OBSERVATION OF A NEW CHARMED-STRANGE MESON

ARGUS Collaboration

H ALBRECHT, R GLASER, G HARDER, A KRUGER, A NIPPE, T OEST, M REIDENBACH, M SCHAFER, W SCHMIDT-PARZEFALL, H SCHRȮDER, H D SCHULZ, F SEFKOW, R WURTH

DESY, D-2000 Hamburg 52, FRG

R D APPUHN, A DRESCHER, C HAST, G HERRERA, H KOLANOSKI, A LANGE, A LINDNER, R MANKEL, H SCHECK, G SCHWEDA, B SPAAN, A WALTHER, D WEGENER Institut fur Physık ${ }^{1}$, Unvversitat Dortmund, D-4600 Dortmund 50, FRG

M PAULINI, K REIM, U VOLLAND, H WEGENER
Phvsikalisches Institut ${ }^{2}$, Universitat Erlangen-Nurnberg, D-8520 Erlangen, $F R G$

W FUNK, J STIEWE, S WERNER
Instltut fur Hochenergiephysik ${ }^{3}$, Universttat Heidelberg, D-6900 Heidelberg, $F R G$

S BALL, J C GABRIEL, C GEYER, A HOLSCHER, W HOFMANN, B HOLZER, S KHAN, J SPENGLER
Max-Planck-Instutut fur Kernphysik, Heidelberg, D-6900 Heidelberg, FRG

C E K CHARLESWORTH ${ }^{4}$, K W EDWARDS ${ }^{5}$, W R FRISKEN ${ }^{6}$, H KAPITZA ${ }^{5}$, P KRIEGER ${ }^{4}$, R KUTSCHKE ${ }^{4}$, D B MACFARLANE ${ }^{7}$, K W McLEAN ${ }^{7}$, R S. ORR ${ }^{4}$, J A PARSONS ${ }^{4}$, P M PATEL ${ }^{7}$, J D PRENTICE ${ }^{4}$, S C SEIDEL ${ }^{4}$, J D SWAIN ${ }^{4}$, G TSIPOLITIS ${ }^{7}$, T -S YOON ${ }^{4}$
Instutute of Partucle Phvsics ${ }^{8}$, Canada

R DAVIS
Unversity of Kansas ${ }^{9}$, Lawrence, KS 66045, USA

T RUF, S SCHAEL, K R SCHUBERT, K STRAHL, R WALDI, S WESELER
Institut fur Experimentelle Kernphysik ${ }^{10}$, Universital Karlsruhe, D-7500 Karlsruhe I, FRG

B BOŠTJANČIČ, G KERNEL, P KRIŽAN ${ }^{11}$, E KRIŽNIČ, M PLEŠKO
Instıtut J Stefan and Oddelek za Fizıko ${ }^{12}$, Univerza v Ljubljanı, YU-61111 Ljubljana, Yugoslavia

H I CRONSTRȮM, L JȮNSSON, A W NILSSON
Institute of Physics ${ }^{13}$, University of Lund, S-22362 Lund, Sweden

A BABAEV, M DANILOV, B FOMINYKH, A GOLUTVIN, I GORELOV, V LUBIMOV, A ROSTOVTSEV, A SEMENOV, S SEMENOV, V SHEVCHENKO, V SOLOSHENKO, V TCHISTILIN, I TICHOMIROV, Yu ZAITSEV
Institute of Theoretical and Experimental Physics, 117259 Moscow, USSR

R CHILDERS and C W. DARDEN
University of South Carolina ${ }^{14}$, Columbia, SC 29208, USA

Received 7 August 1989

Abstract

Using the ARGUS detector at the DORIS II $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring at DESY, we have obtaned evidence for a new charmed-strange meson which decays into $\mathrm{D}^{*+} \mathrm{K}^{0}$ Its mass is observed to be $25359 \pm 06 \pm 20 \mathrm{MeV} / c^{2}$ and its width to be less than $46 \mathrm{MeV} / c^{2}$ at the 90% confidence level No structure is observed at this mass in the $\mathrm{D}^{+} \mathrm{K}^{0}$ invariant mass spectrum, which suggests that an unnatural spin-parity is preferred

Over the past four years, two new charmed mesons, ascribed to P -wave bound states of a charmed quark and either a ū or a \bar{d} quark, have been observed [1-5] A variety of models have been proposed which predict the masses and widths of the corresponding charmed-strange states [6-8] A feature common to many of these models is that the mass difference between a given cd state, and the css state of the same spın-parity (J^{P}) is approximately independent of which J^{P} is under consideration. The various models predict this mass difference to be between 80 and 130 $\mathrm{MeV} / \mathrm{c}^{2}$ The mass difference between the S -wave charmed and charmed-strange mesons is about 100 MeV / c^{2} In this letter we report evidence for a charmed-strange meson, which decays into $\mathrm{D}^{*+} \mathrm{K}^{0}$, at a mass about $115 \mathrm{MeV} / \mathrm{c}^{2}$ above that of the $D_{1}(2414)^{0} \# 1,2$

The data presented here were collected at a mean center-of-mass energy of 10.30 GeV with the ARGUS detector at the DORIS II $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring at DESY

[^0]The data sample consists of $311 \pm 9 \mathrm{pb}^{-1}$, collected on the $r(1 S), r(2 S)$ and $r(4 S)$ resonances, and in the nearby continuum A complete description of the detector, trigger conditions, multihadron selection criteria, luminosity determination and particle identification strategy can be found in ref. [9].

The search for excited charmed-strange states has been made using the decay chain
$\mathrm{D}_{s j}^{+} \rightarrow \mathrm{D}^{*+} \mathrm{K}^{0}$,
where the D^{*+} decays to $\mathrm{D}^{0} \pi^{+}$and the D^{0} is reconstructed in the modes

$$
\begin{align*}
\mathrm{D}^{0} & \rightarrow \mathrm{~K}^{-} \pi^{+}, \tag{1}\\
& \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+} \pi^{-}, \tag{2}\\
& \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{0} \tag{3}
\end{align*}
$$

This includes 57% of all D^{*+} decays [10] and 24% of all D^{0} decays [11].

Charged particles from the main vertex were required to have a momentum transverse to the beam direction greater than $60 \mathrm{MeV} / c$ and to have a polar angle, θ, in the range $|\cos \theta| \leqslant 0.92$. These particles, identified on the basis of specific ionization, tıme of flight, energy deposition in the shower counters and penetration to the muon chambers were treated as $\pi^{ \pm}$ or $K^{ \pm}$if the likelihood ratio [9] for the hypothesis under consideration exceeded 001 . A K_{s}^{0} candidate was defined as a $\pi^{+} \pi^{-}$pair coming from a secondary vertex [9] In addition it was required that $\cos \alpha \geqslant 095$, where α is the angle between the $\mathrm{K}_{\mathrm{s}}^{0}$ mo-

[^1]Table 1
The mass intervals used to select the intermediate states for this analysis Except for the sideband selection, the invariant mass of each candidate was also required to be within four standard deviations of the known mass of the state The last column refers to the D^{0} channels for which the cut is applicable The symbols $D_{\text {side }}^{*+}$ and $\Delta\left(D^{*+}\right)$ are defined in the text

Decay mode	Mass interval (MeV)	D^{0} channel
$\mathrm{K}_{s}^{0} \rightarrow \pi^{+} \pi^{-}$	$4827 \leqslant m\left(\pi^{+} \pi^{-}\right) \leqslant 5127$	
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$	$1800 \leqslant m\left(\mathrm{~K}^{-} \pi^{+}\right) \leqslant 1930$	
$\rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$	$1820 \leqslant m\left(\mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}\right) \leqslant 1910$	
$\rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{0}$	$1800 \leqslant m\left(\mathrm{~K}^{-} \pi^{+} \pi^{0}\right) \leqslant 1930$	1,2
$\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$	$1435 \leqslant \Delta\left(\mathrm{D}^{*+}\right) \leqslant 1475$	3
	$1420 \leqslant \Delta\left(\mathrm{D}^{*+}\right) \leqslant 1480$	1
$\mathrm{D}_{\text {side }}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$	$160 \leqslant \Delta\left(\mathrm{D}_{\text {side }}^{*+}\right) \leqslant 220$	2,3
	$160 \leqslant \Delta\left(\mathrm{D}_{\text {side }}^{*+}\right) \leqslant 180$	
$\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$	$1810 \leqslant m\left(\mathrm{~K}^{-} \pi^{+} \pi^{+}\right) \leqslant 1930$	

mentum and the vector which points from the main vertex to the decay vertex A photon was defined as a cluster of energy, greater then 50 MeV and not assoclated with any charged track, deposited in the shower counters A $\gamma \gamma$ pair was accepted as a π^{0} candidate if its invariant mass lay within two standard deviations of the π^{0} mass The criteria which defined candidates for the other intermediate states are summarized in table 1 Each $\pi^{0}, \mathrm{D}^{0}, \mathrm{D}^{*+}$ and $\mathrm{K}_{\mathrm{s}}^{0}$ candidate was k_{1-} nematically fitted to its accepted mass [11]
It is expected that the momentum spectrum of a meson containıng a leadıng charmed quark will be hard, whereas that of the combinatorial background will be softer Each $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{S}}^{0}$ combination was required, therefore, to have $x_{p}>06$, where $x_{p}=p / p_{\max }$ and $p_{\text {max }}^{2}=E^{2}($ beam $)-m^{2}\left(\mathrm{D}^{*+} \mathrm{K}_{\mathrm{S}}^{0}\right)$
In approxımately 25% of the $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{S}}^{0}$ combinations, the D^{*+} candidate shares at least one of its constituent particles with another D^{*+} candidate This is particularly a problem in channel 3 In order to reduce the combinatorial background, only one D^{*+} candidate was accepted per event, the one with the largest probability of the total χ^{2} The total χ^{2} is the sum of those from the intermediate mass fits and those from the particle identification degrees of freedom

The resulting $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{s}}^{0}$ mass spectra are shown in fig 1a. for channels 1 and 2, and in fig 1 b for channel 3 A promınent, narrow structure, at $2536 \mathrm{MeV} / c^{2}$, is observed in both spectra Using a Monte Carlo sımulation [12], the mass resolution of the detector was
determıned to be $\sigma=17 \pm 02 \mathrm{MeV} / c^{2}$ for the first two channels and $\sigma=33 \pm 05 \mathrm{MeV} / c^{2}$ for the third As a measure of the accuracy with which the simulation procedure predicts the mass resolution, the Monte Carlo resolution for a structure of similar width, namely the $\mathrm{D}^{*+}-\mathrm{D}^{0}$ mass difference, was compared with the measured resolution No discrep-

Fig $1 \mathrm{D}^{*+} \mathrm{K}_{s}^{0}$ invariant mass spectra for the D^{0} decay modes (a) $K^{-} \pi^{+}$and $K^{-} \pi^{+} \pi^{+} \pi^{-}$and (b) $K^{-} \pi^{+} \pi^{0}$ The curves correspond to the fit described in the text

Fig 2 Background spectra The arrows indicate the mass, or the corresponding mass difference, at which the signal is observed in fig 1 (a) $m\left(\mathrm{D}_{\text {side }}^{*+} \mathrm{K}_{\mathrm{s}}^{0}\right)-m\left(\mathrm{D}_{\text {side }}^{*+}\right)$ mass difference spectrum, where $D_{\text {side }}^{*+}$ are $D^{0} \pi^{+}$combinations from the upper sideband of the D^{*+} (b) $\mathrm{D}^{*+} \mathrm{K}^{+}$invariant mass spectrum (c) $\mathrm{D}^{*+} \mathrm{K}^{-}$invariant mass spectrum
ancy between the measured and predicted widths was observed.

In order to extract the parameters of the signal, each spectrum was fitted with the sum of a gaussian, to parameterize the signal, and a first order polynomial multıplied by a square root threshold factor, to parameterize the background The two spectra were fitted simultaneously, keeping the central values of the two gaussians equal The other parameters were allowed to vary separately for each spectrum This procedure yields a mass of $25359 \pm 06 \mathrm{MeV} / c^{2}$ and amplıtudes of 85 ± 3 events, for the signal in channels 1 and 2 combined, and 75 ± 3 events for the signal in channel 3 Both fitted widths are consistent with the detector resolution In the signal region, defined to be from 2529 to $2541 \mathrm{MeV} / c^{2}$, there are 18 events in the two histograms The number of background events beneath the signal, estimated by integrating the background function over the signal region, is 06 ± 03 for fig 1 a and 11 ± 03 for fig 1 b , makıng a
total of 17 ± 04 events The observed 18 events correspond to a 6.7 standard deviation excess above this background If a more conservative, constant background parameterization is assumed, the significance is still 50 standard deviations. In order to estımate the systematic errors, the selection criteria, the mass resolution and the parameterization of the background were varied. The systematic error on the mass, including the uncertainty on the D^{*+} mass [11], is $\pm 2 \mathrm{MeV} / c^{2}$ In the following, we shall refer to this state as the $\mathrm{D}_{s J}(2536)^{+}$

To obtain an upper limit for the natural width, Γ, of the $\mathrm{D}_{s J}(2536)^{+}$, the signal shape was parameterized by a Breit-Wigner line width convoluted with a gaussian resolution The widths of the two gaussians were fixed to their expected values and the mass was fixed at $25359 \mathrm{MeV} / c^{2}$ This yields an upper limit of $\Gamma<46 \mathrm{MeV} / c^{2}$, at the 90% confidence level

In order to demonstrate that the signal is not an artifact of the selection criteria, a sideband study and a wrong charge study were performed. For the sideband study, D^{0} candidates were selected as above, combined with π^{+}candidates and the mass difference

$$
\Delta\left(\mathrm{D}^{*+}\right)=m\left(\mathrm{D}^{0} \pi^{+}\right)-m\left(\mathrm{D}^{0}\right)
$$

was calculated The sıdeband D^{*+} candidates, $\mathrm{D}_{\text {side }}^{*+}$, were selected according to the criteria in table 1 In order to have sufficient statistics for the sideband investigation, it was necessary to make the $\Delta\left(\mathrm{D}^{*+}\right)$ interval much larger than for the real D^{*+} selection. Consequently, the mass resolution for $\mathrm{D}_{\text {side }}^{*+} \mathrm{K}_{\mathrm{s}}^{0}$ combınations is much poorer than for $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{s}}^{0}$ combinations This difficulty can be overcome by comparing, instead, a quantity with the same resolution for both the signal and the sideband combinations, namely the mass difference
$\Delta\left(\mathrm{D}_{s J}^{+}\right)=m\left(\mathrm{D}^{*+} \mathrm{K}_{\mathrm{S}}^{0}\right)-m\left(\mathrm{D}^{*+}\right)$
The $\Delta\left(\mathrm{D}_{s J}^{+}\right)$spectrum for real $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{s}}^{0}$ combinations is not shown because it is identical to fig. 1, except for the change in the horizontal scale The $\Delta\left(D_{s J}^{+}\right)$ spectrum for the sideband, with all three D^{0} channels combined, is shown in fig 2a No significant signal is observed

The wrong charge mass spectra, $\mathrm{D}^{*+} \mathrm{K}^{+}$and $\mathrm{D}^{*+} \mathrm{K}^{-}$, are shown in figs 2 b and 2 c , respectively Using a Monte Carlo simulation, the mass resolution for these channels was determined to be 21 ± 01
$\mathrm{MeV} / \mathrm{c}^{2}$ for channels 1 and 2 , and 36 ± 05 for channel 3 The acceptance was determıned to be more than three times larger than that of the $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{s}}^{0}$ combinations No significant signal is observed in either spectrum The absence of a signal in these spectra argues against exotic interpretations for the $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{s}}^{0}$ signal Because of strangeness mixing in the K_{S}^{0} system, it is not certan that the signal arises from a css system It mıght, for example, be produced by a csd̄̄̄ system Such a hypothesis, however, would require that signals also be present in the wrong charge spectra
A Monte Carlo simulation was performed to determine the acceptance of the detector as a function of x_{p} In each channel the acceptance was found to vary only slowly with x_{p} The fraction of the signal in each of the three channels is consistent with that expected from the acceptances and the known branching ratios [11]
The fragmentation function of the $\mathrm{D}_{s J}(2536)^{+}$was extracted by fitting a weighted histogram of $x_{p}\left(\mathrm{D}^{*+} \mathrm{K}_{\mathrm{S}}^{0}\right)$ For this study, the x_{p} cut described above was reduced to $x_{p}>05$ Each $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{S}}^{0}$ combination in the signal region was assigned a weight of $(\eta \mathrm{BR})^{-1}$, where η is the efficiency and BR is the appropriate D^{0} branching ratio The resulting x_{p} spectrum is shown in fig 3 The overlayed curve is the result of fitting the fragmentation model of Peterson et al [13],
$\frac{\mathrm{d} \sigma}{\mathrm{d} x_{p}} \times\left[x_{p}\left(1-\frac{1}{x_{p}}-\frac{\epsilon}{\left(1-x_{p}\right)}\right)^{2}\right]^{-1}$,
to the data The Peterson parameter, ϵ, was measured to be $006{ }_{-0}^{+0.02} \pm 002$, where the systematic error was determined by varying the cuts No correction was made for initial state photon or gluon radiation For

Fig $3 \mathrm{D}_{s J}(2536)^{+}$fragmentation function The curve corresponds to the fit described in the text
comparison, the values of ϵ for the $D_{1}(2414)^{0}$, $D_{2}^{*}(2460)^{0}$ and $D_{2}^{*}(2113)^{+}$are $007 \pm 004[14]$, 006 ± 003 [4], and 004_{-0}^{+003} [15] respectively
In the above procedure events belonging to the background beneath the signal have been included This background was subtracted using the average weight The acceptance corrected number of events was determıned by extrapolating the fragmentation function, using the Peterson model, to $x_{p}=0$ This result was then divided by the luminosity, and by the $\mathrm{D}^{*+}, \mathrm{K}^{0}$ and $\mathrm{K}_{\mathrm{s}}^{0}$ branching ratios [10.11] to obtain

$$
\begin{aligned}
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}_{\mathrm{s} J}(2536)^{+} \mathrm{X}\right) \mathrm{BR}\left(\mathrm{D}_{s J}(2536)^{+} \rightarrow \mathrm{D}^{*+} \mathrm{K}^{0}\right) \\
& \quad=16 \pm 5 \pm 3 \mathrm{pb},
\end{aligned}
$$

at $E_{\mathrm{CM}}=1030 \mathrm{GeV}$ If isospin invariance is assumed, one obtains

$$
\begin{aligned}
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}_{, J}(2536)^{+} \mathrm{X}\right) \mathrm{BR}\left(\mathrm{D}_{s J}(2536)^{+} \rightarrow \mathrm{D}^{*} \mathrm{~K}\right) \\
& \quad=32 \pm 9 \pm 6 \mathrm{pb}
\end{aligned}
$$

The systematic errors include the errors on the relevant branching ratios and the errors on the acceptances
A search was also performed to determine whether the same state decays to $\mathrm{D}^{+} \mathrm{K}_{\mathrm{s}}^{0}$ The selection criteria for K^{-}, π^{+}and $\mathrm{K}_{\mathrm{s}}^{0}$ were the same as above $\mathrm{A} \mathrm{D}^{+}$ candidate was defined as a $\mathrm{K}^{-} \pi^{+} \pi^{+}$combination which passed the criteria in table 1 Each D^{+}and each $\mathrm{K}_{\mathrm{s}}^{0}$ candidate was kınematically fitted to its accepted mass [11] In order to reduce the combinatorial background, it was required that $x_{p}\left(\mathrm{D}^{+} \mathrm{K}_{s}^{0}\right)>06$ and that the probability of the total χ^{2}, defined above, be greater than 001 The resulting $\mathrm{D}^{+} \mathrm{K}_{\mathrm{s}}^{0}$ invariant mass spectrum is shown in fig 4 No signal is observed near $2536 \mathrm{MeV} / \mathrm{c}^{2}$ To extract an upper limit on the presence of a signal, the spectrum was fitted with the sum

Fig $4 \mathrm{D}^{+} \mathrm{K}_{\mathrm{s}}^{0}$ invariant mass spectrum The arrow indicates the mass at which the signal is observed in fig 1
of gaussian, to parameterize any sıgnal, and a third order polynomial, to parameterize the background. The central value of the gaussian was fixed to 25359 $\mathrm{MeV} / \mathrm{c}^{2}$, as determined above, and its width was fixed to $43 \mathrm{MeV} / \mathrm{c}^{2}$, as determined by a Monte Carlo sımulation This yields a 90% confidence level upper limit of 84 entries, which implies

$$
\begin{aligned}
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}_{s J}(2536)^{+} \mathrm{X}\right) \mathrm{BR}\left(\mathrm{D}_{s J}(2536)^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{0}\right) \\
& \quad \leqslant 73 \mathrm{pb}(90 \% \mathrm{CL})
\end{aligned}
$$

This corresponds to

$$
\frac{\mathrm{BR}\left(\mathrm{D}_{s J}(2536)^{+} \rightarrow \mathrm{D}^{+} \mathrm{K}^{0}\right)}{\mathrm{BR}\left(\mathrm{D}_{s J}(2536)^{+} \rightarrow \mathrm{D}^{++} \mathrm{K}^{0}\right)} \leqslant 043(90 \% \mathrm{CL})
$$

Phase space considerations require that, for a state so close to the $\mathrm{D}^{*} \mathrm{~K}$ threshold, DK decays will, unless forbidden by some selection rule, dominate over $\mathrm{D}^{*} \mathrm{~K}$ decays The suppression of the DK channel is, therefore, most easily understood if the state belongs to the unnatural spin-party sequence The lowest mass, excited, unnatural J^{P}, cs states, are predicted to be the two 1^{+}members of the P -wave multiplet [6]

Although the $\mathrm{D}_{s \prime}(2536)^{+}$is, at first sight, surprisingly narrow, a natural explanation is available Unlike quarkonia and isovector mesons, the cs system has no conservation law which prevents the mixing of the ${ }^{3} \mathrm{P}_{1}$ and ${ }^{1} \mathrm{P}_{1}$ states It can be demonstrated [7] that, under farrly general assumptions, triplet-singlet mixing will cause one of the observable states to broaden and the other to become narrow One explicit calculation of the widths of P-wave cs mesons, including mixing of the $J^{P}=1^{+}$states, has been performed [8] In that model the narrow $J^{P}=1^{+}$state is predicted to he below the $\mathrm{D}^{*} \mathrm{~K}$ threshold When the observed masses of the $\mathrm{D}_{s, J}^{+}, \mathrm{D}^{*+}$ and $\mathrm{K}_{\mathrm{S}}^{0}$ are used, however, the width is calculated to be about 3 MeV / c^{2} [16]

Another group has reported, as yet unconfirmed, evidence for two states which they interpret to be Pwave cs mesons [17] One state, at a mass of $2537 \pm 28 \mathrm{MeV} / \mathrm{c}^{2}$, is reported to decay to $\mathrm{D}_{\mathrm{s}}^{*+} \gamma$ but not to D*K Another, at a mass of $25643 \pm 44 \mathrm{MeV} /$ c^{2}, is claimed in the mode $\mathrm{D}^{*} \mathrm{~K}$ It is difficult to identify either of these states with the one discussed in this paper

In summary, we observed a sıgnal of more than five standard deviations in the $\mathrm{D}^{*+} \mathrm{K}_{\mathrm{s}}^{0}$ mass spectrum, at
a mass of $25359 \pm 0.9 \pm 2.0 \mathrm{MeV} / c^{2}$, which has a natural width less than $46 \mathrm{MeV} / \mathrm{c}^{2}$ at the 90% confidence level The fragmentation function is consistent with production from a leading charmed quark. The mass and the absence of a signal in the $\mathrm{D}^{0} \mathrm{~K}_{\mathrm{s}}^{0}$ mode suggest that the state is one of the $J^{P}=1^{+}$ members of the lowest lyıng, P-wave, cs multuplet

It is a pleasure to thank U Djuanda, E. Konrad, E Michel and W Reinsch for their competent technical help in running the experiment and processing the data We thank Dr H Nesemann, B Sarau and the DORIS group for the excellent operation of the storage ring The visiting groups wish to thank the DESY directorate for the support and kind hospitality extended to them

References

[1] ARGUS Collab, H Albrecht et al, Phys Rev Lett 56 (1986) 549
[2] E691 Collab, J C Anjos et al , Phys Rev Lett 62 (1989) 1717
[3] CLEO Collab, C Bebek et al, paper submitted to 1987 Intern Symp on Lepton and photon interactions at high energies (Hamburg, 1987)
[4] ARGUS Collab, H Albrecht et al , Phys Lett B 221 (1989) 422
[5] J A Parsons (ARGUS Collab), in Proc Twelfth Intern Workshop on Weak interactions and neutrinos (Ginosar, Israel, 1989), to appear,
ARGUS Collab, H Albrecht et al, Resonance decomposition of the $D^{*}(2420)^{0}$ through a decay angular analysis, in preparation
[6] A de Rújula, H Georgı and S L Glashow, Phys Rev Lett 37 (1976) 785,
R Barbieriet al , Nucl Phys B 105 (1976) 125,
D Pignon and C A Pıketty, Phys Lett B 81 (1979) 334,
E Eichten et al, Phys Rev D 21 (1980) 203,
S Godfrey and N Isgur, Phys Rev D 32 (1985) 189,
J Morishita et al , Phys Rev D 37 (1988) 159,
V Gupta and R Kogerler, Z Phys C 41 (1988) 277,
A B Kardalov and A V Nogteva, Sov J Nucl Phys 47 (1988) 321
[7] J Rosner, Comm Nucl Part Phys 16 (1986) 109
[8] S Godfrey and R Kokoskı, TRIUMF preprint TRI-PP-8651 (1986)
[9] ARGUS Collab, H Albrecht et al , Nucl Instrum Methods A 275 (1989) 1
[10] MARK III Collab, J Adler et al, Phys Lett B 208 (1988) 152
[11] Particle Data Group, G P Yost et al, Review of particle properties, Phys Lett B 204 (1988) 1
[12] H Gennow, SIMARG a program to simulate the ARGUS detector, DESY report F15-85-02
[13] C Peterson et al , Phys Rev D 27 (1983) 105
[14] J C Yun, Ph D thesis, Carleton University, Ottawa, Canada (1987), unpublished
[15] J A McKenna, Ph D thesis, University of Toronto, Toronto, Canada (1987), unpublished
[16] R Kokoski, private communication
[17] A E Asratyan et al, Z Phys C 40 (1988) 483

[^0]: ${ }^{1}$ Supported by the German Bundesminısterium fur Forschung und Technologie, under contract number 054DO51P
 ${ }^{2}$ Supported by the German Bundesminısterium fur Forschung und Technologie, under contract number 054ER11P (5)
 ${ }^{3}$ Supported by the German Bundesmimisterium fur Forschung und Technologie, under contract number 054HD24P
 ${ }^{4}$ University of Toronto, Toronto, Ontario, Canada M5S IA7
 ${ }^{5}$ Carleton University, Ottawa, Ontario, Canada K1S 5B6
 ${ }^{6}$ York University, Downsview, Ontario, Canada M3J 1P3
 ${ }^{7}$ McGill University, Montreal, Quebec, Canada H3C 3J7
 ${ }^{8}$ Supported by the Natural Sciences and Engineering Research Councll, Canada
 ${ }^{9}$ Supported by the US National Science Foundation
 ${ }^{10}$ Supported by the German Bundesmınisterium fur Forschung und Technologie, under contract number 054KA17P
 ${ }^{11}$ Supported by Alexander v Humboldt Stiftung, Bonn
 ${ }^{12}$ Supported by Razıskovalna skupnost Slovenye and the Internationales Buro, Julich
 ${ }^{13}$ Supported by the Swedish Research Council

[^1]: \#1 References in this paper to a specific charged state are to be interpreted as implying the charge-conjugate state also
 \#2 A recent analysis [5] separates the $J^{P}=1^{+}$and 2^{+}contributhons to the $\mathrm{D}_{1}(2420)^{0}[1-3]$ and presents the mass quoted above for the 1^{+}state

