
Z. Phys. C - Particles and Fields 49, 337-341 (1991) Z~m,sch,im P ~ ~ S  IUF Physik C 

and FL:'k  
�9 Springer-Verlag 1991 

Chiral fermions in 2d quantum gravity 
T. Berger* and I. Tsutsui** 

II. Institut fiir Theoretische Physik, Universit~it Hamburg, Luruper Chaussee 149, W-2000 Hamburg 50, Federal Republic of Germany 

Received 6 August 1990 

Abstract .  Two theories of chiral fermions coupled to 
different quantum gravities in two dimensions are 
studied. One employs Jackiw's ansatz for classical gravity 
by introducing an auxiliary scalar, the other is based on 
the induced quantum gravity of Polyakov, which has no 
classical analogue. By investigating a localized theory of 
the effective action we show that in both cases a limited 
number of fermions of either chirality may couple 
consistently. It is stressed that the Weyl variable has to 
be quantized properly, which is related to recent work 
done on non-critical strings. 

1 Introduct ion 

Several years ago, Jackiw and Rajaraman [1] showed 
that the chiral Schwinger model, a two dimensional (2d) 
anomalous model of a chiral fermion coupled to a U(1) 
gauge field, can be consistently quantized. The reason is 
that a classically frozen variable is turned into a physical 
quantum field by the chiral U(1) anomaly and thereby 
restores the symmetry. Although this aspect has not yet 
been fully investigated in Polyakov's path integral 
approach [2] to string theory, it is reasonable to expect 
that the Weyl symmetry may also be restored even for 
non-critical dimensions by considering the Weyl variable 
as a dynamical one. First affirmative results have been 
derived recently by Fujikawa et al. [3]. Another im- 
portant aspect of Polyakov's approach is that it allows 
to define 2d quantum gravity through the Weyl anomaly 
without any classical gravity. 

A different approach towards 2d gravity was pro- 
posed by Jackiw [4], who introduced an auxiliary 
scalar to define a nontrivial classical gravity action. 
Following this approach together with the basic idea of 
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Ref. [1], Li [5] and Fukuyama and Kamimura [6] tried 
to find out whether it is possible to couple chiral fermions 
consistently to gravity. They both promoted the 
inevitable Lorentz variable, which arises through the 
Lorentz anomaly [7], to be a quantum field, but gave 
contradictory answers to the consistency question. 
However, apart from the difference between their 
procedures which leads to the contradiction, both 
analysis share a crucial drawback in that the Weyl 
anomaly which comes in through the Faddeev-Popov 
ghost sector has not been taken into account. 

In this paper we (re)investigate the two approaches 
towards 2d gravity interacting with chiral fermions. In 
Sect. 2 we adopt Jackiw's gravity in order to settle the 
above mentioned question. It is shown that the algebra 
of generators of surface deformations, which can be used 
to define a physical space, closes without Schwinger 
terms. However, combined with the demand of positivity 
for the Weyl and Lorentz variables, we get a constraint 
on the number of chiral fermions. Then, in Sect. 3, we 
adopt Polyakov's gravity and show that the algebra 
closes likewise but the allowed number of chiral fermions 
is slightly different from the previous model with Jackiw's 
gravity. Remarkably, the allowed number is identical to 
the one obtained in our previous work [8], where the 
consistency of the theory has been demonstrated by 
exploiting the conformal gauge in the path-integral 
formalism. Section 4 contains the conclusions. 

2 Chiral  f ermions  coupled to J a c k i w ' s  gravity  

Following Jackiw [4], let us first define gravity in two 
dimensions by the action,* 

1 
I G - ~ d x x ~ -  gN(R  + 2A), (1) 

16rcG 

where N is an auxiliary field. Fermionic matter is 

* Notation: 7~ 71=i0"2, 75=--]:~ e ~  (7 a b =  

�88 7hi = _ �89 7~'R.L = --+ 4'R.L 
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introduced by 

(2) 

where r denotes a set of ns right-handed and n L 
left-handed Weyl fermions. The metric is given by the 
lapse and shift functions 7o and 71, respectively, together 
with the Weyl variable r 

Ot, v = e4' ( 72 --  72 2711 ) .  '3) 
\ --71 

By introducing the Lorentz variable F, the zweibein is 
parametrized as 

e~ l_ ~ 
" sinh 2 

~ 
cosh F ) 711)~" 

(4) 

Then the spin connection reads 

Ot~ = gab evaVuebv =-- 63uF + ~t~' 

~o~ = l~(c k - 27'1 - 7, (o'), 
70 

~5o = 7aoSa + 27o + r (5) 

where dot and primes mean time and space derivatives, 
respectively. As is well-known, one may either work 
with a local Lorentz invariant or a general coordinate 
invariant regularization for the fermionic effective action 
[7]. Here we adopt the second alternative given by 
Leutwyler [12]: 

eil.ff/h = IdOl d~e u'4~, 

/eft = f d x  % ~  ~ / N ~  ~] V 2 

" ( c % / ~ R  + f i x / - -  gguW.~ 

~ } 
+ # x f -  g + ~ ~ -  ggU'~o, co, , (6) 

where ~ = n R + ne, fl = n R -  ne, and two arbitrary para- 
meters/~ and a' represent regularization ambiguities. The 
effective action can be derived easily by use of perturba- 
tion theory [9], up to the ~-term. The nonlocal term in 
/eft  is eliminated by introducing a scalar field (p 

+ ~o(cR + bg"Wuo)~) + �89 (7) 

The parameters a, b, and c can be deduced by comparing 
Iaf  with the effective action derived from I~or [5]: 

b2 _ h c2 _ h 
96rt (mA - rnC)' 96n (mA + mG)' 

a = a' + b 2, (8a) 

with the algebraic and geometric means of (1 - nR) and 

(1 - nr): 

(1 - nR) + (1 - n r )  
mA = 2 , mc = x/(1 -- nR)(1 -- hE). (8b) 

b and c could be exchanged, but as we shall see the choice 
(8a) turns out to be a suitable one. Note that b and c are 
imaginary for m a > m G. In this case we may redefine ~0 
as ~0 ~ iq~, so that Iloc remains real. 

For the combined system I = I~oc + IG, we have 

I = I d x { q o  l(q~ 27'~ - qS'rh)(N - ?ll/~') -- (27o + r 
1 - + 27o R A e ~  + #7o e4, + 37o '[(~b - qr 2 - qr ] 

+ b7o1[ - ( (o  - r/l ~o')(O9o - t]16,91) + 702(D1(/0 '] 
1 -1 2 2 + ~ a T o  [((,00 -- (-0171) 2 }, - 7oCOl ] (9) 

where we defined N = N - c~0, and the factor 1/16rcG has 
been absorbed in N. With the canonical momenta of the 
variables ~o, N, r and F, this may be recast into 

I = ~dx{IClP~ + (aP4, + (oPq) + [:PF --(7o H + 71 r )} ,  (10) 

where (with p absorbed into A) 

H = - bqYF ' -  2~!" + IV'c~' + (Pep - b~o')P~ 
, 1 2 1 12 - 2(N + cq))Ae 4' - PF~)' + 2P F + ~P~ + ~0 

1 
+ 2(a - b2) (PF + bP*)2 + �89 + F') 2, 

T = Pe, dp' - 2P', + Pf~IQ' + PFF' + P ,  qY. (11) 

H and T are generators of surface deformations and 
satisfy closed algebras classically [10]. H and T are 
transformed canonically into a form where afterwards 
the singularities connected to the quantum nature of the 
fields can easily be dealt with. By means of the generating 
functional 

W = ( /3  + x/dp~)tp + (/5 v _ bP• - x,/~bP~)F 

+ (/5r _ x / ~ ,  _ aP~. - aF' + bqr + fif~N 

and the rescaling 

2 - 1 -  ~ / 3 v ,  F, 

we arrive at (omitting all tildes) 

H + = H •  

= �89 + F,)2 + �89 • q~,)2 + 2 ~ a -  bz(PF • F')' 

+ 2 ( -  b • wfa)(P~o + qr + ( e ,  •  • r 

-T- 2(P,  • N')' + 2xfa(w/~ -T- b)( • PN + q~')' 

(12a) 

(12b) 

cb 
- 2 I IQ + (c - x/a)q~ + cx/a(a + ~ F ] Ae*. 

(13) 

a - b E > 0 is required for the rescaling of F and PF in 
order to ensure that the kinetic term of F has the correct 
sign. 



Defining [6] 

1 
a+ = ~2(q~ + N), _ n• = ~ ( P , ~  + Piq), x/2 

we get the quantum expression 

(14) 

1 1 1 
H• = ~:(PF +- F') 2: + ~:(P~ + ~o') z: + ~ ( P v  +- F')' 

1 ~ 1 )2: 

1 
+ o1• (re• + ~'+)' + -T- ~'~)' 

1 
- 2 : [ ~  (c + a + - c_ a_)  + (c - v/a) q~ 

L /2 

cb F ]  Ae "/~(p+~'+ +p ~-)" -~ ~ j ., (15a) 

with 

~1  = -T- w/2[1 + w/a(+ b - w/-d)] , 

1 
- T - , A [ 1 -  b -  

L = 2( -  b + ,fi), 
& 

c• = 1 + c~/a, 

p • :arbitrary parameters. (15b) 

In (15a) colons do not necessarily mean normal ordering, 
but only that the coincident-point limit can be taken in 
terms of the following prescription [13]. Starting with 
the quantum expression A = - H +  ~ '  for a generic 
canonical conjugate pair H and q~, one defines the 
product A(x)A(y) by 

A(x)A(y) + A(y)A(x) 

=:A(x)A(y): + :A(y)A(x): 
2h(1 

n ( x - y )  2' 
(16) 

where (1 is an arbitrary constant, as only the form of the 
singularity can be inferred from a dimensional analysis. 
Another relation we need is 

m2[A(x)eP'~(y) + e~'~(y)A(x)] 

= m2[:  A(x)ea"(Y): + :ea"(r)A(x):] hfl(2 ME :ep,,(y):" 
n ( x  - y) 

(17) 

Again, (2 is an arbitrary constant and M a renormalized 
mass. 

The generator of surface deformations should fulfill 
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the following algebra, 

~h[n• • H 

= + 2(n• + n+_(y))6'(x - y) 4:_ (g6"(x - y), 

1 
I n +  (x), H_ (y)]ET = 0. (18) 

We have to demand a vanishing central charge cg so that 
the closure of the classical algebra, i.e., the invariance 
under surface deformations, is kept on the quantum level. 
By using (16) and (17), we obtain constraints on the 
coefficients (15b) analogous to the ones derived in Ref. 6. 
They lead to a = 0; however, the central charge cg does 
not vanish. Here one has to employ the freedom to 
introduce an quantum ambiguity in fl~,,V,L,r~ [13], which 
renders cg = 0 when properly adjusted. The demand for 
a non-ghost F-field reads a - b z > O, which now becomes 

_ b 2 =  h 
96-~ (mA -- raG) > 0. (19) 

It is obvious that a physical F just excludes a physical 
q~ because the latter has to be imaginary for an imaginary 
b. This poses no problem because q~ is an auxiliary field 
which may not be physical by itself. Note that the choice 
(8a) for b and c ensures that the Lorentz variable dis- 
appears for n R = n L, if we set a = 0. 

The analysis up to this point, however, falls short in 
an important point: the Weyl anomaly of the whole 
system has not been taken into account yet. The main 
contribution to the Weyl anomaly comes in through the 
Faddeev-Popov ghost sector, which is inevitable when 
the gravity is quantized. From this we effectively get an 
additional action 26IL, which turns into the Liouville 
action if the conformal gauge is chosen [2, 8, 15]. In our 
analysis it is convenient to use the expression for arbitrary 
coordinates, 

h 1 x ~ R .  (20) 26I L = - 26 S d x ~ / - - g R v  2 

This has to be added to Ieff (6), which results in a change 
of coefficients b and c through mA and m G. The Weyl 
anomalies of all participating scalar fields should also 
be taken into account (see Ref. 8). Since each field 
contributes a " +  1" to nR,L in (8b), we get b and c from 
(8a) with 

(23 - nD + (23 - nL) me = ~ - 3  -- nR)(23 -- nL). 
mA = 2 ' 

(21) 

Consequently, we obtain a constraint on the number of 
chiral fermions from (19): 

na < 23, n L < 23. (22) 

3 Chirai fermions coupled 
to Polyakov's induced gravity 

Next, we will perform the same analysis for a model with 
Polyakov's induced gravity, which is reached simply by 
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setting N = 1. Then, for the constraints (11) we have 
t H = -- bqYF' + 2ctp" - ctp'r - PFr + 2PF 

1 
+ l a F ' 2  +I~P~ + ~  q9'2 2 ~" 2(a--  b2) (P~+bP~)2 

1 a - b  2 
_ 2Ae r 

2 a(a - b 2 + c 2) 

( _ bcp, + aF, Cb c a  ) 2  �9 + a ~ P v + ~ P ~ + P ,  

T = P~r - 2P'~ + PFF' + P ,  cP'. (23) 

The generating functional for the canonical transformation 
corresponding to (12a) is 

w = ~ + (PF - bP~)F 

+ ( p ~ , _ a ~ p  ~ _ c P , _ a F ,  +bq f  ) r  (24a) 

In addition to (12b) for F and/~v, we rescale 

X /  a ( a -  b z + c z) 
~ k - l ~ b ,  P4,~kP4,, k -  a - b  z (24b) 

Then the quantum generators H• read (again all tildes 
are omitted) 

H + =  1. _ -i .(PF+F')E:+�89162162 

+ �89 + r 2A:eP,: + 2(c -T- b)(P~ + r 

a - b E + cb F')' - r 
+ 2 , ~  (PF -4- 2k(+ P ,  + (25) 

In contrast to the previous case, the A-term is trivial, so 
that a quantum ambiguity introduced for the coefficients 
of the last three terms is sufficient to fulfil the algebra 
(18) with c~=0,  and there is no need to put a = 0 .  
However, from the demand for non-ghost F and r the 
following conditions arise: 

a - b 2 ~ 0, k 2 > 0, (26) 

with 

(24 - nR) + (24 - nL) 
D,/A = 

2 
mc = x/(24 - nR)(24 - nL). 

(27) 

This results in the constraint 

n R ~ 24, n L < 24, 

which coincides with the result found in Ref. 8. 

(28) 

What  happens if we freeze the Weyl variable by a 
gauge fixing condition? Then we have a nonvanishing 
central charge 

c g = 4k 2. (29) 

If only Dirac fermions couple (b E - 0, r/R = n L = r i d )  , the 
F-field does not appear  (a = 0) and we are left with 
cg= (h/12n)(26- nd), which is the familiar result. For 
chirat matter one may  set a = 0 to reach cg = 0; then 
nR, L ~ 25 (n R ~ nL) is the condition for a vanishing central 

charge. These observations seem to have a close relation- 
ship to recent developments in non-critical string theory 
[-3, 14, 15], where it has been pointed out that the con- 
formal anomaly vanishes even in non-critical dimensions 
if the Weyl variable is quantized properly. 

4 Conclusions 

In conclusion one can say that it is possible to quantize 
chiral gravity consistently if no more than a limited 
number of fermions of either chirality couple. For  this it 
is not decisive whether 2d gravity is defined as Polyakov's 
induced gravity [2] or as Jackiw's classical model with 
the help of an auxiliary scalar N [4]. The number of 
fermions that are allowed to couple, however, depends 
on the ansatz chosen, as this auxiliary scalar contributes 
to the Weyl anomaly of the matter  sector. Using Jackiw's 
ansatz, one has to mix the Weyl variable r with the fields 
N and r to get the generators of surface deformations 
H• in the form (15). While this makes the introduction 
of quantum corrections straightforward, it obscures the 
role played by r When the closure of the surface 
deformation algebra is required on the quantum level, 
the quantization procedure which we employed imposes 
a constraint on the parameters a ,b  and c. Another 
constraint is obtained from the positivity requirement of 
the kinetic term of F, resulting in (22). 

In the case N = 1, the constraint on the fermionic 
matter (6) comes about by the coefficients of the kinetic 
terms of F and of r This situation has already been 
found in our previous paper [8], where we employed the 
conformal gauge and therefore had no need to use a 
localized action. As has been shown in Refs. 8, 9, the chiral 
quantum gravity closely resembles the chiral Schwinger 
model [1]. There the breakdown of the chiral U(1) 
symmetry is prevented by turning a classically frozen 
variable into a dynamical one. On the other hand, in 
chiral quantum gravity we have to deal with two broken 
symmetries: the local Lorentz (or, alternatively, general 
coordinate) symmetry and the Weyl symmetry. Indeed, 
not only the Lorentz variable F, but also the Weyl 
variable r has to be treated as a dynamical quantum field. 
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