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Abstract. The spatial Fourier transforms of local operators are analysed. It 
is shown that the Fourier components for non-zero momentum form weakly 
square integrable functions in all states of finite energy. Moreover, there hold 
uniform bounds for the respective LZ-norms. The relevance of this result is 
illustrated in collision theory. 

1. Introduction 

The interplay between locality and the spectrum condition is one of the basic 
ingredients in many investigations of quantum field theory. The link between 
these structures is provided by harmonic (Fourier) analysis. It is the aim of the 
present paper to exhibit regularity properties of  the spatial Fourier transforms of 
local operators which have escaped observation so far. These regularity conditions 
greatly simplify the analysis, notably in collision theory. 

The setting and the notation used in this paper are standard. Let ~ be a 
Hilbert space, let ~I ~ N(~f') be a *-algebra of local operators, and let U be a 
continuous unitary representation of the space-time translations x E IR s+l which 
acts on ~ and satisfies the relativistic spectrum condition [1]. We recall that the 
condition of  locality implies that for each operator A E 9.1 there exists some finite 
distance d > 0 such that 

[A(x),A*] = 0  if [ x l > l X o l + d .  (1) 

Here x, x0 denote the space and time part of the translation x with respect to a 
fixed coordinate system and we have introduced the notation 

B(x)  = U ( x ) B U ( x )  -1 for B E ~ ( ~ ) .  (2) 

We write B(x) if the time component x0 of x in relation (2) is zero, and similarly 
B(xo) if  x = 0. 
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Within this general setting we want to study the properties of the Fourier 
transforms 

A(p) = (2~z) -s/2 j dSx eipXA(x), A C 9A, (3) 

which are defined in the sense of operator valued distributions. We mention as 
an aside that the support of A(p) coincides with IR s if the local operator A ~ 
is not an element of  the center of 2[. This is an immediate consequence of the 
locality condition (1) and the Paley-Wiener theorem. 

We will see that the Fourier transforms A(p) enjoy certain specific regularity 
properties in states of finite energy. Let P(E), E > 0 be the spectral projection of 
the generator H of  the time translations (the Hamiltonian) corresponding to the 
spectrum in the interval [0, E] and let co be any normal state on ~ ( ~ )  whose 
support projection is contained in P(E). It will turn out that for any fi > 0 the 
restriction of co(A(p)) to the domain {p : Ipl > 6} is represented by some square 
integrable function. Moreover, the L2-norm of this function is, for fixed E and 6, 
uniformly bounded in co. We have also control on the nature of  the singularities 
of these functions at p = 0. They exhibit an at most power like singularity whose 
strength depends on the dimension s of space. These facts will be established in 
Sect. 2. 

We emphasize that we depend in our analysis neither on the existence of 
a vacuum state nor on the existence of  Lorentz transformations. In fact, our 
analysis can be extended to arbitrary dynamical systems, provided the spectrum 
of U lies in some positive cone and the locality condition (1) is replaced by some 
sufficiently strong form of asymptotic abelianess. The precise requirements will 
become clear in context. 

Besides adding information to the general harmonic analysis of automorphism 
groups [2] our results are useful in applications. In Sect. 3 we will indicate how 
the a priori information about the Fourier transforms A(p) simplifies the analysis 
of asymptotic fields and observables in collision theory. In a forthcoming paper 
[3] the present methods will be applied in an investigation of the asymptotic 
vacuum structure in quantum field theory. 

2. Analysis 

The essential ingredient in our analysis is the following lemma based on "positivity 
of the metric." Similar ideas have been used in [4], but the present result seems 
to be new. 

Lemma 2.1. Let B E N(oW), let n E IN, and let Pn be the orthogonal projection 
onto the kernel o f  B ~. Then 

IIPnB*BP.It <-- ( n -  1) �9 II[B, B*]II. 

Proof. The proof is given by induction in n. For n = 1 the statement is trivial. 
The step from ( n -  1) to n is accomplished as follows: let co be any state on 
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2(fig) which is induced by some vector in the subspace P, fff. (We assume that 
P~ :~ 0, otherwise the statement is trivial.) Setting Q = B*B we have 

o(Q"  Q) = o(B* [B, B*iB) + o(B*QB) 

< ~0(Q) - [I [U, S*] I] + o(B*QB) 

--c~(Q)" ][[B, B*]]] + co(B*Pn_IQP._IB), 

where in the last step we made use of the fact that the positive functional 
co(B*.B) is induced by some vector in BP~W _ Pn_15r ~. It thus follows from the 
induction hypothesis that 

co(Q" Q) _< (n - 1). l] [B, B*] ]l" co(Q). 

On the other hand we have co(Q .Q) > o(Q) 2 since co is a state, and consequently 

co(Q) _< ( n -  1)" II[B, B*]I[. 

The statement now follows by taking the supremum over all states co which are 
induced by vectors in P, fff. [] 

There exist several variants of this lemma. For later use we mention 

Lemma 2.2. Let B E ~(~f), let n E iN, and let P, be the orthogonal projection onto 
the intersection of the kernels of the n-fold products B(x l ) . . .B (xn ) fo r  arbitrary 
xl . . . . .  x, c Pal. There then holds for each compact subset K ~ ~s the estimate 

P , /dSx(B*B)(x)P ,  < (n-- 1). s u p / d S x  ]liB(x), B*]~lI, (4) 
, f f  

K AK 

where AK = {x -- y " x, y E K}, and the supremum is to be taken with respect to 
all unit vectors ~ E Pn 13~. 

The proof  of this statement is given in the Appendix. The result is of interest 
if the norm of the commutator [B(x), B*] decreases sufficiently rapidly for large 
x. One can then replace the region AK in (4) by IR s and arrives at bounds for 
the integral appearing on the left-hand side of this relation which are uniform 
in K. 

In the next step we construct from any given local operator A E 9.1 certain 
specific operators to which we can apply Lemma 2.1. Let 3 > 0 and let e E N s 
be some unit vector. Picking any f E 5P(]R) whose Fourier transform f(P0) has 
support in {P0 " - ~  < P0 < 6/2} and any g E 5~(R s) whose Fourier transform 
has support in {p �9 p .  e _> 5 }, we define 

/ dx f (x0)g (x)A(x). (5) Aa 

In the subsequent lemma we establish properties of these operators which are a 
consequence of the spectrum condition and locality. 

Lemma 2.3. Let Aa be the operator defined in relation (5). Then: 

i) (A~)'P(E) = 0 
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if n E N satisfies n > 4E/& Here P(E), E > 0 are the spectral projections of the 
Hamiltonian corresponding to the spectrum in [0, E]. 

ii) H[A~, A~][I _< 4SF2s[[fsl[lJ[fl[l[[g[t 2" ][AI[ 2 . 

Here (as denotes the volume of the unit ball in 1R s, [[ ' lip denotes the LP-norm of the 
respective function, and fs is the function defined by fs (x0) = ([x0 [s + (d/2)s). f (x0), 
where d is the distance appearing in the locality condition ( I ) for  the operator A. 

Proof i) Let A c IR s+l be any Borel set. We denote by a(C(A) the spectral 
subspace of jr corresponding to the joint spectrum of the generators of U in 
A. Because of the relativistic spectrum condition we have P(E)J{' = Jf({p :0 < 
]P[ < p0 -< E}). On the other hand, the space-time Fourier transform of A~ has by 
construction support in {k : k0 _< 8/2, k . e  > 8}. Hence (A~)nP(E)Jt a c_ ~(An), 
where 

A, = {p+ k : 0 < [Pi < Po < E, ko < n6/2, k .  e >>_ n6}. 

The condition on n in the lemma implies that An is disjoint from the closed 
forward lightcone, and applying the relativistic spectrum condition a second time 
we conclude that oVf(A,) = {0}. 

ii) Let @, 7/ ~ J f  be arbitrary unit vectors. It follows from the definition of 
the operators A~ and the locality condition (1) that 

[(@, [A~, As]ku)l 

f d x  f d y  If(x0)[ [f(Y0)[" 2-1([g(x)[ 2 + [g(y)[2), ](@, [A* (x), A(y)] 7t)] _< 

I[gl]2[lA[[ 2 " f dxo / dyo[f (xo)[ [f (yo)[([xo - y0[ 2 + d2) ,/e �9 < 2 ~  . 

Making use of the fact that 

(Ix0 - Y0l 2 + d2) 2Is < 4 2 l(Ix0[S + lY0[ s + 2(d/2) s) 

the bound given in the lemma follows. [] 

Now let 8 > 0, let e c ]R s be some unit vector, let g 6 5P(R s) be any test 
function whose Fourier transform has support in {p : p.  e >_ 6 }, and let A E 91 
be some local operator. We will study the continuity properties of the map 
g --~ P(E)A(g)P(E), where A(g) = fdSxg(x)A(x). To this end we choose test 

functions f-+ 6 5P(IR) whose Fourier transforms f+-(po) vanish for -T-po >- 8/2 
and add up to 1 for Ip0l -< E. A for our purposes convenient choice is 

f+-(xo) -- _+(ix0) -1" (h(6xo/2) -e-T-2iEX~ (6) 

where h c 5P(IR) is a fixed real testfunction such that h(0) = 1 and the Fourier 
transform of h has support in [-1, 1]. We will make use of the facts that 
f+* = f -  and that 

f dxo[xo[S[f-(xo)[ < ( (2 /8 ) '+  ( 1 / E ) s ) ' f  dxo]xolS-i[h(xo)l 

j dxolf-(xo),<2" f dxoih(xo)l+iln(2E/6)l"/dxo S~oh(xo). (7) 
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These bounds can be derived from (6) by a straightforward computation. One 
could proceed further and determine, for given dimension s, explicit numerical 
values for the integrals involving h by choosing suitable functions, but this is not 
necessary here. 

With the help of the test functions f-+ we construct the operators 

A~ = / dx f+-(xo)g(x)A(x). (8) 

The operator A~- is of the type considered in Lemma 2.3. Since f+* = f -  and 
since the Fourier transform of g(x)* has support in {p : p '  (-e) >_ 6}, the same 
is true for A +*. Moreover, since the Fourier transform of (f+ + f - )  is equal to 1 
for IP0] --< E, we have 

and consequently 

P(E)A(g)P(E) = P(E) (A~ + A~)P(E), (9) 

IIP(E)A(g)P(E)I[ ~ IIAf*P(E)II + [tA~P(E)II. (10) 

From the first part of Lemma 2.3 we see that Lemma 2.1 can be applied to the 
expressions appearing on the right-hand side of relation (10), giving 

]IP(E)A(g)P(E) II --< (4E/5)1/2(11 [A~, A~-*] II ~/2 + II [Z;-*, a;-] I[ 1/2) 

< (4'+20s (E/5) l i f t  II 111f-Jl 1) 1/2 IIg It2 IIAII �9 (11) 

In the latter inequality we used the second part of Lemma 2.3. Making use of the 
bounds on f -  given in (7) and of the facts that [[P(E)A(g)P(E)r[ = 0 if 5 > 2E 
and lnx < 2-1x x i f x  > 0, 2 > 0 we obtain for any 0 < e < 1, 

IIP(E)A(g)P(E)[I <_ Cs(5 -s + dS) 1/2" 8-1(E/(~) e+1/2" IlglhllZLI �9 (12) 

Notation. Here and in the subsequent analysis C~ denotes some numerical con- 
stant which is independent of all quantities in the respective formulas, but which 
depends on the dimension s of space. 

Up to this point we made use of the assumption that the Fourier transform 
of g has support in some half space {p : p .  e _> 6}. Now let g be any test 
function whose Fourier transform has support in {p :[p] >_ 6}. We then find 
by a standard partition-of-unity argument test functions gi such that ~ gi = g, 

i 
[]gi]12 <-- I Ig 112, and the Fourier transform of each gi has support in some half space 
{p : p" e i _> b/2}. The maximal number of functions gi needed in this partition 
depends only on the dimension s of space. From this we see that the bound (12) 
holds for arbitrary test functions g whose Fourier transforms vanish in the ball 
{P : IPl ~ 5}. 

Finally, we decompose g into a sum of test functions whose Fourier trans- 
forms have support in shrinking concentric shells about the origin and apply 
relation (12) to each individual term. For the resulting sum we then find by 
a straightforward application of the Cauchy-Schwarz inequality upper bounds 
leading to our main technical result: 
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Proposition 2.4. Let A be any local operator satisfying condition (1), let P(E) be 
the spectral projections of the Hamittonian corresponding to the spectrum in [0, E], 
and let g E S~ ~) be any test function whose Fourier transform vanishes at the 
origin. Then 

Ile(Z)A(g)V(e)ll <- ( f  d p(E/lpl) + (Ipl + a')l (p)l IfAIt 

for any 0 < a < 1. 

The properties of the Fourier transforms of local operators mentioned in the 
introduction are a simple consequence of this result. This is shown in 

Theorem 2.5. Let q) be any normal linear functional on ~ ( ~ )  whose right and 
left support projection are contained in P(E), let A be any local operator, and let 
(5 > O, Then the restriction of  the distribution q)(A(p)) to the domain {p :IP[ >-- 6} 
is represented by a square-integrable function, In fact, one has for any 0 < ~ < 1 

dSp IplS+l+~l~0(~(p))r 2 ~ Cse-3El+'(1 + (gd)S)ll~ollNIIAII 2 . 

Proof Let L 2, 0 < e < 1 be the Hilbert space of (classes of) functions h on N s 
for which 

[IhlF~,, = fd p Ipl-'-l-~lh(p)l 2 < 0o. 

It follows from standard arguments that the subspace of  test functions in 5P(IR s) 
which vanish at p = 0 is dense in each L 2. Since 

I(fi(A(g))l _< II~][IIP(E)A(g)P(E)H 

and since the distribution q)(A(p)) has support in the ball {p :[p] _< 2E} as a 
consequence of the spectrum condition we infer from 'the preceding proposition 
that 

I~o(A(g))l 2 _< Csa-3E t+e. (1 + (Ed)S) . I1~I1~,~' [Iq)II2IIAII 2. 

The statement now follows from Riesz' theorem, [] 

It is evident that there holds a similar statement for functionals (p which are 
in the domain of sufficiently large powers of H under simultaneous left and right 
multiplication. Moreover, tee assumption that A is local can be replaced by the 
requirement that A is quasi-local of sufficiently large order [5, Sect. 2]. One may 
even relax the condition that A is bounded and replace it by the assumption that 
A satisfies energy bounds of the form HAP(E)]] < co, IIA*P(E)I]] < ~.  Since these 
generalizations are straightforward we refrain from giving details. 

So far we have treated A(g) effectively as a bilinear form, and our estimates 
led us to uniform bounds on this form. If  A(xo) is differentiable with respect to 
the time translations x0 we can proceed further and give bounds on A(g) in the 
operator sense. Denoting the derivative of A(xo) at x0 = 0 by ~] we have 



�9 Harmonic Analysis of Local Operators 637 

Theorem 2.6. Let A be any local operator such that xo -~ A(xo) is strongly differ- 
entiable, let g E 5P(IR s) be any test function whose Fourier transform vanishes at 
the origin, and let 2 > O. Then 

II/(g) ( l+2H)- t -*l [  < Cs(tlAhl+2ll/lll)e -2 d~p(,~tPI)-I-~/2(IPl -~ + d*)l~(P)l 2 

for any 0 < ~ < 1, and the same bound holds for 11 (1 + 2H)-I-~A(g)II, 

Proof. Making use of the spectral theorem for H it follows from Proposition 2.4 
that 

l] (1 + 2H)-(I+*)/2A(g) (1 + ~H) -(l+e)/2 I/ 

< CsllAlls-2 ( f dSp(2lPl)-t-~/2(lPl-S + dS)lf,(p)12) 1/2 , 

and the same inequality holds if A is replaced by Jl, because ]1 is a local operator 
with the same localization properties as A. On the basis of these estimates and 
the fact that [(1 + 2H), A(g)] = i2]l(g) we conclude that the norm of the function 

z E C ~ (1 + 2H)ZA(g) (1 + 2H) -z- l -e  

is bounded from above by the expression given on the right-hand side of the 
inequality in the theorem if Rez = - (1  + e)/2 or Rez = (1 - e)/2, respectively. 
The first half of the statement now follows from the three line theorem, cp. 
[6]. The second half is a consequence of the fact that [[(1 + 2H)-t-eA(g)[[ = 
L[A* (g*) (1 + 2H) -a-" [[ and that A* has the same differentiability and localization 
properties as A. [] 

It is an immediate consequence of this theorem that A(g) can be defined 
as a closable unbounded operator for all functions g for which the L2-norm 
given in the theorem is finite. Moreover, there hold energy bounds for A(g) 
which are almost linear in H. Again, there exist analogous results for quasi-local, 
respectively unbounded operators A. 

As can be seen in free field theory, our general results on the properties 
of the Fourier transforms A(p) are about optimal for non-zero momentum p. 
Yet our bounds on the behaviour of A(p) at p = 0 seem to be too conserva- 
tive. The origin for these weaker results is our crude estimate of the integrals 
fdSx[(,I  ', [A*(x0, x), A]~)[ in Lemma 2.3. Making only use of locality, we gave 
an upper bound for these integrals which increases like Ixo] s for large Ix0]. If this 
bound would be saturated it would mean that sup ess{[(O~, [A* (x0, x), A] 7')1 : x E 
IR s} does not tend to 0 at asymptotic times x0. On the other hand one expects 
that this expression decreases (disregarding theories of massless particles in two 
space-time dimensions) like an inverse power of Ix0[ because of dispersive effects. 
With such an input one can establish stronger results which are relevant for a 
discussion of the asymptotic vacuum structure of states in quantum field theory 
[3]. 
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3. Applications 

In order to illustrate the utility of our general results for the structural analysis 
in quantum field theory we briefly reconsider here the construction of asymptotic 
fields and observables in collision theory. 

According to the basic ideas of Lehmann, Symanzik and Zimmermann [7] 
one approaches the construction of asymptotic fields for a given particle type by 
averaging suitable local (Bose or Fermi) operators A with solutions of the Klein- 
Gordon equation, respectively of the wave equation. The resulting operators are 
of the form 

o 

At(g) = / d S x  g(xo, x)A(xo, x) (13) 
XO=g ' J 

where 
f 

g(x0, x) = (2rc)-s/2J dSp ~, (p) e-iExo+iP x (14) 

Here E = (IPl 2 + m2) 1/2 and m > 0 is the mass of the respective particle. One 
then argues that the operators At(g) converge weakly in the limit of asymptotic 
times t to the desired asymptotic fields on some dense set of vectors. By taking 
suitable time averages of At(g) one can also achieve strong convergence. 

In the case of Bosons the actual justification of this method is plagued by 
domain problems due to the fact that the asymptotic fields are unbounded op- 
erators. In the existing arguments these difficulties are handled in a fairly involved 
manner, cp. [4, Sect. 15] and [8]. Here the present results lead to considerable 
simplifications. 

It follows from Theorem 2.6 that for any 0 < e < 1 the norms II&(g)(1 + 
2H) -1-~ II and liAr(g)* (1 +2H)  -1-~ II stay bounded in the limit of asymptotic times 
t, provided the operator A and the initial wave function g(xo, x) Ix0=0 comply 
with the premises of the theorem. Hence the sequence of operators At(g) has limit 
points at asymptotic times t which are closable operators having the dens 
of vectors (1 + Z H ) - I - ~  in their respective domain. This a priori information 
greatly simplifies the analysis, notably in the case of massless particles [8]. 

In a somewhat different approach to collision theory which seems to be 
suitable for the discussion of particles as well as infraparticles, cf. [9] and 
references quoted there, Araki and Haag [5] have studied the timelike asymptotic 
behaviour of almost local observables which can be interpreted as detectors. 
A typical example of such an observable is C = B'B,  where B is any almost 
local operator whose space-time Fourier transform has compact support in the 
complement of the closed forward lightcone. The operator B thus annihilate 
vacuum state. 

Araki and Haag proved that in theories of massive particles the spatial 
averages 

C(t; h) = /dSxh(x/xo)C(xo, x) xo=t (15) 

of the operators C, where h is any essentially bounded function on IR s, converge 
in the sense of bilinear forms at asymptotic times t to the asymptotic momentum 
space densities of the respective particles. These operators can therefore be used 
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to determine directly the collision cross sections without appeal to the scattering 
matrix. 

As in the case of asymptotic fields the asymptotic behaviour of the operators 
C(t; h) can be controlled on cleverly chosen domains of collision states [5]. In the 
presence of interaction these domains are different, however, for large positive 
and negative times t and therefore do not include all states of physical interest. 

The present results show that the situation is actually much better than one 
might infer from the discussion in [5]. If one restricts attention to the sufficiently 
rich set of observables of the form C = B'B, where B has the properties stated 
above, it follows from Lemma 2.2 that for any E > 0 

lie(t; h)P(E)l[ <_ const-llhl[oo (16) 

uniformly in t. For the proof of this assertion we decompose B into a finite sum 
of  almost local operators Bi whose space-time Fourier transforms have support in 
compact and convex subsets of the complement of the closed forward lightcone. 
There then exists a number n such that Bi(x~)... Bi(xn)P(E) ----= 0 for all operators 
B i and all xb  . . . ,  xn E N s. We therefore obtain from Lemma 2.2 for any compact 
subset K c Ns the bound 

[[P(E) f dSx(B*B~)(x)P(E)][<_(n-1)" f dSxl[[Bz(x),B*]][, (17) 

K 

where the integral on the right-hand side exists since the operators Bi are almost 
local. Since B N~Bi and consequently C B*B < 2 m m * = = - " Z 1 B i Bi, we conclude 
that for any E _> 0, 

i dsx h(x/xo)C(xo, x)e  (g)H -< const'lthl[~o (18) IlP (E) 
K 

uniformly in K and x0. From this bound and the fact that C is a positive 
operator we infer that the integral fdSxh(x/xo)C(xo, x) exists in the sense of 
bilinear forms between vectors of finite energy. Moreover, since the space-time 
Fourier transform of C(x) has compact support, the estimate (18) stays true if 
one replaces the projection P(E) on the left-hand side of the integral by 1. Hence 
the integral f dSx h(x/xo)C(xo, x) is also defined as an operator on the dense set 
of vectors of finite energy, and the stated inequality (16) follows. 

Similarly to the case of the asymptotic fields the bound (16) shows that the 
sequence of operators C(t; h) has limit points at asymptotic times t which are 
closable operators having all vectors of finite energy in their respective domain. 
Hence the convergence proofs in [5] can be extended to this substantially larger 
set of vectors which is independent of the asymptotic direction of t. 

We emphasize that the existence of limit points of the sequence C(t; h) 
does not depend on the assumption that the theory has a conventional particle 
interpretation. This fact lends support to the conjecture that the results of Araki 
and Haag can be extended to theories involving infraparticles. A preliminary 
discussion of  these perspectives can be found in [9], a more detailed analysis will 
be given in [10]. 
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This brief account of applications may suffice to illustrate the utility of our 
general results. We expect that our simple method of exploiting "positivity", 
expounded in the proofs of Lemma 2.1 and Lemma 2.2, respectively, will be of 
further use in the structural analysis of quantum field theory. 

Appendix 
We give here the proof of Lemma 2.2. As in the case of Lemma 2.1 the proof is 
achieved by induction in n, and as before the statement is trivial for n = 1. For 
the step from n -  1 to n we choose any state co on N(2/F) which is induced by 
some vector q~ in P n ~  and set Q = fdSx (B*B)(x). We have 

K 

Q) = f dSx/" dSy {CO(B" (x[B(x), B" (y)]B(y))+ CO(B* (x)B" (y)B(x)B(y))} c o ( Q .  
J * 2  

K K 

< I dsx i dSy { IIB(x)~ II 2/2 IIB(y)~II 1/2 II [B(x), B* (y)] 
J 

K K 

x B(y)~ II 1/2 II [B (y), B* (x)lB(x)r 1/2 

+ CO(B* (x) (B*B)(y)B(x))I/2CO(B* (y) (B*B)(x)B(y)) 1/2} 

<- [ dSx i dSy{ IIB(y)~011 11 [B(x), B* (y)]B(y)~II 
i /  t s  

K K 

§ co(B* (x) (B*B)(y)B(x))} 

<co(Q) .sup I dsx [] [B(x), B*]BU (-y)r + i d~x co(B* (x)QB(x)), 
- -  y j I I B U ( - y ) ~ I I  t /  

AK K 

where we made use of the Cauchy-Schwarz inequality and the fact that the 
geometric mean of two numbers is smaller than their arithmetic mean. Since 
(P E Pn~f the vectors B U ( - y ) ~  and B(x)~ are dements of P , -1H.  We can 
therefore proceed from the preceding estimate to 

co(Q'Q)<_co(Q)'lsnp/dSxjl[B(x),B*]Tl'+llP~-lQP.-l'l } , 
AK 

where the supremum is to be taken with respect to all unit vectors T e P . - I ~ .  
Making use of the induction hypothesis and the facts that co(Q" Q) > co(Q)2 and 
Pi < Pk for i < k we conclfide that 

co(Q) < (n - 1). sup / B*] dSxH [B(x), T II. 
J 

AK 

The statement now follows by taking the supremum over all states co which are 
induced by vectors in P.~Cg. 
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