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We determine all solutionsto the consistencyequationswhich have to be satisfied by
anomaliesin gravitationaltheorieswith a Poincaré-invariantgroundstate.

1. Introduction

Anomaliesoccur when the quantizationspoils incurably symmetriesof a local

classicalaction,i.e. if the (nonlocal)quantumfunctional F =
T’classical + 0(h) cannot

be madeinvariant under infinitesimal symmetry transformationss by a suitable
choice of local counterterms.To lowest order in h the variation a = sF of the
quantumfunctional F is local. It is an anomalyif it cannotbe written as sb for any
local functional b. Becausethe anomalyis a variationa = sF it is not arbitrarybut
highly restricted by consistencyconditions [11 comparableto the restrictions
V )< F = 0 which a gradient F = Vq~has to satisfy.

The analysisof the consistencyconditionssimplifies considerablyif F, a and b

are consideredas functionalsof not only the physical fields but also of the ghost
fields andif theseghostfields replacethe parametersof the gaugetransformation.
If one suitably defines the transformationof the ghostsone obtains the BRS
transformation[2] with the decisivenilpotencyproperty

s2=0. (1.1)

The consistencyequationtakesthe simpleform

sa=0, a~sb, (1.2)
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wherethe anomalya (to lowest order in h) and b are local functionals

a =f~~f([cP],x). (1.3)

[cP]denotescollectively all fields D andtheir partial derivatives3CD,0~9cD The
volume form (D-form) ~( dependspolynomially on x and [9~li]. Consideredas
functionof the undifferentiatedfields ‘P the integrandd canbe a formal series.
For the integrandthe consistencycondition(1.2) translatesto

sd+d~=0, ~f*s~+d~. (1.4)

Theseconsistencyconditions cannotonly be studiedfor ghostnumber 1 where
their solutions correspondto all possible anomalies. For ghost number 0 the
solutionsdetermineall gaugeinvariant local actionsand for ghostnumber 2 (in
D — 1 dimensions)the solutionsare relatedto Schwingerterms[31.

The solutionsof eq. (1.4) dependdecisivelyon the set of fields c~andthe ways
acts on them. In refs. [4—6]we solved eq. (1.4) for Yang—Mills theories for
arbitraryghostnumber.Herewe extendthe analysisto the gravitationalcase.

Gravitationalanomalieshavebeenintensivelystudied[7].However,the question
whetherthe known anomaliesexhaustall possibleanomaliesof quantumgravity
remained unsettled. In renormalizabletheoriesone can restrict ~( by power
countingto a linearcombinationof finitely manymonomials.Theneq.(1.4) canbe
solved as a finite-dimensionallinear problem. In nonrenormalizabletheories(e.g.
higher-dimensionalgaugetheoriesor quantumgravity) this methodfails. We deal
with the (potentially) infinitely many monomialsin [cP] which may combine to a
solution ~cufof the consistencyequationby splitting .~c/into parts~ with definite
degreeof homogeneity1 in [~], in particularthe part ~.c/with the lowest degreeof
homogeneity,the head of ~clf,turns out to be characteristicof the complete
solution ci. We prove that the known anomaliescomprise all solutions of the
consistencycondition.This resultmay disburdenthe mind of model builderswho
strive to constructanomaly-freemodelsbutuntil now could only prove theabsence
of known anomalies(in nonrenormalizablemodels).

Beforewe actuallystart let ussketchour approach.To solve eq. (1.4) we first of
all specify in sect. 2 the field contentand the operators for generalcoordinate
transformations,spin transformationsand internal transformations.In sect. 3 we
relate each solution ~

1G (D-forms with ghost number G) of eq. (1.4) to a
zero-form~ci~’ with ghostnumberg = G + D which solves

s.~f~’=O ~ (1.5)

Eq. (1.5) implies that each solution ~ can be taken to be invariant under
Lorentz transformations(the simultaneoustransformationof spin- and world-
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indices)and internal transformationsbecausethe generators6[ab] and ~, of these
transformationscanbe representedas

~{ab] _{S~_~

7}~ ~j= _{s~~i}~ (1.6)

where C~’~is the appropriateghostfield (3.7). Moreover,the explicit correspon-
denceof ~ and ~c~~’f’~shows that ~2~jG is independentof (undifferentiated)
translationghostscm andcoordinates~m.

Sect.4 dealswith the generalstructureof ladderequationswhich emergeif one
splits a solution ~ to eq.(1.5) into partswith definite degreeof homogeneityin
[cP].The head ~ is shownto dependonly on the (linearized)field strengthsand
on ghostswhich parametrizesymmetriesof the ground state.We formulate a
conditionwhich guaranteesthat also the completesolution ,ç~/gdependsonly on
theseghosts.

In sect.5 we applythesegeneralconsiderationsto thegravitationalBRSalgebra
with a Poincaré-invariantground state. ~ is shown to dependonly on the
linearizedtensorsRmflkl, ~ ut andtheir derivativesandon the ghostsCm, cd’, c!
(but not on derivativesof theseghosts)which parametrizethe Poincaréandgauge

transformations.Moreprecisely,C~il~andC’ canappearonly in invariantcombina-
tions ElK which correspondto Casimiroperatorsof the Lorentz andgaugegroup.
The translationghostscm appearonly in the samewayas differentials dxm enter
forms: ~c/ becomesa ghost form. This ghost form is closedwith respectto an
exterior derivative d but not “covariant exact” (i.e. cannot be written as the
exterior derivatived of a form dependingonly on thevariables[Rmflkl, ~ u’] and
Cm, Cab, C’).

We determineall such forms in sect. 6 which is devotedto threecovariant
Poincarélemmasand determinesthe topological densitiesof Goldstonefields and

of the metric andYang—Mills field.
Finally in sect. 7 we completethe surviving heads ~ to solutions ~ç/g and

enumeratethe D-forms ~1G which solve eq.(1.4). The result hasexactlythe same
form as if the Lorentz groupwere simply anotherfactor of the gaugegroup. For
ghostnumbers0 and 1 we finally spell out the result in moredetail.

2. Field content and BRS transformation

Gravitationaltheorieswith fermions are formulatedin terms of a vielbein em’~
which transformsundergeneral coordinatetransformationwith ghosts C~and
(Lorentz) spin transformationswith ghosts C~= — C

1~.One defines the BRS
operators by

sem” = Cr~9nema+ dmC”en” — Cbaem~~ (2.1)
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[we takeworld indicesfrom the middle of the alphabet,Lorentz spin indicesfrom

the beginning;vector indices of the spin group are raisedand lowered by ?lab =

diag(1, — 1, — 1,..., — 1)]. s is understoodto be a linear operatorwith a graded
productrule

s(AB) = (sA)B + (_)151 -41A(sB) , (2.2)

where the grading IDI is 0 if ~ commutesand 1 if ~Danticommutesas e.g.
fermions,ghosts,differentialsdxm, the BRSoperators and theexterior derivative
d = dxm 3~s commuteswith partial derivatives

[S,BmI=0. (2.3)

The transformationof the ghostsCtm and C’~’is completelydeterminedby s2 = 0,

eq.(1.1),

sCtm = Cla
1Cm (2 4)

sC~~b= Cla1c’~+ C”~CC
1’. (2.5)

As a start of our investigation,eq.(2.1) is slightly misleading.Neitherthe quantum
functional F nor the anomaly is guaranteedfrom the outsetto havean expansion
in tennsof e~abecauseit is not definedat em” = 0. Moreprecisely,F is a seriesin

em” =~~a+hma, (2.6)

andthe integrand~ of the anomalyis a formal seriesin h,,,’’ anda polynomial in
[ämhnal = (0mhn”, . . . ,a~.. . a~

1h,,”,...). We insist on this seemingly hair-splitting
argumentbecauseit is decisivehow s = s0 + s1 [4,5] decomposesinto a part s0
which preservesthe homogeneityin the fields and a piece s1 which increasesit
by 1,

s=s0+s1, s~=0, {s0,s1) =0, s~=0, (2.7)

SOhma =

3mC” — C~’’, soCm = 0, S
0C”~’= 0, (2.8)

Sihma = C~a,,h~”+ a~C”h,,”— Cbah~b, (2.9)

S~C
m= C1a

1C”’ (2.10)

s1Ct~b= CI31Cth + ~ (2.11)

In additionto the vielbein andthe ghosts C
tm and Cab we allow for matterfields

u’, Yang—Mills fields A’,,., and ghostsC’, where I labels a basis ~ of the Lie
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algebraof the internalgaugegroup ~.9,

[6J6J]=f,J”~3K (2.12)

The BRS transformationof A’,,, and C’ is

s0A’,,1 = a~C’, s0C’ = 0, (2.13)

s1A’~ = C~Ô1A’~+a~C’A~’+C~A~fJK’, (2.14)

s1C’ = Cma~C~~+ ~C~C’~fJK’. (2.15)

The transformationof the matterfields containsno linear piece(we definematter
fields by thispropertyandthe fact that their ghostnumbervanishes),

s0il’=O, suIl=Ca~ulc~Aul, 4~1’_—TAil’. (2.16)

sill is given by a shift term C
mc9~ilfanda sum of infinitesimal transformations

~A_(1~”m,1ab,6J), (2.17)

which consist of GL(D) transformations LV’,,, which transform world indices,
(Lorentz) spin transformations‘ab = ~ba and internal transformations8,. The
appropriateghostsare

CA = (d,,Cm,C~iJ~,C!) (2.18)

andthe sumoverA is definedas

CA8A = ~ a,,cm ~“m + ~ ~“t’~, + ~ C’8,
n,m a<b I

~,,Cm4~,,,+ ~C”51Qb+ C8
1. (2.19)

6A actslinearlyon ~l’ (2.16), i.e. TA arematrix representationsof the Lie algebraof
GL(D)Xspin(1,D—1)x.9.

AntighostsCA = (~m ~ab C’) andauxiliary fields BA = (Btm, B”, B’) havethe
very simpleBRS transformation

SCA=BA,
5BA=0. (2.20)

We definean operatorr by

~ (a,,...a,,,~) A . (2.21)l>0n1...n1 ( n1~ ni )
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Thenthe numberoperator

N = N[BAI + N[~A] (2.22)

can be written as N = {s, r) and the Basic Lemma [4] implies that nontrivial
solutionsof eq.(1.4) canbetakento be independentof BA andC~.Consequently
we neglectthesefields for the restof our investigation.

It remainsto specifythe action of s on coordinatesXm and differentials dxm.
~m has to be chosencompatible with the requirement that there exists an

antihermitianoperatorS whichafter quantizationgeneratesall transformationsby
the (graded)commutator

[S,~]=s& (2.23)

The coordinatesarejust labelsfor local fields andarenot quantized.Consequently
[S,x]=0 and

= 0, s(dx”~)= 0. (2.24)

The relation for the differential follows analogouslyand togetherwith eq. (2.3)
leadsto

{s,d) =0. (2.25)

In the end it will turn out that ci([1], x) can be chosento be independentof x.
Nevertheless,we haveto start with the more general setting and allow ~c1and
~f, .~, ~, eq. (1.4), to dependexplicitly and polynomially on xm in order to
enlargesuitably the set of local counterterms~, ~ which makewould-beanoma-
lies trivial.

3. Correspondenceto sd= 0

We prove
Theorem1. To eachsolution .cIG of eq. (1.4) therecorrespondsa solution ,cd’&’

of eq. (1.5) andvice versa.The correspondenceis unique up to trivial terms. c~f’~
and .ci’~are independentof x andinvariantunderSO(1,D — 1) X 9.

Proof. We split eq. (1.4) into parts with definite ghost number (Splitting
Principle [4]) which we indicateby a superscript

5~ç5fG+ d~(G+l = o ~jG *s~G—1 + ~ (3.1)

If ~ç/G+I =s +d~~ then PG/G..d~G satisfieseq. (1.5), sd”~’=0,
~pG ~ and ~yG is related to a solution of scd= 0. If ~c~xf~’#s.~/~+

we apply s to eq. (3.1). Using eqs. (1.1) and (2.25) we conclude
d(s~ci~’)= 0, where s~i’~~ is a (D — 1)-form of ghost number G + 2. The
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algebraicPoincarélemma

d~=0 ii=d~+d’~x.~I’+const. (3.2)

[4,5] for local forms applies (eventhoughwe generalizerefs. [4,5] and allow the
forms to be a seriesin h,,,” and a polynomial in x and [ah, A, ~ Cm,C”,C’I:
What mattersin the proofof the lemmais that theforms arepolynomialsin [acP]).
sf’~~ is not a D-form (

5~fG÷t*..I’d’~x)nor a constantform. So by the lemma

it is of the form —d~”~
2,

s~f~’+ d~’~2 = 0. (3.3)

If ,~tG+2
5~G±1+ d~~

2then ,~pG+1= ~rG+1 — d.~’~1satisfies eq. (3.1)
and ~ = o, ~G+1 =/=s~. If ,~*G+2�‘s.~’ + d~~2we repeat the
stepsfrom eq.(3.1) to eq.(3.3) for the(D — 2)-form ~iG±2~ In this waywe obtain
the descentequations[81

s.c1~’+~ =0, #s~~ + d~, G~<g’<gs~G+D, (3.4)

s~(’~=0, ~ (3.5)

for (D + G — g’)-forms ~rg which terminateat someghostnumberg (if the form
degreehasdroppedto zero at the latest).

To solve eq. (3.5) note that the generators6A’ eq. (2.17), can be written as

= {s
1, 8/SC }, eq.(1.6), i.e.

~ {nt, aa,,~cm}’
1ab ~ 8, ~ (3.6)

LV’,,, transforms the world indices of the fields h~”,A’,, andof the partial deriva-
tives of the fields. It is inert to explicit coordinatesxm or differentials.If we could
replaces~in eq. (3.6) by the completeBRS operators = s~+ s

1 then we could
apply the Basic Lemma[4] anddeducethat eachsolution of eq.(3.5) which is not
invariantunder

8A is trivial. Dropping thetrivial partwe could restrictourselvesto
solutionswhich are invariant under 6A• s~however,doesnot anticommutewith
0/aCA, so 8A = _{SI,a/aCA}~ _{s,a/aCA}becausegeneralcovarianceand spin
transformationsare spontaneouslybroken by em” = t5ma + h~”, eq. (2.6), to the
Poincarégroup where Lorentz transformationsare realizedin the “diagonal” of
coordinateand spin transformations,i.e. Lorentz transformationsact on world
indices andspin indices. Only the generators~ 6, of isometriesof the vacuum
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canbe written as anticommutatorsinvolving s,

=
1[ab] + ~[ab) — ~[ba] = — + a(aaCb) — a(abCa)

8~=_{s~~7}. (3.7)

(Herewe do not distinguishbetweenLorentz spin indicesandworld indices.Both

are raisedandloweredwith u7a~.)

Now we can deducefrom eq.(3.7) that eachsolution .cd’~ of eq. (3.5) contains
the fields and their partial derivativesonly in combinations IT([1]) which are
invariantunderLorentz andinternal transformations,

~jg... EIT([p])w1x (3.8)

T

wT are (D + G — g)-formswith coefficientswhich arepolynomials in xm. Without
loss of generality we can take these forms to be linearly independent.Then

= 0 = L~(sIT)wT implies

sIT([P])=0 VT. (3.9)

The functions IT([cfl) can be assumednot only to be linearly independentbut,
more restrictively,onecanchoosethem such that no (nonvanishing)linear combi-
nation combinesto a trivial term s~,

EATIT=s~ AT=0 Vi- (310)
T

Otherwiseone cannormalizesuch a relationandhas

IT = ( ~ A~I~)+ ~
T’~T

and
~

1~’~T

Dropping the trivial piece(s~)wT = sC~6wT), eq. (2.24),one haseliminated J~oT.

Without lossof generalitywe canthereforeassumeeq. (3.10).
Analogouslywe canassumethat no linear combinationATWT combinesto a form

ds~

ATwT=ds
7 A

TO VT. (3.11)
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Otherwiseone hasa normalizedrelation

~
~ T

and

~ w~’(I~’+A~’I~)+lTd’q
~ T

The last term is trivial and canbe droppedbecause

ITd~ = d(IT~q) — (dIT)’q = d(IT’r
7) +s~’.

(dI
T)i

7 is of the form s~~6becauseit is s-invariant, eqs. (3.9) and (2.3), and
transformsas a Lorentz vector.Explicitly ~ is given by

a
~= dx

t —ITrj

which follows from the relations

8,= ~~ 8,~=a,~, 6,xm = 0, (3.12)

i.e. if d actson fields (not on explicit coordinates)onecanuse

a
d=[b,s], b=dx’—~, [d,b]=0. (3.13)

The forms wT haveto beclosed,

dwT=0. (3.14)

This holds automaticallyif g = G becausethen wT are D-forms. If g> G then the
descentequation(3.5) for g — 1 states

s~g~+ ~(dr)~+ ~ITdwT=0 (315)
T T

We have just shown that each term wT dIT is of the form s1~.So eq.(3.15) states

~JTdwTS~

T

But then eq. (3.10)implies eq. (3.14).
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So the forms oiT are closed, eq. (3.14), but not exact, eq. (3.11). They are
polynomials in Xm anddxm whered = dxma/axm. Using r = Xm a/a(dxm) onehas
{d, r} = Pv~,+ Nd~= N. Decomposinga closedform w (dw = 0) into piecescv,, with

definite homogeneity n in x and dx (Nw,, = nw,,) one has dw,, = 0 Vn and
= ~n5~O w,, =w

0 + ~ n
1Nw,, = w~+ d(~,,>

0n~rw~).So only the constant
zero form is closedbut not exact. This is Poincaré’s lemma [9] (for contractible
coordinatepatchesandrealanalytic forms)*. So eqs.(3.11) and(3.14) imply that
d~’ is a function with no explicit x-dependence,

da=I([c1]) g=G+D, (3.16)

which is invariantunderLorentz transformationsandinternal transformations.So
we haveshown that to eachsolution .cd~Gof eq.(1.4) therecorrespondsan
which solveseq.(1.5).

Let us now start from a solution ~ of eq.(1.5) andcalculatethe correspond-
ing D-form d’~ which solves eq.(1.4). We useeqs.(3.5) and(3.13) to conclude
that

a
d~�f~’=_s(b~ci~), b=dx

m~-. (3.17)

We proveby induction that

1 1
—s . (3.18)

1! (1+1)!

By eq.(3.17) the inductionhypothesisholdsfor / = 0. Assumeeq.(3.18) to holdfor
— 1. We calculated(b’~c~f~)andused = [b, sl, eq.(3.18),and[d, b] = 0, eq. (3.13),

d(b’d~)=bs(bt.ci’~) _sb(btd~)

= ~bd(1b’~cd~) _s(b~+td~)

= _d(lbtd~)_s(b1~t~ci~)

or d((1+1)b~Qi~)= _s(bt+t~cJ~). (3.19)

Eq. (3.19) is just the inductionhypothesisfor 1. So eq. (3.18) holds for all 1. Eq.
(3.18)is nothingbut the descentequations(3.5) wherethe 1-forms .cxI” are given
by

~g1 = (3.20)

* It is at this stagethat we needexplicit x-dependenceof .cI/”. Otherwiseconstantm’~which arenot

GL(D) invariant could occurin nontrivial solutionsof eqs. (3.11)and(3.14).
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No ~cI~1 dependsexplicitly on the coordinatesxm. The D-form ~c&~/’is obtained
from that piece of ~ which contains D translationghostscm if one replaces
them by differentialsdxm. As a consequence.cIG doesnot dependon Cm, but at
moston derivativesof Cm.

The reconstructeddG does not vanish.Otherwisethe equation~ = 0 at
form degree (g — g’) <D would imply sd~= d~~’(algebraicPoincarélemma
[4,5]). Then one could deduce~~‘±i =

5~g’ + ~ from the descentequa-
tions andultimately ~ = ~ 1 in contradictionto (3.5).

The correspondencebetween ~c~/’ and ~ is unique up to trivial terms:
considertwo sets(~~‘e’)and(1i~)which satisfy the descentequationswith given
~iG = ~çjG The difference~~g’ — ~ also satisfiesthe descentequationsbut the
volume form ,~.,jG— ~ç,/G vanishes.Consequently,as we have just argued, at
lowest form degreeone infers ~ç~~fg— = ~ ~. Vice versaif two sets(~~) and
(,~~‘) which satisfy the descentequationshave the samezero-forms ~ = ,ç/g

then the difference ~ci~”— ~ satisfies the descentequationswith a vanishing
zero-formandtherefore,~,G — = ~ + d. This completesthe proofof

our theorem.

4. General structure of ladder equations

To solve eq. (1.5) we split sd
5’ into parts of definite homogeneityin the

variables[cI~],

~g=~ ~ (4.1)
/>0

We call the set {~)a ladder.The BRS operator splits into s = s~+ s
1, eq. (2.7),

and eq.(1.5) into a ladderof equations[41

s0..cd~~1+ s1sI, = 0, ~ ~ s0~~’,+ s1~~1. (4.2)

~ containsa piece ci= .~/. with lowest homogeneity.We call d the headof

s0~’=0, ~ (4.3)

Actually we canneglectall headsfor which thereexistsa ladder{‘~k}, kmjn ~ k ~

1mm,with

~o~k +S1.~k.1= 0 Vk <~~min, SO~~lmin+Sp~t~ = .121 (4.4)

becausethen ~ = > ,~,.~4— ~ ~ k ~ ~ ‘~‘k) is equivalent to .c1
5’ but

startsat still higherdegreeof homogeneity.For k = kmmn,eq. (4.4) again contains
an equation(4.3) which we thereforeinvestigatefirst.
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To solve eq. (4.3) we introducea numberoperator

(4.5)

as follows: Linear combinationsof ghostnumberzerovariables[‘D] spana vector
spaceV,,,, thevariables[C] with ghostnumber1 spanV~.s~mapsV,~,into V~.V~
can be decomposedinto the kernel ..‘V of s0 (s~17=0) and a comple-
ment .Y,

V~=~/K+~/f
7,s

0~Y=0. (4.6)

Similarly, ‘s
7c decomposesinto the range~ of ~ and a complement4’,

Vc=~+4’. (4.7)

The map S~: ~ .I~is invertible, in particular a basis ci”’ of ~ is mappedto a
basisc’’ of .~?. pa canbe completedby a basis~513of ~V to a basisof V~.In that
basis s~has the form

a
= ~ (4.8)

0 acl.’’

Define the inversemap r by

a

r = cpa (4.9)

(r is well definedonceC” is completedby c~to a basis of V~)andextends~and
r from the vector spaceV~+ V~to polynomials in (P,cp, C,C) (by linearity and
thegradedproductrule). Then

N=(5
0,r} (4.10)

countsthe variableswhich span .i~’ and /~(I~counts the ghostvariableswhich
span~, !~the ghostnumber0 variableswhich span.~Y).Eachpolynomial P in
[~] and [C] can be rewritten in terms of cp

13 $a C”, C4 and can be uniquely
decomposedinto eigenfunctionsof I~,

P=~P
1, !~P,=lP,, lEhiu{0). (4.11)

commuteswith s~,so a solution to eq.(4.3) satisfies

s0P=0 s0P1=0 VI (4.12)
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and is of the form

P=P0+~—!~P1=P0+s0 ~—rP1 , (4.13)

1>0 1>0

where we usedeqs.(4.10)—(4.12)(basiclemma [4]),

s0P=0 —~ P=P0(cb,c~)~ (4.14)

The sum is direct because~ is at least linear in C”, so s0~=s0~>~~
containsno piecewhich dependsonly on CD, C.

The implication is trivial becauseeach combination P = P0 + ~ solves

s0P = 0. Note that the definition of N dependson the choiceof a complementCA”

and .~, i.e. on the choice of variables CD”, C
4. Different choiceschangeP

0 by
trivial terms P0 = P~+ ~ [by eq.(4.14)1.

Eq.(4.14) completelysolvesthe s0-cohomologyproblem.Wecandrop thetrivial
pieces0,~6of the headandtake

~i([CD],[C]) =d(CD,~). (4.15)

Undercertainconditionsthe ladderequations(4.2) imply that all .cd’1, 1 ~
1mmn’ can

be takento dependon the ghostsonly through C4 which span .~. This follows
from an inspection of the number operatorN~.It decomposesthe variables
(cp, CD, C, C) into CD

0 = (cp, cp,C) with N~(CD0)= 0 and CD, = (C) with N~(CD1)= 1.

s~maps ‘D0 variablesto CD1, consequently

F k,soI =s0. (4.16)

cangeneratetermswith 1~~-number0, 1,2 from variableswith P~~-number0 and

1 becauses~is quadraticin the variables.Consequently,s~splits as follows:

si = ~si,i, ~ = is11, 1E {— 1,0, 1,2}

1 actually vanishes,i.e. s~ does not decreasethe !‘~‘~-number.This could
happenonly if s1 applied to C = s0CD containeda piece ~ with N~C~)= 0. The

algebras~so= —s0s1 andeq. (4.16),however,ensuresthat s1C has Nc-numbernot
less than 1, consequently

Si = si,o + sii + S1,2. (4.17)

If the condition

~1.2 0 (4.18)
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is satisfiedthen the ladder~ canbe chosento dependonly on not on C, i.e.
N~(~

1~ = 0. Our claim holds for I =

1mmn’ eq. (4.15). Assumethat N~(.~�i’~)= 0
holds up to some / where ~ satisfiesthe ladderequation s

1~oi’~1+s~c/~=0.

s1d1 is s0-invariant.Decomposesc~f~accordingto Nc-number,theneachpart is
separatelys0-invariantbecauseof eq. (4.16). The pieces~~cd~cannotbewritten as
s0~~1becauseN~(s10.cd’1)= 0 and I~(s0~’~) ~‘ 1, eq.(4.16). So necessarily

~ = 0 (4.19)

if thenext ladderequationis to be solvable.Eq. (4.19) is alsosufficientbecausethe
piece s11.cd’1 is of the form ~ eq. (4.13), where ~cd~ canbe takento be
independentof C, ~‘~c(~+1) = 0, becausealreadythat part of ,.cd~satisfies

=0. (4.20)

Possibleparts ~ of ~ with ~~)> 0 satisfy s~~6= 0 and are trivial ~ =

s~1/~3”.So up to trivial terms — which we drop — we can also take~ + to depend
only on ~ and not on C, ~ ~) = 0, and the induction hypothesisfor I + 1

follows from the onefor I.
Soif ~I,2 = 0 then the ladderequationsare iteratively solvableif andonly if they

aresolvablewith functions ~ which satisfy

(4.21)

From s~= 0 and s~= ~ + s1 + ~1,2, eq.(4.17), it follows that

s~0=0. (4.22)

Also partial derivativesam aredecomposedby !%~c.am mapslinearly variableswith

7~c~uml3et0 and 1 and therefore splits into a,~’+ a~,+ a,
1,, which change the

I’~~-numberby — 1, 0 or 1. a,~mapsghostsin the rangeof s
0 to ghostswhich are

not in the range. It vanishesbecauseif C = s0CD ~ ~ then amC= s0(a~CD)E S
1~’so

a~=a~+a,1,,. (4.23)

From [s
1,a~] = 0 andeq. (4.17)oneconcludes

[s10,a,~]=0. (4.24)

The head~c~’is only the part of .~cm1with lowest degreeof homogeneitylCd),

~ ~=.d+O(l(~d)+1). (4.25)
l>l(.cl)
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0(/) denotesgenericallyterms of homogeneity/ at least,1(d) is the homogeneity
of the headd of d. If for given d the partsd~,1 > 1(d) can be found such
that theycompleted to a solution d of sd= 0, thend may still be trivial even

if d is not s0-trivial. This happensif thereis some~ which satisfies

s~= d= d+ 0(1(d) + 1). (4.26)

For fixed d we considerall ~ which satisfy s.~6= d+ 0(1(d) + 1), i.e. eq.(4.26)
up to terms with degreeof homogeneitynot less than 1(d) + 1. They define a

maximal degree~max’

1maxm~{~(~) s~=d-~-O(l(d) + 1)}, (4.27)

where l,,,,,, <1(d) because.121* s0X. Choosearbitrarily one ~ with 1(a) = 1max~

Its head.~ cannotbe completedto a solution .~‘ of s.~6’= 0 becauseif such a

exists then ~ — ~‘ also solves eq. (4.26) up to terms 0(1(d)+ 1) and satisfies
— ~/6’) > lmax in contradictionto eq. (4.27). .121 and ~ drop out of the list of

headsof nontrivial solutionsof sd= 0, d* s/~6,d becauseit is headof a trivial
solution, ~ becauseit cannotbe completedto a solution.

5. The gravitational ladder equations

We now apply theserather generalconsiderationsto the BRS algebra (2.8)—(2.16)
andclaim:
The kernel .zV of so~eqs.(2.8) and(2.13), is spannedby (partialderivativesof) the
linearizedfield strengthF, the linearizedRiemanntensor.1~andmatterfields ~1’,

I~OmI,,= amA’,, — ~ (5.1)

Rklm,,= akF,m,, — alrkm,, = akW1~fl— a1Wk~,,, (5.2)

where
Tklm = akh(ml)+ alh(~k)— a~h(kl),

Wktm = a/h(mk)— amh(/k)— akh[l~]. (5.3)

t is the linearizedChristoffel symbol — a connectionfor coordinatetransforma-
tions — and c2 is the linearizedspin connection.A complement~/V is spannedby

h(mn),hEm,,], a(k . . . dki
2Fki,ki)m for I ~ 2,

a(k, . . . ak,_,wki)mn for I ~ 1,

a(k . . . ak,_,Ak,) for / ~ 1. (5.4)
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(The brackets ( ) denote symmetrization, [ ] antisymmetrization.World and
Lorentz indices are identified and raised and lowered by the flat metric.) The
range /.~l?of s0 is spannedby

a(,,Cm), a[nCmIC,,m, a,,...a,,1c,,, for I~2,

a,, . . . a,,c,,~for 1 ~ 1,

a,,...a,,,c’ fori~1. (5.5)

A complement4’ is spannedby

= (Cn,Cnm,CI). (5.6)

Consequentlyeq.(4.14) implies
Theorem2.

~ =0 ,~-= ,9~((~a [‘ki ,ft~,ip])~

(5.7)

The proof of eqs. (5.2)—(5.6) follows by an inspectionof eqs.(2.13) and(2.8),

Sohm,,= amC,,— Cm,,.

Taking the symmetric and antisymmetricparts of eq. (2.8) yields the first two
entries of eqs. (5.4) and (5.5). Differentiating one obtains sOakh~fl= akamC,,—

akcmn. The variablesakhm,, aremore convenientlyexpressedin terms of Wkm,, =

~‘~knm and Fm,,k=Fflmk definedby

ak/I,,,,, —

T’kmn + Wkm,, = 0. (5.8)

Eq. (5.8) has the well-known and unique solution (5.3). 1~and ~ have the

convenients
0-transformation(which identifies them as connections)

~0

T’km,, = aka~C,,, (5.9)

SOWkm,, = akC~,,. (5.10)

~ and f area basisfor first derivativesof hmn, eq.(5.8). No linear combinationof
t and ~ is s

0-invariant,eqs.(5.9) and(5.10),and consequentlyno linearcombina-
tion of akhm,,. Differentiating eqs.(5.9) and (5.10) one obtains ak . . . akiCm for
/ ~ 2 and ak, .. . dkiCm,, for / ~ 1 as s0-variationsof a(k . . .

3k

12

1’kj,k

1)m for I ~ 2
anda(k, . . . aki_,Wki)mn for / ~ 1. This explainsthe next two entriesof eqs.(5.4) and
(5.5). The symmetrizedderivativesof F and ~i do not span all the variables
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ak, . . . ak,2rk,,k,~and ak, . . . ak,1W~,,flfl.One can also antisymmetrize in one
derivative and the first index of F or ~. This yields the s0-invariant(partial
derivativesof) ‘~k1mn.F and ~ differ only by a gradient(5.8) which is the reason
why their field strengthsR coincide.

To proceedwe haveto choosea complement.~to .~ spannedby eq.(5.5). In
particular we can choosearbitrarily a combinationA1C,,m+ A2aEflC~]to belongto
4’ as long as A1 * —A2.The choiceA1 = 1, A2 = 0 will leadultimately to Lorentz
anomalieswhile A1 = 0, A2 = 1 yields anomaliesfor coordinatetransformations.
Both anomaliesdiffer only by trivial terms. We chooseA2 = 0 becausethen the

condition ~1,2 = 0, eq. (4.18), is satisfied.
Eq. (2.13)hasalreadybeenanalysedalongthe samelines aseq.(2.8) in ref. [5].

That investigationservedas a prototypeof the slightly more complicatedanalysis
of eq.(2.8).

Following eq. (4.17) we discussedhow the analysisof the ladderequationsis

simplified by splitting s~into s~=si,o+s1,i +s12 with definite Nc-number. 1~c
countsthe ghostvariableswhich spanthe rangeof s~.One easily verifiesthat for

s~given by eqs.(2.8)—(2.16) and 4’ being spannedby (Cm,C~~~,C~’) the condition
s~2= 0, eq. (4.18), is satisfied becauses1cm and S1C,,,, is at most linear in
a1c

tm — C
1

tm and~
1C”. Explicitly, s~,ois given by

s10cm = C
1C

1m,

= CaCCCb,

s10C’= ~CJC1<fJK~,

a — ç,n~ j a ç~ n~, a ~ aj~ b
— ‘~ n”m ‘ ‘-m “,, — ‘~blLm ~

s10A~,, = C”a,,A~,,+ Cm
1A~+ C~A~fJK’,

= C~a,,~1’— ~C”(L1,,~, — ~ba + 1ab) ~P— C’6,~P, (5.11)

as onecan readoff eqs.(2.8)—(2.16).The action ~ on derivativesof h,,,’’, A’,,,, il’

is slightly complicatedby the fact that though a,,, commuteswith s~it doesnot
commuteindividually with each~ becausea,,, hasno well-definedcommutation
relationwith N~.Ratherit splits into a,,, = a,1, + a,1,, wherea~commuteswith s

a~,differentiatesall variables [hm~~,AIm,~P,anCm— C,,m,akC”,akC’] while a,1,,
vanisheson them.Applied to Cm,C”~’,C’ onehas

a°r”=r “ a1r”—a r”_r
m m, m — m m ‘

a~,c”= 0, a,,C”” = amC~,

a~c’=o, a,’,,c’=a~c’. (5.12)
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The equationswhich define a~on the variableswith !‘TC = 0 are just the Killing
equationsfor symmetriesof the groundstate,only their interpretationhaschanged:
they do not restrict the ghosts(or transformationparameters)but define alge-
braicallya differential operatora~.

a~hasthe representation

= ~ ~ (5.13)

and therefore [a,1,1,,s
10] = 0, eq. (4.24). To determine the action of ~ on

ak.. .akihm, i~0, one can now simply apply a~to eq. (5.11) and commuteit
with s1,0.

It is thenvery easyto characterises10: it actsby a shift term d = Cmamfor the

fields [h~”, A’,,, Wi. s10 containstheLorentz transformation— ~C”6Eab] for world
and Lorentz indices(including the indicesof partial derivatives)of all fields apart
from the Lorentz ghost s~0C”= — ~C~6{Cd}C”. Finally, ~1,ocontains internal
transformations— C’8, for all internal indicesof all fields apartfrom the internal
ghost s10C’= — ~C~6JC’. So on the variables(C”, [h,,,’’, A’,,,, 1I1])s~is given by*

~1,0 = —+C~C~”~ — 2CCfJK~J + d— ~CabôIab]— C’ö,. (5.14)

The shift term d vanishesif appliedto C” = (C

tm, C”tm, C’).

d=Cma~, ~3~C”0, a[haAJ il/] =a~[h~”,A’~,il’], (5.15)

i.e. a,,, treatsall ghostsC” as constants.Due to eq.(5.13)a canbe expressedby the
commutator[Cm(a/aCm),s

10] becausea,,, = a,
1,1, — C~”(a/aC~).This imples that d

anticommuteswith s
10 dueto theJacobi—identityfor ~ [C

m(a/aCm),s
10]) and

= 0,
a

d = C
tm— s

1 0 {s~~ d) = 0. (5.16)

aC
tm

We are now preparedto solve eq.(4.19)for the head~d of the ladder

s1,0~f=0,

~‘(‘~“, [~mnkl,1~n~,,,1I~]) *s
10~(C~”,[Rmnkl,Frnn,lIlI). (5.17)

We can require ~‘*s10~6(C~”,[1~,ft,i/i]) becauseotherwisethe ladder d is
equivalentto a ladderwhich startsat higherdegreeof homogeneity.From

6[ab] = — ~ ~ 6, = — ~ ~i} (5.18)

* Actually eq. (5.14) holdson all variables,i.e. alsoon the ghostvariablesdefinedby eqs. (5.5).
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andthe Basic Lemma [41we know that d is invariantunderLorentz andinternal
transformations,cf. eq. (3.7), up to trivial termswhich we neglect. Thereforewe
candrop the part ~Cab6[ab]and C’6, in s~,eq.(5.14).

d can be decomposedaccording to its degree of homogeneity p in Cm:
~,, wi,. We call w, a p-ghost form becaused actson it like d on a differential

form. The piece

1ç~acç-.b Ic’JeKc IS — 2 ‘~cac’” 2 JfK

preservesthe ghostform degree,a raisesit by one,so eq.(5.17)splits

+ ~ = 0, cv,,, * s~i~+ dIJ,,1, p ‘~p~5. (5.20)

In particularthe lowest ghostform of d satisfies

~ ~ (5.21)

The solution to eq.(5.21) hasbeendeterminedin ref. [6]. w~, containsthe Lorentz

ghostsand the internal ghostsonly as polynomial in ElK, where K labels the
Casimiroperatorsof the Lorentz groupandthe internalgroup,

KE{1,...,R’}, R’=k+rank(.~) ifD=2k orD=2k+1. (5.22)

The ElK are invariantunderthesegroups,consequentlycv,, containsthevariables

[R~,,k/, F,,~,,,il’] also as invariantghostforms,

(5.23)

We claim that dcv,,= 0. If p = D is the maximal degreein C
tm (m = 1,...,D) then

the form is aui~omaticalIycloseddcv,, = 0. If p <D theneq.(5.20) requiresthat

dcv,, is of the form Jcv,,~
1. This can hold only if dcv,,, vanishesbecaused doesnot

act on the ghosts(5.15). So dcv,, containsthe ghosts in the form of ElK. Conse-
quently dcv,, cannotbewritten ~is§cv,,÷1[6]. So cv~is closed,dw,, = 0. A solution

cv~ of the form du~~,,l(ElK, U~mnkl, ~,,‘,,,,‘I”]) is trivial because then w~,=

5l,O~p_l(ElK,[Rm,,kl,1~,,,~1’1) eq.(5.17). -

We concludethereforethat d is a ghostform which containsthe Lorentz and
internal ghostsonly as polynomials in ElK and is a-closedbut not “covariantly”
exact,

a~=o, ~“* ~ (5.24)
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To solve this equationwe needthe covariantPoincarélemmaswhich are derived
in sect. 6.

6. The covariant Poincaré lemmas

Considera d-exactp-form rj (p ~ D) with vanishingghostnumber

= dw° (6.1)

which is s0-invariant

s~~=O, (6.2)

i.e. dependsonly on the variablesCD”, eq.(4.14),

= i-~(cpa) (6.3)

The “covariant Poincarélemmas” determinewhich s~(CD”)= dcv°cannotbe writ-
ten in termsof a (p — 1)-form cv

0 which also dependsonly on CD’’.

The simplest of theseproblems arises from the algebraof Goldstonefields
CD’(x) for spontaneouslybroken(or nonlinearrealizationsof) global symmetries,

s
0CD’(x) = C’, s0C’ = 0, a~C’= 0, [s0,a~]= 0. (6.4)

It follows that all nontrivial solutions to s0cv([cP], C) = 0 canbe takento dependon
[~CD]only (i.e. on a~,. . . a~,CD’,I ~ 1), i.e. a~CD’is the “field strength”of CD’,

s0cv([CD],C) = 0 cv =cv0([aCD]) +s~. (6.5)

Nontrivial solutionsof s0cv = 0 occur for ghostnumber0 only. Eq. (6.5) is easily
provenfollowing sect.4, eqs. (4.8)—(4.14),by introducing the operator

a
r = CD’—~ (6.6)

aC’

which satisfiesthe algebra

a

{so,r}=Ncp+Nc, (r,d)=(dcD’)~-~7. (6.7)

The covariantPoincarélemmafor the algebra(6.4) reads

71([aCD]) dw0([CD]) ~ =d[2([aCD]) +~(dCD), ~(0) =0, (6.8)

where ~ is a polynomial (whosecoefficientsmay contain differentialsdx
tm)in the

one-formsdCD’ without constantpart.
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Before we prove eq.(6.8) we remarkthat eq. (6.8) is a generalresult which is
valid whether CD’ are Goldstonefields or not andwhich holdsfor commutingfields
CD’ as for anticommutingones(in the latter casethe C’ arecommutingconstants).
If the CD’ are not Goldstonefields then s~in eq. (6.4) is to be consideredasan
auxiliaryalgebraicoperationintroducedto proveeq. (6.8).

To prove eq. (6.8) we apply s~to ~ = dcv°and find d(s
0cv°)= 0. From the

algebraicPoincarélemma(3.2) oneconcludesthat

s0cv°=dw
1+X’(C) (6.9)

because(a) s
0w

0 is not a volume form ../ d’~xand(b) theconstantswith respectto
are polynomialsin C’ (thoughC’ arespace-timeconstantsthey arenevertheless

variablesin our polynomials). Applying s
0 to eq. (6.9) and using the algebraic

Poincarélemmaonededucesiteratively the descentequations(the superscript1 of
cv’ and X

1 denotestheir ghostnumber, i.e. their degreein C’)

s
0cv’~=dcv’

1~ +X~1(C), 0~<l~<L, cv”~’ 0. (6.10)

The descentequationsterminateat some I = L becausethe form degreeof cvt
which is p — 1 — 1 cannotdrop below zero.

By eq.(6.7) functions X’(dcP, C) of ghostnumber1> 0 havethe representation

= -j-(so~r}J~’ =so(-j-r)~1), 1>0. (6.11)

We claim that the descentequationshavethe solution

cvt = rJ~’~’(dCD,C)+s
0A’’ — dA

1, 1>0, (6.12)

w0=r~1(dCD,C)+fl([aCD]) — dA°. (6.13)

This follows for I = L > 0 becausethe last descentequation reads,eqs. (6.10),

(6.11),

socvL=XL+l(C)=sor 1 XL+1
L+1

andhasthe solution,eq. (6.5),

cvL=r(LhlX~)+soA~+fl([aCD]). (6.14)

The term I1([3CD]) vanishesfor positiveghostnumberL > 0 becauseit containsno
ghost. Eq. (6.14) verifies the inductionhypothesis(6.12), (6.13) for 1 = L. Assume
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eq. (6.12) to hold for all ghost numberslarger than I. The descentequationfor
s0w’ implies

s0cv
t =X’~1(C) + drit~2(dCD,C) + ds

0 A’ (6.15)

or

s0(w’ + dA
1) =X1+i + {d, r}.~1+2 (I + 1)~+1 = sorJ~1±1, (6.16)

becausedX’~’= 0 andbecauseof eqs.(6.7) and(6.11). If 1> 0 then eq.(6.16)has
the uniquesolution,eq.(6.5),

co’=r.X’~1+s
0A’

1 —dA’, (6.17)

becauseno f1’([aCD]) cancontributewith a positiveghostnumber.Eq. (6.17) is the
induction hypothesisfor I. If 1 = 0 then no term s

0A
1 can contribute to w0

becausethereare no negativeghostnumbersbut now a fl([aCD]) canappear.This
proves eq. (6.13). Inserting cv0, eq. (6.13), into eq. (6.1) one obtains eq. (6.8)
because drX1(dCD, C) = {d, r}X’(dCD, C) = dCD (a/ac)X’(dCD, C) = ~(dCD) no
longer dependson C.

We summarizethe result.
If ~ is a d-exactform which dependsonly on derivativesof a field CD then it is a

sum of dQ, where (1 dependsonly on the derivativesof CD anda polynomial ~ in
the one-formsdCD,

i
7([aCD]) =dw0([CD]) ~ =dfl([aCD]) +~(dCD), i~(0)=0. (6.18)

Remark. The decompositionsj = dill + ~ is a direct sum because‘i~(dCD)con-
tainsonly asmany derivativesasfields andthereforecannotbewritten in the form
dfl([3CD]).

We extendthis resultto the casethat additional fields il’ occur,

71([aCD], [lIt]) = dw([CD], [lIt]) = d11([aCD], [ill]) + ~(dCD),

u~(0)=0. (6.19)

To prove eq.(6.19)we decomposed,

d=d+d (6.20)

into a pieced which differentiates[il’] anda piecea which differentiates[CD],

alI’=dlI’, dlI’=O, aCD=o, dcP=dCD, (d,a} =0. (6.21)

We assumewithout loss of generality that u~contains a fixed number m of
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derivatives,

N~N,1+N,~, Na(rl)mE~ (6.22)

(becausea general~ is a direct sum of such terms they do not mix in eq. (6.1)
because[Na,d] = d). We split ~j into pieces ‘q,, with a definite number n of

derivatives5 actingon CD,

rj,,, N1(’q,,)=n, N~(’q,,)=m—n. (6.23)

The equationd-q = 0 splits into a ladder

a~,,+a~,,1=o,n~n~i+1, ~ (6.24)

From the algebraicPoincarélemmafor d we conclude

= am,, +x,,([aCD]). (6.25)

This is obvious if the p-form ~ is not a volume form, i.e. if p <D. If p = D, eq.
(6.25) follows because~,, hasvanishingEuler derivativewith respectto il’ (using
the derivative c3) becausei~= ~ has vanishing Euler derivative ai1/aCD = 0 =

a~1~,/au’[from eq.(6.19)].But thenalso the Eulerderivativeof m, with respectto 111

(using the derivative a) vanishesbecausethe latter one is that part of a~/alI’
which containsthe minimal number n of derivativesacting on CD. If this Euler
derivativevanishesthen eq. (6.8) of ref. [5] implies m, = aw,, + const.Constants
with respect to d are polynomials in [CD]and becauses~dependsonly on
derivativesof CD onehas X,, =X,,([aCD]) and cv,, =

If X,, * 0 then

nN,(X,,) Na(Xn) =m,

i.e. eq.(6.25) is alreadyof the form (6.28) (seebelow).
If n <m then X,, vanishesandinserting i~,,= dcv,, into the next ladderequation

oneobtains

— = 0 (6.26)

with the solution

= ~ + am,, + 6,,+1~X~([aCD]) (6.27)

by the sameargumentswhich lead from eq. (6.24) to eq. (6.26). Again cv,,~ =

cv,,~1([aCD],[ilf]). Iteratingthe sketchedprocedureone arrives at

~m=acvm+dcvmi+x(IIaCDD (6.28)
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(~q,,may vanishfor ñ <n ~ m). The first termvanishes,

a~~=o, (6.29)

becauseit contains (m + 1) derivativesat least in contradiction to eq. (6.22).
Moreover, dl7m = 0 [eq.(6.24) for ñ = m], so dX([aCD]) = 0 and (because‘q,,, has
vanishingEuler derivativewith respectto CD andcontainsno constants)X is of the
form X = dY([CD]). So it satisfiesthe requirementsof eq.(6.8) andcanbe written
as

x([aCD]) =d~~1([acD]) +~(dCD), ~(0) =0. (6.30)

Oneeasily absorbs~m—1 into cv,,,_~ andcastseq.(6.28) into

~7m = dcv~J[aCD],[W]) + ~(dCD). (6.31)

Summingall ~,, onefinally has[becausedWm= 0 = dcv,,, seeeqs.(6.29)and(6.25)1

rn rn

‘17 = ~?7,, = ~ + ~ + ~~(dCD)

rn-i rn-i
=(a+a) ~ w,,+i~(dCD)=d~ cv,,+fj(dCD)

n=o fl1!

= dIll + ~(dCD),

which completesthe proofof eq. (6.19).
We needeq.(6.19)to proveby inductionthe
Gravitational covariant Poincarélemma.

‘17([Rmflkl,F,l~fl,~PI)=dtv0 ~

~(0,0)=0. (6.32)

‘L,, and ft’ are the two-forms

= ~dx” dx’ ‘~k1m,,’ ft’ = ~dx”’ dx” ft,,~,,. (6.33)

We assume~7to be a p-form and eq.(6.32) to hold for all p’-forms with p’ <p.
Forp = 0, eq.(6.32) is trivially fulfilled becauseno zero-form‘11 is adcv°.We apply

~ to ~ = dcv°and obtain iteratively the descentequations

cv°=~i°, s0ó3~=dó~~,0<g<G, s0aiG=0 (6.34)
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(the superscriptdenotesthe ghostnumber).We cansharpenthis result andapply
eq.(6.19) to s0w

0 which containsCtm only with a derivative

sow0= (sowo)([aCm], [A]) (6.35)

([A] denotescollectively the remaining variables). By eq. (6.19) the descent
equationsaremorespecifically of theform

sowf=dwi±ci(dCm) for0<g<G,

s
0w’ = ~G±i(dCrn)

for0~g~G. (6.36)

We now split eq.(6.36) by the help of the numberoperators

N1 = N~ + N]c~~~~]+ N[h,,~ + N[Ai~,] + Nghost,

N2 = +
1’1~c”’~+ NEh~],

N
3 = N~AJ]+ N~I]. (6.37)

17 = dw°splits into eigenfunctionsof N1, N2 and N3. It is sufficient to consider
eacheigenfunctionseparately.Thenall ~ canbe takenalso to be eigenfunctions
of N1, N2 and N3. Moreover,

N1(17) =N1(cv~) + 1 =N1(ci~~
1), N

23(17)=N23(w
5’) =N

23(cI~) Vg

(6.38)

becausethe numberoperatorsN1, N2, N3 arechosensuch that s~andd commute
with N2 and N3 andincreasethe valueof N1 by 1.

Exploiting eq.(6.38) we show that all ~ vanish

~g=0 1~g~G+1, (6.39)

becauseotherwise the contradiction N1(-q) s~0 follows. Observe that N1C17) is
positive because‘17 = dcv°contains at least one derivative. ‘17 containseach h~”
with at leasttwo derivativesandeachA’,,, with at leastone,so

N1(17) > (3N[h,,,~J+ 2N[A~,J)(n)= (3N2 + 2N3)(-q). (6.40)

If thereis a nonvanishingcI~(dC
m) onehas; eq.(6.38),

(3N

2 + 2N3)(17)= (3N2 + 2N3)(~
5)= 3N

2(~~)= ~N1(i~) =

which togetherwith eq. (6.40)implies the contradiction.So all ~g vanish.
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By the lastdescentequationandby eq.(6.39) cvG is s0-invariant,

s0cvG=0, (6.41)

andis thereforeof the form, eq.(5.7),

cvG = cv~(C~m,C1,[i~,,, ‘~mnk1,lI’I) + s0A’. (6.42)

If G = 0 then cvG = cv°= cv00([1~,,,‘~m,,kl,il’]) and ~7= dIT2([P,,~,,,I? mnkt’ il’]) andeq.
(6.32) is proven. The part s0A cannotoccur for G = 0 becausecv

0 hasvanishing

ghostnumber.
WeconsiderG> 0. The descentequationfor g = G — 1 requires

s
0w~= dcv~+ ds0A~’. (6.43)

The part of dw~where d differentiatesthe ghostsis of the form s0Y°’. So eq.

(6.43) states

so(cv~_Y~I+dAG_l)=dwoG, (6.44)

where d differentiatesonly the variables ~ ~ ~P].But then both sidesof
eq. (6.44)haveto vanishseparatelybecausethe right-handside only containsthe
ghosts ~ C’ and [~‘rn,,’

1?m,,kl, lI’l and cannot be s~of something. To solve
acv~= 0 we use the induction hypothesisfor p’ =p — G — 1 which is the form
degreeof cv~.By eq.(6.32) cv~has the form

G

cvQ = ~ C~~”’~. . . c~kmkc~,.. . CI~~

k=0

x ~ IG~k(Rmn, ~‘) + dQ,,~...10k([ Rmnkl~F, ~] )}. (6.45)

The last termis of the form — dX + s
0Y, where s0X = 0 andcanbe absorbedinto

the definition of equivalent cvIG, w~G So without loss of generalitycvG can be
takento be of the form

cv~= k=O . . ~~“c
1’ . . . CbG_k~,,,~..,G_k(Rmn,p’). (6.46)

Here ~ ,,,, can havea nonvanishingconstantpart becausedw~6’ = 0 hasthe

solution cv~= dx + const.We claim that

Gs~1, (6.47)
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i.e. the descentequationsterminatewith cvt at the latest.To show this inequality

we makeuseof the form of cvG, eq.(6.46),which implies

(2N~h]+ ~A])(W) = N
3(w’~), N[cm](cv

t~) = 0, (6.48)

andof the fact that

(N
1—N2—N3)(cv°)=N,(cv°), (6.49)

which holds becausew
0 contains no ghosts. We have a lower bound for the

numberof derivativesin ~:

N
3(’q) =N,(w°) + 1 ~ (2N[,,]+N[A])(n) (6.50)

becauseeachfield h,,,’’ in ‘17 carriestwo derivativesat least, A’,,, carriesat least
one.Furthermore,

= (2N2+N3)(17) = (2N2+N3)(o/~) (6.51)

becauseN2 and N3 havethe samevalueson ‘17 and all ~ eq.(6.38). Making use
of eq. (6.48)we rearrangetermsin eq. (6.51)andobtain

(2N2+N3)(cvG)(Nl_N2N3+N[cm,I+IV~c,])(wG)

= (N1 _N2_N3)(cvG) +G. (6.52)

By eqs.(6.38) and(6.49)we canconclude

(N1—N2—N3)(cv
6)+G=(N

1—N2—N3)(cv°)+G=N,(cv°)+G. (6.53)

Puttingeqs.(6.50)—(6.53)togetheronehas

N,(cv°)+ 1 >~N~(cv°)+ G, (6.54)

andeq. (6.47) is proven. The caseG = 0 has alreadybeendealt with. So G = 1,
cv~= cv

t is linear in the ghostsand eq.(6.46)readsmorespecifically

= Ca~ab(~ i~’)+ ~ ft’). (6.55)
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Wecalculatedcv’ using eqs.(2.13)and(5.10),

= arncab dxtm = so(c~i~~/~dxm), (6.56)

dC’= _a~C~dxm=_s
0(A~,,dxm), (6.57)

s0I~,,,,,= dJ•~m,,= 0 = d1~’= s01~’, 1~m,,= dü°i,,,,,, F” = dA’, (6.58)

where the obvious definitions for connectionone-forms ~“ and A’ havebeen
used.So onehas

dcv’ = (~oab +A”i~,). (6.59)

The descentequationfor g = 0 implies

sO(cv
0+c~i~ab+A”1~,) =0. (6.60)

Eq. (6.60)hasthe solution

= — (~ab~ ~ + uh(P~mnk/,/~.,,,lI’]). (6.61)

No term s
0Y can contributebecausew

0 hasvanishingghostnumber. Finally, we
cancalculate~7= dw°usingeq.(6.58) andobtain

= ~ P’) + dfI([i~~flk,,F’,,,, 1111), ~(0,0) = 0. (6.62)

This provesthe implication of eq. (6.32). The reverseis trivial. Moreover,the
sum in eq. (6.62) is direct because~ consistsof all terms of ~1which have the
lowest possiblenumberof derivativesN

3(i~)= (
2NEh]+

It is interestingto note that i~, eqs.(6.8) and (6.32),containsall possibleheads
of integrandsfor topological invariantswhich are local functionalsof h~aand A~,
or CD. A topological invariant is independentof continuousvariationsof the fields,
hence it is a local functional whose integrand 11 must have a vanishingEuler
derivativewith respectto h,,,’’ and A’,,, or CD. Consequentlyin eachcontractible
coordinatepatch 17 is of the form (6.1). Moreover, ‘17 must be invariant under
continuousglobal transformationsof the fields. So ~ and £1 are invariant. In
particular 11 has trivial transition functions and the boundary terms from dill
(which arise if one patchestogetherthe contractiblecoordinatepatches)cancel.
Only the part ~3can(anddoes)contributeto topologicaldensities.
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7. The completionof .~21

We can now solve eq. (5.24). If d is a D-ghost form (i.e. if it contains
C” = fl~,C

m) then it is of the form

d=~/(eK,[1~m,,k,,1~,,,lI11)C#+CD(ElK)C#+acv(ElK,Crn,[hma,A1nl,lI/]),

(7.1)

where ..
2f hasnonvanishingEuler derivativewith respectto h,,,’ or A’,,, or II.’. If

the ghost form degreeis lower than D only the secondand third term canoccur
becauseof dd=O. The completion of the head /(�~K,[Rm,,kl,F,fl’,,,lI’])C” to a
solution of sd’s’ = 0 is nearlytrivial:

(1) Completethe linearizedRiemanntensorto the Riemanntensor

R~,,k’ = a~F,,k— a,,F~k’~+ FnkFmr — FmkrFn,.I, (7.2)

where

F~,,k= ~gkl(a gi + ~ — a,g,,,,,), (7.3)

or — equivalently— to

b 1kb b b c b c b

Rmna = R~,,ke,,e1 =amcv,,a — ancvma + W,,a cv,,,~ — Wma cv,,, , (7.4)
where

1 k I k I k 1 d d

Wmab = ~(ea ebe~d+ ea
6m 17bd — eb 6~ 17ad)(akel — alek ). (7.5)

Herewe usedas definition

em” = 6~” + h~”, g,,,,, = em”e,,~’i-lab (7.6)

andconsiderthe inversevielbein eam andthe inversemetric gtm~~asseriesin ~~1m”~

ConsequentlyR~flk’is an infinite seriesin h,,,”.
(2) Completethe linearizedfield strengthFm’,, to the nonabelianfield strength

F,,~,,=a~A~~ _fJ,,.~IAJ,,,A,,K. (7.7)

(3) Complete the partial derivatives— which commute and therefore give a
symmetric index picture — to symmetrized covariant derivatives [using the
Christoffel symbols (7.3), the spin connection(7.5) and the Yang—Mills field A’,,,]
appropriateto the indexpicturewhich emergesif onedistinguishesbetweenworld

andLorentz indices.The so definedcovariantderivativevanishesif appliedto the
vielbein because

= a,,em — F,,mer + cv,,~e,,, = 0 (7.8)
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is the defining equation for F,,m’ = Fmn’ and Wmab = ~mba with the unique
solution (7.3) and(7.5).

(4) Interpretingall numericaltensors
17ab ~a1 . . . a0 as Lorentz tensor../ contains

noncovariantcontractions6,,,” or ~ Replaceall noncovariantcontractionsby
em”, e~

m.This makes ../ a GL(D) densitywith some weight which is invariant
underLorentz spin transformations.Multiply ../‘ with the appropriatepowerof
e = det ern” then ../ becomesGL(D) invariant:s/= Ctma~../.

(5) C” transformsas SC#= _(a~Cm)C#.We replaceit by eC” becausese =

Ctm a,,,e+ (a~Cm)eand s(eC”‘) = (a~e)CmC~~= 0. Consequently~ = eC”’d is
s-invariant. (This requirementhasfixed the dependenceof d~ on undifferenti-

ated em”.)
This completesthe constructionof a solution d~ for the head.321= .~/C#. The

correspondingdifferential form dG is simply the density

~race = ed(�IK, [Rm,,k1,F,,~,,,111]) d’3x. (7.9)

([R~,,k ~, Fm’,,, W’] now denotesall fields R~,,k ~, F,,~,,,lI’ and their symmetrized
covariantderivatives.)Only undifferentiatedghostsof the Lorentz groupspin(1,D
— 1) andthe internalgroup .g appearandtheyoccur only as ElK(C”’), K = 1,.. . , k

with k = rank(spin(1,D — 1)) if D = 2k or D = 2k + 1 and ElK(C’), K =

k+1,...,k+rankC9).
The secondpiece CD(El)C# of eq.(7.1) is treatedlike the first one, it just adds

“cosmologicalterms” CD(El)ed’~xto dG (in nongravitationaltheoriesthe El-inde-
pendentterm is trivial). They havenonvanishingEuler derivativewith respectto
em” andcanbe understoodto be alreadyincludedin eq.(7.9).

The third term of eq.(7.1) and the heads.121 which arenot volume ghostforms
but p-ghost forms with p <D are headsof solutionswhich we call ~hmraI~ The
headsareclosedforms with respectto d,eq.(5.24), andby the algebraicPoincaré
lemmathey areof the form (recall that d treatsthe ghostsas constants)

~hiral = CD(El) + a~. (7.10)

CD(El) canoccur as 0-ghostform only becaused is Lorentz invariant.
By the covariantPoincarélemma(6.32)we canwrite acv in eqs. (7.1) and(7.10)

as ‘i~(�lK,1k,,,,,,.l~’)plus a dB(ElK, [IL,,kI, 1~,,,lI’]). Thelatter piececanbe dropped
becauseit is headof a trivial solution (5.24). The differentials dxtm containedin

~hmraI via R~,, and F’ are consideredto be substitutedby Cm. Denote this
substitutionby ~/. If the original differential form containsno Ctm then ~/ hasan
inverse Y’,

~/f(dxm) =f(Cm), ~lf(Cm) =f(dxm). (7.11)
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With this notation ~hmrat is given by

(7.12)

wheregenerically~ containsp-formswith 0 ~p ~ D. ~hjral is Lorentz invariant

and 6,-invariant, eq. (5.18), and therefore contains pm,, and ft’ only as a
polynomial P in CasimirvariablesfK’

fK tr(1~mU~), ,~ = labj,,, K= 1,.. .,k,
fK=tr(ftm1<)), 1~1~’T,, Kk+ 1,...,k+rank(.i~’), (7.13)

~hmra1 = ~/P(ElK, f~). (7.14)

This follows because1~,,,,,and ~ transform under the adjoint representation.
They commute and can combine only to symmetric Kronecker productsof the
adjoint representation.All invariants in theseproducts are polynomials in the
elementary Casimir invariants which can be obtained from traces in suitable
representations~ andT, [101.For the Lorentz group m(K) = 2K if D > 2K. If
D = 2K then m(~D)= ~D. The m(K) of the classicalsimplegroupscanbe found
in ref. [10], the onesfor the exceptionalgroupsin ref. [11]. The U(1) factorshave

m=1.
To obtain terms of higher homogeneitywhich complete~hmral to a solution

~hmra1 (or which exhibit that it cannotbe completed)we introducethe one-form

matricesA, cv andghostmatricesC, u,

A = dxtm A~,,TJ, C = C’TJ,

cv = ~dxm ~ U = ~C”L,,,,. (7.15)

cv is given (as seriesin ~ by eq. (7.5). The nonabelianfield strength andthe
Riemanntensor(7.4),(7.7) arecomponentsof the two-form (F = ~dxmdx” F,,’,,,T,,

etc.).

F=dA—A2, R=dcv—cv2. (7.16)

Denotethesevariablescollectively by CD,

CD = (A,w,C,u,dA,dcv,dC,du). (7.17)

It is a remarkablepropertythat s asdefined in eqs.(2.8)—(2.16)acts on the ghost
forms ,./‘ck in the following simple form:

s = ~~(sy~ + d)./’ (on .J’cP). (7.18)
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SYM is the well-known BRStransformationof Yang—Mills fields

5YMA = —dC+ (A,C}, 5YMC’C, (7.19)

SYMW —du+(w,U), SyMUU
2, (7.20)

{syM,d}=0=d2. (7.21)

In particular sCJ’CD) nevercontainsterms with a~C”andthe algebraof s closes

on the variables ./CD. By eq. (7.18) it is sufficient to investigate (gyM + d) on
differential forms andconvert them to ghostforms only at the end.The comple-
tion of the ghostform ~hmral = ~“P(ElK, fK) is now straightforward.ReplacefK~

eq. (7.13),by fK which aredefinedby tr(Fm~) and tr(Rm~) andreplaceElK by

the generalizedChern—Simonsform 4K’

rn-i m!(m—1)! --

E str(ABIFm~),
= ~,(m+l)!(m—l— 1)!

m=m(K), A=A+C, A2 (7.22)

[Replace (A,C,F) by (cv,u,R) for qK correspondingto the Lorentz group.] The
part with lowest degreeof homogeneity in the fields and differentials of fK
coincideswith fK andthe lowest degreeof ~, with ElK,

m!(m -1)!
ElK = tr(C2m_l), m = m(K). (7.23)

(2m — 1)!

So

d=.J’P(4K,fK) (7.24)

is a completion of ~ = ,~/P(ElK, fK). The ~K are constructedsuch that they
satisfy

(sYM+d)~K=fK. (7.25)

Thereforeandfrom (SYM+ d)fK = 0 it follows that

a
sd= YEfK—--P. (7.26)

K aq~

If 1(d) is the lowest degreeof homogeneityof d then eachnonvanishingpiece

fK(a/a4K)P has at least homogeneitym(K) + 1 + 1(d) (counting also differen-
tials). So eq. (7.26)hasthe form (4.26).
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Analyzingeq. (4.26) we concludedthat candidateheadsd of solutions d to
sd= 0 are eliminatedas pairs (d, ~) from the list of nontrivial s0-invariants,
where d is the headof the right-handside of eq. (7.26) and ~ is headof a
shortestladderwith ~s21on the right-hand side of eq. (4.26). To pick a shortest
ladderwe follow refs. [4—6].We decomposeP into levels with the help of the
numberoperators,

a a
~ fK~-+~K~--- , (7.27)

K:rn(K)=m JK

which count the variablesq~and fK with fixed m(K) = m. P decomposesas

E (7.28)
rn>i

into piecesP~ which satisfy

NnPm=0 Vn<m and ‘~rn E1’m,i, NmPmi=lPmi, (7.29)
1>0

i.e. the lowest m(K) of variables
4K and fK on which P,,, actually dependsis m.

EachP,,, canbe uniquely decomposed[4],

—t~ +_J_~ -

mmm rm m,

where 1,,, and ~m andtheir algebraare

Im= ~ ~ ‘~m ~ ~lK~’ I,2,,=0=P~,, {Pm,Im}=Nm.
K:rn(K)=rn aq~ K:rn(K)-rn fK

(7.31)

[P,,,is not definedon forms fK but on commutingvariableswithout any nilpotency
relation. A relation f” = 0 and a differentiation ,9/af with a Leibniz rule and

fl = 0 is inconsistent. Differentiating repeatedly one would e.g. have n! =

(a/af)”f” = 0.] We applyeq. (7.26)to d= .J’P,,, andobtain

sd=,21’~ I,,Pm=./i,,,Pm+O(m+2+l(d)). (7.32)
fl>1

So all heads of the form d’I,,,P,,, correspondto trivial ladders.They can be
droppedfrom the list of headsof nontrivial solutions.Likewise all headsof the
form ~21’P,,,P,~I can be droppedif 1rn(PmP,~)doesnot vanishas a differential form
becausethe headof ~ can thennot be extendedto a solution d of sd= 0
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~ has among all heads/~of ladders~ which solve SI/~’=~/’1mPmP,~+
O(m+ 2 + 1(d)) the highestdegreeof homogeneity.This follows from eqs.(7.30)
and(7.31) andthe fact that all headshavethe form .J’P(ElK, fK) (7.12).]

We considera nonvanishingpolynomial ~ Then I~(P~P,~)consideredas a
polynomial doesnot vanish because

P~1m( Pm1~) = (em’ I~}P~P,~= N~(~mP,~)

and ~ consistsonly of pieces~ = ~ with N,,yi/6I = l.Q
1, 1> 0. A differ-

ential form, however, I,,,(P~P;)vanishesif and only if its lowest form degreeis
larger than D (the nilpotencyof theghostsdoesnot yield additionalzerosbecause
thereare no algebraic relations amongthe anticommuting ElK [6]). The lowest
form degreeof a monomial M(q~,fK) is given by its eigenvalueto the number

operator

a
N=2Em(K)fK—T. (7.33)

K 1K

Decomposethe polynomial P,~ into eigenfunctionsof N,

~E1~m,n, ~ (7.34)

The condition that the differential form P,,,Pm,, doesnot vanish translatesinto
n — 2m ~D (becauseP,,, decreasesthe lowest form degreeof a monomialby 2m)
andthe conditionthat I~P,,,P,,,,,vanishesas differential form readsn > D. Sofor
,/P,,,P,,,,, to bea nonvanishingsolution of the consistencyconditionn is restricted
to

D<n<D+2m. (7.35)

If this conditionis satisfiedfor the em,,, then P,,,P,~ satisfies

Sd’(rmPrn) =0. (7.36)

~/‘P,,,P,,, is nontrivial becauseall trivial solutions [which havea headgiven by a
polynomial P(OK,J~)]havea headwhich is a sumof 1mP,.;~terms.The solutions
~1”~race~ eq. (7.9), plus linear combinationsof ~ restrictedby eqs. (7.34)
and(7.35) anda constantthereforecompriseall solutionsof sd= 0, d* s~.The
solutions to the original problem for D-forms sd+ dd= 0, d* s~+ d~ are
spannedby ~~race and the D-form part of ~

Finally, let us write ~ in a notationwhich exhibits how the gravitational
solutions of the consistencyequation are related to the ones in flat space
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(Yang—Mills case).P,~ consistsof monomials

Mmg~~a,ç= lIE (fKY~!c(~&)(~K,
K: m(K)>m

aJ( + nK>O, n = 2~nKm(K), aK— 0,1, ~ 0. (7.37)
K:rn(K)=rn K

The sumof ghostnumberandform degreeN= Nd, + ‘~‘~hostis decreasedby ~m by

1, N(4K)= 2m(K)—1,sooneevaluatesNP~P,~,,=—1 +g’ +n, where

g = ~aK[2m(K) —1]. (7.38)
K

For D-formswith fixed ghostnumberG oneobtains

n=D+G—g’+l. (7.39)

The rangeof n, eq.(7.35), translatesinto a rangeof g’,

G—(2m—1)~<g’~<G. (7.40)

For fixed D and G we label “1m,n by g’ ratherthan by n = D + G + 1 — g’. Then
dchmra, is the D-form part of

~ ~m~m,g’~ (7.41)
= G — 2rn +1

We can now formulateour

Result. For a D-form d thereexistsan d suchthat sd= dd if andonly if

d= ~race + ‘-~~hmrat+ (s.~+d4’)

~race = e.s~’(El1,. . .,El,~,, ~ F,,~,,,1I’])d’~x,

~hiraI = ~ 0 ~ G ‘~ ~D(D —1) + dim(~~’),G
G a

dG= E E E qk~~m,g’(f1,...,fR’,ql,...,qR’)
rn g’=G—2rn+i K:rn(K)=m .‘K GD

R’=rank(c9) +rank(SO(D)) =rank(.9) +k if D=2k or D2k+1.

(7.42)
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The polynomial ~ is a sumof monomialsMmg,,~a~,eq.(7.37),subjectto eq.

(7.38).The bracket indicatesto takethe D-form part with ghostnumberG only.
The solutions of the gravitational consistencyequationsare nothing but the
solutionsof the Yang—Mills problemif the Lorentz group is consideredas a factor
of the gaugegroup.

Let us spell out the result (7.42) for ghost number 0 and 1. We follow the
discussiongiven in ref. [5]. For ghost number G = 0, eq. (7.42) determinesall
invariant local actions d°: They are given by all Lorentz- and gauge-invariant
densities (with nonvanishingEuler derivative) ed’ d’3x which one can construct
out of the tensorsRm,,k1, F’,,,~,,, ~I’ andtheir covariantderivativesandby the G = 0
contributionfrom ~hmral~ Thereonly ~mg’ with g’ = 0 contributeandin eq.(7.42)
one has to take the ghost number0 part q~of t7K. q~is the Chern—Simons
(2m(K) — 1)-form whichsatisfiesdq~=fK andtransformsas sq~= — dq),,where

q~is the part of ,.~ with ghostnumber1,

a
d°=edd°x+ ~ ~ ~ (7.43)

rn K:rn(K)=m fK

The secondterm contributesonly in odd dimensions D = 2k + 1, where P,,,,~

consistsof termswith

>m(K)nK=k+1. (7.44)
K

For ghost number 1 ~ has only contributionswith ghostsC~ from U(1)
factors (the sum ~‘ runsonly overU(1) factors),

~I~ace = E’C~e-/J([R~,,k,, F,,~,,, lIt] )dDx. (7.45)
J

‘~hmra1 has in evendimensionsD = 2k the form

~hmral,D=2k ~ ~ ~ (7.46)
rn K:rn(K)=rn fK

where again ‘~m,0 consistsof terms with LK m(K)nK = k + 1. The terms with
m(K) = 1 arethe abeliananomalies[8]. Theycontain q~<for abelianfactorswhich
are givenjust by the ghost C (~=A + C). Abelian anomaliescontain no explicit
connectionforms A outsideof a field strength.The termswith m(K) ~ 2 are the
nonabeliananomalieswhich contain explicit connectionforms A via q~.These
connectionforms cannotbe absorbedinto a field strength.

For purely gravitational(Lorentz) anomaliesm(K) is always evenor has the
value m(~D= iD). If also k = 2k’ is eventhereis no solution to eq.(7.44), i.e. if
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D = 4k’, k’ E ~J,then thereare no purely gravitational anomalies.Purely gravita-
tional anomaliesoccur only in D = 4k’ — 2 dimensions.

In odd dimensions(D = 2k + 1) d,,1,~,is given by

a
‘~hira1= E’(C’~4~’— C~A’)—P~(f,,.. . ,f,~) (7.47)af,

wherethe sum ~‘ extendsonly overU(1) factors [I, J run over theseU(1) factors,
C’ and A’ are the ghostandgaugefield dx

tm Am of the Ith U(1) factorand f, is
its field strengthtwo-form]. Eachfunction P~,containsonly termswhich satisfy eq.
(7.44).Dueto the antisymmetryin I andJ, thereis no anomalyin odd dimensions
unlessthe gaugegroup containstwo U(1) factors at least.

In the analysisof the consistencyconditionwecan switch off gravity h,,,” = 0 and
replacethe ghosts Cm,Cab by the constantghostsof Poincarétransformations
[they fulfill the Killing equations(5.12) identically with a,,, = a,1,~, rather than to
define an operatoraz]. No connectionFm,,’ or cvma” is then neededin covariant
derivatives.Then our result (7.42) comprisesall Yang—Mills anomalies.We had
determinedthem earlier [4,5]: therewe useda variationalmethod which allowed
us to treat s,~d=0 ratherthan s,~d=d~with a troublesomeunknown ~. The
variational method splitted the discussionof anomaliesinto the even- and odd-
dimensionalcasethoughthe analysisof the consistencyconditionsturned out to be
the samein bothcases.

In this paper we used the descentequationsto deducesd= 0 and could
investigate the consistencycondition in arbitrary dimension. Only when one
specifiesthe ghost number the results for d~hjraI in odd and evendimensions
differ becausein 4K the ghostnumberandform degreearecorrelated.

Our investigationof the gravitationalanomaliesrelies on the Poincaréinvari-
ance of the ground state.We do not completely understandhow sensitive the
results are to the symmetriesof the ground state.What is puzzling is that no
anomaliescan occur if the groundstatebreaksspontaneouslyall symmetries.This
does not mean that all transformationscan ultimately be realized as unitary
transformationsin the Hilbert spaceof states,it canalso indicatethat not evenfor
free fields the symmetriescan be implemented:they are explicitly broken. We
hopeto clarify this issuein the future.

We thank Wolfram Kuss for this assistancein writing the paper.
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