
Nuclear Physics B339 (1990) 325-354
North-Holland

SIMPLE FORMULAE FOR THE ORDER as QCD CORRECTIONS
TO THE REACTION p + p -Q+Q+ X

R. MENG' and G.A . SCHULERZ

II. Institut für Theoretische Physik, Universität Hamburg, D-2000Hamburg 50, F.R . Gennany

j . SMITH3

NIKHEF-H, P.O.B. 41882, DB 1009Amsterdam, The Netherlands

W.L . van NEERVEN

Institutt Lorentz, University ofLeiden, P.O.B. 9506, 2300 RA, Leiden, The Netherlands

Received 10 November 1989

The order a, QCD corrections to the parton-parton cross sections contributing to heavy
flavour production in hadron-hadron collisions are discussed. We construct simple formulae
which should yield reasonable approximations to the exact order as results . Then we examine
the differences between the predictions of the exact and approximate formulae in the case of the
reaction p +p -> Q +Q+X where Q is either the b or the t quark.

1. Introduction

During the last few years a great deal of progress has been made in the
calculation of higher order corrections to inclusive and semi-inclusive processes in
the framework of perturbative QCD [1]. At the present moment it seems that most
of the first-order as corrections to n -m parton reactions with n +m < 4 have
now been completed . For some processes one has even been able to extend these
calculations beyond the first order of as. Examples are the quantity R defined in
the reaction e + + e--X, where X denotes any hadronic final state, which is now
completely known up to order as [2], and the K-factor in the Drell-Yan process
for which a partial result exists in order as [3] . The expressions for these
corrections are very complicated especially when the Born cross section is already
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of order as or higher . It is clear that it will be very laborious to calculate radiative
corrections to parton reactions beyond the first order of as except for a few special
cases. This statement also applies to the order as corrections to Born processes
which involve more than four particles, like multi-jet production [4] .
The results of the calculations mentioned above can be summarized as follows.

First, the size of the corrections can be rather large; a feature which can be mainly
attributed to soft and virtual gluon contributions . Second, it turns out very often
that the order as corrected distributions only differ slightly in shape from the
lowest order ones . This indicates that the theoretical K-factor is only a slowly
varying function of the various kinematical variables in the reaction, such as the
transverse momenta or rapidities . A very useful approach is therefore to construct
approximate formulae which describe the exact corrections reasonably well in the
relevant regions of phase space accessible to experiment. This approach will only
work when the K-factor does not show too much structure on the level of the
hadronic cross sections . Further it is clear that any attempt to construct approxi-
mate formulae will only be successful if the following conditions are satisfied . First
the theoretical and experimental uncertainties have to be so large that the
difference between the exact and the approximate corrections will hardly be
distinguishable. Second the approximation has to contain those terms which
dominate the order as correction and can be generalized to higher orders .
Fortunately the first condition is very often satisfied in strong interaction physics
because of the large systematical and statistical errors . In addition we also have the
theoretical uncertainties which can be attributed to the running coupling constant
and the input parton distribution functions. In many examples it turns out that the
second condition also holds. As has already been mentioned above the bulk of the
large correction can be attributed 'to soft and virtual contributions . In QCD
the leading soft gluon term always exponentiates, and sometimes this also holds for
the leading virtual part (e .g . the rr 2 term in the Drell-Yan K-factor [3] . Other
important terms are the large logarithms which arise when some kinematical
variables become very large with respect to a fixed mass . This phenomenon
appears for instance in heavy flavour production [5,6] in the case that the c.m .
energy or the transverse momentum becomes much larger than the heavy quark
mass . Since the coefficients of these large logarithms are determined by the
Altarelli-Parisi splitting functions [7] they can be easily determined in higher
orders by using renormalization group methods.
The considerations outlined above have inspired some authors to construct

approximate formulae for various types of processes via renormalization group
methods. Examples are direct photon production p + p - ,y + X [8] and the
process p + p -W+ y + X [9]. Analogous suggestions have been made for heavy
flavour production [10-12] which we want to examine here . Our paper will be
organized as follows. In sect . 2 we discuss the various production mechanisms
which give the main contributions to the higher order corrections to the total
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parton-parton cross sections. These contributions dominate in specific regions of
phase space so we concentrate on understanding which terms in the parton-parton
double differential cross sections integrate up to yield the correct behaviour of the
total parton-parton cross section. We then construct formulae which give fair
approximations to the order as corrections to the double differential distributions .
In sect . 3 we test just how good these approximations are by comparing exact and
approximate results for the parton-parton cross sections defined in the MS and
DIS schemes. Finally in sect . 4 we turn our attention to hadron-hadron collisions .
We start by discussing some details of parton-parton fluxes for hadron-hadron
collisions . Then we present results for heavy flavour production in the reaction
p + p - Q + Q + X, where Q is either a b quark or a t quark, at the energies of
the CERN and Fermilab colliders.

2. Approximate formulae

Let us start by considering the renormalized parton-parton differential cross
section dvi j- fX for a one-particle inclusive process (X denotes any inclusive
state). This doij_ fX is obtained by calculating all the Feynman diagrams up to a
given order in QCD perturbation theory and implementing a renormalization
scheme to remove any ultraviolet divergences. Then the infrared divergences are
cancelled between the virtual diagrams and the bremsstrahlung diagrams. The
resulting expressions for d Tij_,

fX
is usually a long and complicated function of the

kinematical variables s, t l , and ul which are denoted by

s - (Pt+P2) 2 ~ tt - (Pt - gi) 2 _m2
~ ut°(P2 - qt)2-m2 ( 1 )

(see fig. 1) where m is the mass of the detected particle f indicated by the
momentum ql . Due to higher order QCD corrections the renormalized

Fig. 1 . Symbolic representation of the convolution formula (2) showing the splitting functions T, the
differential cross section for the hard scattering & and the fragmentation function D . The arrows

denote the momenta assignments on the parton lines.
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parton-parton cross section also contains collinear divergences (mass singularities)
which have to be regulated in an universal way for all parton-parton processes.
Therefore in addition to the kinematical variables listed in eq. (1) daij -fx also
depends on initial and final state mass regulators pz and q?, respectively. The
mass factorization is achieved by writing do-, j _, fx as a convolution integral over
products of splitting and/or fragmentation functions with the so-called reduced
parton differential cross section dip,,, -kX which is free of collinear divergences.
The relationship between the renormalized parton cross section and the reduced
cross section is called the mass factorization formula. In the case of a one-particle
inclusive process it reads as follows (for the notation see fig. 1)

s2
d2vij_fX(s, tl, u1, pi ~ pz, qi)

dt l du,

1 dx l

	

1 dx2

	

1 dx3 z

	

2 z
=

o~f0xf0 zz rri(x1,p1,
Q 2)

rmj(x2,p2,Q )
x l 2 X32

d

	

lm-kX( S ~ tl , 6 19 Q2)
Xs2

	

dîl dûl

	

Dfk(x3,qi Q2)

	

(2)

In the following we will write this equation in a shorthand fashion as

dtr,j -fX = rl;®rmj®d&l,n -kX®Dfk ,

The collinear divergences are absorbed in the initial and final state splitting
(fragmentation) functions which are denoted by rt� rnj and Dfk respectively. All
the quantities in this formula can be expanded in the strong coupling constant as
follows:
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z
)=
E r(n)

(x , p
z

,r

	

Q2),
n=0

00

Dfk(x, p2 , Q2 ) = E Dfk)(x, p2 , Q2) .	(4)
n=0



where dvijn ), dvl,n~, Tin) and Dfk) represent the order as"~ parts of the collinear-
singular cross section, the collinear-finite reduced cross section, the splitting
function and the fragmentation function, respectively . Our aim is to calculate the
coefficients in the power series expansion of the reduced cross section. This is
done by iteration order-by-order in perturbation theory so that for example
dQ~l~( s, îl , û l , Q2) is expressed as do,(l)(s, tl , ul , Pi, P2, qi) minus the convolution
integrals of the splitting and/or fragmentation functions T( l)(xl, pi, Q2),
I'(l) (x2, p2,Q2), Dci>(x3, qi, Q2) with the lowest order d&(0)Q, tl , û l , QZ). In this
way we construct, order-by-order in perturbation theory the reduced differential
cross section d&(s, ti, û l , Q 2 ) which is then folded with parton structure functions
to predict results for one-particle inclusive distributions in hadron-hadron colli-
sions .
Due to the arbitrariness of the mass factorization scheme, dQ as well as T and

D depend on the mass factorization scale Q2 , which has to be chosen in such a way
that it does not depend on xi, otherwise we would have to explicitly integrate over
this additional x; dependence when performing the integrals in eq . (2). The
kinematical variables corresponding to the reduced cross section are denoted by

s= (Pl+P2)
z

tl=(Pi-qi)z -rn2

The relation between the momenta without the hat in (1) and with the hat in (5) is
given by (see fig . 1)

Pi =XIPI ,

	

P2 =x2Pz Y

In this way the invariants in (1) and (5) are related by
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XI

	

x2s=X Ix2 S,

	

ti =-tl'

	

û i = -ui .x3	x 3

The starting point of the derivation of the various approximations to the reduced
parton differential cross section is the mass factorization formula (2).
We now consider heavy flavour production in QCD, which proceeds by the

following two reactions [13] in the Born approximation,

q+q--~- Q+Q,

	

g+g-~Q+Q .

Since in lowest order the splitting functions are

rj°)(x,P 2 ,Q 2) = S;j S(1 -x),

û 1 = (P2 - 4
1
)2-m2 . (5)

(10)
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with analogous results for D;°), so we have

The zeroth-order reduced parton cross section for reaction (8) therefore equals
that of the corresponding Born cross section

d2&~-°~

	

-rra2

	

t 2 +u2	2m2	e
S2

	

dt 9du
x

_- &(S + t1 + u1)

	

N

S
CF ~ 1 S2

	

l +

	

S

	

+ 2

	

,

	

(12)
1 1

where e = n - 4. The zeroth-order reduced parton cross section for the reaction
(9) also equals that for Born process

S

2d2 99- Qx = S(s+t1+u1)
2(

N2

aS 1)
2 [CoB,(S,tl,ul)+CKBK(S,tl,ul)] ,dt du

(13)

where Bo and BK are given by

ti + u2
Bo(S,tl,ul) _

	

.2

	

BQED(S,tl,ul),

	

BK(S,tl,u1) = -BQED(S,tl,ul),

and BQED is defined by

BQED S,tl,ul

	

= t1 + u1
+
- 1- m S

	

+e _1+
s

	

+e2

	

s
(

	

)

	

LL

	

tl

	

t1ul (

	

t1ul )

	

tlul)

	

4t1u1 '

	

(15)

The colour coefficients are defined by

S2 d2Oi~
0) ( S , tl, ul) _ S2 d20i~

q)( S , tl, ul) .
dt 1 du,

	

dt 1 du,

where COED will be needed later .
In the next-to-leading-order (NLO) one has the following processes

(14)

Co = N(N 2-1),

	

CK=
(N2- 1)IN,

	

CQED - (N4-1 )/N 2 , (16)

q+q->Q+Q+g,

	

(17)

g+g~Q+Q+g,

	

(18)

g+q(q)-jQ+Q+q(q),

	

(19)
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as well as the virtual corrections to the Born reactions in (8) and (9). Up to order
as the parton cross sections corresponding to the processes in (17)-(19) can be
expressed with the help of eq. (2) in the following way. The order as corrected
parton cross section for the quark-fusion process (17) is

dogq>-QX=rgq) (E,~,Z,QZ)®dagq? QX -Frq-y l(E,t-~ Z ,QZ) 0 dogq~OX

+ d0,-q

	

ox®DQQ(mZ
,0+ dQgq-QX .

	

(20)

We can invert this relation to write the equation for dvgq>QX as

dogq>QX - dogq> QX

	

q(
q

)(6,~2, QZ ) ® dQgq.QX

- r9q'(E, M2, Q2) ® dag:«»QX - dogq>QX ®DQQ(m2,
Q2)

, (21)

showing the cancellation of the collinear singularities from the renormalized cross
section do('). In a case where there are no collinear divergences in the reaction
then we can immediately identify

cl>dogq~QX=dog(1)q-QX .

a Q2

j'tjl
)(X,P 2,Q2 ) = 2ar

[P,l(x)In
P2

+fij(X)11

(22)

In such cases we will not write a hat on the do to emphasize that no collinear
divergences were removed.

If the square of the heavy quark mass m2 is of the order of magnitude of the
large kinematical variables s, tl and u l we do not need anyfragmentation function
D in eqs. (20) or (21) since it belongs to d8gq?QX. Note that in order as we only
have one nontrivial ITi per term in eq. (21). The reduced cross section dQ in
eq. (2) depends on m2, as well as the kinematical variables listed in eq . (7).
However, at present hadron collider energies m2 can become much smaller than s,
tl or ul in the case of bottom or charm production. Therefore the m2 dependent
terms in M will become logarithmically enhanced due to potential collinear
divergences if m2 would be put equal to zero. The coefficients of these logarithms
can be inferred from the mass singular terms in the functions T and D. In order
as the splitting functions are

(23)

with analogous expressions for D;JR The coefficients of the mass singular terms in
eq . (23) are the Altarelli-Parisi splitting functions [7]. For convenience we will list
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them below:

2

	

2
Pgg(x)=CA[(1-x)

	

+z-4+2x- 2X 2
1+ zßas(1 -x),

1 +xz
Pgq(x) = CF

	

(1 -x)+
+ zS(1 -x)

11
1 + (1 -x)z

Pgq(x) = CF

	

,x

Pgg(x) = Tf I xz + (1 -x)z1 .

	

(24)

Here /3o denotes the lowest order coefficient of the /3 function

ß0 = 3CA

	

3Tfnf , (25)

and o f is the number of active flavours . The forms of the fij depend upon the
choice of the factorization scheme. Standard schemes are MS and DIS [5,6, 11] . In
QCD the colour factors CA, CF and TF are given by

Nz- 1
1

	

(26)CA _-N,

	

CF
__

	

2N

	

,

	

Tf
__

Z,

with N= 3 for SUM. The choice of the number of flavours of will be discussed
later.
The original calculations [5,61 of the processes in (17)-(19) were set up in such a

way that the initial state gluons and quarks were taken to be massless, i.e. p2 = 0,
in (2). This means that we had to regulate the collinear divergences by using the
method of n-dimensional regularization, implying that ln(Q2/p z) in (23) is re-
placed as follows:

Qz 2

	

Qz
InP ~ - +YE - ln4Tr+ln

	

z ,	(27)
E

where YE (the Euler constant) and Fez (the parameter introduced to keep the
coupling constant dimensionless in n-dimensions) are artifacts of n-dimensional
regularization . (Note that this parameter wz should not be confused with the
renormalization and factorization mass scales which unfortunately are often de-
noted by W.) In the case that the heavy quark mass takes the role of a regulator
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Fig. 2. Feynman diagrams showing (a) initial state gluon bremsstrahlung and (b) final state quark
fragmentation contributions to the qq channel . The arrows denote the flow of charge.

mass in l' we can simply put p2 = m2 in eq . (23) . While inspecting eq . (20) we
discern two types of production mechanisms in the order as contribution to
dogq?Qx . They are initial state gluon bremsstrahlung (first and second terms in
(20), see fig . 2a) and final state quark fragmentation (third term in (20) see fig. 2b),
which will be referred to as mechanisms ISGB and FSQF, respectively .
The calculation of the approximate formulae for heavy flavour production will

proceed as follows. First, it is clear that the initial state collinear divergences which
are regularized by n-dimensional regularization have to be factored out from dvgq) .
Second, the collinear divergences regularized by m 2 have to be kept since m2
stands for a genuine mass . In general one cannot say too much about the order as
reduced cross section da(l) except for the case of initial state gluon bremsstrahlung.
Since the splitting functions of the latter mechanism behave like 1/(1 -x) + (see
Pgg and Pqq in eq. (24)) we can expect terms of the type S4

1 ln'(s4/m2 ) where
S4 =s + t l + u l in the reduced cross section . Notice that for the Born reaction
s4 = 0 [see eqs. (12) and (13)] so that the limit S4 -> 0 in the two-to-three-body
process represents the region where the gluon gets soft. This type of term is not
present in the gq and gq channels since the relevant splitting function Pgq does not
contain singular terms as x -> 1. The terms of the type S4

t ln'(S4/m 2 ) dominate
the threshold region s - 4m 2 where the soft matrix element is obtained from the
eikonal approximation with a cut-off d on the upper limit of s4 integration, where
d is much smaller than m2 , s, tl and ul. The 1/E2 and 1/E terms are then
dropped since either they are cancelled by the virtual pieces in the cross section or
they are removed by mass factorization. Then the S4

1 ln'(S4/m2 ) terms, where
i = 0,1 can be simply inferred from the correspondence relation between them and
the ln'+ 1(4/m 2 ) terms. This procedure has been very extensively used in ref. [6].
Another important term which dominates the threshold region of d6( 1 ) is the

so-called Coulomb singularity, which appears in graphs where gluons are ex-
changed between heavy quarks . An explicit calculation of the heavy quark vertex
function allows us to find these terms which behave like 7r 2/ 1 - 4M2/S . Starting
with the quark-antiquark fusion process in (17) and using the MS factorization
scheme which is equivalent to putting fii(x) equal to zero in (23), we find the
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following contribution from the ISGB mechanism :

d2Qc-
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s

are defined by

1- 1-4tn2/s
x=

	

s4 =s+tl +u1 (29)
1 +

	

1 - 4tn2/s

and Q2 is the mass factorization scale which is left over after the initial state
collinear divergences, indicated by e - I in (27) are removed from the parton cross
section. In eq . (28) the hard contributions proportional to 1/s4 have to be
integrated from d 5 s4 5 S4max so that the total result is finite in the limit d goes
to zero . The running coupling constant is determined in the NE scheme where the
heavy flavours are decoupled when the momenta go to zero (for a discussion of
this point see refs . [5,11]) . The renormalization scale will be chosen to be equal to
the mass factorization scale Q2 so that the as in the above and subsequent
formulae are functions of Q2 . Note that this formula is not symmetric under t Hu
so that there is an angular asymmetry, which leads to an asymmetry in the rapidity
distribution . To be explicit we define tl = (pq

-PQ)2
-m2, ul = (pq

-PQ)2
- tn2
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and choose B, the polar angle of the outgoing heavy quark with respect to the z
axis along the direction of the light quark.

Choosing the f;(x) in eq . (23) appropriate for the DIS factorization scheme we
find

dzv<I) DIS

	

dzvci) MS
as(Q z~CF
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3 1
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(30)

The contributions from the other mechanism, i.e . FSQF, can be derived from eqs.
(2) and (7). Substituting eqs. (12) and (23) in eq . (2) the third term in eq . (20)
becomes

sz
dzQgq)

	

- _1 as
3(Q2)CF

In mz

	

sz + (tI + uI)2
~ 1

dt I du,
~FSQF

	

2

	

N

	

mz	-s(tI +u I )

	

sa

3

	

d

	

ti +ui

	

2mz
+~2 +21n s )604)

	

(tI +uI)z +

	

s

	

(31)

Since the potential collinear divergence appearing in eq. (31) is represented by mz
instead of Cl the mass factorization scale Qz is not related to the one mentioned
below eq . (29). Here it has been chosen to be equal to t1u l/s . The reason is
twofold. This expression is invariant under scale transformations with respect to
the initial state momenta [see eq . (7)], i.e .

t 1u l t 1ü l

s s -P2t +mz=mT (32)

and also it does not introduce unwanted asymptotic behaviour for large s in the
total parton-parton cross section . We will come back to this point later on. (Notice
that t1ul/s is not invariant under scale transformations with respect to the final
state momentum of the detected particle. Therefore we should not include
additional terms which arise by convoluting the fragmentation function with the
corresponding reduced cross section.) Finally we want to make the following
important remark. Eq . (31) contains final state soft gluon terms of the type 1/s4
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and In( A/mz) which have already been incorporated into the ISGB result (28).
The latter formula is built up out of all soft gluon terms in initial as well as final
states . Simply adding eqs. (28) and (31) would imply double counting with respect
to the final state soft gluon terms. Since it will turn out that the FSQF mechanism
gives a rather small contribution to the cross section we will not include eq . (31) in
our final approximation.

Proceeding in an analogous way with the gluon-gluon fusion process (18) we get

dQ(g) Qx = T~~~e, ~z, Qz) ® ddgg Qx +T~)(e �uz, Qz) ® d ĝg? ox

+TQ9(mz, Qz) ®d%g-Qx +I'Qg(mz, Qz) ®dio-QX

+ dvgg- gx ®DQg(mz, Qz) + dvà? ox ®DQQ(mz~ Qz ) + dvge~ Qx .

The reduced parton cross sections in (33) are [14]
z ~ (o)

	

z
szd ~Qg-Qx =8 s+t +u
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4Tra5 ~ st l su, tiuisz
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- 1 z NCo
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-
ii

-
sz

	

~

	

(34)

where the kinematical variables in the last reaction are those of massless
Since the incoming gluons are massless the initial state splitting functions F
depend on e, cf. (27) . In this channel there are four types of production mecha-
nisms. They are given by initial state gluon bremsstrahlung (first and second term
in eq . (33), see fig. 3a), flavour excitation (third and fourth terms in eq . (33), see
fig. 3b), gluon splitting (fifth term in eq . (33), see fig . 3c) and final state quark
fragmentation (penultimate term in eq. (33), see fig. 3d). They will be referred to
as mechanisms ISGB, FE, GS and FSQF respectively . For the gluon-gluon fusion
process we will proceed in the same way as for the qq case . For convenience we
will split the double differential cross section into three parts (see ref. [6])

dzvci> dzvci) dzÔci> dzQ
S2

	

8g

	

=S2

	

gg>0
+ SZ

	

gB>K
+SZ

	

gg >
WQED .

dt, du,

	

dt, du,

	

dt, du,

	

dt, du,

particles.

(35)
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In the MS scheme the ISGB mechanism provides us with the following contribu-
tion, where all the In" 1(d/m 2) terms are explicitly given in appendix C of ref. [6]
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Fig. 3 . Feyman diagrams showing (a) initial state gluon bremsstrahlung, (b) flavour excitation, (c) gluon
splitting, and (d) final state quark fragmentation contributions to the gg channel. The arrows denote the

flow of charge .

Since the mass factorization parts (the coefficients of ln(m2/Q Z)) in eqs. (36),(37)
originate from the convolution of the gluon splitting function (23) with the lowest
order parton cross section (13), we discern two types of terms which dominate .

They are represented by the factors 1/(1 -x)+ and 1/x, i.e . the region where the
emitted gluon and the internal gluon become soft respectively . The first term gives
rise to the soft gluon part of the mass factorization piece already discovered in the

qq subprocess in (28) . The 1/x term leads to the double tt or u l channel poles in

the cross section which will also be present in the FE and GS mechanisms . This
pole is responsible for the constant behaviour of the total parton-parton cross
section as s --. The exact coefficients of the ln(m2/Q2) terms can be found in
(A.1)-(A.4) given in appendix A, but we will only use the approximate expressions
here.
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For the definitions of x and s4 see eq . (29) . The choice of the scale in the running
coupling constant has been discussed above.
From the FSQF mechanism we obtain the expression,
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(39)

where the choice of the mass factorization scale Q2 = mT has been defined in
eq. (32). As in the qq case we will neglect this contribution due to double counting
of the soft gluon terms. Fortunately eq . (39) only contributes a negligible amount
to the final cross section.
The next two mechanisms which determine the large plateau effect in the parton

cross section (see fig. 4 in ref. [5] and figs . 6 and 7 in ref. [6]) are given by the
following expressions. Choosing the scale as in eq . (39), i.e . Q2 = tn 2r, the first
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mechanism (FE) provides us with the result
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The double pole terms 1/ti and 1/ui lead to the large plateau present in the

parton cross section &gg at large s where &gg -~ 1/m2 (see (2.6) in ref. [5]). From

the exact form of (&g it follows that the factorization scale Q2 has to be chosen in

such a way that the good asymptotic behaviour of the parton cross section will be

preserved. Therefore we took Q2 = tlul/s = m.2r which has the additional advan-

tage that it is invariant under scale transformations of initial state momenta as is

indicated in eq. (32) . Notice that the choice Q2 = s is wrong since it will lead to an

asymptotic behaviour &gg - (1/m2)ln(s/m2) which is not shown by the exact

calculation .
Finally the order as corrected parton cross section for the gluon-quark(anti-

quark) fusion process (19) is

+ TQg(m2 , Q2) ®d&q(Q-Qx + d&gq?gx ®DQg(m2 , Q2) + d&gq? QX'

(42)
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Fig. 4. Feyman diagrams showing (a) initial state quark bremsstrahlung, (b) flavour excitation, and
(c) gluon splitting contributions to the gq channel . The arrows denote the flow of charge .

The Born cross sections dogQ -Qx and dogq -gx in eq . (42) are given by
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Here there are three types of production mechanisms . The first and second terms
in eq. (42) are the equivalent of ISGB where the emitted gluon is replaced by a
light quark (see fig. 4a) so we will call them ISQR for initial state quark radiation.
The third term represents flavour excitation (FE) (see fig. 4b) while the fourth
term represents gluon splitting (GS) (see fig. 4c). The splitting function sq) in (23)
contains a 1/x term, which was also present in Tom) discussed below (40). Since
this part leads to the double pole term 1_ /t;, which dominates the total
parton-parton cross section as s - -, we included it in our approximation,
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yielding
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Inclusion of terms not proportional to ln(mz/Qz) would make this result scheme
dependent . Such terms are, however, very small in both the MS and DIS schemes
so we will simply neglect them . The FE contribution is given by [14]
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(44)

Note that these formulae are not symmetric under tl H ul so that there is an
angular asymmetry . Therefore we define t1 = (pg -pQ)z -mz, u 1 = (pq -pQ)z -

mz and choose 9, the polar angle of the outgoing heavy quark with respect to the z
axis along the direction of the light quark. All that has been mentioned above also
holds for the approximate formulae for the gluon-antiquark reaction . The corre-
sponding formulae follow from (44) to (46) by tl H ul .

Notice that in the above cross sections the exact mz dependence has been kept
in the reduced cross sections d&;lj°? Qx of (20), (33) and (42) . However, we have
checked that for charm production the terms explicitly proportional to mz can be
neglected at large PT except for the ISGB mechanism since here the threshold
behaviour is important . Form = 0 eqs. (39)-(41) are also presented in (5.3) of ref.



RMeng et al. /pp -QQX

	

343

[11] . However, we have found some discrepancies in the latter for the FSQF and
GS mechanisms . We also disagree with the mass singular logarithm In p where
p = 4m2/s since it leads to the wrong asymptotic behaviour for the parton cross
section as explained above. Finally, we want to comment on another procedure to
deal with heavy quark production when m2 << s, t l , or u 1 . One can put m = 0
everywhere and regularize the mass singularities via n-dimensional regularization .
The conventional procedure of mass factorization has then to be carried out. For
this line of approach see ref. [15] .

3. Parton-parton cross sections

The total parton-parton cross sections ôij (s, m2, Q2) follow from integrating the
double differential cross sections given in sect . 2 over t l and u l using

2

	

(S+s)12
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dQ,j(s, tl , ui, Q2)âi(s,m ,Q2) = f
SS-d(-tl)

Smz~t,d(-u')

	

dtl du,

	

, (47)

where s =sß%1 -4m2/s and Q2 is taken to be independent of the kinematical
variables s, t l and ul . The parton-parton cross section can be expanded as
follows [5]:

,ij(s'm2,Q2)=
_s(QZ) fJO)(

yl ) +
4Tr

	

2QZ)
~f~jl) (~l) + - )( 77)ln

	

z l

	

(48)

Here the functions f(j°), fl(.l) and ft l) only depend on the scaling variable r7
s/4m2 - 1.
To show the comparison between the approximate formulae derived in sect. 2

and the exact results given in refs . [5,61, we discuss the parton-parton cross
sections . In fig . 5 we plot f() and f(1) as functions of the variable 'q . The exact99
results from refs . [5,6] are shown as solid lines whereas those derived from the
approximations (36)-(38), (40) and (41) are shown as dashed lines. As expected,
the approximate formulae are obviously very good for small and large values of 77 .
However, there is a large region 0.2 <rl < 200 where the comparison is poor . The
dip in the exact result must be caused by interference terms which are simply not
reproducible by the positive definite contributions from the approximate cross
sections . In order to improve this undesirable situation one can incorporate a
fudge factor, which is only a function of q. We have therefore added a multiplica-
tive factor of 1/ _7-+I to the ISGB result and 77/07 + 10) to the GS and FE
results . The resulting curves are shown in fig . 6 to be much better fits to the exact
result . However, it is not clear how these fudge factors change the transverse
momentum and rapidity distributions of the outgoing quarks . We will return to this
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_ s-4m2

4m2

Fig. 5 . The gluon-gluon contributions to the parton cross section plotted versus 77 = (s - 4m2)/4m2.
The functions f,), f,) and f,) are defined in eq. (48) . Solid (dashed) lines correspond to the exact
(approximate) O(a,) results . The contributions from initial state gluon bremsstrahlung QSGB), flavour
excitation (FE) and gluon splitting (GS) to the approximate f~) are shown separately . A solid line,

f(?7) = 0, is shown for comparison.

Fig. 6. Same as fig. 5 . The approximate contributions to f) are multiplied by the damping factors
mentioned in the text.
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Fig . 7 . The quark-antiquark contributions to the parton cross section plotted versus 71 =
(s - 4m2)/4m 2 . The approximate contributions to fqq> are multiplied by the damping factor 1/67 + 1) .

Notation as in fig . 5 .

question in a later paper. In fig . 6 we also show the exact (from appendix A) and
approximate results for fss>.

In fig . 7 we show the corresponding results for the 'q dependence of f%), f99(l)
9~

and fqq > . The exact results for the q
-q-channel from ref. [5) are given by the solid

lines while the approximate results from (28) and (30) are given by the dashed
ones . In this case the approximate result for ISGB has also been multiplied by
1/ rl-+ 1 . Therefore the approximate result fits the exact one rather well for both
the MS and DIS schemes when n is small. In the region 0.3 < 71 < 12 the
approximate formulae for fq9) in both schemes are poor due to the fact that the
exact results have negative regions which cannot be approximated by positive
definite cross sections . This contrasts to the gg channel where the interference
effects reduced the cross section but did not make it negative . From eq . (47) we
note that any comparison between the sizes of the Born result fq-q°) and the higher
order term fq4> involves multiplying the latter by the factor 4ara 5 which could be
as large as 3. Hence the differences between the exact and approximate results are
actually larger than fig. 7 suggests . Although the Born term is still the dominant
contribution in this region of -q we do expect to find differences between the exact
and approximate results for hadron-hadron cross sections .

Finally, in fig . 8 we show fs9> and fsq) in the gq channel. The exact results for
the gq channel from ref. [5j are given by the solid lines while the approximate
results from (44) to (46) are given by the dashed ones . In this case we have also
added a factor of 77/(7 + 10) to the GS and FE contributions so that they fit the
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Fig. 8 . The gluon-quark contributions to the parton cross section plotted versus 77 = (s - 4m2)/4m2 .

The approximate contributions to fâq) are multiplied by the damping factor q/( ,q + 10) . Notation as in
fig . 5 .

exact results better above 71 = 4. The negative piece in the exact result below 77 = 2
cannot be properly approximated for the same reasons as mentioned above.
We should comment here that the ratio of the asymptotic behaviours of the

approximations for f~> to fggl as s -- oo is 2NICF = 9/2 in agreement with the
ratio expected for the exact results given in eqs. (19) and (20) of ref. [5].

4. Hadron-hadron cross sections

GS

The hadronic reaction in which heavy flavours are produced is given by

P(p1) +P(p2) ---> Q(Ql) +Q(Q2) +X,

where p and P denote the proton and anti-proton respectively. The quantity X
stands for all the final hadronic states which we sum over so that the above process
is inclusive with respect to the outgoing hadrons. We use capital letters for the
momenta and invariants of the proton and the antiproton to distinguish them from
those of the quarks, antiquarks and gluons .
The cross section for reaction (49), as a convolution of the parton-parton cross

sections â;j(s, m2, QZ) and the parton flux functions is given by

U(S, m2 Q Z ) -

	

I t aT ~ii(T' Q2)°'ij (TS, m2, Q2 )
T_ T

(49)

(50)
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where-r_= 4m2/S. Note that the hadron-hadron cross section is still Q2 depen-
dent since the &ij have only been calculated up to a finite order in as. As
mentioned in sect . 3 Q2 is both the renormalization and mass factorization scale
and is independent of any kinematical variables . The parton-parton flux function
Oij is usually defined as follows :

Oij(,r,Q2)=,r,

	

f I

	

Ildx2Fp(x1,Q2)Fjp(x2 ) Q2)s(xix2-T)

	

(51)

Note that the variable r in both the above formulae is defined by r = s/S =
4m2(n + 1)/S . In order to resolve more carefully the threshold region where
s -), 4m2 and therefore 77 --+ 0, we switch integration variables in eq . (50) from -r to
log lo 77 . Then we find that the hadron-hadron cross section becomes

\

	

\Q(S,m2 ,Q 2 ) = E
AI d(loglo~Î)Fij( 1l,m2/S,Q2)6ij(,1l , m2 ,Q2 ), (52)

1.1 °°

where A = loglo((S - 4m2)/4m2). The relation between Oij and Fij is

Fij
(
rl,Yn 2/S,QZ)°

1+77
(1n10)0ij(T,QZ )

Since -r depends on both q and m2/S, Fij depends on rl, m2/S and Q2. Also, due
to the jacobian factor 77/(,q + 1) it vanishes when 77 - 0. The integrations in the
above formula were carried out using the program VEGAS [16].
The definitions of the running coupling constant as, the reduced cross section

vij(S, m2, Q2) and the parton structure functions Fip@)(xl, QZ) are all scheme
dependent once one goes beyond the lowest order in perturbation theory. To be
exact as to our inputs let us discuss them in order.
To make comparison with the results of refs . [5,11,17] we will choose their

renormalization scheme for the running coupling constant . Here all the heavy
fermions are decoupled in the limit when the momenta entering the fermion loop
contribution go to zero . Hence we drop all the terms in Qv+s containing the heavy
fermion masses of the type ln(mf/Q 2) (see (6.1) in ref. [6]), and we use the two
loop corrected coupling constant defined in the M~ scheme [17] by

2
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bf lnln(Q2/A2 )as ( Q , nf

	

= bf ln(Q2/A2) I 1

	

bf ln(Q2/AZ)

	

l'

(53)

(54)



348

	

R Meng et al / pp - QQX

where b f and bf, are given by

so that
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as, 4(Q2)

aS.3(QZ)

33 - 2nf

	

153 - 19nf
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(55)bf

	

121r

	

'

	

bf'

	

27r(33 - 2nf)

This formula is valid for top production with A = As and of= 5 . For bottom and
charm production we need a s for four and three flavours, respectively . So that
there is continuity across the b and c thresholds we define

= as(Q2, 5) ,

= as 1(Q2, 4) + as 1 (m2, 5) - as
-'(m2

4) ,

= as
1(Q2,

3) + as 1(m2 ,4) + as 1(m2, 5)

This is so even in the calculation of the lowest order Born approximation so that
we can compare our results at the same as against those in ref. [11].
The results for the reduced parton cross sections presented earlier were calcu-

lated in both MW and DIS schemes. In order to compute the hadronic cross section
we will need the corresponding parton structure functions parametrized in one of
these schemes. The transformations to go from one scheme to the other in the case
of the parton cross sections are given in ref. [11] for the exact calculation and in
sect . 2 for our approximation. Here we will compare our approximation with the
exact calculation in the DIS scheme only . Therefore we have chosen the new
DFLM structure functions [18] which correspond to the latter scheme . This shall
be sufficient to see how good our approximation is, since the effect of changing
scheme is well known and easy to incorporate (in accordance with the comments
made in sect . 1) . Further we take the factorization scale Q2 to be identical to the
renormalization scale present in the running coupling constant (57) .
We now study the case of proton-antiproton scattering . To see which regions in

-7 give the most important contributions to the total cross section we examine the
parton flux functions by using the DFLM structure function parametrization
set 2 with As = 173 MeV. In fig. 9 we present plots of the flux functions
Fgq(,7,

M2/S, Q 2), Fgg(,q, M2/S, Q2) and Fgq(q,
M2/S,Q2) for the hypothetical case

of top-antitop quark production at F = 1.8 TeV and Q = m = 80 GeV. This is a

- as 1(mb, 4) - as 1 (m~ , 3), (56)

as(Q2) = as,s(Q2 )9 (Q2 - m22 ) + as,4(Q2 )e(mn -
Q2)e(Q2 - m2)

+ as,3(QZ )e(mo -
QZ)

(57)



Fig. 9. The parton flux Fj(,,7, m2/S, Q2) as defined in eq . (53) versus 77 for Q =m = 80 GeV at
F= 1 .8 TeV. TheDFLM structure function parametrization set 2 with AS = 173 MeV is used here .

situation where there is not much phase space for the production of the heavy
quark-antiquark pair . The most important region is clearly 0.1 <77 < 10, which is
precisely where our approximate results are poorest. The situation does not
improve substantially when we examine the flux functions for the production of a
bottom quark with Q = m = 5 GeV at r = 630 GeV. The plot in fig. 10 shows
that the most important region is now 0.1 < 77 < 100. Again this is not a region
where our approximations are very good .
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Fig. 10. The parton flux F;ß(,1, M2/S, Q2) as defined in eq . (53) versus ,7 for Q =m = 5 GeV at
= 630 GeV. The DFLM structure function parametrization set 2 with AS = 173 MeV is used here .
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TABLE 1

Total cross section for top quark production (m, = 40 GeV) in pp collisions at ~S_ = 630 GeV

The results of the exact O(a,) calculations and the approximate formulae with and without the
fudge factors are compared . The contributions from the gluon-gluon, quark-antiquark, and
gluon-quark subprocesses are given separately . Also given are the respective Born contributions . The
mass scale Q = m� and the DFLM structure function parametrization set 3 is used with A S = 250 MeV.

Next we present some results for the total cross section of heavy quark
production in proton-antiproton collisions . In table 1 we give the numbers for a
hypothetical heavy quark with mass m = 40 GeV atF = 630 GeV by using DFLM
structure function parametrization set 3 with AS = 250 MeV. These cross sections
are no longer of experimental relevance due to the present limit on the mass of the
t-quark but they allow comparison with the results of ref. [17] . Notice that the
contribution from the qq Born cross section is the dominant one but the correc-
tions from the qq and gg channels are not negligible in this case . The results from
the approximate formulae without the fudge factor are very poor. However, when
we include the fudge factor the agreement in the gg channel becomes satisfactory,
but the agreement in the qq and gq channels is still not good enough due to the
negative regions in the interference terms. The discrepancy is only acceptable
when comparing to the total cross sections including all the channels .

In table 2 we present the corresponding numbers for a top quark with mass
mt = 120 GeV produced at the CDF in Fermilab (the c.m . energy is F = 1.8
TeV) . The DFLM structure function set 2 with AS = 173 MeV is used. These
numbers show roughly the same features as those remarked above for table 1
because the ratio m/F is about the same . However, the Born contribution in the
qq channel is even more important than before .

In table 3 we give results for the case of bottom quark production (Q = mb= 4.75
GeV) at the CERN collider (F = 630 GeV) using again DFLM structure function
set 2 with AS = 173 MeV. Here one sees that the dominant contributions come
from the gg channel. Without the fudge factor our results are clearly unacceptable .
However, with the inclusion of the fudge factor they are reasonably good . There-
fore one can rely on our approximation for the gg channel which provides an error
of less than 10% to the total cross section. In the gq channel the contribution
becomes positive and our approximation agrees much better with the exact result .

99 qq

o,[pbl

gq(q) Sum

Born 164.6 332.9 0 497.5
Exact O(a 3 ) 147.1 61 .9 -10.6 198 .4
Approx O(a3 ) 195 .8 99.6 22.2 317.6
Approx O(a3 )

fudged 154.0 87 .8 5 .1 246.9
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TABLE 2
Same as table 1 but for top production (m,= 120 GeV)

at Fermilab collider c.m. energy V"S- = 1.8 TeV

The DFLM structure function parametrization set 2 with AS = 173 MeV is used .

The reason is that the important region in the flux function is now at larger 'q
where our approximations are good .
We conclude our discussion of the results for the total pp cross section with the

following comments. The approximate formulae given in sect . 2 (with the inclusion
of the fudge factors) yield results for heavy flavour cross sections which are
accurate to within 20% over a wide range of c.m . energies and heavy quark masses.
In view of experimental uncertainties (cf . the UAl results on b-quark production
in ref. [l9)) this is certainly reasonable . However, without the addition of the fudge
factors our results would not be acceptable. This calls into doubt whether the
resummation of the large logarithmic terms can be used to generate the even
higher order corrections to heavy flavour production cross sections . It is clearly
important to examine this question in more detail for the heavy quark differential
distributions, since it is here that various Monte Carlo generators use some version
of our approximate formulae . A detailed comparison of the transverse momentum

TABLE 3

Same as table 1 but for bottom production (Mb = 4.75 GeV) at F= 630 GeV

The DFLM structure function parametrization set 2 with A S = 173 MeV is also used .

99 qq

a[wb]

gq(q) Sum

Born 7.15 0.35 0 7.50
Exact 0(a$) 6.98 0.05 0.69 7.72
Approx 0(as) 12.04 0.14 1.46 13 .64
Approx O(a3)

fudged 7.61 0.11 0.77 8.49

99 qq

a[pbl

gq(q) Sum

Born 6.50 19.33 0 25 .83
Exact O(a3) 4.96 2.98 -0.45 7.49
Approx 0(as) 6.40 4.66 0.79 11 .85
Approx O(a3))

fudged 5.16 4.12 0.19 9.47
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and rapidity distributions for heavy quark production in pp collisions using both
the exact and the approximate formulae is being prepared .
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he would like to thank the Centre de Physique Th6orique, CNRS, Marseille, the
CERN TH Division and the DESY theory group for hospitality while this paper
was being prepared .

In this appendix we give the terms which must be added to the formulae in ref.
[6] when we change renormalization and factorization scales . In that paper we
chose the simplest possibility, namely we set the renormalization scale in the
coupling constant equal to the factorization scale in the amplitude and chose them
to have the value m2. If both the renormalization and factorization scale are set
equal to Q2, then we must add terms proportional to ln(m2/Q2). These are
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which must be added to (6.16) in ref. [6],
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which must be added to eq . (6.17) in ref. [6]. Then there are corresponding pieces
in the S + V terms, namely

and
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which have to be added to eq . (6.20) in ref. [6] .
Finally, if one does not decouple the heavy fermion loops one has to add

2 ~

	

_CIZÛgB)
f

v+S
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m2 2 d2U.(go)
s

	

dtt du, )

	

27r f
E 6() ,f In QZS dtt du,

(A.4)

(A .5)

with ßo,f = -2/3 to eq . (6.21) in ref. [6]. This last term can be removed by
replacing the running coupling constant according to eq . (6 .27) in ref. [6] .
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