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The partition functions for super-Wess—-Zumino—Witten models can be expressed in terms
of characters of super-Kac—-Moody algebras. These characters are examined with the emphasis
on maintaining supersymmetry explicitly. It is shown that an analogoue of Borel-Weil theory is
at least formally relevant to the representation theory of super-Kac—Moody algebras, and that
the characters have an interpretation in terms of fixed points of the action of the corresponding
group on a homogeneous superspace. Characters with nontrivial dependence on the supermodu-
lar parameters of superconformal and supersymmetric Yang-Mills backgrounds on the torus
with (+ + ) spin structure are computed, and for the case of SU(2), they are used to extend the
conventional GKO construction for the characters of the discrete series of unitary representa-
tions of the superconformal algebra with ¢ <3 to accommodate the odd superconformal
supercharacters of Cohn and Friedan. This extension of the GKO construction requires the
incorporation of a “spectator” space of free fermions in the standard GKO construction of
superconformal characters relevant to the (+ — ), (— +) and (= — ) spin structures.

1. Introduction

One of the outstanding features of conformal and superconformal field theories
is that exact calculations of correlation functions are feasible. In particular, the
one-loop partition function of the theory is realisable in terms of characters of the
group of symmetries of the theory. This has been a two-way interaction between
mathematics and physics, with the modular properties of characters and the
differential equations that they obey arising quite naturally when they are consid-
ered in terms of partition functions for ficld theories. From a physicist’s point of
view, although the computation of the characters is usually achieved by methods
more familiar to mathematicians, the knowledge of one-loop partition functions
for nontrivial theories is very important, and allows questions relating to the
general structure of conformal field theory to be addressed. Important contribu-
tions in this direction have been made by Verlinde [1], with the construction of
operators which act on the finite-dimensional space of characters associated with
the primary fields of a rational conformal field theory, and by Witten [2], who
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showed that the same structure is realised by operators acting on the Hilbert space
of a three-dimensional Chern—-Simons theory.

If similar structures are to be sought in superconformal field theories, then it is
important to have a good understanding of the relevant characters. In this paper,
super-Wess—Zumino—Witten models are examined. These theories have symme-
tries described by a combined superconformal and super-Kac-Moody (SKM)
algebra, and the partition functions in the presence of a supersymmetric Yang-Mills
background are determined by characters of highest weight representations of the
SKM algebra corresponding to the primary fields. The characters corresponding to
the partition functions for the three even spin structures on the torus are known,
being expressible as a product of an ordinary KM character and a free fermion
chiral partition function. This factorisation of the character follows from the
factorisation (observed by Kac and Todorov [3]) of the SKM algebra as the direct
product of an ordinary KM algebra and a set of canonical anticommutation
relations for free fermions in the adjoint representation of the group.

However, the situation is more subtle for the (+ + ) spin structure, where it is
generally assumed that the partition function vanishes. Roughly speaking, this is
due to the presence of fermion zero modes on the torus with this spin structure,
and a nonvanishing result can only be expected if there are sufficient insertions of
fermionic currents to “soak up” the zero modes. There also exist supermoduli for
the (+ +) spin structure, in that the supergravity background specified by the
superconformal structure admits gravitinos which cannot be gauged away and the
supersymmetric Yang—Mills background admits fermionic gauge fields which can-
not be gauged away. These couple to the zero modes of the supercurrent and of
the superpartner of the gauge current respectively in the Ramond sector of the
combined superconformal and SKM algebras. Without the inclusion of supermod-
ular parameters the partition functions of super-Wess—Zumino—-Witten models
vanish in this sector. One of the objectives of this paper is the calculation of the
characters of highest-weight representations of the SKM algebra in the case where
supermodular parameters are present. These characters fail to factorise in the
same manner as those corresponding to the other spin structures because the
zero-mode of the supercurrent couples the two algebras in the direct-product
structure of Kac and Todorov.

The result is that if the theory admits separately conserved left- and right-handed
fermion parity operators (—1)*t and (—1)"® (corresponding to the left and right
moving sectors of the theory), then the character for the (+ + ) spin structure is
nonvanishing if the SKM algebra is that associated with an even-rank group, and
the character is even in the Grassmann parameters describing the supermoduli of
the background fields. If the demand for separately conserved fermion parity
operators is dropped, then there are nonvanishing contributions to the characters
associated with odd-rank groups which are odd in the supermoduli. It is shown
that the odd superconformal supercharacters computed by Cohn and Friedan [4]
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for highest-weight representations of the unitary discrete superconformal series
with ¢ < 3 can be constructed from these using an analogue of the GKO construc-
tion [S]. This can be made compatible with the standard GKO construction of the
characters of the superconformal discrete series associated with the spin structures
(+-), (—=+) and (— —) if the standard construction is accompanied by a
“spectator” space of free fermions which couples nontrivially in the (+ +) spin
structure to yield the odd superconformal supercharacters.

A second objective of this paper is to show that the characters of SKM algebras
can be interpreted in terms of a fixed-point formula on a homogeneous superspace
associated with the algebra in much the same way as for characters of ordinary KM
algebras [6]. This provides a unified approach to the calculation of the SKM
characters in all spin structures, and in particular allows the calculation of those
contributing to the partition functions of super-Wess—Zumino—Witten models for
the (+ +) spin structure. Unlike the Kac-Todorov decomposition, this construc-
tion is manifestly supersymmetric, and suggests that an analogue of Borel-Weil
theory is at least formally relevant to the study of representations of SKM algebras.

The paper is organised in the following manner. In sect. 2, SKM algebras and
their relations to torus partition functions of super-Wess—Zumino-Witten theories
are discussed and the notation to be used in the rest of the paper is established.
The characters of highest-weight representations in the Neveu-Schwarz (NS)
sector are shown in sect. 3 to be interpretable in terms of a fixed-point formula on
a homogeneous superspace. This construction is extended to the Ramond (R)
sector in sect. 4, where it is used to calculate the characters in the presence of
supermoduli. The result is confirmed by analysis of Verma modules associated
with the highest-weight representations. Sect. S contains the calculation of the
SKM characters for odd-rank groups in the case when separate left- and right-
handed fermion parity operators do not exist, and they are used to give the
GKO-like construction of the odd supercharacters of the discrete superconformal
series. The concluding remarks are in sect. 6, and some calculational details are
relegated to appendices A and B.

2. The super-Kac—Moody algebra and torus partition functions

The theories of interest in this paper are (1,1) super-Wess—Zumino-Witten
(SWZW) theories [7-9] coupled to supergravity and supersymmetric Yang-Mills
backgrounds. As they are superconformally invariant, the supergravity background
can be described locally by superconformal coordinates (Z, Z) =(z, 9, z,8) [10],
and the field content includes a scalar superfield g(Z,Z) taking values in a
compact simple Lie group G. The local G, X Gy transformations g(Z,Z)—
2.(2)g(Z,Z) gp(Z) are symmetries of the theory, and these analytic and antiana-
lytic (respectively L and R) transformations are generated by currents #(Z) and
FZAZ) (where T, denotes a basis of generators of the Lie algebra g of G). The
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transformation of a primary field ®(Z, Z) belonging to a representation of G; with
matrices ¢ , is specified by the OPE

(6 -6

1, (2,7 + ... .
zZ -7 La ( ’ ) (21)

PAVAL JVAVARS
with Z —Z' =z —z' — 66’ (and similarly for G, and Z). For a level N SWZW
theory (with N a nonnegative integer), the transformation of the currents 2,
under G| transformations is specified by the OPE

L KTLT)  (0-9) ,
AV AN D) ~ Gt i gy A ) s (2)

where [T, T,]1=/f5T. and (, ) is an inner product on g invariant under the
adjoint action of G (this metric is unique up to normalisation), and N =2k /(¢ )
with ¢ the highest root of g. A supersymmetric Yang—Mills background couples to
the theory via the currents #, and Z,.

Local superconformal transformations are generated by .7(Z) and .7 (Z) of the
super-Sugawara form [7,9]

1 g
T(Z) = 5/ DS L) + o™ L/ fii(D), (23)

where the normal ordering is according to the prescription in ref. [11]. This
regularisation procedure preserves superconformal invariance at the cost of intro-
ducing a gravitational anomaly, which is characterised by the failure of 9~ to
transform as a primary field under superconformal transformations [7, 9]:

7ad G 7 ¢ 1 (B_Ol)

with ¢ = dimG + [(k - 3¢,)/k]dim G, where ¢, is the quadratic Casimir in the
adjoint representation. This can also be written as

c=(3-g/N)dimG, (255)

where g =c,/(¢,¥) is the dual Coxeter number.
For the purposes of this paper it suffices to take Z to be coordinates on the
sphere. The superfields of currents #, and .7~ have the decompositions

FAZ) =j(2) +01(2),  T(Z)=3G(z)+6T(z2), (2.6)

into component fields which in turn have mode decompositions of the form
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(with n € 7)

. 1 s 1
Jnena= 5= Pdzz" V() T, = s—dzz,(2),

1

G =
2.

n+s

1
n+s+1/2 — n+1
¢dzz G(z), L, —_27n¢dzz T(z), (2.7

(more generally, these should be considered as descendents of the identity opera-
tor at z=0). Here, s=0 or s =1, depending on whether fermion fields obey
antiperiodic (R) or periodic (NS) boundary conditions about punctures on the
sphere at z =0 or z == (i.e. corresponding to the choice of spin structure on the
twice punctured sphere).

The OPEs (2.2) and (2.4) and that for the transformation of #, as a supercon-
formal field of weight (3,0) are equivalent to the following representation of the
semidirect product of the super-Virasoro and SKM algebras on the descendents of

the identity:

[Jma"]nb] = ”-facb‘]m-%n,c + k(Ta’ Tb)5m+n,0 2

[Jma7jn+s,b] =’facbjm+n+s,c7 {jn+s,a7jm—s,b} =k(Ta’Tb)5m+n,0’ (28)

[Lm’ Ln] = (m —n)Lm+n + ]%Cm(mz - 1)5m+n,0’

[Lm’Gn+s] = (%m —-n _S)Gm+n+s ’

2
{Gm+s’Gn—s} =2l‘m+n+ %C((m—{-s) - %)6m+n,0’ (29)

[Lm’Jna]= _n‘]m+n,a’ [Gm+s"]na]= _njm+n+s,a7
[Lm’ jn+:,a] == (%m +n+ S)jm+n+s,a H {Gm+s’jn—s,a} = Jm+n,a . (210)
We will also require the existence of a conserved fermion parity operator (— 1)t
which commutes with J, , and L, and anticommutes with j, ., , and G, . This
requirement will be relaxed in sect. 5. There is a corresponding algebra for the
generators of antianalytic transformations which (anti)commutes with this one.

The fields (1/ vk )j, of conformal weight (},0) are a set of free (LH) Majorana
fermions belonging to the adjoint representation of G, and the currents

Ii(z2) = = (/2k) 7 1hpic(2) (2.11)

form a KM algebra of level-g relative to which j, is a primary field in the adjoint
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representation. Further, JF transforms as a primary field in the adjoint represen-
tation with respect to J,. Thus if

J,=1,—JF (2.12)
then
r T (_L—‘L’jk_li fC M
Ja(z)‘,b(w) ~ _(Z_—w)z(Ta’Tb) +’fab(z_w) +...

and the OPE of J, with j, has no singular terms. This is equivalent to the algebra

[]ma’ jnb] = "facbfm+n,c + (k - %cw)(Ta’Tb)m8m+n,0 >
[‘ima7jn+s,b] =0’ {jm-#—s,a’jm—s,b} =k(Ta’Tb)5m+n,0’ (213)

the direct product of an ordinary KM algebra of level (N —g) and a free fermion
algebra.

As a result of this decomposition, first observed by Kac and Todorov [3], the
energy—momentum tensor for the SWZW theory can be constructed as the sum of
the Sugawara energy—momentum tensor for the level (N —g) KM algebra and the
energy-momentum tensor for the free fermions, contributing (N —g)/N)dim G
and 1 dim G to ¢ in eq. (2.5) respectively:

1 .. 1

T(z)= 5_;:]”]‘,:(2) - ﬁ:j“c?zja:(z). (2.14)
Note that eq. (2.14) is equivalent to the manifestly supersymmetric expression for
T(z) obtained from eq. (2.3) using (2.6), even though (2.14) contains four-Fermi
terms via —(1,/2k):J"4JF: while eq. (2.3) is at most trilinear in Fermi fields. This is
because (1,/2¢,):JFJ ) is the Sugawara form of the energy—momentum tensor for
the free fermions, and can be replaced in eq. (2.14) by the canonical
energy—momentum tensor —(1,/2k):j%j,: (this equivalence for free fermions in
the adjoint representation was discussed in ref. [12]). The Hilbert spaces for the
KM algebra and the free fermions are mixed if the action of the full super-Virasoro
algebra (and not just its Virasoro subalgebra) is considered. This is because from
egs. (2.3) and (2.6) the Sugawara form of the supercurrent is

1 - 1
G(z)= Z:j”Ja:(z) + ﬁ:j"]ap:(z) , (2.15)

the first term of which couples the two spaces. This will have important conse-
quences later for the calculation of characters in the Ramond sector.
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The nature of the vacuum used in the canonical quantization of the SWZW
theory on the sphere depends on whether Fermi fields have periodic or antiperi-
odic boundary conditions around punctures at 0 and c. However, in both cases it
can be considered as a tensor product of the vacuum |[0)*M for the KM algebra
with generators J, and the free fermion vacuum [0)F. If 7,, i=1,...,r (= rank G)
denotes a basis for the Cartan subalgebra of G and 7,, a >0 denote the
generators of g€ associated with the positive roots, then |0 is the highest-weight
state for the representation of the KM algebra with generators fa on descendents
of the identity and is defined by fna|0)KM =Q0forn>0and n=0, a=a>0, and
Jo;10% e = 0. The free fermion vacuum for NS boundary conditions is defined as
usual by j,, 1 ,/0¥ks =0 for n >0, which via eq. (2.11) implies J,\,|0){s =0 for
n>0and n=0, a=a>0, and J;|0)5s=0. Thus it follows from egs. (2.12),
(2.14) and (2.15) that [0) s = |0)xm ® |00 satisfies

JalOns =0, n>0 and n=0, a=a>0,
Jn+1,d0ns =0, nz0,
Joil0ns =0,
L,|0)ns =0, nz—1,
G,_1|0ns =0, nz0. (2.16)

The free fermion vacuum in the Ramond sector is more complicated. One of the
defining properties is j, ,|0); =0 for n> 0. Further, to obtain an irreducible
representation of the Clifford algebra {j,, jo,} = k(T,, T,) formed by the fermion
zero modes, the conditions

JoalOYe =0,  @>0 and jo10y;=0 (2.17)

are imposed, where jor=jy2,-1 t <Jo.2i> i=1,...,[r/2], relative to a basis for the
Cartan subalgebra with (T,,T,) =5, ; [3,11]. Basically, the representation of the
operators j,, is on the Fock space for [(dimG)/2] Weyl fermions (plus one
Majorana—Weyl fermion when r is odd). As a result, J£ |0)% =0 for n >0 and
n=0, a=a>0, but JE|0Y; =p(T)|0Y%, where p= 3% . a. The latter follows

from

J()F;|O>}l:2= - 5; Z fia,_ jOaj(),—a|0>FI;

a>0

= - 2k Z fia,_a{jOa’j(),—a}IOYi‘{: Z %a(Ti)lOyl:l’

a>0 a>0
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where we have used (7,,T_,) =2/(a,a). So in the Ramond sector, the fermion
vacuum is the highest-weight state for a representation of the KM algebra
generated by the currents JF of highest weight p. More generally it can be thought
of as being constructed from the NS vacuum by the action of a “spin” field relative
to which the fermions have antiperiodic boundary conditions [13]. For more details
of the Ramond vacuum, see ref. [11].

The vacuum [0); = |0)y ® |0Y% for the SWZW theory in the Ramond sector
is thus characterised by

L |0Or=0, JualDOr =10, n>0 and n=0, a=a>0,
jo0)r =0, i=1,...,[r/2],
Joil0)r =p(T)I0)r,  Lol0)g=15dimG|0)g. (2.18)
That the conformal weight of the Ramond vacuum is -+ dim G can be seen in two

ways. Replacing —1/2k:j%j,: by the Sugawara form 1/2¢,:J%J[: in eq. (2.14)
gives

1 .
Lol0)w = 5o | E e iE o g 995 |00

Clﬂ a>0
1 3(p,p)
“ 3 | Z (@) 4 (00 |00 = =20

which is equivalent to the result in eq. (2.18) using the Freudenthal-de Vries
“strange” formula (p, p)/c, = (dimG)/24. Alternatively, performing the normal
ordering in —1/2k:j%)j,: carefully in the Ramond sector leads to the same result
due to a contribution of 5 to the vacuum energy on the sphere from each of the
dim G free Majorana fermions j, [14].

Given a multiplet of primary superfields ®(Z, Z) transforming as in eq. (2.1)
according to a representation of G| with highest weight A, there is a superfield
®,(Z, Z) corresponding to the highest-weight vector, so its OPE with 7, a > 0 is
nonsingular and its OPE with £ is

13

_ (6-0) _
AAD)OAZ,Z) ~ MT)—— - P(Z.Z) + ... (2.19)

Using these and the Sugawara construction (2.3), @, is a primary superconformal
superfield of weight (c,/2k,c, /2k), where c, =(A +2p,A) is the quadratic
Casimir in the representation with highest weight A (and A’ is the highest weight
for the representation of Gy under which @ transforms) (7,9). The 6 =6=0
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component ¢, of @, is a field of conformal weight (¢, /2k, ¢, /2k), and it follows
from eq. (2.19) that

I(2)b (2, 2) ~A(T,)%§% 4o (2.20)

and that the OPEs of j, and J, with ¢, are nonsingular for « > 0. The states
|AYns and |A)y are defined in the usual manner as ¢,(0,0)0) s and $,0,0)]0)
respectively (they should carry labels for their transformation properties under Gy
as well, but these are suppressed here). Using egs. (2.16), (2.18) and (2.20), these
states obey the highest-weight conditions

1 Ans=0, n>0 and n=0, a=a>0,
Ju+ 1A ns =0, n>0,
Jm|/{> =’\(Ti)|/{>Ns ’ (2-21)
JlMr=0, n>0 and n=0, a=a>0,
j,m|)(>R=0, n>0 and n=0, a=a>0,
joilAYr =0, i=1,...,[r/2]
Jol Mg = (A +p)(T)IA Y - (2.22)

Note that |A)y, is a highest-weight state for the representation (A + p), correspond-
ing to the fact that |0) is not a singlet with respect to J,,. Also, combining the
conformal weight of ¢, with those of the respective vacua in egs. (2.16) and (2.18),

L N i LR C, dim G
0| >Ns_ﬁ| >st o| >R_(—2;+ 16

)M)R. (2.23)
The states corresponding to the descendents of the primary superfield @, in the
NS and R sectors are constructed by acting with the “lowering” operators J,,
(n<0 and n=0, a=a<0), j,112, (#<0) and J,,,j,, (n <0 and n=0,
a = a < 0) respectively on the highest-weight states, and they furnish highest-weight
representations of the combined SKM and superconformal (via the Sugawara
construction) algebras with the appropriate boundary conditions. More generally,
one can consider these states to be constructed by acting on the NS vacuum with
descendents of the primary field ¢, (for NS boundary conditions) or the product of
¢, and the spin field (for R boundary conditions), the representations of the
algebras being on the space descendent fields.
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The states |A) are also highest-weight states for a level (N —g) representation
of highest weight A of the ordinary KM algebra with generators J, defined in
eq. (2.12). This is a unitary representation only if the condition

2(A9)
(¢, 4)

—g= =0 (2.24)

is imposed (see, for example, ref. [15]). This is assumed to be the case here. The
representation of the current j, on the free fermion Fock space is unitary.

So far, only the local structure of the supergravity background has been
considered. The global structure is specified by requiring that the background have
the topology of a torus, and we are interested in computing the contribution to the
torus partition function of the SWZW theory from the descendents of the primary
field ¢,, (where A’ specifies the transformation properties with respect to Gg). In
ordinary conformal field theory, the torus with modular parameter 7 is considered
as a cylinder of length 27 Im 7 with standard complex structure, and joined after
making a twist by an angle of 27 Re 7. States are propagated along the cylinder
with the hamiltonian (L, — 2¢) + (L, — %c¢), and the rotation is achieved using
the momentum operator (L, — 3¢) — (L, — %¢) (for a review, see ref. [16]). The
contribution to the torus partition function from the descendents of a primary field

is
T 2 L - 27| L ¢
rexp[ WLT( 0 ﬁ)]exp - 7T;T( 0 a) ,

where the trace is over all descendent states of the primary field (excluding null
states and their descendents). Alternatively, this follows by considering the cylinder
as the complex plane with the identifications z ~z+ 1, z ~z + 7, and exp[2m.7(L,
—c/24)] generates the translation z —z + 7. In the case of an ordinary WZW
theory, there is also the possibility to couple a background gauge field 4%z, Z) via
the currents J, which generate the KM algebra associated with the left-moving
sector of the theory. The nontrivial gauge configurations on the torus can be
parameterised in the form A°T, =g 'dg,, where g, is not single-valued on the
torus but is multiplied by exp(-«'T}) under transport around the cycle z — z + 7 (!
are complex constants) [17,18]. The corresponding torus partition function con-
tains a contribution from the descendents of a primary field ¢, (with respect to
G_) of the form

c .
Tr; exp[27n7(L0 — z)]exppw;'uﬂm] ,

where the trace is over the states associated with the descendents of ¢, with
respect to the KM algebra. This is a character of the KM algebra.
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The supersymmetric case is more complicated. There are four spin structures on
the torus. The supertorus for the even spin structures (+ — ) is obtained from the
complex superplane (z, 8) via the identifications

(Z,B)N(Z+1,i0), (230)~(2+T’_9)
and for the even spin structure (— + ) via the identifications
(z,0)~(z+1, —9), (z,0) ~(z+7,0).

The odd spin structure (4 + ) is special in that it admits gravitino configurations
which cannot be gauged away. These are parameterised by a supermodular
parameter e and the supertorus is constructed via [19, 20]

(z,0) ~(z+1,0), (z,8)~(z+7—€b,0+¢€).

There is a global supersymmetry in this case, related to the existence of a Killing
spinor for the odd spin structure.

In the three even spin structures the nontrivial supergauge backgrounds are the
same as those in the nonsupersymmetric case, and the contribution to the torus
partition function of the SWZW theory in this background from the descendents of
a primary superfield @, is

ZG7(r,u) = TrENS)[exp[2w¢(r(L(, — %C) + uiJO[)]]
XTr)(;,NS)[exp[ —2w¢'(F(ZO - %E) + ﬁ[joi)]] , (2.25)
— i F
ZG(r,u) = Tr}”s’[exp[zm(T(Lo — %) +ully)| (1) L]
X Tr™exp[ - 2m(7(Ly — %) +aT,,)] (-1 %], (2.26)
ZG N (r,u) = Tr}R)[exp[Zwa(r(L[, —2c)+ uiJOi)]]
XTri0exp[ —27(7(L, — %) +u7,,)]] - (2.27)
In the spin structures (— — ) and (— + ) the traces are over the descendent states
appropriate to NS boundary conditions (excluding null states and their descen-
dents) while R boundary conditions prevail in the case (+ —). The insertions
(—1)F in the traces for the spin structure (— + ) change the boundary conditions
for fermions around the cycle z ~z+ 7 from antiperiodic to periodic (see, for

example, ref. [16]). The partition functions are products of characters of highest-
weight representations of the SKM algebra.
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For the (+ +) spin structure, in addition to the nontrivial gauge backgrounds
coupling as u'J,; there are nontrivial fermionic supersymmetric Yang—Mills back-
grounds parameterised by constant Grassmann parameters ¢‘7; and coupling to
the currents j, as £',,. These nontrivial fermionic gauge backgrounds are related
to the existence of (3,1) conformal fields on the torus with this spin structure
which cannot be expressed as derivatives of globally defined (3,0) conformal fields
and which represent nongauge deformations of the supersymmetric Yang—Mills
background. Since 7L, + €G, produces the supersymmetry transformation associ-
ated with the identifications z ~z + 7 — €6, 68 ~ 0 + ¢, the partition function in this
case is

Z( = Tr®[exp[2m(7(Lo — %) + Gy + udy: + £0,) | (—1)"]
X Tri[exp| = 2w (F(Ly — £¢) + &Gy + @y, + Eo)| (1) %] . (2.28)

One might expect that the traces in eq. (2.28) vanish as they contain no explicit
insertions of fermionic currents which soak up the zero-modes j, , ,. However,
these are contained in the insertions J,; via egs. (2.11) and (2.12).

The calculation of the characters of the SKM algebra which appear in eq. (2.28)
is the subject of sect. 4. To do this we will use an interpretation of the characters in
terms of a superspace fixed-point formula, which is given in the next section in the
case of NS boundary conditions.

3. The SKM characters in the NS sector

The representation theory of an ordinary Lie group G with maximal torus T is
closely related to certain holomorphic line bundles over the complex manifold
G/T. In particular, if A is a dominant weight then the mapping A: T — U(1)
induced by it can be used to construct a line bundle over G/T whose sections
inherit a natural G-action. This is a holomorphic line bundle when G/T is
considered as a complex manifold and the Borel-Weil theorem states that its
space of holomorphic sections furnishes an irreducible representation of highest
weight A. Furthermore, the Weyl character formula can be proved by use of the
Atiyah—Bott—Lefschetz fixed-point theorem [23] and a knowledge of certain coho-
mology classes associated with this bundle (see ref. [21] for a discussion of
fixed-point theorems and their application to physics).

The Borel-Weil and the fixed-point interpretation of characters have at least
formal analogues for KM algebras [6]. In this section it will be seen that the SKM
characters in the NS sector also have a formal interpretation in terms of a
fixed-point formula for a line bundle over a homogeneous superspace which can be
associated with the SKM algebra. The character deduced using this interpretation
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decomposes according to the Kac-Todorov decomposition (2.13) of the SKM
algebra.

The SKM algebra (2.8) with NS boundary conditions together with the elements
L, and k (where k denotes the central element of the algebra, taking eigenvalue k
in the representations considered in sect. 2) generate a superalgebra which will be
denoted g (J,,, j,, » , and L, will denote both generators of the algebra and their
representation in the SWZW theory). The fermionic generators are contracted
with Grassmann parameters so that the elements of the superalgebra are Grass-
mann even. If 7, i =1,...,r=(rankG) is a basis for the Cartan subalgebra of G,
then the subalgebra t spanned by J,,;, L, and k is abelian. The complexification §©
admits a decomposition §¢ =, @t ® m_, where . is spanned by the genera-
tors of 8 which annihilate primary fields, namely J,, for n >0 and n=0,
a=a>0and j,, ., for n>0. The spaces f, are closed under (anti-}commuta-
tion and thus form subalgebras. As with ordinary KM algebras, , are direct
sums of one-dimensional representations of t, and the roots in £* determined by
these representations are &, =« — nL} for the representation on J,,, — nL{, for
Joi» @por=a—(n+ L% for j, ., and —(n+ 3)L¥ for the representation on
It e The “positive” roots are those associated with fa ,, and the “negative” roots
are those associated with m_.

If .2 and .9 denote the groups obtained by exponentiating g and t respectwely,
then there is a natural left action of £ on the homogeneous superspace* 29
given by g'-p =[g'g], where p=[g] is the point on £/.9" determined by the
equivalence class of the point g in .. Of interest here are the fixed points of the
action of h~', where h = exp[2m(rL,+ u'Jy; + pk)] is the element of &~ which
appears in eq. (2 25) (the reason for considering /4~ ' rather than 4 is given later).
A fixed pomt p=I[gle ?/ " of the action of &' occurs when h~'g=gh' for
some he S,s0 g 'h~ g A'. Thus a fixed point p is assomated with a point in

)/J, where A(J") is the normaliser of the torus .7 (this is just as for
ordinary KM algebras, see ref. [6]). The group .#(97) /.9 will be called the Weyl
group of g and in appendix A it is shown that it coincides with the Weyl group of
the ordinary (extended) KM algebra with generators J,,, L, and k contained in 8.
That is to say, the Weyl group W of & consists of maps w: 9 — .7, w(h') =g~ 'h'g
where g is an element of the group associated with the subalgebra generated by
J.u» Lo and k. This KM algebra will be termed the KM subalgebra of the SKM
algebra, and is not to be confused with the KM algebra with generators J,, which
appears in the Kac-Todorov decomposition.

The map dmj, ~dg|,, where 7: = L?/ T is the natural projection, allows the
identification of the tangent space to .£/.9 at p=m(g)=[g] with g/i. The

a )
a

* Ordinary superspace is itself a homogeneous superspace, albeit finite dimensional, and supersym-
metry transformations are natural group actions on the homogeneous superspace; see, for example,
ref. [22].
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closure of m, and m_ already noted gives rise to an integrable splitting of the
complexification of T(Z/ 97) into a direct sum of components identified with
these two spaces. In the case of an ordinary group G, this construction defines the
complex structure on G/T; here f/ " inherits a superanalytic structure associ-
ated with this splitting. Further, at the fixed points p of the action of A ' on
f/ 9, there is a linear action of dAT!| , induced on the complexified tangent
space which preserves the splitting. In particular, if p =mw(g) and h~'g=gh' and
X,=dm|,odL,|(X) for X€m, (where L, denotes the left action of £ on
itself), then it is straightforward to check that

dh~'(X,) = dw|,~dL| (Ad(K)(X)), (3.1)

where Ad(h') denotes the adjoint action of A" on m,. As g&./ (9) and
h' =g 'h'g, we can write

B =w(h™") (3.2)

where w is the element of the Weyl group associated with [g]l€ .#(.97)/ 7.

A highest-weight state |A) g provides a one-dimensional representation of g
which, from egs. (221) and (2.23), is characterised by the weight A=A +
(c,/2k)L% + kk* €t*. Thus if B’ =e™ with H e, then h'|A)yg = e A)|A)ys
where e*(h') = e*). This allows the construction of a complex line bundle* over
£/.9 associated to the representation of g on |A)ns: We consider 2 X V/~
where V is the vector space spanned by |A) s and (gh’,v) ~ (g, A(h)v). There is a
natural left action /. of £ on the vector bundle given by LI(g,v)]=[(g'g,0)],
mapping the fiber over p onto that over g’p. (The reason we have been consider-
ing fixed points of A7 ! rather than of 4. is that using /,, it is possible to construct a
natural left action of 4 on sections of this bundie which is a lifting of 47" rather
than of & _; see ref. [23] for the case of the ordinary Weyl formula, which has been
closely followed here). Using these definitions it can be checked that at a fixed
point of 27',1, acts linearly on the fiber over p and is represented by

er(w(h)) =e*D(h), (3.3)

with w(h) defined in eq. (3.2).

The supercharacter )?ENS)(h) of h € 9 will be defined as the supertrace of h in
the highest-weight representation of g determined by the state |A)ys,

A(NS — F
A& = sTrg(h) = Tr{ (- 1))
This supercharacter appears as the left-moving contribution to
2 -
|627T:(C/24)T| Z)(Mr+)(7',u)

* Again this construction is familiar in ordinary superspace, where tensor superfields are sections of
vector bundles over superspace constructed in this way.
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in eq. (2.26) for h = exp[27 (7L, + u'J,,)]. The main result of this section will be
to show that the supercharacter can be expressed in the form

sTr(Z,1,)
sdet(1—dh="(\")

) =X

P

, (3.4)

where the sum is over all fixed points of the action of h~' on .£/.7, the
numerator is the supertrace of the action of /, in the fiber over p, dh='|("
denotes the action of da~'|, on the subspace of T(£/.9)S corresponding to i,
and sdet denotes the superdeterminant. The notation supertrace in the numerator
is redundant in this case as it is over a one-dimensional space, but it will be
nontrivial in the Ramond case in the next section. The similarity with the
fixed-point formulation of the Kac-Weyl character formula for ordinary KM
algebras [6] is obvious, with traces and determinants replaced by supertraces and
superdeterminants. Eq. (3.4) will be proved by showing that it factorises as the
product of the character of # in an ordinary KM algebra and the supertrace of the
action of 4 on the Fock space for free Majorana fermions in the adjoint represen-
tation of G, in accordance with the Kac-Todorov decomposition of the SKM
algebra. However, unlike the Kac-Todorov decomposition, eq. (3.4) is manifestly
supersymmetric, and is of the form that would be expected were a fixed-point
theorem of the Atiyah—Bott—Lefschetz form [23] applicable to the supertrace of
the action of A on the sections of the given line bundle over /.. The inverse
superdeterminant is the jacobian which results from replacing an integration over
the supermanifold /.9 of a delta-function with zeroes at the fixed point by a
sum over the fixed points. Any attempt to examine this fixed-point interpretation
of eq. (3.4) is beyond the scope of this paper, but it is suggestive that at least a
formal analogue of Borel-Weil theory based on the superanalytic structure of the
superspace 52/ 9" is relevant to the representation theory of the SKM algebra §.
In the next section the formula corresponding to eq. (3.4) for the Ramond case is
examined from the point of view of Verma modules — a corresponding analysis
could be carried out here.

The trace appearing in the left-moving contribution to Z{; ™’ in eq. (2.25) can
also be accommodated in this formalism: it can be considered as ¢ (h(— 1)),
where t has been enlarged to contain the operator F|, and is given by (3.4) with A
replaced everywhere by A(— 1)t

To evaluate eq. (3.4) we use eqs. (3.1) and (3.3) in the denominator and
numerator respectively. The adjoint action of A’ =w(h~") on fm_ in eq. (30) is
represented by a diagonal matrix relative to the basis for m, given by the
generators of § corresponding to positive roots, and has a grading determined by
the bosonic or fermionic nature of the generator. Using e®{(w(h™")) = e ~*@)(h),
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eq. (3.4) becomes

_ W, 1) _aw(—(n+DLEn
JYCITR S ST ) P VY Gl A Gl )
! wew  Tlyso(1=e ™@NIT I, o(1— e ™@)(1—e ™ 7"LD)

(3.5)

7(h).

In the case of x{"V(h(— 1)), the adjoint action of #'(—1)"t on f, is the same as
that of A4’ except that the cigenvalues of the fermionic generators change sign
because (- Dftj, .. (=D = —j, .. ,. Thus the numerator in eq. (3.5) becomes

H l_[ (1 + e—w(&,,Jr%))(l +e—w(A(n+’5)Lﬁ))r'

a nz0

To show that eq. (3.4) agrees with the result expected on the basis of the
Kac—Todorov decomposition, it is necessary to rewrite the numerator, which will
be denoted IT,.,(1—e ™4), where &, I'>0 label all the positive roots
corresponding to fermionic generators of § (i.e. &@,, for n >0 and —(n + 3)L¥
with r-fold degeneracy for n > 0). By manipulations similar to those used in the
ordinary Kac—Weyl formula [6, 24], we have

[T —e "0y = (=1) e [T (1—-e4r)
I'>0

I'>0

where /(w) denotes the number of the positive roots @, such that w™'(&,) is
negative, and §(w) is their sum. It is shown in appendix B that /(w) is even and
that

$(w) =p—w(p)

where g = 3¢, k*. If &, I>0, denote the positive roots of g corresponding to
bosonic generators then the denominator of (3.5) is [6, 24]

[T(1-e™@) = (=) e [T (1-e ),

>0 >0

where I(w) is the number of &, which become negative under the action of w™'
and s(w) is their sum, s(w) = — w(p) with g =p + j¢,k*.
Thus combining these results,

w((A—=p)+5
@9 = T (-ayeer T )(eﬁ““‘e_d’))(“'“b)

wew T, o(1—e"%) >0

This expression for the supercharacter is of the form required, as it is the product
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of an ordinary KM character and a supertrace on the fermion Fock space. To see
this, recall from the result of appendix A that the Weyl group in eq. (3.6) coincides
with that of the underlying KM algebra with generators J,,, and the action of this

group on t* is (fortunately) independent of the level of the KM algebra. Since
A=p=(r+(cr/2k)LE + (k= 3c, )k*) (3.7)

it follows that the first bracket in (3.6) is the KM character of 4 in a level N —g
representation of highest weight A (see the appendix of ref. [15] for an exposition
of KM characters which matches the notation above). The factor (¢, /2k)L¥ in eq.
(3.7) is correct, because the conformal weight of the primary field for the level
N — g KM representation of highest weight A is ¢, /2k (see ref. [25]).

It is easy to verify that the second factor in eq. (3.6) is the supertrace of 4 on the
Fock space for free Majorana fermions (with NS boundary conditions) in the
adjoint representation of G. The factor e” is due to the fact that the central charge
of the KM algebra constructed from the free fermions is %Cdf

In the case of X/}NS)(h( —1)f1), the analysis is as above, except that the fermionic
factor is €T, o(1 + e ~7), which is the supertrace of h(~ 1)"* (or the trace of /)
on the fermion Fock space.

4. The SKM characters in the Ramond sector

In this section the fixed-point formula is considered for the extended SKM
algebra with R boundary conditions and we show that it yields the correct
character for the (4 —) spin structure. For the character corresponding to the
(+ +) spin structure, in which supermodular parameters appear, it is shown that
the result obtained agrees with that which follows from the consideration of Verma
modules, thus providing a check of the result. A further check is that in the
absence of G, terms the supercharacter factorises in the manner expected from
the Kac—-Todorov decomposition.

In the Ramond sector, we consider the group £ generated by the extended
SKM algebra g with basis J,, j,,, L, G, and k. The subgroup " is chosen to be
that corresponding to the subalgebra t of § generated by Jy;, j;» Lo, G, and k.
Note that t is not abelian, as can be seen from eqs. (2.9) and (2.10). The “positive”
generators of §€ are J , and j,, for n>0and n=0, a =« > 0, and they form a
subalgebra f, (there is similarly an algebra t_ of negative generators). The
concept of roots is more subtle here as the nonabelian nature of ¢ means that its
irreducible representations on fa, via the adjoint action are no longer one
dimensional. However, the subalgebra 1 of t with bosonic generators J,;, L, and
k is abelian, and roots in £* can be associated to the one-dimensional irreducible
representations of ty on m . in the manner of sect. 3. The roots are @, =a —nL§
coresponding to the representations on J, , and j, ,, and —nLf§ for the represen-
tations on J; and j_,.
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The homogeneous superspace (?/ " has a natural left £ action, and as in sect.
3 the fixed points p of the action of £~ ! for

h=exp|2m(u'ly; + 7Ly + &', + €G, + Dk )] (4.1)

are classes [g] = 7w(g) where h~'g =gh’ with ' € .. Thus the fixed points are in
one—one correspondence with the points of .47 (97)/ .9, which will be called the
Weyl group W of g As shown in appendix A, the representative g of a fixed point
p can be chosen to be an element of the subgroup of £ determined by the KM
subalgebra with generators J,,, L, and k. Because of the nonabelian nature of t
the point g~ 'h~'g depends on the representative g chosen; we will denote
g 'h~'g for the representative in the KM subalgebra by w(A™!) for w € W.

Exactly as in the NS sector the mapping dm|,°dL,|, can be used to give an
integrable splitting of T(f/ 9)C as a direct sum of subspaces identifiable with i
and m_, providing f/ 9" with a superanalytic structure. At a fixed point of the
action of £~' the map dh~" has a representation on the subspace of T(£/ .9 )¢
identified with m . which is equivalent to the adjoint representation of &' = w(h™1)
on m_, the equivalence being up to a similarity transformation by an element of
. Letting dh ™! |*) denote this map, sdet(1 —dA™'|(") is thus well defined and
equivalent to sdet(1 — Ad(w(h~"))[, ). Note that the superdeterminant is also
independent of the choice made in specifying w(h '), as the ambiguity is also only
up to a similarity transformation by an element in t.

A highest weight state |A), defined by eqs. (2.22) and (2.23) furnishes a
representation of £ with weight vector

c,\ dim G
2k 16

A=(A+p)+ ( )L?;+kk*_ (4.2)

The fermion zero modes j,,; associated with t together with the operator (— 1)t
form an (r + 1)-dimensional Clifford algebra, which admits a reducible representa-
tion on the 2’-dimensional space of states obtained by acting with the j,; on |A)g;
imposing the condition jy7A)g = 0 (with the j,; defined in sect. 2) determines a
2+ D72l dimensional subspace V,, on which the fermion zero modes j,; and the
operator (— 1)1 have an irreducible representation. It will be verified later that
this space provides a representation for t. The requirement that a conserved
fermion parity operator (—1)ft exist means that it is possible to choose a basis of
eigenstates of (— 1)t for V,. In sect. 5 this requirement will be relaxed, in which
case the Clifford algebra is only r-dimensional and the irreducible representations
are 2l"/2.dimensional.

Using the representation o of ¢ on V,, a vector bundle .¢Xx V,/~ with fiber
V, can be constructed over £/.9, where the equivalence relation is as usual
(gh',v) ~ (g, 0(A)v). A natural left action /,, of £ on this vector bundle is defined
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as in the NS case, and /,, acts linearly in the fiber over a fixed point p of the action
of A" and is represented by o(w(h)), where w is the element of the Weyl group
associated with the fixed point.

Again motivated by an interpretation of the supercharacter in terms of a
fixed-point theorem on the homogeneous superspace f/ , the following formula
is proposed for the supercharacter of # in the representation of the R sector of the
SKM algebra with highest weight |A)g:

. sTr(1,1,)
X =X gen
p sdet(l —dh._l‘p )
with the same notation as in eq. (3.4). Using the results obtained above, this
becomes

SRy s sTr(w(h)ly,)

X5 (h) = Z ~ . (4.3)
wew sdet(l — Ad(w(h 1))\ﬁu)

Up to a term involving the central charge, this supercharacter is the contribution

of the left-moving sector to the partition function Z{}* in eq. (2.28). The rest of

this section will be concerned with establishing the validity of eq. (4.3).

The partition function Z{}~ in eq. (2.27) involves the supercharacter of A(— 1)t
(rather than of A) in the same representation. Note that s defined in eq. (4.1)
depends on the supermodular parameters &' and €, but Z{}~ cannot be expected
to have any such dependence because nontrivial gravitino or fermionic gauge
backgrounds do not exist on the torus with the (+ —) spin structure. The
calculation of the supercharacter of h(—1)L by replacing # in eq. (4.3) by
h(— 1" will show that the terms proportional to ¢’ and e do indeed vanish, which
is gratifying — it is not necessary to known a priori about the nonexistence of
appropriate backgrounds. As in the NS sector, the calculation of the supercharac-
ter of A(— 1)t is accommodated by enlarging t by the inclusion of F,.

In the evaluation of eq. (4.3), we will begin with the numerator and so must
consider some details of the representation of t on the space V,, in more detail. It
is useful to distinguish the two cases r even and r odd (where r is the rank of G).
In the case r even, the operators j, and (— 1)1 generate an odd-dimensional
Clifford algebra and so (— 1)t can be represented on V,, as

(— D)= (=)7(2/k) "V det g7 jor ... jo, » (4.4)

where g,; = (T;,T;) denotes the metric on the Cartan subalgebra of G. For r odd,

vty
the Clifford algebra is even dimensional and there is no such representation for
(— D*r. Because J,; and L, commute with jg,, it follows from eq. (2.22) and (2.23)
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that they are represented on V,, as

(4.5)

¢, dimG
Ju= (A +p)(T)L, Lo=( )

- +

2k 16

Also, using the Sugawara construction (2.15),
Go=(1/k)jtJoa = (2/3k)ji 15,

on V,. By a calculation similar to that used in finding the conformal weight of |0)
in sect. 2, G, is represented on V; as

G():(l/k)gij(/\+P)(7;)j0j- (4'6)
Using the Freudenthal-de Vries formula, it is possible to check that {G, G} =

2L, — +5c on V,, in agreement with eq. (2.9).
For h given by eq. (4.1), it follows from eqs. (4.5) and (4.6) that

c, dim G
STr(h|vU)=exp 2me (/\+P)(”)+(ﬁ+ 16 )T+pk

xTr[exp[zm-(g"+ Eg"f()\ +p)(7}))j0,]( —1)FL\VU], (4.7)

where u =u'T,. The terms without any Grassmann parameters vanish because
Tr(—1)F t|y, = 0. In the case of an even-rank group G,(— 1)t is represented by eq.
(4.4), and the only nonvanishing terms in the expansion of eq. (4.7) in Grassmann
parameters correspond to the totally antisymmetric tensor for SO(r), yielding

sTr(h[Vo) =(-)"2n.) exp[Zwa

¢, dimG
(A+p)(u) + (ﬁ + T )T+pk)

x2/2(k/2)"? [det g, /\ (&' + (e/k) (A +p)g"(T})),  (48)
i=1

where the factor 2"/ comes from Tr(1]y,) and the symbol A is used to emphasise
the fact that the product of Grassmann parameters is antisymmetric. The situation
for an odd-rank group G is different, as the j,, and (— 1)t are the generators of
an even-dimensional Clifford algebra and there is no nonvanishing contribution to
the trace in eq. (4.7).

If instead we consider sTr(A(—1)"t|,, ) = Tr(h|y, ), as appropriate for the parti-
tion function Z{} 7’ in eq. (2.27), all terms containing Grassmann parameters
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vanish, but there is a nonvanishing contribution

r+1

F =] ¢, dimG
STr(h(—l) L1v0)=2 exp[Zm-((/\ +p)(u)+(ﬁ+ o )7+pk
e
ATy, -
where
hy = exp|2m(u'Ty, + 7Ly + pk)] . (4.10)

This applies for both r even and r odd. The numerator of eq. (4.3) requires
consideration of sSTr(w(4(—1)"1)|y, ). As has been shown, w(h) =g~ 'hg with g an
element of the KM subalgebra, so that it contains only bosonic generators. Thus
(w(h))g = w(hy), and we can use eq. (4.9) to obtain

r+1

Tr(w(h(-1D)"™)], ) =2[T] A w(hy)), (4.11)

where w and Ay are now regarded as elements of the KM subalgebra.

Next we turn to the denominator in eq. (4.3). The adjoint action of 9 on +
can be decomposed into two-dimensional irreducible representations with basis
vectors (J,,,, J,o) for n>0o0r n=0, >0 and (J,,,j,) for n>0. For & in eq.
(4.1), the adjoint action of A~! on (J, ) is represented by the matrix e ~>"M
with M given by

a’]na

a(u) —nr a(€) —ne

€ a(u) —ns

with ¢ = £'T,, and by the same matrix with & =0 on (J,, j,,;), while (= Dfth~ 1 is
represented by e ~27"M73 1t is straightforward to compute

—2mw.A
sdet(1 —e 2"M) =1 + T?Z,T,AT(ZW)Z‘X(f)f,

(1 __ e—Zﬂ','A)

sdet(1 — C'ZW’M‘”) = m s
o 27

(4.12)

where A = a(u) —nr.

For the case ,\?ER)(h), it follows from eq. (4.12) that the denominator in eq. (4.3)
can be taken to be 1. This is because the numerator is of the form (4.8) with A
replaced by w(#), and it contains r Grassmann parameters. Since there are only



LN. McArthur / Kac-Moody algebras 169

(r + 1) Grassmann parameters, the terms in sdet(1 — M) bilinear in the Grassmann
parameters vanish. This is a great simplification, meaning that

(k) = X sTr(w(h)ly,)- (4.13)
wew

On the other hand, from eq. (4.12) we see that
sdet(l —Ad((-1)"hY)| ) - sdet(l —Ad((-1)"hg")|. )
where hy is defined in eq. (4.10). Further, as already noted, (w(h))y = w(hy), so

sdet(l — Ad(w((- 1)FLh‘1))\m) - sdet(l — Ad((~ 1)FLw(hg‘))'ﬁ]+) .

Combining this with eq. (4.11) and using (4.12), we obtain

FR(h(-1)™) = T 2[,;1] Tr(w (o))
' wew  sdet(1-Ad((=1)"w(hy"))

o)

=2[’;'] T ot 1_[1>o(1+€:7"f')

Sow  tt=e) (w(hs)).

where &,, > 0 denote the positive roots in the R sector. Since the sum is over the
Weyl group of the KM subalgebra, it is possible to extract an ordinary KM
character from this. As in sect. 3, the product

rp (L e Mén)

>0 (1 — e—W(&l))

can be written in terms of products of factors involving only positive roots. The
factors e *™ and e *™ are in this case equal, leaving

r+1 w(A)
)eﬁ“)(h(—l)“)=2[ 2 ]( T () [T(1+e7)(hs).

wew I, o(1—e™%) |50

(4.14)

With the help of eq. (4.2), the first factor in (4.14) contains the character of Ay for
a KM algebra of level N —g and in a representation of highest weight A (for which
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L, has eigenvalue ¢, /2k on the highest weight state) [15,24], leaving a factor
r+1
2{ 2 ]

This is the trace of Ay on the Fock space for the free fermions j, with R boundary
conditions, the %c¢ being the central charge of the KM algebra generated by the
J§ ,(dim G /16) being the vacuum energy of the fermions and p corresponding to
the fact that J§|0)% =p(T,))|0)%. There is a 2"t D/2fold degeneracy of the
representation on the Fock space [3,11] (where we have demanded that the
conserved fermion parity operator (—1)*t exist). Notice that the generators G,
and j,; do not contribute to x\(h(—1)"1), as expected from the absence of
nontrivial fermionic background in the (+ — ) spin structure. The expected factor-
isation of the supercharacter on the basis of the Kac-Todorov decomposition
occurs.

In the case of )QER)(h), corresponding to the partition function in the (+ + ) spin
structure, we are left to evaluate (4.13). This is nonvanishing only for even-rank
groups G. As explained earlier, the Weyl group is that of the KM subalgebra. This
group is generated [15,24] by elements w; associated with the roots &, =a —nLj
and defined in eq. (A.2) in appendix A. Using [Jy,, J, _.J=xYy with x'=
[2/(a, )la(T})g", eq. (A.2) can be written

dim G
16

exp(p+ L§ + 5¢,k* 11'[0(1+e—&f)(h3).
>

W&N(H) = (”i - ”Txi)(wa){]oj + (§i - ”fx[)(wa){fo,‘

+7LyteGy+ | p—

2n
(a(u) —nt) |k,
(a,a)
where H =u'Jy, + £5j; + 7Ly + €G, + pk and w, denotes an element of the ordi-
nary Weyl group of G, w(T;)=(w,)/T,. Using this in eq. (4.8) and rearranging
terms,

sTr(wd"( h) |v',)

=¢-’/2(27T)rexp27ra{wa((/\ +p)+nN(d,’w)a)(u)
(a, @)
¢, dimG 1 , W) [
(ﬁ+T+ﬁ{-'/\+pl +/\+p+nN(a’a)a 'r+pk

r

Xkr/2 [det g,; detw, A (§i+ %guwﬂ(()\ +p)+nNEZ:Z;OZ)(Tj)),

i=1

(4.15)
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where |A]>=(A,A). In eq. (4.15), the familiar factorisation of the Weyl group of
the KM algebra into the semidirect product of the Weyl group of G and a group of
translations by the lattice M generated by the long roots of g [15,24] can be
recognised (¢, ) /(a, a)la is an element of M). So, the sum over the Weyl group
in (4.13) can be replaced by a sum over the ordinary Weyl group W, of G and a
sum over translations by elements of M, and eq. (4.15) yields

i i dimG  (p,p)

ezw’pk Z (_l)l(w)

weW,

X ¥ k7 fdetg; A (¢'+ (e/k)g"(w(A +p) +nB)(T))
BeEM i=1
x eXp[zm-((w(A +p) + NB)(u) +7{w(A +p) +N[§|2/N|¢r|2)] ,
(4.16)

where we have used detw = (-1, Introducing the level-N theta function
[15,24],

O, y(u,7,p) =77k} exp[27ra(()\ +NB)(u) +7|A +N[§|2/N|1[1|2)] (4.17)
BEM

eq. (4.16) can be written in the form

,Q}R)(h)=(—¢')r/262v'76/24 Z (_l)l(w)kr/z‘/dTgij

wew,
r € .40
X ‘/\1 2meEl+ ;guﬁ)@w(ﬁp),,\,(uﬂ,p), (4.18)
i=
where the Freudenthal-de Vries formula has been used to write
dimG (p,p) ¢
16 2k 247

This factor of s;¢ cancels out of the torus partition function. Eq. (4.18) is one of
the main results of the paper. It should be remembered that it applies only when r
is even.

A proof of eq. (4.18) can be given by considering Verma modules. The Verma
module V; based on the highest-weight state |A) is the set of states obtained by
acting with all possible combinations of the “lowering” operators, consisting of J,,,
and j,, for n <0 and n=0, a =« <0, together with the j,. Because of the
relations (2.8), a basis for V; consists of states symmetric with respect to the
interchange of any pair of bosonic indices or any pair of bosonic and fermionic
indices, and antisymmetric with respect to interchange of a pair of fermionic
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indices. Some of the states in the Verma module are null states, meaning that they
are highest-weight states with respect to the SKM algebra. Crudely speaking, the
supercharacter of 4 in the representation with highest weight A is the supertrace
of h on V; with the contributions of the null states and their descendents
subtracted out, being careful to correct for double subtractions.

We begin by computing the (formal) supertrace of the action of /4 on the Verma
module V;. This splits into a product of two factors: the supertrace of the action of
h on the vector space V,, considered earlier, and the supertrace of the adjoint
action of A on the space of formal products

Tniaidnsar - Inya, dmp, - Imop, (4.19)
in the enveloping algebra of g, where the operators are elements of i_ and the
products are appropriately symmetrized or antisymmetrized with respect to inter-
change of pairs of operators as described above. The supertrace of the action of A
on V, has been computed in eq. (4.7). As already noted, the supertrace of the
action of 2 on m_ is reducible, the irreducible representations being on the
two-dimensional spaces (J_, .,j_, ) for n>0 and n=0, a=a<0. Thus
the supertrace of the action of 4 on the space of formal products (4.19) is the
product over all the values of n and a corresponding to /i _ of the supertrace of
the action of /4 on the spaces of appropriately (anti)symmetrised formal products
(J_, ) ) for g=0,1 and p=0,2,.... If the adjoint action of & on the
space (J_, ,,J_, ,) is given by the 2 X 2 matrix N, then the latter supertrace is
sdet~'(1 — N). This can be proved by using the isomorphism of the set of formal
products (J_, )?(j_, )% with the Fock space for a bosonic creation operator a
and a fermionic creation operator b'. The supertrace is easily computed using the
following representation of the identity on the Fock space:

1= fdy d)”)fdn de 7 e T e e 0y (0fe b7

where 7 is a Grassmann parameter and y is a complex number.
Combining these results and using the fact that the adjoint action of 4 on M is
the same as that of 2! on m_, we find

sTr(h|VU)

Tr(hly,) = .
STr(hly,) sdet(1 — Ad(H1)], )

(4.20)

The character formula (4.3) follows from (4.20) if we can show

2y = L sTe(w(h)ly,).

weW

It follows from egs. (4.8) and (4.15) that

sTr(w(h)|VX) =(- 1)I(W)sTr(h|Vw(x)) . (4.21)
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So it suffices to show that

A(R) Z ( 1)l(w) W(A)’ (4.22)
wew
where ¢5(h) =sTr(h|y).

The proof of eq. (4.22) is similar to that of the corresponding result for KM
algebras. The proof in ref. [6] is followed closely here. The character is of the form
R =Y._n 2%;, where o are the weights for the null vectors in the Verma module
Vi, and n; is the integer multiplicity with which ¢, must be added to or
subtracted from ¢; to yield to character. Since XAR)(h) Q(R)(w(h)) by Ad-invari-
ance of the supertrace, eq. (4.21) implies that

Aoy =(—1)"n, (4.23)

so that n,,;, is nonvanishing if n; is. If n; # 0, choose w € W such that  =n; is
dominant (i.e. w(&) differs from w'(i1) by a positive root for all w’ € W). If it can
be shown that »=A, then the character formula follows from n;=1 and eq.
(4.23).

To prove v = A, we note that since |/§>R and |»)g are highest-weight states for
representations of the level-N SKM algebra, they are also highest-weight states for
the representation of the level N —g ordinary KM algebra generated by the J,,
(see eq. (2.12)) with highest weights A —p and ¥~ j respectively (where p=p
+ 3¢, k*). As such, they are dominant weights for the KM algebra and satisfy [6]

(X_ﬁ";/[)>o’ (1;_5)‘)_’1)207

where y, (i =0,...,r) are the simple roots defined in appendix B, and ( , ) is the
Ad-£ invariant inner product defined by (&, &) = (u, n) —gp' —q'p for G = u +

gL + pk*. Since (5,%,) > 0 for all the simple roots, (A + 7, &) > 0 for all positive
roots a. As |p)y is one of the states in the Verma module Vj, it follows that
X — ¥ =@, where @ is a positive root or zero. So (A + 7, A — ) > 0 unless A = 7, in
which case it vanishes. On the other hand, given that |7); is a highest-weight state
for a representation of the SKM algebra in the R sector, eq. (4.2) yields

¢, dimG
+
2k 16

ﬁ=(u+p)+( )L§+kk*,

and it is easy to check that (A, A) — (#,7) = 0, thus proving 5 = A.

A similar proof holds for the character formula (3.4) in the NS sector, although
the factorisation of the supercharacter into the form expected on the basis of the
Kac-Todorov decomposition also proves it.

As noted several times already, the nontrivial G|, contributions in X(R)(h)
prevents its factorisation in the sense of Kac and Todorov, because G, manifestly
mixes the free fermion Hilbert space and the Hilbert space for the KM algebra
with generators J,,. However, setting e =0 in A in eq. (4.1) should lead to a
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factorisation of the supercharacter into a product of terms attributable to the
respective Hilbert spaces in the direct product. This does indeed occur: setting
e = 0 in eq. (4.18) yields the product of the character of s for a representation of
a level-(N — g) KM algebra of highest weight A and the supertrace of h on the free
fermion Fock space in the R sector.

To conclude this section, we note that the supercharacter (4.18) obeys several
differential equations as a result of the Sugawara construction of L, and G, which
describe its dependence on modular and supermodular parameters:

5. The GKO construction and odd supercharacters

In the previous section it was seen that the partition function Z{}*’ in eq. (2.28)

vanishes for groups of odd rank. This arises from the demand that there exist
separate conserved fermion parity operators (— 1)t and (—1)"® associated with
the left- and right-moving sectors of the theory respectively. If this requirement is
relaxed, it will be shown that the partition function is nonvanishing and that it can
be written as a product of “odd” supercharacters (containing an odd number of
Grassmann parameters). Further, these will allow the construction of the discrete
unitary series of odd superconformal supercharacters of Cohn and Friedan [4] via
an analogue of the celebrated GKO construction.

To begin with, we concentrate on the algebra {j;, jo;} = k8;; of the zero modes
of the fermionic generators associated with the Cartan subalgebra (whose genera-
tors 7T, have been chosen to diagonalise the metric g;;). For an even-rank group, its
27/2.dimensional irreducible representation on the vector space V; built on the
highest-weight state |A), has been described in sect. 4. In this case a conserved
fermion parity operator (— 1)* always exists, as it can be represented on V, in the
form (4.4).

On the other hand, for odd rank groups, demanding the existence of (— 1)/ is a
nontrivial requirement (the operator jg,jg,...J,, commutes with the j,;, and so
cannot be used to construct (— 1)t in the zero-mode sector). In this case, the
operators v/(2/k) j,; and (— 1)** generate an (r + 1)-dimensional Clifford algebra,
whose irreducible representations are 2¢"*!/2 dimensional. Relaxing this require-
ment means that we have only the r-dimensional Clifford algebra generated by the
joi» and the irreducible representations are 2¢~Y/.dimensional. In fact, the
20+ D/2_dimensional representation in the presence of a fermion parity operator is



LN. McArthur / Kac-Moody algebras 175

a direct sum of that of two of these representations which are mixed by (— D"
(see ref. [16] for a discussion of the case of a single fermion).

To illustrate this explicitly, let a; = (1/V2k )X jo 5i_; + cjo20 i =1,...,(r=1/2,
and define |/{>R as in sect. 2 by a,-|):>R=O. The operators j,; (i =1,...,r) and
(— DL have a representation on the 2V "/%.dimensional Fock space with basis
vectors

[ADRs Jorl A D RS aH)‘>R’ jOraH)‘>R>'"’jOrag"'a.(rr—l)/ZlA>R'

This Fock space V, can be decomposed into two 2~ "/2-dimensional spaces V.

with basis vectors
2 3. _ 12 s
1+ EJO, AR 1+ ZJO, allAdg,. ...

The operators j,, act irreducibly on V, but (— 1)*t mixes the two spaces. Further,
the product jg, jg, - - - Jy, is represented on V as

Jot---Joslv,= 77 2(k/2)" 1. (5.1)

Thus, with 4 as in eq. (4.1) and using the Sugawara construction of G,
Tr(h|v+) has a “top” component (i.e. top component in its expansion in the
Grassmann parameters ¢ and €) coming from the nonvanishing trace Tr(jy,...
Jorexpl2m 'y, + 7Ly ),

( _‘_)(r— /2

Tr(h|V¢)t0p= * T(zﬂ"')rkr/2 Y det g;; ii\l (gl + ;(-()\ +P)(7})gij)

Xexp|2m. ) (5.2)

¢, dimG
(A+p)(u) + (ﬁ + 16 ) +pk)

where we have used egs. (4.5) and (4.6).

The vector space V. can be used as a highest-weight space for a representation
of the combined SKM and superconformal algebras. Although a fermion parity
operator does not exist for this representation, there does exist a “partial” fermion
parity operator associated with the modes other than the j,,

(a,a)

(—1) b= (= 1) v o medon( ) Enn o1/ e, (5.3)

Using this operator to construct the supertrace, we can consider the supercharac-
ter x; . (k) in this highest-weight representation, given by the supertrace of # over
the descendents of the highest-weight vector space (subtracting out the contribu-
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tions from null states and their descendents). Considering the character from the
viewpoint of Verma modules, we find as in sect. 4 that the supercharacter is the
sum over w € W of the supertraces of # on the Verma modules V,;, ,, where
Vi . is the Verma module based on the space V,. The contribution to the
supertrace of A on the Verma module V; . from the enveloping algebra of
lowering operators is exactly as in sect. 4 and given by terms of the form
sdet(1 — M) in eq. (4.12). Thus if we consider only )2}"’5(}1), the top component of
the expansion of x; , in its Grassmann parameters, then the enveloping algebra
again only contributes a factor 1, leaving only the contributions from the trace of
w(h)on V,.
Combining these results and using eq. (5.2),

_ Ne-12
2y = e 3 —1)"7k72 [det g,
> ‘/5 weW,
r € 0
X /\ 27T¢‘§l+ Egljm)@w()\+p)’N(u’ T, p) (54)
i=1

These are the SKM analogues of the odd superconformal supercharacters found
for the purely superconformal algebra by Cohn and Friedan in ref. [4]. This can be
compared with the results in ref. [26], where odd superconformal supercharacters
for SKM algebras are considered as a basis of solutions for a set of differential
equations. It should be noted that the analysis in ref. [26] applies for a nontrivial
gravitino background, but there is no “gaugino” background. The authors find that
odd superconformal characters vanish for even-rank groups, and conjecture that
they are nonvanishing only for SU(2). This is consistent with eq. (5.4), which
vanishes except in the case of SU(2) when the &' are set to zero.

Now we turn to the partition function on the torus in the (+ + ) spin structure,
which vanishes for odd-rank groups if separately conserved operators (— 1)1 and
(— DFr exist. If they do not exist, then because {j;, foj} =0, the operators j,; and
Jo; generate a 2r-dimensional Clifford algebra whose irreducible representations
are 2'-dimensional (as opposed to 2’*' dimensional when the fermion parity
operators exist, being a tensor product of left and right representations of dimen-
sion 2U*D/2) Further, the operator

(=1D)i = +(2/k) det g7 oy .. joror---Jor (5.5)

anticommutes with all the fermion zero modes and squares to 1, providing a total
fermion parity operator in the zero-mode sector. A fermion parity operator can
thus be constructed as

(-D = (-5 (-DH-1'F,
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using eq. (5.3) and its right moving counterpart. The partition function in the
(+ +) spin structure involves a supertrace formed with the aid of this total
fermion parity operator,
2 -
Z(3H = Tr(( -1) F| exp(— 277;51;c7)| hh)“,,
where the trace is over a representation of highest weights A and A’ with respect to
G, and Gy respectively. This is nonvanishing and takes the form

2 . to) 2to -
exp(—2m55e7)| X (B Xy, (R) . (5.6)

The sign depends on the choice made in eq. (5.5). Note that unlike the partition
functions (2.25)—(2.28), eq. (5.6) involves a mixing of the left and right sectors of
the theory. This is because, for example, ¥*P is odd in the supermoduli associated
with the left-moving sector of the theory, and cannot be thought of as arising from
“diagrams” in which the background fields couple to the left-moving quantum
fields — by conservation of total fermion number, such a contribution to the
partition function vanishes. This is perhaps analogous to a Pauli-Villars regular-
isation of a theory with a supergravity background coupled to quantum matter
fields, where there are not separately conserved fermion parities and the left and
right sectors of the theory couple, as opposed to a regularisation which does not
mix the left and right sectors for which conservation of total fermion number
requires that left and right fermion parities be separately conserved.

To prove eq. (5.6), note that if I, and I, denote the 2¢~"/%-dimensional
representations of \/m jo; and y2/kj,, on V. and V. respectively, then an
irreducible representation of the large Clifford algebra with generators j,, and j,,
is given by

Z;\;‘F) = i2¢

mfm:ri®1®01a \/2/—kfo,-=1®1:,-®02-
Using this in eq. (5.5) with the help of (5.1), (= 1){ = +1 ® 1 ® o3, providing the
required factorisation in eq. (5.6).

Cohn and Friedan showed in ref. [4] that in the absence of conserved fermion
parity operators (— 1)t and (—1)"®, the partition function for a superconformal
field theory on a torus with the (+ + ) spin structure factorises as a product of odd
supercharacters. We have verified this for the case in which the superconformal
tield theory is a SWZW theory. The odd supercharacters for the discrete series of
superconformal theories with central charge ¢ < 3 were explicitly constructed in
ref. [4] by consideration of the Verma modules for these representations of the
superconformal algebra. Given that the GKO construction [5] provides a technique
for obtaining the superconformal characters for these theories in terms of the
characters of SU(2) KM algebras, it is natural to ask if the odd superconformal
characters can also be accommodated in this scheme. The answer is in the
affirmative, although the construction involves an SU(2) super-KM algebra, specifi-
cally its odd supercharacters.
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SU(2) has a single positive root a which is also the highest root, ¢ = a. Highest
weights are of the form A =ja for j =0, 3,1,... . The lattice generated by the long
roots is M = {na: n € 7}, and the dual Coxeter number is g = 2. We choose as the
generator for the Cartan subalgebra J, = 3[7,,T__], so the metric on the Cartan
subalgebra is (J;,J3)=1/(a,a). The Weyl group W, has only one nontrivial
element w with w(a) = —a. Letting & = expl2m(u/y + 7Ly + £j; + €G] with j,
the supersymmetric partner of J5, then for a level N =2k /(a, a) representation
of the SKM algebra corresponding to a highest weight A = je, we find using (5.4)
that the odd supercharacter is

/\;]to[%(h) ‘/_ 27r TCn /24 Z e21-:- i+ +nN?/N
nez
N .
7 (§+ _ ] +1 +nN)) 2mweu(j+3+nN)
N -
3_ é—_ _ }+ +l’lN)) —2meu(j+3+nN) , (57)

where
cy=(3—g/N)dimG =24(% — 1/4N).

We have chosen to label the supercharacter in eq. (5.7) by j and N rather than by
A as in eq. (5.4). The unitarity constraint (2.24) is

0<2j<N-2, (5.8)

and in particular N > 2.

In the conventional GKO construction [5], the characters for highest-weight
representations of the superconformal algebra corresponding to the member of the
superconformal unitary series with ¢ =3(1—8/N(N+2)), N=2,3,..., is ob-
tained by decomposing the product of SU(2) KM characters at levels (N — 2) and 2
into a direct sum of characters at level N. The level 2 KM character is realisable
on the Fock space for free Majorana fermions in the adjoint representation of
SU(2). Given that in the absence of €G, terms in A, a level-N SU(2) SKM
character contains an ordinary level-(N — 2) character and that the level-2 SKM
character is equivalent to a free fermion partition function, this suggests that we
consider the product

RiR(R) X5 (h)

and try to decompose it with respect to the odd supercharacters x;°% . ,(h). It is
convenient to set j + 3 = 2p, in which case eq. (5.8) implies

1<p<N-1, N=2. (5.9)
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Using eq. (5.8) and dropping the arguments /4, and remembering that € and ¢
anticommute,

Atop A top
Xp-1 Xo,2
2 N

27\’
=( ‘/%T ) e£ermrlente)/2 K" exp[2~m 2p+nN) /N+7(3 +2m)2)]

m,ne’z
2 p N 1
X —_—— — - - — —
{VNZ 73 V2N (m —n)

+1
X2, sm27ru((p——)—

+n (N+2)+2(m—n))

(\ﬁ_+\ﬁ_+r<m+n))

, (p—1)
X2e8in2wu — +n(N+2)—-2(m+n)

Let m'=(m —n) in the first term and m”" = —(m +n) in the second term.

Rearranging the exponential to give factors appropriate to

2

[ 2
"[0 A to
€ P and ey —— P,
N 2X2m+2 N+2 N_ 2X(2m 1)+§,N+2’

~top ~top 2me
X(p*l) X(),2=
LN

2

we obtain

N

X2m+p N+2
melZz

2
2 p N
2mryf = S /5 (2m 44 +2
77'7'( ~ 3 2(2m+2) /(N )
2 2 p N 1
Ve 5155 - V2aNm
N+2\V N 2 2 2 m) mél’(@m*“*” N2

27”7(\/%% - ‘/§(2m”—%))2/(N+ 2)
el (3 55 3]

eXI’[277"“’(CN+C2_CN+2)/24]{ 2 (=g

X exp

X exp
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The two terms in this expression differ in sign, and the first contains only 2m’, the
second only 2m" — 1, but otherwise they have the same form. So they can be
replaced by an alternating sum over a single integer n,

Atop AtOp n+1 A(op 277-‘.6
X(p~1) on Z (-1 n+17 —"exp[z"T&'T(CN"‘Cz_CN+2)/24]

2 ne”Z N+2YN +2
/(N+2)

N l
X exp 2meT —_ - = 7 7

2 p N .
X _ = = — + 5 5.10
(\/N2 TETPRE) (5.10)
To proceed, it is necessary to make use of the symmetry properties
Xih=XTnns XKPN= X (5.11)

Parameterising n +p/2as M(N+2)+q"/2 — swithmeZand0<q" <2(N+2)
(so q¢" —p is odd), eq. (5.10) becomes

me’Z q" ,N+2

q" p
N+ ——+31a
X(p N Xog' Y Z( )" 27X Py
2
X 27 exp|2mor(cn+ ¢y = Cnia)/24] a(p‘qn,m)exp(27rwra(2p,qn,m)) ,
where g” is restricted to the values p —gq” odd, 0 <q" <N + 2, and

((N+2)p - Ng"—2nN(N +2))

a " =
(patm) SN(N +2)

Using the symmetry properties (5.11), it is possible to show that

A Lo = » 10p —
X(IE/’+2) , =0, X- L1 N+2 =0,
—lN+2

2 2

so the sum over g” can be replaced by sums over g and —q + 2(N + 2) with
1<g<N+1, p—qodd. (5.12)

With the help of eq. (5.11) again, the result can be written (with p —g odd)
N+1
X3 Xo5 = > X Xp.a.N >
2 N - ,N+2
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i

2 = 2
X T (2mied, o n(n)e2Than® — 2miek,  \(n)erT TN,
nez

where

(p—qg—-1D

() = (-1 explm(%_

12
N(N +2)

(5.13)
and

~((N+2)p—gN—2nN(N +2))
V8N(N +2)

Apgn(n)=(-1)

K

)=(_1)q+nN((N+2)p+qN+2nN(N+2)) |

V8N(N +2)
~ odd

Up to signs, x,¢ y(7,€) defined in eq. (5.13) is the odd supercharacter as defined
by Cohn and Friedan in ref. [4] for the representation of the superconformal
algebra with ¢ =3(1 —8/N(N +2)) and highest weight h, = (N +2)p+
Ng)?/8N(N + 2) + ¢ /24. The factor e>™"</?* cancels out of the torus partition
function because of the shift L, — L, —c/24. The ranges of p, g and N in eqgs.
(5.9) and (5.12) are those allowed for the superconformal unitary series.

The GKO-like construction of the superconformal odd supercharacters pre-
sented above proceeds via a product of two characters of an SU(2) super-KM
algebra, whereas the standard GKO construction of the ordinary characters of the
superconformal unitary series (i.e. those corresponding to partition functions on
the torus for the spin structures (+ — ), (= + ) and (— —)) involves the product of
two characters for an ordinary KM algebra. It would be nice to have a structure
whereby the superconformal characters for all spin structures could be constructed
from a product of two characters for the same SU(2) algebra. This unity is
achieved in the following expression valid for all spin structures:

’\p,q,N(n

N+1

/?(p—l)’N/\,)O,Z: Z f(q—l),N+2/\>p,q,N7 (514)
2 q=1 2

where x; 5 are SU(2) supercharacters and x, , y are superconformal superchar-
acters, and where p —¢g is odd in the R case and cven in the NS case. The
decomposition (5.14) was verified above for the (4 + ) spin structure, where all the
supercharacters are taken to be odd supercharacters. For the SU(2) supercharac-
ters relevant to the other spin structures, it was seen in sects. 3 and 4 that y, y isa
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product of an ordinary KM character x{N , for a level N —2 representation of
highest weight ja and a supertrace x* over a free fermion Fock space. Thus there
is a factor x¥ on both sides of eq. (5.14) from the supercharacters ¥ (p_1,~ and

2
X (-1, n+2 Which can be decoupled. The remaining structure is of the form

2

Bl fean 3 b
r N=—2X0,2" Z x4
g=1

X ”,N/\A’p,q,N (5-15)

2

with p —g odd in the R case and even for the NS case. Noting that %, , is itself a
supertrace over the free fermion Fock space for the relevant spin structure, eq.
(5.15) is nothing more than the conventional GKO construction relevant to the
spin structures (+ —), (= +) and (- —) [5].

The factor x* which decouples from both sides of eq. (5.14) to yield (5.15)
comes from a free fermion Fock space which has a purely “spectator” role for the
spin structures (+ — ), (— +) and (— — ). However, for the (+ + ) spin structure,
G, couples this space to the Hilbert spaces for the KM algebras, it plays a
nontrivial role in the GKO construction.

6. Conclusion

In this paper, an attempt has been made to present the characters of super-
Kac-Moody algebras in a manner which is both manifestly supersymmetric and
which accommodates the characters corresponding to the different spin structures
on the torus in a common structure. The results suggest that a Borel-Weil
interpretation of the representation theory of SKM algebras is at least formally
relevant. The supercharacters corresponding to the (+ +) spin structure, which
depend on the supermodular parameters of the superconformal and supersymmet-
ric Yang—Mills backgrounds on the torus, have been computed, and they allow the
GKO construction to be extended to include the odd supercharacters of the
discrete unitary series of representations of the superconformal algebra with ¢ < 3.

This unified view should be relevant to any attempt to realise the conformal
blocks associated with super-WZW models on the torus in terms of a Hilbert space
for a three-dimensional theory. Such a theory can be expected to contain fermions,
and the necessity to include insertions of supermoduli in the SKM characters for
the (+ + ) spin structure should be related to the presence of fermion zero-modes
on the “spacelike hypersurface” in the canonical quantisation of any three-dimen-
sional realisation. The three-dimensional theory must reproduce two-dimensional
nonabelian anomalies, and as such is unlikely to involve three-dimensional super-
symmetry.

There has also been much interest recently in a class of representations of the
N = 2 superconformal algebra obtained via a supersymmetric version of the GKO
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construction from representations of N=1 SKM algebras [23]. It would be
interesting to examine the N = 2 representations corresponding to the (+ + ) spin
structure on the torus and their relation to the SKM characters depending on
supermodular parameters.

Appendix A

WEYL GROUP IN THE SKM ALGEBRA

For the SKM algebra with both NS and R boundary conditions, the Weyl group
is /I/(QL)/?A, where #(.9) is the set of all g€ & satisfying g g ct. In both
cases it will be shown that given a point [g]in .#(.97)/.7, it is possible to choose
a representative g which is in normaliser of the torus of the KM subalgebra with
generators J,,, L, and k and so determines an element of the Weyl group of this
KM subalgebra. In the NS case, all representatives g are of this form. This result is
very important in the computation of supercharacters.

First, it is noted that any element g & - can be written in the form g£=8¢ e,
where g, is in the KM subalgebra and f is a linear combination of the fermionic
generators of ¢ (with Grassmann coefficients). This follows from the fact that g
has the structure of a semidirect product (up to central terms) when separated into
bosonic and fermionic parts. So if H €1,

1
g_ng:gal H—‘[f9H]_§[fa[faH]]+ 8o - (Al)

Because cach term is of different order in the Grassmann parameters in f, each
term must belong to ¢ if g~ 'Hg is to.

Now we consider the NS and R cases separately. In the NS case, f is the torus of
the KM subalgebra, so requiring g; 'Hg, € f means that g, determines an element
of the Weyl group of the KM subalgebra. Then g; '[f, H]g, is a linear combina-
tion of fermionic generators, and as { has no fermionic generators, [ f, H]=0.
Further, since L, has nonvanishing commutator with all j,, . ,, it follows that
f=0. So we have that g =g, and is thus an element of the normaliser of the KM
subalgebra.

The situation in the R sector is more complicated, as ¢ has fermionic generators.
Decomposing H as H=Hyg+ Hp with Hy a linear combination of the bosonic
generators J,;,, L, and k and H a linear combination of the fermionic generators
Jjo; and G, eq. (A.1) becomes

1
ngg=g(Tl(HB—"[f’HF]_ ;[f’[f’HB]] + )gO

1
+ga](HF_"[f’HB]_ E[fa[faHF]] +---)go,
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where the first set of terms on the right-hand side are proportional to bosonic
generators and the second set to fermionic generators. Concentrating on the
bosonic terms, gy 'Hgg, €¢ means that gy determines an element of the Weyl
group of the KM subalgebra as before. Requiring g; [ f, Hylg, to be in ¢ forces
the piece f,, of f in fa, to vanish, because [f,,, H¢] is a bosonic element of i _,
and the adjoint action by g, maps it into the element of i , corresponding to the
Weyl reflected root. Thus f €t, in which case [ f, Hg] vanishes, [f, Hg] et and
[f.[f, He]] vanishes. To complete the results, we need to establish that g 1HFg0
and g, 1[f, Hlg, are in t. This follows if gglfgo CtA, which is shown at the end of
this appendix.

Thus it has been shown that an element G of .# (") in the R case has the form
g, e’ where g, determines an element of the Weyl group of the KM subalgebra
and f is a linear combination of fermionic generators of ¢. In particular, it means
that g, can be chosen as a representative for the element [g] of .4 (9) / I 1tis
important to note that the class [g] does not determine a well-defined map I— I
via h — g 'hg, different representatives g yielding results which differ by the
adjoint action of an element of .9~ (due to the fact that & is nonabelian).
However, the supertrace and superdeterminant of the mapping are well defined,
and it is only in such circumstances that the Weyl group plays a role in sect. 4.

Finally, we establish the result g; 'fg, Cf in the R case. The Weyl group of the
KM subalgebra is generated by transformations w, associated with the group
elements [15, 24]

Ss, = exXp 3em(Jpe T, _o) -

If H=1L,+u'l, +€G,+ &y + pk, it is not hard to show that

W&"(H) = So'?,,le&,, = H - &n( H)[J an, —o(] - dn(gi'l(]i - eLO)[Jna’j—n, —a] H

na?’

(A.2)

which is an element of f.

Appendix B

COMPUTATION OF §(w)

In this appendix, the results §(w) =5 —w(5) and [(w) € 2Z are proved, where
i(w) is the number of positive roots corresponding to fermionic generators of the
SKM algebra in the NS sector which become negative under the action of
w~ ', §(w) is their sum and g = %cw, k*. As seen in appendix A, the Weyl group of
g is that of the KM subalgebra with generators J,,, L, and k. Associated with

each root B, =B —mL¥ is an element wp of the Weyl group defined by
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ws (H)=s3 'Hs for H €t and s = expl(cm/2XJ,,z +J_,, _p)] The dual map
is easily computed to be

Wﬁm():) =i ~X(["mﬂ"]—m,—ﬁ])ém .
In particular, for a root &, 1,
W5, (@nss) =wp(@) = (n+ 3 —ma(Hy))L§

where wy is the element of the ordinary Weyl group of G associated with the root
B, and H, =[T,, T_g]. The Weyl group of the SKM algebra is generated [15, 24] by
the elements wg, i=0,...,r, where y,= —¢ — L§, and Y- -+ 7%, are the simple
roots of the ordinary group G.

First we will prove the desired results for the generators of the Weyl group. For
i=1,...,r, wi,»(&wé) can never be a negative root for n >0, so lA(wil_)= 0 and
$(w;) =0, in agreement with 5 —w.(5) = 0.

On the other hand,

(1) = () = ((n+ 1)+ a(H,)) L3
If a,,: is a positive root (n > 0), this can be negative only when «(H,) <0, in
which case o < 0. Further, if a < 0, then a(Hl,,) can only take the values 0, — 1, — 2,
with the value —2 achieved only when a = —¢. In this case, w; (=w; )') maps
only the positive roots —¢ — 3L% and —i¢ — 3L¥ into negative roots, and their
sum is —2¢ — 2L},

If a(H,)= —1 then the roots a — ;L% become negative under the action of
w,;_ul. Since —2p + ¢ is the sum of all @ < 0 with a(H,)=0or —1,2p —yXH,)
is the number of roots a <0 with a(H,)= —1. On the other hand, using
elementary properties of roots under Weyl reflection by w,,, one can establish that
the roots a <0 with a(H,)) = —1 come in pairs whose sum is —. If g denotes the
number of these pairs, then (2p — ¢} H,)=2q, so g=g—2 and their sum is
Q-2

Thus the total number of positive roots &, . ; which become negative under the
action of Ws, is 2g —2 and their sum is g(—¢ — L¥)=g¥,. This is precisely
p—w;(p) using g =c,/(, ).

Since the elements w; (i=1,...,r) generate the Weyl group of the SKM
algebra, the proof of these results for an arbitrary element of the Weyl group can
be made by induction.

References

[1] E. Verlinde, Nucl. Phys. B300 (1988) 360
[2] E. Witten, Commun. Math. Phys. 121 (1989) 351



186 IN. McArthur / Kac—Moody algebras

[3] V.G. Kac and 1.T. Todorov, Commun. Math. Phys. 102 (1985) 337
[4] J.D. Cohn and D. Friedan, Nucl. Phys. B296 (1988) 779
[5] P. Goddard, A. Kent and D. Olive, Commun. Math. Phys. 103 (1986) 105
{6] A. Pressley and G. Segal, Loop Groups (Oxford Univ. Press, Oxford, 1986)
[7] P. di Vecchia, V.G. Knizhnik, J.L.. Petersen and P. Rossi, Nucl. Phys. B253 (1985) 701
[8] E. Kiritsis and G. Sopsis, Phys. Lett. B184 (1987) 353 [Erratum: B189 (1987) 489]
[9] J. Fuchs, Nucl. Phys. B286 (1987) 455
[10] D. Friedan, in Unified string theories, ed. M. Green and D. Gross (World Scientific, Singapore,
1986)
[11] J. Fuchs, Nucl. Phys. B318 (1989) 631
[12) P. Goddard, W. Nahm and D. Olive, Phys. Lett. B160 (1985) 111
[13] D. Friedan, Z. Qiu and S. Shenker, Phys. Lett. B151 (1985) 37
[14] L. Dixon, D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B282 (1987) 13
[15] D. Gepner and E. Witten, Nucl. Phys. B278 (1986) 493
[16] P. Ginsparg, in Fields, strings and critical phenomena, ed. E. Brézin and J. Zinn-Justin (North-
Holland, Amsterdam, 1990)
[17] M.F. Atiyah and R. Bott, Philos. Trans. R. Soc. London A308 (1982) 523
[18] K. Gawedzki and A. Kupiainen, Nucl. Phys. B320 (1989) 625
[19] D. Friedan and P. Windey, Nucl. Phys. B235 [FS11] (1984) 395
[20] J. Grundberg and R. Nakayama, Nucl. Phys. B306 (1988) 497
[21] E. Witten, in Proc. 1983 Shelter Island Conference, ed. N. Khuri et al. (MIT, Cambridge, MA,
1985);
M.W. Goodman and E. Witten, Nucl. Phys. B271 (1986) 21
[22]) J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton Univ. Press, Princeton, 1983)
[23] M.F. Atiyah and R. Bott, Ann. Math. 88 (1968) 451
[24] V.G. Kac, Infinite dimensional Lie algebras (Birkhauser, Boston, 1983)
[25] V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B247 (1984) 83
[26] P. Durganandini, S. Panda and A. Sen, Nucl. Phys. B332 (1990) 433
[27] Y. Kazama and H. Suzuki, Nucl. Phys. B321 (1989) 232



