 0, we must not take 
the limit of non-relativistic test fermions, IpI/pO + 0, in the rest frame of the plasma, 
since this would mean q. -+O for the momentum transfer and we would only be 
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able to study the static limit. Unlike the zero temperature case we cannot invoke 
Lorentz symmetry for analytical continuation to general Q, so we have to ensure 
q,, #O. Therefore we take p,,, Ipl % Tbq,, 191. In this limit all spin-dependent 
corrections will vanish. For two different fermion momenta we additionally take 
JpO - p&l, lp - p’l 6 pO, 1~1, that is, the fermions are assumed to be non-relativistic 
in their center-of-mass system which may be relativistic with respect to the plasma 
rest frame. This is necessary for the elimination of infra-red divergencies. 

The general structure of our scattering amplitude thus reduces to gzjP(P)jy(P)~M,, 
where S$ is a symmetric tensor transverse to Q, in virtue of current conserva- 
tion. As in the case of a transverse gluon self energy, d contains two structure 
functions corresponding to spatially transverse and longitudinal modes, 
~4:~ = (l/u) A,, + (l/6) B,,. The scattering amplitude is thus parametrized through 

jr(P) jy(P)dpy= jpjpi+ jijj(~-dg)(~--~). 

In the previous section we have already obtained the contribution of the 
one-loop gluon propagator to (3.1). We now have to compute the remaining 
contributions as displayed in Fig. 2. We again perform our calculations in FG and 

P P-Q 

FIG. 2. One-loop contributions to fermion-fermion scattering. 
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BFG in order to demonstrate gauge independence of our result. In addition we 
have checked independence in the general covariant gauges, although we shall not 
give the details here. 

3.1. Fermion Serf Energy 

With fermion masses M$ T, the bare Fermi propagator reduces to the one at 
T= 0, and we have only Bose-Einstein distribution functions 

n(k)=-& 
associated with the gluon momenta. 

The fermion self energy is thus given by 

(3.2) 

where CF is the Casimir of the fundamental representation, and in order to insert 
Z into the on-shell scattering amplitude, Fig. 2b, we have to expand (3.2) around 
the mass-shell p = M, 

C(P)=C,+z,(p-M)+O(P2-W). 

The on-shell mass counter-term receives the temperature correction 

(3.3) 

(3.4) 

which unlike at T=O remains a (matrix) function of P, but vanishes in our limit 
pO, IpI % T. This latter conclusion is readily drawn from expression (3.4), since the 
integration momentum is effectively cut off for k >> T by the Bose-Einstein distribu- 
tion n(k). 

There is, however, a non-vanishing contribution to the fermionic on-shell wave 
function renormalization, 

&(P)=$&r.-&) 
fl P=M 

~d(K2)n(k)&=g2C~2ja&~, (3.5) 
1 

containing a linear infra-red divergence, which we have regulated with the cut-off 
p. In contrast to C,, C, is a constant independent of P and M. 
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3.2. Abelian Vertex Correction 

On the mass-shell the QED-type vertex graph AcA) (Fig. 2c) contributes 

Ay)(P, P-Q)= -ig3~(C,-~)I~a(K2)n(k)(M~~~!VQU)~~R 

(3.6) 

where II is a Gell-Mann matrix, and CA = N is the Casimir of the adjoint represen- 
tation. 

With pO, IpI 9 T this reduces to 

Aj;“‘(P, P-Q) + -ig3 - :Y,(C.-~)l~6(K2)n(k)~, (3.7) 

leading to the same infra-red divergent integral as in (3.5). The infra-red divergences 
proportional to CF combine as usual into a correspondingly infra-red divergent 
wave function renormalization of our test fermions, whereas the infra-red 
divergence proportional to CA has to cancel with the remaining graphs. 

3.3. Non-Abelian Vertex Correction 

The non-abelian part of the vertex correction AcN) (Fig. 2d) is the only place 
(besides the gluon self energy) where it makes a difference whether we use FG or 
BFG. We distinguish these cases by the parameter 

0 
0= F-G) 

1 (BFG)’ 

We obtain 

Aj;“)(P, P-Q)=ig3~~[$$6(K2)n(k)Q2-:K+Q 

i 

Q.K 
’ P.K(P-Q).K [ 

R(e-2K),-(1-4;Q2~,] 

(2P - Q) . K 

+P.K(P-Q).K -P(Q - 29, + q,K@ - !MY, 

-2P,R+;Q2gu . (3.8) 

With pO, IpI $ T this reduces to 

1 
LCPK,-Il-~V’,Pl> ‘Q2-2K.QP.K 

(3.9) 
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where we have omitted terms proportional to Q,, since they are annihilated by 
current conservation when (3.8) is inserted into the scattering amplitude. 

Using Gordon’s identity, which for qO, (qj 4 pO, (pJ simplifies to 

u(P) yp4P - Q) -+ i P,ii(P) u(P), (3.10) 

and because of our assumption that (pO- &I, (p- p’( $ pO, (pi, (3.9) can be 
replaced by 

where all dependence on the fermionic momentum P has disappeared. Moreover, 
(3.11) is infra-red finite. 

In the case of FG (a=O), (3.11) 
evaluate 

vanishes, and for the case of BFG we have to 

s d4K 
3 6( K*) n(k 
(2x) 

1 
) Q2-2K.Q 

= -&YQ), (3.12) 

where P’(Q) is a function which has already appeared in the evaluation of the 
gluon self energy and which is given in the Appendix, Eqs. (A.4) (A.15)-(A.20). 

We note that by adding the contribution of (3.11) to the one of the gluon 
propagator we have now reached independence of a, i.e., whether we use FG or 
BFG, and as an interim result we have y = -5g2NT/24x, with the contributions of 
the box and the crossed graph (Fig. 2e, f) still to be calculated. 

3.4. Box and Crossed Graph 

The sum of the box and of the crossed graph, which we denote by E, evaluated 
on-shell and taking the same limits as in the previous section, yields 

- - 
E(P, P-Q, P, P+ Q, 

M2 
s6(KZ) n(k) ’ ~ 

Q2-2K.Q (K.f’)*’ (3’13) 

This expression is infra-red divergent. Adding to it the contributions of the 
abelian vertices proportional to C,, whose infra-red divergences have not yet 
cancelled, gives the infra-red finite integral 

2K.Q M2 

Q*(Q’-2K.Q) (K.P)2’ 
(3.14) 

where we have omitted the Gell-Mann and the Dirac matrices for simplicity. 
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Because the fermionic momentum P has not dropped out, (3.14) is more difficult 
to compute. Observing that in the high-T expansion its real part does not 
contribute at order T*, we restrict ourselves to the evaluation of its imaginary part, 
and we find 

ImZ”‘= 
g4C,n d3k 

s- 
M2 

-Yip- (2n)3n(k) bo-hW2 

x Ce(Q’)+e(-Q*)e(k.q-kq,)l6 k-iq -ek29/k 
0 . 

+0(-Q2)0(k.q+kqo)6 

Keeping only the leading term of the high-T expansion and assuming q < qo, 
(3.15) can be evaluated to 

g4G T ImE’=- 
47rQ4 11 + O(ln T). (3.16) 

We note parenthetically that contrary to appearance the non-relativistic limit 
u =p/po + 0 of (3.16) exists, whereas the T= 0 part of B in this limit develops a l/u- 
singularity in its imaginary part. The latter is a reflection of a well-known difficulty 
[ZO] associated with infinite-range potentials. It corresponds to a diverging phase 
shift and drops out when the complete scattering amplitude is squared to give the 
S-matrix. Here we have found that this l/u-singularity does not receive finite-T 
corrections in 0( g”). 

For our application we are interested in the q + 0 limit of expression (3.16), and 
there the dependence on the fermionic momentum P disappears. 

4. DISCUSSION AND CONCLUSION 

Adding up all imaginary parts, the one coming from the gluon propagator (2.22) 
and those from the additional contributions to the scattering amplitude computed 
in Section 3, we finally obtain the gauge independent result for the one-loop 
plasmon damping constant 

g2NT -11 g2NT y=([-5-6~]+6g-6)-= - 
24~ 24~ ’ 

Without giving the details of the calculations, we note that the individual contribu- 
tions to (4.1) are in a remarkable one-to-one correspondence with the real part 
contributions proportional to ln(T*/Q’) which combine with the T== 0 terms 
In( Q2/ji2) carrying the QCD /?-function coefficient. 
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Our one-loop result (4.1) coincides numerically with the one obtained by 
Nadkarni by employing Cornwall3 “gauge invariant propagator,” which in turn 
amounts to BFG. Although the idea behind our approach and that of Nadkarni is 
similar, the strategy is quite different. In Cornwall’s approach one uses elementary 
Ward identities to pinch out some of the fermionic propagators of an on-shell 
amplitude which then yields effective propagator-like contributions. This procedure 
has been criticized in [ 161 as being to some extent ambiguous. Our attitude on the 
other hand was to take the scattering amplitude seriously, and in virtue of our 
superheavy test particles we can claim a relation to an in-principle measureable 
process even at finite temperature. In fact, in our approach the individual graphs 
are contributing differently. For example, by constructing Cornwall’s “gauge 
invariant propagator” in a Feynman gauge, one does not obtain contributions from 
the box or from the crossed graph, while we did.* 

However, the coincidence of our result with that of Nadkarni does not yet resolve 
the vexatious disagreement of Refs. [6-111 on magnitude and sign of the one-loop 
plasmon damping constant. But, as we will now discuss and as has been already 
noted in [ 1, 2, 7, 111, a bare one-loop result is of little significance because higher 
loops will contribute in the same order of magnitude. 

Although one may assume g < 1, in the high-T-limit gT cannot be considered as 
small but is the relevant mass scale set by wP, w  gT. Now the imaginary part of the 
gluon self energy is governed by the location of the poles of the internal 
propagators which through self energy insertions are shifted by amounts -gT. 
Hence the imaginary part is modified already at lowest order. Another way to 
understand this is to realize that a (bare) two-loop calculation in the long- 
wavelength limit can produce an imaginary part proportional to g4T3/q0. 
Evaluated at the mass scale of plasma oscillations q. N gT, the latter is of the same 
order of magnitude as the bare one-loop result -g’Tq,. 

Summing up the relevant higher-loop contributions is certainly a non-trivial task. 
A first approximation would be to replace the bare propagators in the one-loop 
diagrams by those obtained through the bare one-loop calculation. Following 
Ref. [7] we will instead consider approximated dressed propagators where the self 
energy insertions are replaced by their (gauge independent) values on the bare 
gluon mass shell. From (2.9), (2.10), and (A.21) we thus start with 

a(Q')=Q'-~qQ')1 
40 = 4 

b(Q') = Q*. (4.2) 

This certainly will not yet give the true value of the plasmon damping constant at 
the order g*T, but it may give a hint about the direction in which the one-loop 
result will be changed. 

’ Our original expectation even was that we might end up with the positive result obtained in 17, 81 
in the Coulomb gauge, for in the previous applications at T=O [19, 213 MMOM was found to just 
amount to using the Coulomb gauge gluon propagator. 
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Recomputing (2.19) in FG and BFG we find3 

-2 (FG) 
-4 (BFG) (4.3) 

corresponding to a diminished but still negative (and still gauge dependent) 
plasmon damping constant. This reduction is largely due to the fact that with (4.2) 
the spatially transverse modes described by u(Q’) no longer contribute to the 
imaginary part because the plasma frequency is below the threshold 2m, intro- 
duced into (4.2). In Coulomb gauge as well as in temporal axial gauge the 
analogous calculation [7] even gives a zero imaginary part of ZZ, because with (4.2) 
the propagators in these two gauges no longer contain terms proportional to l/Q’ 
which were the only ones capable of producing an imaginary part: 

ACG=- -1 00 2 ’ A c.G 01 = 0 7 
4 

(4.4) 

ATAG=A;fiAG=O, 00 ATAG = ‘I (4.5) 

In order to recompute also our S-matrix element in the approximation (4.2), one 
could simply resort to either (4.4) or (4.5) to again find a zero result for the 
imaginary part, corresponding to a vanishing plasmon damping constant, y = 0, 
although we have not checked whether gauge independence of the S-matrix still 
holds in the approximation (4.2) and, actually, we do not see any stringent reason 
for this. 

At any rate these considerations show that the bare one-loop results may not yet 
be interpreted as a plasmon damping constant. The gauge dependences found in the 
poles of the bare one-loop propagator just reflect that not all contributions have 
been taken into account. The same is to be said about the discrepancy between the 
two manifestly gauge independent methods of the Vilkovisky-Dewitt effective 
action and of Cornwall’s “gauge invariant propagator,” with which our S-matrix 
calculation coincides numerically at one loop, since both approaches are still lack- 
ing the inclusion of the relevant higher-loop contributions. The lesson to be learned 
from this is simply that gauge independent does not yet mean physical. 

In fact, it has recently been shown [26,27] that a resummation of the leading 
order contributions will achieve gauge independence for the poles of the otherwise 
gauge dependent gluon propagator. 

All the differing one-loop results obtained so far should thus better be viewed as 

3 The approximation (4.2) turns out to be satisfactory at least in BFG where it preserves transversality 
of the self energy as far as the imaginary part is concerned. 

4 Assuming that the unphysical poles l/q: arising in the temporal axial gauge are treated in the 
principal value prescription. 
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agreeing in giving a zero result for y in the order gT, which in fact was the conclu- 
sion drawn in the original works [ 1). Whether the final plasmon damping constant 
is zero also at order g*T as suggested by the approximation (4.2) is still to be 
decided by a calculation which is exact at this order. 

APPENDIX: EVALUATION OF THE FINITE-TGLUON SELF ENERGY IN 
CONVENTIONAL AND BACKGROUND FEYNMAN GAUGE 

In this appendix we evaluate both, the real and the imaginary part of the finite 
temperature one-loop gluon self energy, in the conventional Feynman gauge (FG) 
as well as in its background covariant version (BFG) in the high-T limit up to 
0(1/T) following the methods of Ref. [3]. 0 ur results supplement those of 
Ref. [ 121 for the case of BFG, and those of Ref. [3] for the case of the conven- 
tional FG, correcting some misprints in the latter. 

With the following abbreviations, 

M(k)=(k+o+)(k+o-)ln 

2’(Q)+-= dkn(k)L(k), 
0 

Af(Q)=$Jom dkn(k) 

(A.11 

(A.2) 

64.3) 

(A.4) 

(A.5) 

the finite-T corrections to the gluon self energy for the case of the conventional FG 
is given by [3] 

n:,G(Q)=g2N -I(Q)-$Q) 
i I 

(A.61 

Z7LG(Q)=g2N -q+&(Q)- 
{ 

(A.7) 

and for the case of BFG 

nE,‘“(Q) = g*N -J@(Q) -$ T(Q)] (A-8) 

Z7;““(Q)=g2N -y+&(Q)- 
{ 

(A.9) 

595/201/Z-2 
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Remarkably, all of the gauge dependence is in the coefficient of the function Y(Q), 
which, as we shall see presently, does not contribute to the leading terms propor- 
tional to T2. 

With q,, = o + is, w  > 0, the gauge independent piece &Y(Q) is evaluated to 

Re.x(g)=~[l-~lnI~l]+TR(-Q2)$ 

+$[(&$ In O_ -$+$-~q2(.iE+hf$)]+0(1/T), /Ot 1 

(A.lO) 

dkn(k)(k-w+)(k-o-) 

(A.1 1) 

where yE is Euler’s constant and 8 is the step function. 
In the static limit these expressions reduce to 

lim ReJZ(Q)=q-$+$[i-k(yE+ln&)]+O(l/T) (A.12) 
W-t0 

lim Im&!(Q)=O, (A.13) 
w-0 

and in the long-wavelength limit 

Fyo A?(Q) = 0. (A.14) 

The other function Y(Q), whose coefficient has turned out to be gauge depend- 
ent, is evaluated to 

Re Y(Q)= TO(-Q”) 

+$[q(g,-l+ln-&)+~ln~~~]+O(l/T’), (A.15) 

Im Y(Q) =i [rr, dk n(k) 
w 

-Iw-1)+0(1/T). (A.16) 
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Limiting cases of interest are 

lim Re y(Q) T 1 -=-+? 
0-O 4 4 = 

(A.17) 

lim lmYo=() 
CO-0 9 

and 

lim Re 6;p(Q) ’ 
q-0 

-=~(7,+ln&)+O(l/T2) 
4 

lim Im 99(Q) 2T 1 
q-0 

-=---/,+0(1/T). 
4 

(A.18) 

(A.19) 

(A.20) 

Finally we note that whereas the limit q +qo does not exist for A(Q2) and 
Y(Q2), it exists for ‘7; and is gauge independent, 

g2NT2 
lim n;(Q) = 3, (A.21) 
4 - 40 

which moreover is the exact one-loop result, i.e., not just its high-T limit. 
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