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We determine all solutions to the consistency equations which have to be satisfied by
anomalies in gravitational theories with a Poincaré-invariant ground state.

1. Introduction

Anomalies occur when the quantization spoils incurably symmetries of a local
classical action, i.e. if the (nonlocal) quantum functional I" = I, ;.. + O(#) cannot
be made invariant under infinitesimal symmetry transformations s by a suitable
choice of local counterterms. To lowest order in % the variation a =sI” of the
quantum functional I" is local. It is an anomaly if it cannot be written as sb for any
local functional b. Because the anomaly is a variation @ = sI” it is not arbitrary but
highly restricted by consistency conditions [1] comparable to the restrictions
V X F = 0 which a gradient F = V¢ has to satisfy.

The analysis of the consistency conditions simplifies considerably if I", a and b
are considered as functionals of not only the physical fields but also of the ghost
fields and if these ghost fields replace the parameters of the gauge transformation.
If one suitably defines the transformation of the ghosts one obtains the BRS
transformation [2] with the decisive nilpotency property

s2=0. (1.1)
The consistency equation takes the simple form

sa=0, a+sb, (1.2)
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where the anomaly a (to lowest order in #) and b are local functionals

a=/43/([¢>],x). (1.3)

[@] denotes collectively all fields & and their partial derivatives 0,33, ... . The
volume form (D-form) &/ depends polynomially on x and [d®]. Considered as
function of the undifferentiated fields @ the integrand 27 can be a formal series.
For the integrand the consistency condition (1.2) translates to

sl dod=0,  oAEsB+dB. (1.4)

These consistency conditions cannot only be studied for ghost number 1 where
their solutions correspond to all possible anomalies. For ghost number 0 the
solutions determine all gauge invariant local actions and for ghost number 2 (in
D — 1 dimensions) the solutions are related to Schwinger terms [3].

The solutions of eq. (1.4) depend decisively on the set of fields @ and the way s
acts on them. In refs. [4-6] we solved eq. (1.4) for Yang-Mills theories for
arbitrary ghost number. Here we extend the analysis to the gravitational case.

Gravitational anomalies have been intensively studied [7]. However, the question
whether the known anomalies exhaust all possible anomalies of quantum gravity
remained unsettled. In renormalizable theories one can restrict 27 by power
counting to a linear combination of finitely many monomials. Then eq. (1.4) can be
solved as a finite-dimensional linear problem. In nonrenormalizable theories (e.g.
higher-dimensional gauge theories or quantum gravity) this method fails. We deal
with the (potentially) infinitely many monomials in [®] which may combine to a
solution &7 of the consistency equation by splitting .o/ into parts .27, with definite
degree of homogeneity / in [®], in particular the part &7 with the lowest degree of
homogeneity, the head of 7, turns out to be characteristic of the complete
solution .o7. We prove that the known anomalies comprise all solutions of the
consistency condition. This result may disburden the mind of mode! builders who
strive to construct anomaly-free models but until now could only prove the absence
of known anomalies (in nonrenormalizable models).

Before we actually start let us sketch our approach. To solve eq. (1.4) we first of
all specify in sect. 2 the field content and the operator s for general coordinate
transformations, spin transformations and internal transformations. In sect. 3 we
relate each solution /¢ (D-forms with ghost number G) of eq. (1.4) to a
zero-form 7% with ghost number g = G + D which solves

so/8 =10, S Es BT (1.5)

Eq. (1.5) implies that each solution .2#¢ can be taken to be invariant under
Lorentz transformations (the simultaneous transformation of spin- and world-
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indices) and internal transformations because the generators §,,; and §; of these
transformations can be represented as

d d
B[ab]= —<S’66_”b}’ 5,= _{S,Ei}’ (16)

where C? is the appropriate ghost field (3.7). Moreover, the explicit correspon-
dence of /% and &/¢ shows that &/“ is independent of (undifferentiated)
translation ghosts C™ and coordinates x™.

Sect. 4 deals with the general structure of ladder equations which emerge if one
splits a solution &% to eq. (1.5) into parts with definite degree of homogeneity in
[@]. The head & is shown to depend only on the (linearized) field strengths and
on ghosts which parametrize symmetries of the ground state. We formulate a
condition which guarantees that also the complete solution .2/¥ depends only on
these ghosts.

In sect. 5 we apply these general considerations to the gravitational BRS algebra
with a Poincaré-invariant ground state. 27 is shown to depend only on the
linearized tensors I%m,, > I‘g,,’m, ¥ and their derivatives and on the ghosts C™, C*?, C'
(but not on derivatives of these ghosts) which parametrize the Poincaré and gauge
transformations. More precisely, C*® and C’ can appear only in invariant combina-
tions @, which correspond to Casimir operators of the Lorentz and gauge group.
The translation ghosts C™ appear only in the same way as differentials dx™ enter
forms: &7 becomes a ghost form. This ghost form is closed with respect to an
exterior derivative d but not “covariant exact” (i.e. cannot be written as the
exterior derivative d of a form depending only on the variables [1%,,,,, o EL Wland
cm,Ce,Ch).

We determine all such forms in sect. 6 which is devoted to three covariant
Poincaré lemmas and determines the topological densities of Goldstone fields and
of the metric and Yang—Mills field.

Finally in sect. 7 we complete the surviving heads &7 to solutions &% and
enumerate the D-forms .27 ¢ which solve eq. (1.4). The result has exactly the same
form as if the Lorentz group were simply another factor of the gauge group. For
ghost numbers 0 and 1 we finally spell out the result in more detail.

2. Field content and BRS transformation

Gravitational theories with fermions are formulated in terms of a vielbein e’
which transforms under general coordinate transformation with ghosts C” and
(Lorentz) spin transformations with ghosts C?” = —C®%? One defines the BRS
operator s by

se,” =C"e, " +3,C" " —Cle,’ (2.1)
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we take world indices from the middle of the alphabet, Lorentz spin indices from
the beginning; vector indices of the spin group are raised and lowered by 7,, =
diag(1, — 1, —1,..., — D]. s is understood to be a linear operator with a graded
product rule

s(AB) = (sA)B + (—)"""4(sB), (2.2)

where the grading |®@| is 0 if @ commutes and 1 if ¢ anticommutes as e.g.
fermions, ghosts, differentials dx™, the BRS operator s and the exterior derivative
d=dx™d,. s commutes with partial derivatives

[s,0,]=0. (2.3)

The transformation of the ghosts C™ and C“® is completely determined by s? = 0,
eq. (1.1,

sC™=Cla,Cm, (2.4)
sC% = Cl9,C + coCl. (2.5)

As a start of our investigation, eq. (2.1) is slightly misleading. Neither the quantum
functional I nor the anomaly is guaranteed from the outset to have an expansion
in terms of e,,” because it is not defined at ¢, = 0. More precisely, I' is a series in
h,’,

e, =8, +h,", (2.6)

and the integrand & of the anomaly is a formal series in 4,," and a polynomial in
(0,1, 1=08,,h,°%, .., 3p, .- 8,1, . ..). We insist on this seemingly hair-splitting
argument because it is decisive how s =s, + s, [4,5] decomposes into a part s,
which preserves the homogeneity in the fields and a piece s, which increases it

by 1,

s=so+s, $¢=0, {sg,5)=0, s7=0, (2.7)
sh, =8,C—C,"  s,C"=0, 5,C%=0, (2.8)
sih, " =C",h, " +3,C"h," — C, R, (2.9)
5,C" = Cl,C™, (2.10)
5,C% = C9,C% + C*Cr. (2.11)

In addition to the vielbein and the ghosts C™ and C?® we allow for matter fields
¥, Yang—Mills fields A/ and ghosts C/, where I labels a basis 8, of the Lie
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algebra of the internal gauge group ¢,

[51:51] =qu5K- (2-12)

The BRS transformation of 4! and C’ is

soAl =4, C1,  5,C'=0, (2.13)
s AL =Cl9,A%, +4a,ClAl + CIAKf, (2.14)
s,C1=Cm,C!+1iC'Ckf,l . (2.15)

The transformation of the matter fields contains no linear piece (we define matter
fields by this property and the fact that their ghost number vanishes),

so¥ =0, sW=Cm3, ¥ —C5,¥, S W=-TW. (2.16)
s¥ is given by a shift term C”d,,¥ and a sum of infinitesimal transformations
8A=(Anm7lab781)7 (2.17)

which consist of GL(D) transformations 4", which transform world indices,
(Lorentz) spin transformations /,, = —/,, and internal transformations &,. The
appropriate ghosts are

c4=(9,cm,C,C’) (2.18)
and the sum over A is defined as

C,= Y aCmA" + Y C*l,+ Y Cls,

n,m a<b I
=9,C™ A", +1C,, + C5, . (2.19)

8, acts linearly on ¥ (2.16), i.e. T, are matrix representations of the Lie algebra of
GL(D) x spin(1, D — 1) X #.

Antighosts C* = (C™,C?,C") and auxiliary fields B = (B™, B“*, B') have the
very simple BRS transformation

sCA=B4, sB41=0. (2.20)

We define an operator r by

(221)

r=%Y Y (4,...9,C%) ’

I20non, a(anl...an[BA—) )
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Then the number operator

N = Nyga,+ Ny (2.22)

can be written as N ={s,r} and the Basic Lemma [4] implies that nontrivial
solutions of eq. (1.4) can be taken to be independent of B4 and C“. Consequently
we neglect these fields for the rest of our investigation.

It remains to specify the action of s on coordinates x™ and differentials dx™.
sx™ has to be chosen compatible with the requirement that there exists an
antihermitian operator S which after quantization generates all transformations by
the (graded) commutator

[S, @] =sd. (2.23)

The coordinates are just labels for local fields and are not quantized. Consequently
[S,x]1=0 and

sx” =0, s(dx™) =0. (2.24)

The relation for the differential follows analogously and together with eq. (2.3)
leads to

{s,d} =0. (2.25)

In the end it will turn out that 27([®], x) can be chosen to be independent of x.
Nevertheless, we have to start with the more general setting and allow 7 and
o, B, B, eq. (1.4), to depend explicitly and polynomially on x™ in order to
enlarge suitably the set of local counterterms %, % which make would-be anoma-
lies trivial.

3. Correspondence to s.o/= 0

We prove

Theorem 1. To each solution 27 ¢ of eq. (1.4) there corresponds a solution &/
of eq. (1.5) and vice versa. The correspondence is unique up to trivial terms. /'8
and /¢ are independent of x and invariant under SO(1, D — 1) X 4.

Proof. We split eq. (1.4) into parts with definite ghost number (Splitting
Principle [4]) which we indicate by a superscript

s C+d =0, wC#EsB+dHBC. (3.1)

If 7 =589 +d@B%" then &'C =/ ¢ — dBC satisfies eq. (1.5), s7'9 =0,
"0 B, and /€ s related to a solution of s&/=0. If /¢ 5B +
d#°*' we apply s to eq. (3.1). Using egs. (1.1) and (2.25) we conclude
d(so7¢*+1) =0, where s7°*! is a (D — 1)-form of ghost number G + 2. The
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algebraic Poincaré lemma
dp=0 < 7 =dy+dPx_£+ const. (3.2)

[4,5] for local forms applies (even though we generalize refs. [4,5] and allow the
forms to be a series in 4,° and a polynomial in x and [0k, A, ¥,C™, C*,C']:
What matters in the proof of the lemma is that the forms are polynomials in [®]).
s %1 s not a D-form (5.7 ©*1 % _# dPx) nor a constant form. So by the lemma
it is of the form —d.o7 ¢+2,

s./C+ +dorC+2=0. (3.3)

If o7C*?2=5B*'+dB°*? then &/"CH! =70+ —dBC! satisfies eq. (3.1)
and sZ'C*1=0, &'t #sBC. If ZCr2xsBCT +dBCT? we repeat the
steps from eq. (3.1) to eq. (3.3) for the (D — 2)-form o7 “*2. In this way we obtain
the descent equations [8]

so/8 +doZ8 71 =0, FE+sBE L +dBE, G<g <g<G+D, (34)

s/E=0,  o/8#sHE! (3.5)

for (D + G — g")-forms /¢ which terminate at some ghost number g (if the form
degree has dropped to zero at the latest).

To solve eq. (3.5) note that the generators §,, eq. (2.17), can be written as
8= —{s;,0/0C}, eq. (1.6), i.e.

d a a
A, = - snm}, lab=“{s1’ac—ab}’ 6’=—{SI’B_C’}' (3.6)

A" transforms the world indices of the fields 4,°, A7 and of the partial deriva-
tives of the fields. It is inert to explicit coordinates x™ or differentials. If we could
replace s, in eq. (3.6) by the complete BRS operator s =s,+s; then we could
apply the Basic Lemma [4] and deduce that each solution of eq. (3.5) which is not
invariant under 8  is trivial. Dropping the trivial part we could restrict ourselves to
solutions which are invariant under 6 ,. s,, however, does not anticommute with
a/0C4, 50 8,= —{s,,0/0C"} + —{5,0/0C"'} because general covariance and spin
transformations are spontaneously broken by e,” =3, +h,", eq. (2.6), to the
Poincaré group where Lorentz transformations are realized in the “diagonal” of
coordinate and spin transformations, i.e. Lorentz transformations act on world

indices and spin indices. Only the generators 8;,,,, 8, of isometries of the vacuum
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can be written as anticommutators involving s,

a a 3
Bany = liany T Aan) ~ Appay = ‘{5’ ace T 3(3°C?)  3(a°C7) }

5,=—{ i } (3.7)

S, —7
ac’

(Here we do not distinguish between Lorentz spin indices and world indices. Both
are raised and lowered with n,,.)

Now we can deduce from eq. (3.7) that each solution &% of eq. (3.5) contains
the fields and their partial derivatives only in combinations I7([®]) which are
invariant under Lorentz and internal transformations,

=Y I([PD e (x). (3.8)

w” are (D + G — g)-forms with coefficients which are polynomials in x™. Without
loss of generality we can take these forms to be linearly independent. Then
s/¥=0=Y, (s]")o" implies

sI([®]) =0 Vr. (3.9)

The functions I7({P]) can be assumed not only to be linearly independent but,
more restrictively, one can choose them such that no (nonvanishing) linear combi-
nation combines to a trivial term s%,

YNI"=s# < X=0 Vr. (3.10)

T

Otherwise one can normalize such a relation and has

I'= ( Y )J’IT’) + 5B

T'#T
and
8= Y (0" +X0™) + (sB) 0.

T'ET
Dropping the trivial piece (s &)™ = s{(Hw™), eq. (2.24), one has eliminated ["w".
Without loss of generality we can therefore assume eq. (3.10).
Analogously we can assume that no linear combination A’w™ combines to a form
dn
No'=dn < XN =0 Vr. (3.11)
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Otherwise one has a normalized relation

0w =Y No™ +dy

TET
and

=Y 0" (I"+XT7)+1"dy.

T'ET
The last term is trivial and can be dropped because
I"dn=d(I'n) —(dI")n=d(I™n) +s&.

(dI7)7n is of the form s& because it is s-invariant, egs. (3.9) and (2.3), and
transforms as a Lorentz vector. Explicitly & is given by

d
B = dxla—cllf’r] s

which follows from the relations

a
5,= {sa_c'} §,b=0P, 5x"=0, (3.12)

i.e. if d acts on fields (not on explicit coordinates) one can use

F
d=[b,s], b:=dxla—cl, [d,b]=0. (3.13)

The forms " have to be closed,
dew™=0. (3.14)

This holds automatically if g = G because then w” are D-forms. If g > G then the
descent equation (3.5) for g — 1 states

sZ8 M+ Y (dIM) e+ Y, I"de™=0. (3.15)

We have just shown that each term w” dI” is of the form s%. So eq. (3.15) states

Y I'do" =s&.

But then eq. (3.10) implies eq. (3.14).
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So the forms o™ are closed, eq. (3.14), but not exact, eq. (3.11). They are
polynomials in x” and dx™ where d = dx"d/dx™. Using r =x" 3 /8(dx™) one has
{d,r} =N, + Ny, = N. Decomposing a closed form w (dw = 0) into pieces w, with
definite homogeneity » in x and dx (Nw, =nw,) one has dw,=0 V¥n and
W=2,.0 @, =0g+ Lo '‘Now,=wy+dZ,., n 'rw,). So only the constant
zero form is closed but not exact. This is Poincaré’s lemma [9] (for contractible
coordinate patches and real analytic forms)*. So egs. (3.11) and (3.14) imply that
&7/* is a function with no explicit x-dependence,

2¢=1([®]), g=G+D, (3.16)

which is invariant under Lorentz transformations and internal transformations. So
we have shown that to each solution &7 of eq. (1.4) there corresponds an .78
which solves eq. (1.5).

Let us now start from a solution /¢ of eq. (1.5) and calculate the correspond-
ing D-form .»7¢ which solves eq. (1.4). We use egs. (3.5) and (3.13) to conclude
that

d
de7t = —s(bo/*¥),  b=dx"-—. (3.17)

We prove by induction that

1 1
! — I+1
dl!b&ﬂ— s(l 1)!b 8 (3.18)

By eq. (3.17) the induction hypothesis holds for / = 0. Assume eq. (3.18) to hold for
I — 1. We calculate d(b’.o7¢) and use d = [b, s], eq. (3.18), and [d, b] = 0, eq. (3.13),

d(b'ere) = bs(b'or®) — sb(b'oz®)
= —bd(Ib'"'er®) —s(b'+'ar®)
= —d(Ib'sz8) —s(b'*Ler8)
or  d((I+1)blarg) = —s(b'*'ar%). (3.19)

Eq. (3.19) is just the induction hypothesis for I. So eq. (3.18) holds for all /. Eq.
(3.18) is nothing but the descent equations (3.5) where the /-forms .»7%~' are given
by

1
o= Sblos (3.20)

* 1t is at this stage that we need explicit x-dependence of &%, Otherwise constant w” which are not
GL(D) invariant could occur in nontrivial solutions of egs. (3.11) and (3.14).
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No »7¢~' depends explicitly on the coordinates x™. The D-form 27 ¢ is obtained
from that piece of /% which contains D translation ghosts C™ if one replaces
them by differentials dx™. As a consequence &7 “ does not depend on C™, but at
most on derivatives of C™.

The reconstructed .27 ¢ does not vanish. Otherwise the equation d.o7% =0 at
form degree (g—g’) <D would imply o/¢ =d#* (algebraic Poincaré lemma
[4,5]). Then one could deduce &Z/¢*!=5s#% +dB* ' from the descent equa-
tions and ultimately &7% =s#%~! in contradiction to (3.5).

The correspondence between &/¢ and /% is unique up to trivial terms:
consider two sets (27%") and (.&7#') which satisfy the descent equations with given
276 = o7, The difference &7% — o&7¢ also satisfies the descent equations but the
volume form 276 —.o7€ vanishes. Consequently, as we have just argued, at
lowest form degree one infers &7% — &78 = s#%~ 1. Vice versa if two sets (/%) and
(o7#) which satisfy the descent equations have the same zero-forms .27 = o¢
then the difference /¢ —.o7¢ satisfies the descent equations with a vanishing
zero-form and therefore .27 ¢ — 27 = s#C~! + d#°. This completes the proof of
our theorem.

4. General structure of ladder equations

To solve eq. (1.5) we split &7¢ into parts of definite homogeneity in the
variables [@],

E=Y, of), N=1o . (4.1)
1>0

We call the set {27} a ladder. The BRS operator splits into s =s, +5,, eq. (2.7),
and eq. (1.5) into a ladder of equations [4]

S0l T8,,=0, A F 5, By+ 5, B,_ . (4.2)

&, contains a piece &=/  with lowest homogeneity. We call &/ the head of
78

b

so/=0, Es,B. (4.3)

Actually we can neglect all heads for which there exists a ladder {#,}, &k, <k <
) with

min?

S0B) +5,9,_,=0 VYk<l 508, T8 DB, 1= (4.4)

min?

because then o6 =%, , o —s(¥; i<, %) is equivalent to /¥ but

min =

starts at still higher degree of homogeneity. For k =k, eq. (4.4) again contains
an equation (4.3) which we therefore investigate first.
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To solve eq. (4.3) we introduce a number operator
N=N,+N; (4.5)

as follows: Linear combinations of ghost number zero variables [ @] span a vector
space V,, the variables [C] with ghost number 1 span V. s, maps V,, into V. V,
can be decomposed into the kernel .# of s, (so.#=0) and a comple-
ment .7,

Vo= N+ A,  spH=0. (4.6)

Similarly, V. decomposes into the range # of s, and a complement R,
Vo=R+R. (4.7)
The map s A'— R is invertible, in particular a basis é* of . is mapped to a

basis C* of .#. = can be completed by a basis @# of .# to a basis of V,,. In that
basis s, has the form

d
=C%——. 4.8
So Py (4.8)
Define the inverse map r by
G 4.9
SRR Ter (4.9)

(r is well defined once C® is completed by C# to a basis of V) and extend s, and
r from the vector space V, + V. to polynomials in (@, ®,C,C) (by linearity and
the graded product rule). Then

]

N={sg,r} (4.10)

counts the variables which span A and R (ﬁc counts the ghost variables which
span %, 1\74; the ghost number 0 variables which span A4). Each polynomial P in
[@] and [C] can be rewritten in terms of ¢>B,<13“,C“, C# and can be uniquely
decomposed into eigenfunctions of ]\07,

P=Y.P, NP=IP, leNuU{0}. (4.11)
!

N commutes with §y, SO a solution to eq. (4.3) satisfies

s$P=0 e s,P,=0 VI (4.12)
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and is of the form

1. 1
P=Py+ Y, ——NP,=PO+SO( Y —rP,), (4.13)
>0 ! 50!
where we used egs. (4.10)-(4.12) (basic lemma [4]),
sgP=0 o P=P(®,C)+s,%. (4.14)

The sum is direct because s, is at least linear in C%, so s,& =51, %,
contains no piece which depends only on @, C.

The implication <« is trivial because each combination P = P,+ s,%# solves
5o P = 0. Note that the definition of N depends on the choice of a complement .7
and 2, i.e. on the choice of variables ¢ CB. Different choices change P, by
trivial terms P, = P+ s,#’ [by eq. (4.14)].

Eq. (4.14) completely solves the s -cohomology problem. We can drop the trivial
piece s,& of the head and take

Z([®],[C]) =2(2,C). (4.15)

Under certain conditions the ladder equations (4.2) imply that all &7, /=1, can
be taken to depend on the ghosts only through C? which span .%. This follows
from an inspection of the number operator [\7C. It decomposes the variables
(#,d,C,C) into @, = (P, D,C) with N.(P,) =0 and @, = (C) with NAP,) =1.
s, maps @, variables to @, consequently

[Ne,s0] =5, (4.16)

5, can generate terms with ]\7C-number 0,1,2 from variables with ﬁc-number 0 and
1 because s, is quadratic in the variables. Consequently, s, splits as follows:

si= Y51 [Newsy| =65, 1€{-1,0,1,2}.
!

§;,—, actually vanishes, i.c. s, does not decrease the 1\°/C-number. This could
happen only if s; applied to C =s,® contained a piece & with N(#) = 0. The
algebra 5,5, = —s,s; and eq. (4.16), however, ensures that s;C has N.-number not
less than 1, consequently

S;=S10FtS 1 t5,. (4.17)
If the condition

51,=0 (4.18)
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is satisfied then the ladder .7, can be chosen to depend only on C not on C, i.e.
NA(X, 27) =0. Our claim holds for I=1_, eq. (4.15). Assume that N.(2/) =0
holds up to some / where &7, satisfies the ladder equation s,97,_, + 5,2, =0.
5,7, is s,-invariant. Decompose s,%7, according to 1\7C-number, then each part is
separately sj-invariant because of eq. (4.16). The piece s, ;.97 cannot be written as
$o27; ., because ﬁc(slyofsz/,) =0 and ﬁc(so%H) > 1, eq. (4.16). So necessarily

$1.0%,=0 (4.19)

if the next ladder equation is to be solvable. Eq. (4.19) is also sufficient because the
piece s, 27 is of the form 5,97, ,, eq. (4.13), where 27, ; can be taken to be
independent of C, N-(&7, ) =0, because already that part of o7, satisfies

Sy, + 502, = 0. (4.20)

Possible parts & of &7, , with 1\7C(<@) > 0 satisfy s,% =0 and are trivial & =
504", So up to trivial terms — which we drop — we can also take 7, to depend
only on € and not on C, ]\O/C(Ja/, +1 =0, and the induction hypothesis for /+ 1
follows from the one for /.

So if s, , = 0 then the ladder equations are iteratively solvable if and only if they
are solvable with functions 7, which satisfy

No(4) =0. (4.21)
From s{=0and s, =5, o +5, | +5, ,, €q. (4.17), it follows that
s2=0. (4.22)
Also partial derivatives d,, are decomposed by 1\7C. d,, maps linearly variables with
N-number 0 and 1 and therefore splits into d,,' + 4% + 4!, which change the
No-number by —1, 0 or 1. 4,,' maps ghosts in the range of s, to ghosts which are
not in the range. It vanishes because if C =s,® € % then 4,,C =5,3,P) € X so
4, =032 +al. (4.23)
From [s,,d,] =0 and eq. (4.17) one concludes
[51.0.82] =0. (4.24)
The head & is only the part of & with lowest degree of homogeneity I(27),

=g+ Y, A=+ 0((L)+1). (4.25)
1>1(7)
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O()) denotes generically terms of homogeneity / at least, [(.27) is the homogeneity
of the head &7 of &. If for given 27 the parts o7, [ >I(.27) can be found such
that they complete 27 to a solution & of s&/= 0, then 27 may still be trivial even
if &7 is not sy-trivial. This happens if there is some % which satisfies

sB=of= o+ O(l(Z) +1). (4.26)

For fixed o7 we consider all & which satisfy s& = &/+ O(l(/) + 1), i.e. eq. (4.26)
up to terms with degree of homogeneity not less than /(&) + 1. They define a
maximal degree /.,

Loy = max{[(B): sB= a7+ O(I( ) +1)} , (4.27)

where [, <I(&7) because &/# s,X. Choose arbitrarily one & with (%) =1,
Its head & cannot be completed to a solution &' of s#’ = ( because if such a &’
exists then & — &' also solves eq. (4.26) up to terms O(/(/) + 1) and satisfies
(HB— B>, incontradiction to eq. (4.27). &7 and &£ drop out of the list of
heads of nontrivial solutions of s.o/= 0, o/+ s&#, &/ because it is head of a trivial
solution, % because it cannot be completed to a solution.

5. The gravitational ladder equations

We now apply these rather general considerations to the BRS algebra (2.8)-(2.16)
and claim:
The kernel .4 of s,, egs. (2 8) and (2.13), is spanned by (partlal derivatives of) the
linearized field strength F the linearized Riemann tensor R and matter fields v,

El =4,4)—3 A", (5.1)
Rklmn = akl—vlmn - alrkmn = akao)lmn - al(:)kmn ’ (52)

where

[}

Ly = akh(ml) + alh(mk) - amh(kl) s
‘:’ktm = alh(mk) - amh(lk) - 8kh[lm] . (5-3)

I* is the linearized Christoffel symbol — a connection for coordinate transforma-
tions — and & is the linearized spin connection. A complement .#” is spanned by

h(mn)? h[mn]a a(k1 cen ak!-zrkl—lkl)m for / = 2 ,

=
Ak, - O, @ipymn fOr =1

Ik, -+, Ax, forl>1. (5.4)
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(The brackets ( ) denote symmetrization, [ ] antisymmetrization. World and
Lorentz indices are identified and raised and lowered by the flat metric.) The
range % of s, is spanned by

0:Cmys 0uCony = Cons 0,9, C,, fOrl>2,
0, Cpp foriz1
3y, ... 8, C! forl=1. (3.3)
A complement R is spanned by
C*=(cm,cm,Ch). (5.6)
Consequently eq. (4.14) implies
Theorem 2.
F ([t Al #,C7 0, =0 o 5= F(C [ Rags Bl ¥]) #5088
(5.7)

The proof of egs. (5.2)-(5.6) follows by an inspection of egs. (2.13) and (2.8),
SOhmn = aan - Cmn

Taking the symmetric and antisymmetric parts of eq. (2.8) yields the first two
entries of egs. (5.4) and (5.5). Differentiating one obtains s,d,h,,, =3,9,C, —
3,C,,,- The variables d.h,, are more conveniently expressed in terms of @y, =
~ &y, and I =T . defined by

knm

da.h,, — 1T,

mn kmn

+ @ppmn = 0. (5.8)

Eq. (5.8) has the well-known and unique solution (5.3). I' and & have the
convenient s;-transformation (which identifies them as connections)

sOfkmn = akamcvn ’ (59)
SO(Bkmn = akC‘mn . (5'10)

& and I' are a basis for first derivatives of &, eq. (5.8). No linear combination of
I and & is s,-invariant, egs. (5.9) and (5.10), and consequently no linear combina-
tion of d.h,,,. Differentiating egs. (5.9) and (5.10) one obtains 9 ...4, C,, for
!>2 and 9 ...9,C,, for [>1 as sgvariations of 9y ...9, szz Kpym for 122
and 9, .. 8,([ 1“’k1)mn for I'> 1. This explains the next two entries of egs. (5.4) and
(5.5). The symmetrized derivatives of I° and & do not span all the variables



F. Brandt et al. / Gravitational anomalies 203

Iy, ...akl_zf k_jepn and Gy .0y 1a)églm,, One can also antisymmetrize in one
derivative and the first index of I' or &. This yields the sg-invariant (partial
derivatives of) zik,m,,. I and & differ only by a gradient (5.8) which is the reason
why their field strengths R coincide.

To proceed we have to choose a complement R to R spanned by eq. (5.5). In
particular we can choose arbitrarily a combination A,C,,, +1,9,,C,,; to belong to
# as long as A, # —A,. The choice A, =1, A, =0 w1ll Iead ultlmately to Lorentz
anomalies while A, =0, A, =1 yields anomalies for coordinate transformations.
Both anomalies differ only by trivial terms. We choose A, = 0 because then the
condition s, , =0, eq. (4.18), is satisfied.

Eq. (2.13) has already been analysed along the same lines as eq. (2.8) in ref. [5].
That investigation served as a prototype of the slightly more complicated analysis
of eq. (2.8).

Following eq. (4.17) we discussed how the analysis of the ladder equations is
simplified by splitting s, into s, =s, ,+s,, +s5,, with definite ]\7C-number. ﬁc
counts the ghost variables which span the range of s,. One easily verifies that for
s, given by egs. (2.8)~(2.16) and % being spanned by (C™,C?,C") the condition
51,=0, eq. (4.18), is satisfied because s,C™ and s5,C,, is at most linear in
8,C™ —C,™ and 9,C*". Explicitly, s, , is given by

51.0C™=C'C,",
51,0C*" =C*C.’,
sl,oclz %CJCKfJKI’
St.ohmt =C",h," + C,"h," — C)°h,’
s.0A% = C", Al + C, /Al + CUXf,
5. 0¥ =CW—3C™(4,,— Ay, +1,,)¥—-C'5,¥, (5.11)

as one can read off egs. (2.8)-(2.16). The action s, , on derivatives of 4,°, 4], ¥
is slightly complicated by the fact that though 4,, commutes with s, it does not
commute 1nd1v1dually with each s, , because d,, has no well-defined commutation
relation with Nc Rather it splits into 4,, = 4% + 8}, where 47, commutes with s, .

82 differentiates all variables [4,,°, Afn ¥,9,C"—C," 6kC"” 3,C11 while 9]
vanishes on them. Applied to C™,C%, C! one has

Rcr=cC,", o cr=9,c"-C,",
I C* =0, aC?=0,C,

rCct=0, acl=a CI. (5.12)
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The equations which define 3° on the variables with 1\7C =0 are just the Killing
equations for symmetries of the ground state, only their interpretation has changed:
they do not restrict the ghosts (or transformation parameters) but define alge-
braically a differential operator 37,

a2 has the representation

d
& = = ,
m {sl,(]a acm} (5 13)

and therefore [65,s5,,]=0, eq. (4.24). To determine the action of s,, on
I, - 9,hy," 1> 0, one can now simply apply 4, to eq. (5.11) and commute it
with s, 4.

It is then very easy to characterise s, ,: it acts by a shift term d = C™3,, for the
fields [h,,°, AL, ¥]. 5, , contains the Lorentz transformation — 3C**8,,, for world
and Lorentz indices (including the indices of partial derivatives) of all fields apart
from the Lorentz ghost s, (C = — C?5,,,C*. Finally, s, , contains internal
transformations — C’§, for all internal indices of all fields apart from the internal
ghost s, ,C'= — 1C’8,C". So on the variables (C<,[h,,%, AL, ¥Ds, , is given by*

2 R
S10= ~3CHC oy = 3CICKf 5oy + A= 308, = €13y (5.14)

The shift term d vanishes if applied to C* = (C™,C"",C").

d=c",, 3,C*=0, 4,[h," AL, ] =0a,[n, AL, ¥], (5.15)

i.e.d, treats all ghosts C* as constants. Due to eq. (5.13) d can be expressed by the
commutator [C™(3/dC™), s, o] because d,, = a5, — C,"(3/dC™). This imples that d
anticommutes with s, , due to the Jacobi-identity for {s, o,[C™(d/3C™), s, (]} and
sto=0,

J

d= [cm ] {s1.0.d}=0. (5.16)
We are now prepared to solve eq. (4.19) for the head &7 of the ladder
$1,02=0,
L (C [ Roppi Fps ¥]) #5108 (C [ Roppis s ¥]) . (5.17)

mn?’

We can require o7+ slyo.@(CA“,[Ié, F ,#]) because otherwise the ladder & is
equivalent to a ladder which starts at higher degree of homogeneity. From

d d
6[ab]= —{SI,()’ W}, 51= _{sl,[)’ a—c,l} (518)

* Actually eq. (5.14) holds on all variables, i.e. also on the ghost variables defined by egs. (5.5).
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and the Basic Lemma [4] we know that &7 is invariant under Lorentz and internal
transformations, cf. eq. (3.7), up to trivial terms which we neglect. Therefore we
can drop the part 3C*%8,,, and C’5, in s, o, eq. (5.14).

& can be decomposed according to its degree of homogeneity p in C™:
&Z=Y,w, Wecall w,a p-ghost form because d acts on it like d on a differential
form. The piece

§= =30 C)—p — 3CICN o7 (5.19)
preserves the ghost form degree, d raises it by one, so eq. (5.17) splits
Sw,, +dw,=0, w,#8n,+dn,_,, p<p<p. (5.20)
In particular the lowest ghost form of &/ satisfies
Sw, =0, wE?éSAnE. (5.21)

The solution to eq. (5.21) has been determined in ref. [6]. w, contains the Lorentz
ghosts and the internal ghosts only as polynomial in @, where K labels the
Casimir operators of the Lorentz group and the internal group,

Ke{l,...,R}, R =k+rank(¥#) ifD=2k orD=2k+1. (522

The Oy are invariant under these groups, consequently w, contains the variables
[R F! w]also as invariant ghost forms,

mnkls L mn>

W, =C™ .. C™wy (O, [ R Bl P]). (5.23)
We claim that dw =0. If p=D is the maximal degree in C" (m =1,..., D) then
the form w, is automatlcally closed dw =0.If p <D then eq. (5.20) requires that

dwp is of the form $w, . This can hold only if da)p vanishes because d does not
act on the ghosts (5.15). So Ei_wp contains the ghosts in the form of . Conse-
quently dw, cannot be written as §wp . [6] So w, is closed, cTw = (. A solution

o, of the form anp (O, R

P mnkis mn’
Sl,O'r’Efl(@K’[Rmnkl’ mn> ‘P]) €q. (5 17)

We conclude therefore that 27 is a ghost form which contains the Lorentz and
internal ghosts only as polynomials in @, and is d-closed but not “covariantly”
exact,

¥)) is trivial because then w, =

M=%(@K’Cm’[ mnkl> mn’lp])

o
!

o+ dB(Ox,C™, | R it ELns P ]) - (5.24)
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To solve this equation we need the covariant Poincaré lemmas which are derived
in sect. 6.

6. The covariant Poincaré lemmas
Consider a d-exact p-form 7 (p < D) with vanishing ghost number
n=do’ (6.1)
which is s,-invariant
Som = 0 > (6'2)
i.e. depends only on the variables @, eq. (4.14),
n =n(P*). (6.3)

The “covariant Poincaré lemmas” determine which 7(®%) = d" cannot be writ-
ten in terms of a (p — 1)-form " which also depends only on @*°.

The simplest of these problems arises from the algebra of Goldstone fields
®(x) for spontaneously broken (or nonlinear realizations of) global symmetries,

so@i(x)=Ci,  s,'=0, 8, =0, [s5,,]=0. (6.4)

It follows that all nontrivial solutions to s,w([®], C) = 0 can be taken to depend on
[6¢] only (i.e. on 3, ...d,P", [ > 1), ie. 3,0 is the “field strength” of &',

500 ([2]1,C) =0 o o=w,([0D]) +s,6. (6.5)

Nontrivial solutions of syw = 0 occur for ghost number 0 only. Eq. (6.5) is easily
proven following sect. 4, eqs. (4.8)-(4.14), by introducing the operator

)

r=¢'—
aC!

(6.6)

which satisfies the algebra
a

=N, + d} = (d®* -
{s(]’r} N4> ch {rs } ( )aC'

(6.7)

The covariant Poincaré lemma for the algebra (6.4) reads
n([0@]) =dwo([®]) = n=d2([s®]) +4(dP), #(0)=0, (6.8)

where 1 is a polynomial (whose coefficients may contain differentials dx™) in the
one-forms d®’ without constant part.
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Before we prove eq. (6.8) we remark that eq. (6.8) is a general result which is
valid whether @' are Goldstone fields or not and which holds for commuting fields
@' as for anticommuting ones (in the latter case the C* are commuting constants).
If the @' are not Goldstone fields then s, in eq. (6.4) is to be considered as an
auxiliary algebraic operation introduced to prove eq. (6.8).

To prove eq. (6.8) we apply s, to 7 =dw® and find d(syw®)=0. From the
algebraic Poincaré lemma (3.2) one concludes that

so0’=de' + X'(C) (6.9)

because (a) s’ is not a volume form .~ d”x and (b) the constants with respect to
d,, are polynomials in C' (though C' are space-time constants they are nevertheless
variables in our polynomials). Applying s, to eq. (6.9) and using the algebraic
Poincaré lemma one deduces iteratively the descent equations (the superscript / of
o' and X' denotes their ghost number, i.e. their degree in C*)

sow' =do’+ X'TY(C), 0<I<L, oft'=0. (6.10)
The descent equations terminate at some /=L because the form degree of '

which is p —/— 1 cannot drop below zero.
By eq. (6.7) functions X'(d®, C) of ghost number /> 0 have the representation

P | . 1,
X'=—{[s5,,r} X =5, =rX"|, [>0. 6.11)
140 o\

We claim that the descent equations have the solution
o' =rX!*N(dP,C) +s, A7 —d A, >0, (6.12)
@’ =rX'(d®,C) + 2([0P]) — dA°. (6.13)

This follows for /=L >0 because the last descent equation reads, egs. (6.10),
(6.11),

1
L=XL+1 C) = XL+1
Sow (C) =s4r T3

and has the solution, eq. (6.5),

1
wL=r(L+1XL+1)+s0AL‘1+(2([ad>]). (6.14)

The term Q([dP]) vanishes for positive ghost number L > 0 because it contains no
ghost. Eq. (6.14) verifies the induction hypothesis (6.12), (6.13) for [ = L. Assume
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eq. (6.12) to hold for all ghost numbers larger than /. The descent equation for
sow' implies

sow' = X'(C) + drX!*2(dd,C) + ds, A (6.15)
or

sl +dA) =X+ {d, ) X1 2= (I+ D) X' =5, X1, (6.16)

because d X'*' = 0 and because of egs. (6.7) and (6.11). If / > 0 then eq. (6.16) has
the unique solution, eq. (6.5),

o =X 4 s AT —d A (6.17)

because no 02([dP)) can contribute with a positive ghost number. Eq. (6.17) is the
induction hypothesis for /. If /=0 then no term sy,A~' can contribute to w°
because there are no negative ghost numbers but now a ([d®P]) can appear. This
proves eq. (6.13). Inserting »°, eq. (6.13), into eq. (6.1) one obtains eq. (6.8)
because dr X(d®, C) = {d, NX'(d®, C) = dd (3/5C) X'(dP, C) = #(dD) no
longer depends on C.

We summarize the result.

If n is a d-exact form which depends only on derivatives of a field @ thenitis a
sum of df2, where (2 depends only on the derivatives of & and a polynomial 7 in
the one-forms d@,

n([0@]) =dwy([@]) = n=d0([62]) +4(dD), #(0)=0. (6.18)

Remark. The decomposition n = d{2 + 4 is a direct sum because 7(d¥) con-
tains only as many derivatives as fields and therefore cannot be written in the form
do(ad).

We extend this result to the case that additional fields ¥ occur,

([0 [¥]) =do([®].[¥]) < n=d2([s2],[¥]) +7(dD),
7(0)=0. (6.19)
To prove eq. (6.19) we decompose d,
d=d+d (6.20)

into a piece d which differentiates [¥] and a piece d which differentiates [®],

dv=d¥, d¥=0, d®=0, dd=d®, (d,d}=0. (6.21)

We assume without loss of generality that = contains a fixed number m of
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derivatives,

N,=N;+N;, N,(n)=meN (6.22)

(because a general n is a direct sum of such terms they do not mix in eq. (6.1)
because [N,,d]=d). We split n into pieces m, with a definite number n of
derivatives @ acting on @,

= X M Ni(n)=n,  Nyn,)=m-n. (6.23)

The equation dn = 0 splits into a ladder

dn,+dn,_, =0, n<n<i+l, n, ,=0=mn,,,. (6.24)

IS

From the algebraic Poincaré lemma for d we conclude
n, = dw, + X,([02]) . (6.25)

This is obvious if the p-form 7 is not a volume form, i.e. if p<D. If p=D, eq.
(6.25) follows because 7, has vanishing Euler derivative with respect to ¥ (using
the derivative 9) because n = L7, has vanishing Euler derivative 517 /5@ 0=
dm /8 [from eq. (6.19)]. But then also the Euler derivative of n,, with respect to ¥
(using the derivative d) vanishes because the latter one is that part of 817 /(Nf
which contains the minimal number n of derivatives acting on @. If this Euler
derivative vanishes then eq. (6.8) of ref. [5] implies 7, = dw, + const. Constants
with respect to d are polynomials in [®] and because n depends only on
derivatives of @ one has X, = X,([d®)) and o, = 0, (0P][F].
If X, + 0 then S S

n=N;(X,) =Ny(X,)=m,
i.e. eq. (6.25) is already of the form (6.28) (see below).

If n <m then X, vanishes and inserting 7, = awﬂ into the next ladder equation
one obtains

d(n,,;—dw,) =0 (6.26)

with the solution
nn+1 dwn+l + dw + 6n+1 m m([ad)]) (627)

by the same arguments which lead from eq. (6.24) to eq. (6.26). Again w,,, =
w, {[0®],[¥]). Iterating the sketched procedure one arrives at

L =dw, +do, ,+X([0P]) (6.28)
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(n,, may vanish for 7 <n <m). The first term vanishes,
do, =0, (6.29)

because it contains (m + 1) derivatives at least in contradiction to eq. (6.22).
Moreover, dnm =0 [eq. (6.24) for 7 =m], so dX([a®]) = 0 and (because 1,, has
vanishing Euler derivative with respect to @ and contains no constants) X is of the
form X = dY((®]). So it satisfies the requirements of eq. (6.8) and can be written
as

X([o2]) =da,, . ([92]) +4(d®),  #(0) =0. (6.30)
One easily absorbs &,,_, into w,,_, and casts eq. (6.28) into
M = vy, o([00], [¥]) +A(dD). (6.31)

Summing all 1, one finally has [because dw,, = 0 = d ,,, see eqgs. (6.29) and (6.25)]

3
I
s

U Z (awn + dtwn*l) + ’ﬁ(dd))

n n=n

I
[

1 1

@+8) T w, +4(dD) =d T w, +A(dP)

n=n n=n

—=d0 + #(dd),

which completes the proof of eq. (6.19).
We need eq. (6.19) to prove by induction the
Gravitational covariant Poincaré lemma.

V[ Rors Fns ¥]) =d0® = = dQ([Ryir B ¥]) + AR, B,
#(0,0) =0. (6.32)
R,, and F! are the two-forms
R,,=1dx*dx'R,,,,. F'=1ldx"dx"Fl,. (6.33)

We assume 7 to be a p-form and eq. (6.32) to hold for all p'-forms with p' <p.
For p =0, eq. (6.32) is trivially fulfilled because no zero-form 7 is a dw’. We apply
sy to 7 = dw® and obtain iteratively the descent equations

0’ =0  s,af=daft!, 0<g<G, 5,6°=0 (6.34)
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(the superscript denotes the ghost number). We can sharpen this result and apply
eq. (6.19) to s,w® which contains C™ only with a derivative

s0° = (sp0°)([0C™],[A]) (6.35)

({A] denotes collectively the remaining variables). By eq. (6.19) the descent
equations are more specifically of the form

sowf=dwt ! +o8*1(dC™) for0<g<G,
so0% =% *1(dC™),
w® = wE([9C™],[A)) for0<g<G. (6.36)
We now split eq. (6.36) by the help of the number operators
Ny =N, + Nycmn + Ny oy + Npgrg+ Nopog >
N, = Nigmj+ Nigmmy + Ny, oy,
Ny =N a1+ Ny (6.37)

n = dw? splits into eigenfunctions of N,;, N, and N;. It is sufficient to consider

each eigenfunction separately. Then all w# can be taken also to be eigenfunctions
of N;, N, and N;. Moreover,

Nl(n) =N1(wg) +1 =N1(“A’g+])’ N2,3(”7) =N2,3(“’g) =N2,3(‘3g) Vg

(6.38)

because the number operators N;, N,, N, are chosen such that s, and d commute
with N, and N; and increase the value of N, by 1.
Exploiting eq. (6.38) we show that all ®# vanish

®8=0, 1<g<G+1, (6.39)

because otherwise the contradiction N(n) <0 follows. Observe that N(n) is
positive because n =dw’ contains at least one derivative. 7 contains each 4,°
with at least two derivatives and each Afn with at least one, so

Ni(n) > (3N[h,,,“] + 2N[A,’,,])(77) = (3N, +2N3) (). (6.40)
If there is a nonvanishing &#(dC™) one has; eq. (6.38),
(BN, +2N3) () = (BN, +2N;)(@f) = 3N,(@?) = %Nx(‘?)g) = %Nl(”"l) >

which together with eq. (6.40) implies the contradiction. So all &# vanish.
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By the last descent equation and by eq. (6.39) w® is sy -invariant,
5,09 =0, (6.41)

and is therefore of the form, eq. (5.7),

0

0@ =w§(Cm,C, ¥]) +5,4¢ 1. (6.42)

[ mn? mnkl’

o

If G=0then 0 =0"=wl(F. R, ., ¥Dand n=dQ(F! mnk,, ¥]) and eq.
(6.32) is proven. The part s,A cannot occur for G = 0 because w’ has vanishing
ghost number.

We consider G > 0. The descent equation for g = G — 1 requires

50 1 =dw§ +ds, A7, (6.43)

The part of do§ where d differentiates the ghosts is of the form s,Y 9~ So eq.
(6.43) states

so(@f7 =Y +dAY) = dwf (6.44)
0 0

where d differentiates only the variables [F! R, ., ¥]. But then both sides of
eq. (6.44) have to vanish separately because the right-hand side only contains the
ghosts C™" C! and [an,Rm,,k,,‘If] and cannot be s, of something. To solve

dw§ =0 we use the induction hypothesis for p’'=p — G — 1 which is the form
degree of w§. By eq. (6.32) »§ has the form

G

wg= Y, Cvm™  CrmCh Clo+
k=0

X{ﬁnlml.,.lc,k(émn’ﬁl)+d‘()n1m1...10 k([ mnkl> mn’ ])} (645)

The last term is of the form —d X +s,Y, where s,X = 0 and can be absorbed into

the definition of equivalent w'®, w'®~!. So without loss of generality “ can be
taken to be of the form
G [=3 *]
§= Y cmm_ crwmch . Cloqy, o (R, F). (6.46)

Here ﬁnlml can have a nonvanishing constant part because dwy = 0 has the

AG-k
solution w§ = dy + const. We claim that

G<l, (6.47)
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i.e. the descent equations terminate with ' at the latest. To show this inequality
we make use of the form of w®, eq. (6.46), which implies

(2N + N g )(09) = Ny(0°), Niemf(@9) =0, (6.48)
and of the fact that
(Nl_Nz_N3)(‘00)=Na(w0)> (6~49)

which holds because »® contains no ghosts. We have a lower bound for the

number of derivatives in 7:
Ny(m) =Na(w0) +1> (2N[h] +N[A])(77) (6.50)

because each field 4, in n carries two derivatives at least, AL carries at least
one. Furthermore,

(2N[h] +N[A])(Tl) = (2N, +N;)(n) = (2N, +N3)(“’G) (6.51)

because N, and N; have the same values on 7 and all ¥, eq. (6.38). Making use
of eq. (6.48) we rearrange terms in eq. (6.51) and obtain

(2N, + N3) (@) = (N; = Ny = N3 + Ny + Nier) (0°)
=(N,—N,—N))(«°) +G. (6.52)
By eqgs. (6.38) and (6.49) we can conclude
(N, =N, =N} (0%) + G =(N; — N, — N;}(0) + G =Ny(«") +G. (6.53)
Putting egs. (6.50)—(6.53) together one has
Ny(@°) + 1> Ny(0°) + G, (6.54)

and eq. (6.47) is proven. The case G =0 has already been dealt with. So G =1,

wY = @! is linear in the ghosts and eq. (6.46) reads more specifically

®'=C%(R,...F") +C'4(R,,, F). (6.55)

mn?
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We calculate dw' using egs. (2.13) and (5.10),

dC? = =9,C dx™ = —s50(8,," dx™), (6.56)
dC’'= —4,C'dx™ = —s,( AL, dx™), (6.57)
soR,,,=dR, =0=dF/=s,F’, R . =dé,,, F'=dA’, (6.58)

b

where the obvious definitions for connection one-forms &“? and A' have been

used. So one has

do' = —s5,(&4,, +A'H,). (6.59)
The descent equation for g = 0 implies

so(@® + 34, + A'H,) =0. (6.60)
Eq. (6.60) has the solution

0= — (3%, +4%,) + Q[ R0, Bl W]). (6.61)

mnkl> " mn>

No term s,Y can contribute because w” has vanishing ghost number. Finally, we
can calculate n = dw® using eq. (6.58) and obtain

o

n= ﬁ(Rmn’ﬁl) + dg([ﬁmnkl’Forin7 lI’])’ ﬁ(0,0) = 0 (662)

This proves the implication = of eq. (6.32). The reverse is trivial. Moreover, the
sum in eq. (6.62) is direct because 7 consists of all terms of n which have the
lowest possible number of derivatives Ny(A) = (2N, + N X#).

It is interesting to note that 7, egs. (6.8) and (6.32), contains all possible heads
of integrands for topological invariants which are local functionals of 4,," and A4/,
or &. A topological invariant is independent of continuous variations of the fields,
hence it is a local functional whose integrand » must have a vanishing Euler
derivative with respect to 4, and Al or &®. Consequently in each contractible
coordinate patch # is of the form (6.1). Moreover, n must be invariant under
continuous global transformations of the fields. So 7 and 2 are invariant. In
particular {2 has trivial transition functions and the boundary terms from df2
(which arise if one patches together the contractible coordinate patches) cancel.
Only the part % can (and does) contribute to topological densities.
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7. The completion of &/

We can now solve eq. (5.24). If o is a D-ghost form (i.e. if it contains
C* =T12_,C™) then it is of the form

=L (O, [ Rpnicts Es ] )C* + @(0,)C* + dw(Ok,C™, [ 1,7, AL, ¥]),
(7.1)

where _# has nonvanishing Euler derivative with respect to k,,” or AL or ¥. If
the ghost form degree is lower than D only the second and third term can occur
because of d.o/=0. The completion of the head £ (6,[R, ., F. ¥DC* to a
solution of so78 =0 is nearly trivial:

(1) Complete the linearized Riemann tensor to the Riemann tensor

Rmnkl = amrnkl - anrmkl + FnkrFmrl - kaanrl 3 (72)
where
k
an = %gkl(amgln +anglm—algmn) ’ (73)
or — equivalently — to
b I k_b b b b b
Rmna =Rmnkea € =amwna ‘anwma +(")nacwmc _wmacwnc ’ (74)
where
k1 ko ! k ! d d
@pyap = %(ea €p gt €, 0, Mpy— €y O, T’ad)(akel —d,e; ) . (7.5)
Here we used as definition
b
ema = ama + hma’ Emn = emaen Nab (76)

and consider the inverse vielbein e,” and the inverse metric g”” as series in A,,”.
Consequently R, is an infinite series in h, .
(2) Complete the linearized field strength F' to the nonabelian field strength

(3) Complete the partial derivatives — which commute and therefore give a
symmetric index picture — to symmetrized covariant derivatives [using the
Christoffel symbols (7.3), the spin connection (7.5) and the Yang—-Mills field A/ ]
appropriate to the index picture which emerges if one distinguishes between world
and Lorentz indices. The so defined covariant derivative vanishes if applied to the
vielbein because

De, ' =d.e,"—T,, e +w,%," =0 (7.8)

n-m hn nm=-r
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is the defining equation for I, '=T,,' and w,,, = —w,,, with the unique
solution (7.3) and (7.5).

(4) Interpreting all numerical tensors 7%, ¢ % as Lorentz tensor .# contains
noncovariant contractions 8,," or 8,”. Replace all noncovariant contractions by
e, ,e,”. This makes .~ a GL(D) density with some weight which is invariant
under Lorentz spin transformations. Multiply .~ with the appropriate power of
e =dete,” then .~ becomes GL(D) invariant: s.£=C™4d,,_7~.

(5) C* transforms as sC* = —(3,,C™)C*. We replace it by eC* because se =
Cmd.e+(3,C™e and s(eC*)=(d,e)C"C* =0. Consequently o7¢=eC*Z is
s-invariant. (This requirement has fixed the dependence of 27 on undifferenti-
ated e,,”.)

This completes the construction of a solution 2%7¢ for the head @/=_#C*. The
corresponding differential form &7 ¢ is simply the density

&,

trace

=e#(0, [ R, FL,. ¥])dPx. (7.9)

(R, L FL,,¥] now denotes all fields R, LF! ¥ and their symmetrized
covariant derivatives.) Only undifferentiated ghosts of the Lorentz group spin(1, D
— 1) and the internal group « appear and they occur only as @x(C*?), K=1,...,k
with & = rank(spin(1, D — 1)) if D=2k or D=2k+1 and 6. (C"), K=
k+1,...,k+ rank(#£).

The second piece P(O)C* of eq. (7.1) is treated like the first one, it just adds
“cosmological terms” ®(@)e d”x to /¢ (in nongravitational theories the @-inde-
pendent term is trivial). They have nonvanishing Euler derivative with respect to
e,” and can be understood to be already included in eq. (7.9).

The third term of eq. (7.1) and the heads & which are not volume ghost forms
but p-ghost forms with p <D are heads of solutions which we call ©7,;.. The
heads are closed forms with respect to d, eq. (5.24), and by the algebraic Poincaré
lemma they are of the form (recall that d treats the ghosts as constants)

o =D(0) +dw. (7.10)

L chiral =
@(@) can occur as 0-ghost form only because .27 is Lorentz invariant.

By the covariant Poincaré lemma (6.32) we can write dw in egs. (7.1) and (7.10)
as H(O, R, F) plus a dB(@,[R,,,,,, FL,, ¥). The latter piece can be dropped
because it is head of a trivial solution (5.24). The differentials dx™ contained in
S gical ViA I%mn and F' are considered to be substituted by C™. Denote this
substitution by .. If the original differential form contains no C™” then ./ has an
inverse .~ !,

Sf(dx™) =f(C™),  AT(C™) =f(dx™). (7.11)
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With this notation o7, ., is given by

@_/chiral"—'/ﬁ(@mémn’ﬁl)’ (7.12)
where generically 7 contains p-forms with 0 <p <D. &7, is Lorentz invariant
and §,-invariant, eq. (5.18), and therefore contains ﬁmn and F' only as a
polynomial P in Casimir variables fy,

o

fe=tr(R™©)Y), R=1Retp =~ K=1,...,k,

] o

fe=tr(Fm),  F=FIT,, K=k+1,...,k+rank(¢), (7.13)

& chiral = /P(@K’fok)- (7.14)
This follows because ﬁmn and F! transform under the adjoint representation.
They commute and can combine only to symmetric Kronecker products of the
adjoint representation. All invariants in these products are polynomials in the
elementary Casimir invariants which can be obtained from traces in suitable
representations L, and 7, [10]. For the Lorentz group m(K)=2K if D >2K. If
D = 2K then m(3D) = 1D. The m(K) of the classical simple groups can be found
in ref. [10], the ones for the exceptional groups in ref. [11]. The U(1) factors have
m=1.

To obtain terms of higher homogeneity which complete &7, to a solution
A v (Or which exhibit that it cannot be completed) we introduce the one-form
matrices A, w and ghost matrices C, u,

A=dx" A\ T,, c=C'T,,
w=1dx"w,L,,, u=3iC®L,. (7.15)

o is given (as series in 4,,") by eq. (7.5). The nonabelian field strength and the
Riemann tensor (7.4), (7.7) are components of the two-form (F = 3dx™ dx" F.,T,,
etc.).

F=dA - A%, R=do - o’. (7.16)
Denote these variables collectively by &,
P=(A,0,C,u,dA,do,dC,du). (7.17)

It is a remarkable property that s as defined in eqgs. (2.8)-(2.16) acts on the ghost
forms @ in the following simple form:

s=A(syy+d) A" (on.~”P). (7.18)
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sym Is the well-known BRS transformation of Yang—Mills fields

syqA= —dC+{A4,C),  syyC=C2, (7.19)
symo = —du + {w,u},  sypqu=1u?, (7.20)
{syn,d) =0 =d2. (7.21)

In particular s(.”®) never contains terms with 3,,C” and the algebra of s closes
on the variables .#®. By eq. (7.18) it is sufficient to investigate (sy,, +d) on
differential forms and convert them to ghost forms only at the end. The comple-
tion of the ghost form .., = ~P(O, f) is now straightforward. Replace fy,

eq. (7.13), by f which are defined by tr(F™%)) and tr(R™*) and replace @y by
the generalized Chern—Simons form 4,

m-1 m!(m—1)!
dx = Z ( )

I1=20

t A'B'IFm—l—l
(m D = 1= 11 ¢ )

m=m(K), A=A+C, B=A>. (7.22)

[Replace (A,C, F) by (w,u, R) for g, corresponding to the Lorentz group.] The
part with lowest degree of homogeneity in the fields and differentials of fy
coincides with f, and the lowest degree of g, with O,

mi(m—1)! 2m—1 -
@K=mtr(c ), m—m(K) (7.23)
So
M’:/P(qzofk) (7.24)

is a completion of o7, ., = #P(Oy, f). The G, are constructed such that they
satisfy

(sym+d) g =fx. (7.25)

Therefore and from (syy + d)fx = 0 it follows that

d
sF= /ZfKFP' (7.26)
K dk

If [(27) is the lowest degree of homogeneity of &7 then each nonvanishing piece
fx(8/94, )P has at least homogeneity m(K)+ 1 + (%) (counting also differen-
tials). So eq. (7.26) has the form (4.26).
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Analyzing eq. (4.26) we concluded that candidate heads &7 of solutions &7 to
s&/=0 are eliminated as pairs (&7, &) from the list of nontrivial sj-invariants,
where &7 is the head of the right-hand side of eq. (7.26) and & is head of a
shortest ladder with 97 on the right-hand side of eq. (4.26). To pick a shortest
ladder we follow refs. [4-6]. We decompose P into levels with the help of the
number operators,

d a
Nm= Z f _+q T): (727)
K:m(K)=m( KafK KaqK

which count the variables G, and f with fixed m(K)=m. P decomposes as
P= Y P, (7.28)
mz1
into pieces P,, which satisfy

N,P,=0 VYn<m and P,=Y.P,,, N,P,,=IP,,, (7.29)
>0

i.e. the lowest m(K) of variables g, and fy on which P, actually depends is m.
Each P,, can be uniquely decomposed [4],

P, =i Pi+i, P (7.30)
where 7, and 7, and their algebra are

a d
tm= Z fKa~ > rm = Z q.K.éf—’ tri=0= r%l’ {rm’tm} =Nm‘
K:m(K)=m dx K: m(K)=m K

(7.31)

[7,, is not defined on forms f, but on commuting variables without any nilpotency
relation. A relation f" =0 and a differentiation ¢/df with a Leibniz rule and
If| =0 is inconsistent. Differentiating repeatedly one would e.g. have n!=
(3/0f)"f" = 0.] We apply eq. (7.26) to /= .~P,, and obtain

sof/= Y L P = Af P, +0(m+2+1()). (7.32)

nz1

So all heads of the form .7, P, correspond to trivial ladders. They can be
dropped from the list of heads of nontrivial solutions. Likewise all heads of the
form .##,P, can be dropped if {,(#,P, ) does not vanish as a differential form
because the head of .7, P,, can then not be extended to a solution 27 of s&/=0
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[, P, has among all heads £ of ladders # which solve s& = #%,.F, P, +
O(m + 2 + I(&7)) the highest degree of homogeneity. This follows from egs. (7.30)
and (7.31) and the fact that all heads have the form .#P(6y, fK) (7.12).]

We consider a nonvanishing polynomial 7, P,. Then f (7, P, ) considered as a
polynomial does not vanish because

P b (P PT)={F, .0 FaPr=N, (7 P;)

and 7, P consists only of pieces %, = (7, P,), with N, %,=1%,, 1> 0. A differ-
ential form, however, 7, (#,P,) vanishes if and only if its lowest form degree is
larger than D (the nilpotency of the ghosts does not yield additional zeros because
there are no algebraic relations among the anticommuting @, [6]). The lowest
form degree of a monomial M(§, fx) is given by its eigenvalue to the number
operator

a
N=2Y m(K)fx—. (7.33)
K fk
Decompose the polynomial P, into eigenfunctions of N,
o =P, . (7.34)

Pr;= ZPm,n’ NP
n

The condition that the differential form 7, P, , does not vanish translates into
n —2m < D (because 7,, decreases the lowest form degree of a monomial by 2m)
and the condition that 7,7, P,, , vanishes as differential form reads n > D. So for

AF,, P, , tobe a nonvanishing solution of the consistency condition # is restricted
to

D<n<D+2m. (7.35)
If this condition is satisfied for the P, , then 7, P satisfies
sA(F,P,) =0. (7.36)

At P, 1s nontrivial because all trivial solutions [which have a head given by a
polynomial P(6,, fi)] have a head which is a sum of 7, P} terms. The solutions
AL acer €4- (7.9), plus linear combinations of 47, P, restricted by egs. (7.34)
and (7.35) and a constant therefore comprise all solutions of s.o/= 0, &7+ s#. The
solutions to the original problem for D-forms s.o/+ do/=0, &/+sB+dP are
spanned by &7, .. and the D-form part of 7P, .

Finally, let us write 7,P, in a notation which exhibits how the gravitational
solutions of the consistency equation are related to the ones in flat space
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(Yang-Mills case). P, consists of monomials

Mm,g',nK,aK= l—[ (fK)nK(qK)aka

K:m(K)zm

Y ag+tng>0, n=2Ynm(K), ag=0,1,n>0. (7.37)
K:m(K)=m K

The sum of ghost number and form degree N = Ny, + Ngpos, 1s decreased by 7, by
1, N(gg) =2m(K) — 1, so one evaluates N7,,P, ,= —1+g' +n, where

g =Y ag[2m(K)—-1]. (7.38)
K

For D-forms with fixed ghost number G one obtains
n=D+G—-g' +1. (7.39)
The range of n, eq. (7.35), translates into a range of g/,
G-(2m—-1)<g'<G. (7.40)

For fixed D and G we label P, , by g’ rather thanby n=D + G +1—g’. Then
L ivar 18 the D-form part of

Y PP g - (7.41)
We can now formulate our X A
Result. For a D-form 7 there exists an &7 such that so/= d.o/ if and only if
= Hyrace + Lpicat + (SF + d@) ’
A aee =€L(01,...,0p, [ Rypuiss Lo ¥])dPx,
L i = L%, 0<G<ID(D—1) +dim(#),
G

a
qka_Pm,g'(fl’""fR”qh""qR’) H
fx G.p

wo-Y ¥ 5

m g'=G-2m+1| K:m(K)=m
R'=rank(#) +rank(SO(D)) =rank(#) +k if D=2k or D=2k+1.
(7.42)
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The polynomial P, .. is a sum of monomials M,, .., . . €q.(7.37), subject to eq.
(7.38). The bracket indicates to take the D-form part with ghost number G only.
The solutions of the gravitational consistency equations are nothing but the
solutions of the Yang—Mills problem if the Lorentz group is considered as a factor
of the gauge group.

Let us spell out the result (7.42) for ghost number 0 and 1. We follow the
discussion given in ref. [5]. For ghost number G =0, eq. (7.42) determines all
invariant local actions .&7% They are given by all Lorentz- and gauge-invariant
densities (with nonvanishing Euler derivative) e.#”d®x which one can construct
out of the tensors Rmnk, 1. W and their covariant derivatives and by the G =0
contribution from &7, There only P,, .. with g’ =0 contribute and in eq. (7.42)
one has to take the ghost number 0 part g3 of §,. g2 is the Chern—Simons
(2m(K) — 1)-form which satisfies dg2 = fx and transforms as sqg> = —dgqj, where
qk is the part of g, with ghost number 1,

0
O0=edx+ ), Y. qp—P,o(fi,-- fr)- (7.43)
m K:m(K)=m Ik
The second term contributes only in odd dimensions D =2k + 1, where P,
consists of terms with

Ym(K)ng=k+1. (7.44)

For ghost number 1 7 ,. has only contributions with ghosts C’ from U(1)
factors (the sum X' runs only over U(1) factors),

"Q{u}ace Z,Cjeafj([Rmnkh mn’q,]) (745)
J

Ml

chira.

, has in even dimensions D = 2k the form

J
A ival, D=2k = =) ) ‘111<af P ol fiseoos fr)s (7.46)
K

m K:m(K)=m

where again P, consists of terms with X, m(K )nK—k+1 The terms with
m(K) =1 are the abelian anomalies [8]. They contain g} for abelian factors which
are given just by the ghost C (G =A + C). Abelian anomalies contain no explicit
connection forms A outside of a field strength. The terms with m(K) > 2 are the
nonabelian anomalies which contain explicit connection forms A via gg. These
connection forms cannot be absorbed into a field strength.

For purely gravitational (Lorentz) anomalies m(K) is always even or has the
value m(1D = 1D). If also k = 2k’ is even there is no solution to eq. (7.44), i.e. if
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D =4k’ k' €N, then there are no purely gravitational anomalies. Purely gravita-
tional anomalies occur only in D = 4k’ — 2 dimensions.
In odd dimensions (D =2k + 1) 7)., is given by

hiral
d

o PiFireeos f) (7.47)

"Q/c;lira] = Z' (C{AJ - CJ/I[)
1,J

where the sum ¥’ extends only over U(1) factors [, J run over these U(1) factors,
C’ and A’ are the ghost and gauge field dx™ A4,, of the Ith U(1) factor and f, is
its field strength two-form]. Each function P, contains only terms which satisfy eq.
(7.44). Due to the antisymmetry in 7 and J, there is no anomaly in odd dimensions
unless the gauge group contains two U(1) factors at least.

In the analysis of the consistency condition we can switch off gravity #,“ = 0 and
replace the ghosts C™,C“® by the constant ghosts of Poincaré transformations
[they fulfill the Killing equations (5.12) identically with 4, =d° rather than to
define an operator 3%1. No connection I,,' or w,,,” is then needed in covariant
derivatives. Then our result (7.42) comprises all Yang-Mills anomalies. We had
determined them earlier [4, 5]: there we used a variational method which allowed
us to treat s,.27= 0 rather than s,9/= d% with a troublesome unknown . The
variational method splitted the discussion of anomalies into the even- and odd-
dimensional case though the analysis of the consistency conditions turned out to be
the same in both cases.

In this paper we used the descent equations to deduce s&/=0 and could
investigate the consistency condition in arbitrary dimension. Only when one
specifies the ghost number the results for &7, in odd and even dimensions
differ because in §, the ghost number and form degree are correlated.

Our investigation of the gravitational anomalies relies on the Poincaré invari-
ance of the ground state. We do not completely understand how sensitive the
results are to the symmetries of the ground state. What is puzzling is that no
anomalies can occur if the ground state breaks spontaneously all symmetries. This
does not mean that all transformations can ultimately be realized as unitary
transformations in the Hilbert space of states, it can also indicate that not even for
free fields the symmetries can be implemented: they are explicitly broken. We
hope to clarify this issue in the future.

We thank Wolfram Kuss for this assistance in writing the paper.
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