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The concept of a pomeron structure function, introduced in connection with "hard diffractive scattering", is here discussed in 
terms of gluon ladders and fan diagrams in perturbative QCD. We find that the gluon distribution of the pomeron is in many 
cases dominated by non-perturbative effects, which support earlier work based on Regge theory. There are cases, however, where 
perturbative QCD effects dominate and the Regge-based treatment is incorrect. In all cases, perturbative QCD can be used to 
gain understanding of the pomeron and give predictions to be tested at Pl) colliders and at HERA. 

Strong interact ion processes at large energies, but  
with small m o m e n t u m  transfers are not  yet ex- 
plained within QCD due to our lack of  unders tand-  
ing the conf inement  mechanism.  In part icular,  the 
nature of  the pomeron  is not  unders tood in spite of  a 
wealth of  exper imental  da ta  on elastic and diffractive 
scattering [1 ]. It has been suggested [2] that  the 
pomeron  may be a system of  gluons [3 ] and as an 
a t tempt  to obta in  exper imental  informat ion about  
such a possible par ton content  it was suggested [4]  
to search for hard scattering phenomena  in high mass 
diffractive scattering at collider energies. In the model  
of  ref. [4] ,  the exchanged pomeron  is viewed as a 
"quasi"-par t ic le ,  emi t ted  from one beam proton and 
colliding with an opposi te  beam (an t i )p ro ton ,  and a 
pomeron  structure function was in t roduced to mea- 
sure its par ton content  in analogy to a real hadron.  
Recent col l ider  da ta  from UA8 [ 5 ] give strong evi- 
dence for t ransverse jets  in diffractively excited high 
mass systems, which can only be unders tood as hard 
scattering of  partons.  The data  are, furthermore,  in 
reasonable agreement  with the model  in ref. [4]  us- 
ing a rather  soft gluon m o m e n t u m  dis t r ibut ion  in the 
pomeron.  This  model  has also been appl ied  to other  
processes such as heavy flavour product ion [6,7 ] and 

deep inelastic scattering [8,9].  It has fur thermore 
been discussed in ref. [7]  how the descr ipt ion of  
hadronic  inclusive cross-sections in terms of  Regge 
theory, in the tr iple Regge limit ,  might be used as a 
theoretical  mot iva t ion  for this phenomenological  ap- 
proach. In these studies, the pomeron  structure func- 
t ion has always been seen as a new and a priori  un- 
known quantity.  In an al ternat ive approach [ 10 ], the 
pomeron  is argued to couple to single quarks rather  
like a C =  + 1 photon and hence its structure be dom- 
inated by a qua rk -an t iqua rk  component  in analogy 
with the photon structure function. 

In this paper  we want  to examine the concept  of  a 
pomeron  structure function in terms o f  per turbat ive  
QCD.  We therefore consider  to probe this function 
in deep inelastic scattering in order  to have a cleaner 
si tuat ion in analogy to the theoret ical  t rea tment  and 
exper imental  measurements  of  the proton structure 
function. Thus, we envisage a pomeron,  which is 
" emi t t ed"  from a proton,  to be probed by a vir tual  
photon  in electron scattering [4] .  In par t icular  at 
HERA, this could provide  high resolution measure-  
ments  of  the par ton structure in the pomeron  [9] .  
The exper imental  signature would be quite clear: a 
quasi-elastically scattered proton (at  a very small an- 
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gle) well separated (e.g. in rapidity) from the re- 
maining hadronic system that experiences the deep 
inelastic scattering, as illustrated in fig. 1 a. 

In previous investigations it has been assumed that 
the pomeron stays "soft",  i.e. does not have any large 
momentum transfers between its constituent par- 
tons, until it combines with the other incoming par- 
ticle and produces the final state with mass Mx. In 
the normal analysis of  deep-inelastic scattering the 
momentum square q2 ~ q2 of  the quarks and gluons 
may, however, vary from some low scale Q2 up to Q2 
of  the virtual photon, as described by the well-known 
Gribov-Lipatov-Altarel l i -Par is i  equations in QCD 
[11 ]. When applying this evolution picture to the 
process as viewed in the Regge theory framework, 
where the squared scattering amplitude is shown in 
fig. lb, it is a priori not known how much of  this evo- 
lution that takes place already "inside the pomeron" ,  
below the "triple pomeron vertex" and how much is 
left for the upper part of  the diagram. Most generally 
one expects an integration over all possibilities, i.e. 
an integral over the scale q2 at the triple vertex. Since 
the two-pomeron exchange in the lower part of  fig. lb 
corresponds to higher twist with a factor 1/q2, we ex- 
pect that the small-q 2 region will be enhanced com- 
pared to larger values ofq 2. The details o f  the distri- 
bution in q2 will, however, depend on a non-trivial 
balance between the different parts in fig. lb. 

To analyse these aspects of  the pomeron structure 
function in perturbative QCD we suggest that the 
proper framework is that of  QCD ladders and fan 

diagrams as studied and reviewed by Gribov, Levin 
and Ryskin [ 12]. The QCD analog of  the Regge dia- 
gram in fig. lb is shown in fig. lc, where each pome- 
ton corresponds to a QCD ladder (with the energy 
discontinuity through the upper ladder, but not 
through the lower ones). The large-q 2 region should 
then be calculable in perturbative QCD, In the fol- 
lowing we therefore want to formulate a QCD based 
treatment o f  the pomeron structure function and per- 
form numerical evaluations in order to investigate 
how much information can be obtained from pertur- 
bative QCD. The low-q 2 part of  the pomeron is still 
non-perturbative, but it may not be too far away from 
a naive extrapolation of  the perturbative region. Thus, 
we want to examine to what extent one can obtain a 
smooth transition from perturbative QCD to the ear- 
lier approaches based on Regge theory; this could give 
additional justification to the latter. 

Our starting point is the perturbative QCD for- 
mula for the fan diagram in fig. lc, as given by eq. 
(6.12) in ref. [12]:  

02 
d 2 ~  

~ / dq2 ~(x/x~,  Q2, q2)ot2(qg)g 
dt dM 2 

× 02(xr~, q2; t) . ( 1 ) 

Here x=Q2/2pq is the usual Bjorken variable, and 
xM = (M 2 +Q2)/(s+Q2) is the fraction of  the pro- 
ton momentum carried by the pomeron. As before, 
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Fig. 1. The pomeron structure function measured in deep inelastic scattering. (a) The general diagram with produced hadronic system 
X. (b) The squared scattering amplitude in the Regge framework. (c) The squared scattering amplitude in terms of perturbative QCD 
ladders. 
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q2 denotes the (internal) momentum scale at the tri- 
ple pomeron vertex where the coupling ct2(q2)g en- 
ters. The function ~(x/xM, Q2, q2) is for the upper 
QCD ladder in fig. lc. It represents the probability to 
find a parton of virtuality Q2 and momentum frac- 
tion x, with respect to the proton, at the top of the 
ladder when a parton of virtuality q2 and momentum 
fraction xM enters at the bottom of the ladder. The 
parton at the photon vertex has the fraction z=x/xM 
of the exchanged pomeron momentum. Similarly, the 
two lower ladders each contribute a factor ~ which is 
related to the normal parton density distribution by 
a derivative, with respect to the upper momentum 
scale, to give a definite parton virtuality q2 at the tri- 
ple vertex. The integral over q2 in eq. ( 1 ) is one of 
the crucial differences between our new approach for 
the pomeron structure function and the earlier ones 
[4,7]. 

Eq. (1) is, in fact, very closely related to the 
expression for the first fan diagram [ 12 ], which has 
been proposed as the first correction in the small-x 
limit to the standard QCD evolution of the proton 
structure function. The reason for this lies in the va- 
lidity [ 12] of  the Abramovsky-Gribov-Kanchell i  
(AGK) cutting rules, which relate the different en- 
ergy discontinuities of  a diagram like that of fig. lb 
to each other (diffractive cut, multiperipheral cut, 
double multiperipheral cut). There is, however, also 
an important difference between eq. ( 1 ) and the for- 
mula for the first fan diagram: this is the lower limit 
of the q2 integration. In eq. (1) the integral has to 
begin at a low momentum scale Q~ad ~ 1 GeV 2 cor- 
responding to a typical hadron mass, i.e. the proton 
at the bottom of fig. lc. In the fan diagram for the 
proton structure function, on the other hand, the 
lower limit Q2 should be a few GeV 2 where a trust- 
worthy QCD evolution starts. The region between 
Q~d and Q20, with important non-perturbative ef- 
fects, is then absorbed in the input distributions at 
Q2 to the normal evolution procedure. Another dif- 
ference concerns the t dependence in eq. ( 1 ): the fan 
diagram contribution to the proton structure func- 
tion includes an integration over t (although t is re- 
stricted to rather small values), whereas the pome- 
ron structure function is defined for fixed t values. 

In the following we want to study certain qualita- 
tive aspects of  eq. ( 1 ), in particular the significance 
of the q2 integration. For a first estimate, we find it 

convenient to simplify this formula in several ways. 
First, we shall consider only gluon contributions to 
~, ~, orig. This is justified as long as both XM and z =  
X/XM are small. Secondly, as the simplest model for 
the triple pomeron vertex we use the planar loop (fig. 
2.7 in ref. [ 12] ), expecting that it will give the cor- 
rect order of  magnitude and qualitative dependence 
on q2. These simplifications allow us to use Kwiecin- 
ski's expression [ 13 ] for the fan diagram which has 
been tested numerically. For the momentum weighted 
pomeron structure function we therefore obtain 

zP( z= X/XM; XM, Q2) 
Q2 2 

1 I dq2D(Y_yM, Q2, q2)(30t~_q22)) 
- 4R 2 

Q~,d 

X GE(yM, qZ, Q~). (2) 

Here, Y=ln(1/x),  YM=In(I/xM), and the func- 
tions D and G, which are the analogues of ~ and ~ in 
eq. ( 1 ), are given explicitly in ref. [ 13 ] (by lengthy 
expressions not reproduced here). Again, the lower 
limit of the integration has to be lower than Q2, taken 
as 5 GeV 2 in ref. [ 13 ], and the extension needed will 
be discussed below. Eq. (2) also includes an integral 
over small t values and thus represents a "t-inte- 
grated" pomeron structure function. We will use eq. 
(2) also in the region Z=X/XM ~ 1, although quark 
contributions cannot really be neglected there. In this 
region the expression for the structure function D in 
eq. (2) is not applicable and we therefore use the ap- 
proximate form 

D( Y -  YM, Q2, q2) =eA¢ ( 1 --X/XM) 4'vc~ , (3) 

which we derived from a set of  QCD ladder diagrams 
satisfying the Altarelli-Parisi equations in Q2, but 
with the proper initial condition D =  1 at Q2=q2. 
Here, the constant A = - 4No YE + T~ 1No -- ] nf is given 
in terms of the number of colours and flavours, No= 3 
and ni=4, and the Euler constant, ~'E. The Q2 depen- 
dence is through ~=ln[ln(QZ/A2)]-ln[ln(q2/ 
A 2) ]. A similar power behavior in 1 - z also holds in 
the presence of quarks, but with a different (~-depen- 
dent) exponent. 

For our numerical analysis we first investigate 
which values of  q2 give the most important contri- 
butions to the integral in eq. (2). This is shown in 
fig. 2, where the integrand of (2) is plotted versus q2 
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Fig. 2. In tegrand o feq .  (2 )  as a funct ion of  the m o m e n t u m  scale q2 at the t r iple  pomeron  vertex, for a m o m e n t u m  t ransfer  scale of  ( a )  

Q 2 =  50 GeV 2 and  (b ) ,  (c )  Q 2 =  104 GeV 2 at  the upper  vertex (e.g. g iven by the vi r tual  pho ton ) .  In all cases XM = 0.05 and  the curves  

are, s tar t ing from the top, for z = X/XM = 0.01, 0.05, 0.1, 0.25 using D from ref. [ 13 ] and  z = 0.5, 0.75, 0.9, 0.95 using D in eq. ( 3 ). 

for some illustrative cases. We have chosen XM = 0.05 
since this corresponds to a Feynman-x of  the quasi- 
elastically scattered proton of  xv=l - -XM=0.95 ,  
which is central in the interval 0.9-1 usually consid- 
ered for diffractive processes. In particular, it matches 
the central value for the UA8 data [ 5 ]. To illustrate 
the Q2 dependence we use both a lower value, 50 
GeV 2 which is in the region of  the UA8 data, and a 
large one, l 0  4 GeV 2. For the momentum fraction 
z=x/xM of  the struck parton in the pomeron we take 
the values 0.01,0.05, 0.1, 0.25 and 0.5, 0.75, 0.9, 0.95 
to study the behaviour at both small and large z, where 
in the first case the D function can be taken from 
Kwiecinski [ 13 ] and in the second case we use eq. 
(3).  For small z, fig. 2 shows a strong peaking to- 
wards 1ow-q 2 values. This is the result of  the 1/q2 fac- 
tors in eq. (2) which relate to the higher twist nature 
of  these QCD diagrams. Consequently, one can in this 
case obtain a reasonable approximation to the q2 in- 
tegral in (2),  by simply disregarding all values higher 
than a few GeV 2. This justifies the treatment of  refs. 
[4 -9 ] ,  which did not consider any integration over 
q2. Comparing figs. 2a and 2b, one observes that the 
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peaking at low q2 is slightly less pronounced at larger 
Q2. In contrast, the peaking depends very strongly on 
z, such that for z>~0.5 the peaking at low q2 disap- 
pears and is, for z-~ 1, replaced by a peaking at  q2 = Q2. 

This is easily understood from the power of  1 - z  in 
eq. (3)  which increases with ~; in order to have the 
maximal contribution for z close to 1, the power 
should be as small as possible, which happens for q2 
close to Q2. This dominance of  large q2 values should 
remain valid also when quarks are included. It fol- 
lows from this observation that for z>0 .5  the inte- 
gration over q2 is essential, and the Regge-based 
treatment o f  refs. [4 -9 ]  is not applicable, although 
both M 2 and s / M  2 are large enough to make the tri- 
ple Regge formalism valid in principle. 

In order to calculate the pomeron structure func- 
tion from eq. (2) we have to examine the low-q z re- 
gion more closely. Since this equation has been de- 
rived from perturbative QCD, we can, initially, not 
go below Qo 2 where the validity of  perturbation the- 
ory starts. For this reason our curves in fig. 2 start at 
q2 = Qo 2 = 5 GeV 2 chosen in ref. [ 13 ]. We have, how- 
ever, no justification to exclude the region QZad-%< 
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q2 ~< Qg. On the contrary, our curves in fig. 2 indicate 
that, for small z, this region will even give the essen- 
tial contribution! Rather than taking the attitude that 
eq. (2) is useless for this case, one may simply ex- 
trapolate the perturbative integrand down to values 
below 5 GeV 2 and examine how much the resulting 
pomeron structure function deviates from the ones 
assumed in ref. [4] and compared with data in ref. 
[ 5 ]. Such a procedure has some justification, since 
the lower part of  fig. lb satisfies a (modified) evo- 
lution equation [ 14 ] which could be used to perform 
an evolution starting at a smaller value of  Qg than 5 
GeV 2. When applying this idea one encounters the 
somewhat unpleasant feature that the integrand of  eq. 
(2) reaches a maximum at q2.~2.5 GeV 2 and falls 
rapidly below. Although this is an artifact of  the Bes- 
sel functions used in Kwiecinski's expression for G 
and the choice of  parameters, the flattening off is quite 
reasonable. In fact, one does not expect the integrand 
ofeq.  (2) to rise ad infinitum for q2--~O, but to reach 

a maximum at a typical hadronic scale of, say, 1 GeV 2. 
With the choice of  parameter values (Q2 = 5 GeV 2, 
A=0 .29  GeV) used in ref. [13] the maximum is, 
however, reached at a too high value ofq  2. Since there 
is a freedom in these values (related to the uncertain- 
ties in parton distributions of  the proton) we may 
change them slightly for the purpose of  making the 
extrapolation to Q~ad. For example, taking Q~ = 2  
GeV 2 and A=0 .18  GeV, the q2 dependence of  G is 
practically unchanged for q2> 10 GeV 2 (the devia- 
tions from the curves for xg(x, Q2) in ref. [ 13 ] are 
limited to 10%), whereas in the low-q 2 region the 
maximum moves down to some value below 1 GeVL 
In fig. 3 we show the integrand in eq. (2) over the 
full range QZad = 1 GeV 2 ~< q2 ~< Q2 using this extrap- 

olation method. 
We can now calculate the full integral over q2 and 

obtain the pomeron structure function shown in fig. 
4, where the solid and dashed curves correspond to 
the small-z and large-z approximations for the func- 
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tion D, respectively. The former becomes unreliable 
for large z and should not be taken seriously for 
z>  0.1. The final result should therefore be given by 
a smooth transition from the solid curve at small z to 
the dashed curve at large z, although this is not ex- 
plicitly shown in fig. 4. This pomeron structure func- 
tion from perturbative QCD can now be compared 
to the ones considered in refs. [4-9] .  In particular, 
we show by dotted curves in fig. 4 the forms N( i - z )  5 
and Nz(l -z )  used in ref. [4,5]. The normalisation 
constant, N, does here also include the integral over 
the t dependence of single diffraction as given in ref. 
[4]. This is needed in the comparison with eq. (2) 
which actually contains the integral over the momen- 
tum transfer, t, at the lower vertex in fig. I a. The first, 
soft gluon distribution is supported by the UA8 data 
[5], and it is pleasing to see that our "calculated" 
pomeron structure function has a similar shape. The 
fact that our function is lower in normalization should 
not be taken too seriously at this stage. The exact form 
of the exponential t dependence at low t is not known 
and gives, therefore, an uncertainty in the integral just 
mentioned. In addition, our result for the integral, i.e. 
zP(z), has some uncertainty related to the exact 

choice of the lower integration limit Qh2ad which is, 
furthermore, in the region of our rather crude extrap- 
olation. More fundamentally, one should also add a 
contribution from quarks in the QCD ladders, which 
were neglected in our treatment. At this stage we have 
to be content with the observation that there seems 
to be no dramatic change between the perturbative 
and the low-q 2 region. In further developments of this 
QCD treatment of the pomeron structure function, 
the quark contributions should be included and the 
above approximations be replaced with a more com- 
plete leading log evolution. Perturbative QCD might 
then be used to calculate the pomeron structure func- 
tion more reliably. 

To conclude, we have introduced the idea that the 
pomeron structure function can be related to the gluon 
ladders and fan diagrams in perturbative QCD and 
have thereby given a link between Regge and QCD 
diagrams for pomeron exchange. Our results have il- 
lustrated that in certain kinematic regions the pome- 
ron is mainly the same, "soft" pomeron which de- 
scribes the Regge limit of, e.g., elastic scattering in 
purely hadronic reactions. This is the case for z=  
x/xM <0.5, where the integral in eq. (2) is strongly 
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Fig. 4. The momentum-weighted pomeron structure function, zP(z), obtained from eq. (2) for (a) Q2=50 GeV 2 and (b) Q2= 104 
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forms zP(z) = N (  1 - z )  5 and Nz( 1 - z )  used in refs. [4,5] (here, N = 6 × 3 . 4 / 5 . 6  as motivated in the text). 
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dominated by very small q2 values. However, there 

are also cases (z > 0.5 ) where larger values of q Z are 
equally, or even more important ,  in which case the 

pomeron is not a "soft" object. In this case, the pom- 

eron structure function can be completely calculated 
in perturbative QCD. Although this corresponds to 

lower cross sections, experimental tests of using events 

with z close to 1 might be possible. In ep collisions at 

HERA this would imply final states where x is not 

much less than x~  << 1, i.e. the m o m e n t u m  fraction 

of the pomeron should be small and close to Bjorken- 

x. For such events the internal m o m e n t u m  scale at 

the triple pomeron vertex, which is approximately 

equal to the transverse m o m e n t u m  square of the par- 

tons, should be large compared to the hadronic mass 

scale. The pomeron spectator jet, i.e. the analog of a 

hadron beam remnant  jet, could then be wider and 

shifted in angle from the pomeron m o m e n t u m  direc- 

tion. Similar effects will occur in hard diffractive 

scattering at pp colliders. Here, the iarge-z region 

should be probed with very high transverse momen-  

tum jets or through production of massive states such 

as the W and Z ° bosons. 

One of us (GI)  is grateful for the hospitality of 

DESY where part of this work was made. 

Note added. After completing this paper we re- 
ceived a paper by L. Frankfurt  and M. Strikman in- 
vestigating diffraction dissociation at large momen-  
tum transfer t which should allow the use of 
perturbative QCD for the pomeron. There is no di- 

rect overlap between their paper and ours, but  we 
consider their results as another evidence for the im- 
portance of diffractive dissociation as a new testing 
ground of QCD. 
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