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The partition functionsfor super-Wess—Zumino—Wittenmodelscan be expressedin terms

of charactersof super-Kac—Moodyalgebras.Thesecharactersare examinedwith the emphasis
on maintainingsupersymmetryexplicitly. It is shownthat an analogoueof Borel—Weil theoryis
at least formally relevantto the representationtheory of super-Kac—Moodyalgebras,andthat
the charactershavean interpretationin termsof fixed pointsof the actionof the corresponding
groupon a homogeneoussuperspace.Characterswith nontrivial dependenceon thesupermodu-
lar parametersof superconformaland supersymmetricYang—Mills backgroundson the torus
with (+ + ) spin structureare computed,andfor the caseof SU(2), theyare usedto extendthe
conventionalGKO constructionfor the charactersof the discreteseriesof unitary representa-
tions of the superconformal algebra with c < to accommodatethe odd superconformal
supercharactersof Cohn and Friedan.This extensionof the GKO constructionrequires the
incorporationof a “spectator” spaceof free fermions in the standardGKO constructionof
superconformalcharactersrelevantto the (+ —), (— +) and(— — ) spin structures.

1. Introduction

Oneof the outstandingfeaturesof conformal andsuperconformalfield theories
is that exact calculationsof correlation functions are feasible. In particular, the
one-looppartitionfunction of the theory is realisablein termsof charactersof the
groupof symmetriesof the theory. This hasbeena two-way interactionbetween
mathematicsand physics, with the modular properties of charactersand the
differential equationsthat theyobeyarising quite naturallywhen they areconsid-
ered in termsof partition functionsfor field theories.From a physicist’spoint of
view, although the computationof the charactersis usually achievedby methods
more familiar to mathematicians,the knowledgeof one-loop partition functions
for nontrivial theories is very important, and allows questions relating to the
generalstructureof conformal field theory to be addressed.Importantcontribu-
tions in this direction havebeenmadeby Verlinde [11,with the constructionof
operatorswhich act on the finite-dimensionalspaceof charactersassociatedwith
the primary fields of a rational conformal field theory, and by Witten [2], who
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showedthat the samestructureis realisedby operatorsactingon the Hilbert space
of a three-dimensionalChern—Simonstheory.

If similar structuresare to be soughtin superconformalfield theories,then it is
importantto havea good understandingof the relevantcharacters.In this paper,
super-Wess—Zumino—Wittenmodelsare examined.Thesetheorieshave symme-
tries describedby a combined superconformaland super-Kac—Moody(SKM)
algebra,andthepartitionfunctionsin thepresenceof a supersymmetricYang—Mills
backgroundaredeterminedby charactersof highestweight representationsof the

SKM algebracorrespondingto the primaryfields. The characterscorrespondingto
the partition functionsfor the threeevenspin structureson the torus areknown,

being expressibleas a productof an ordinary KM characterand a free fermion
chiral partition function. This factorisation of the characterfollows from the
factorisation(observedby Kac andTodorov [31)of the SKM algebraas the direct
product of an ordinary Kl~vI algebra and a set of canonical anticommutation
relationsfor free fermionsin the adjoint representationof the group.

However, the situationis more subtlefor the (+ +) spin structure,where it is
generallyassumedthat the partition function vanishes.Roughly speaking,this is
due to the presenceof fermion zero modeson the torus with this spin structure,
and a nonvanishingresultcanonly be expectedif therearesufficient insertionsof
fermioniccurrentsto “soak up” the zeromodes.There also existsupermodulifor
the (+ +) spin structure, in that the supergravitybackgroundspecifiedby the
superconformalstructureadmitsgravitinoswhich cannotbe gaugedaway andthe
supersymmetricYang—Mills backgroundadmits fermionic gaugefields which can-
not be gaugedaway.Thesecouple to the zeromodesof the supercurrentandof
the superpartnerof the gaugecurrent respectivelyin the Ramondsectorof the

combinedsuperconformalandSKM algebras.Without the inclusionof supermod-
ular parametersthe partition functions of super-Wess—Zumino—Wittenmodels
vanish in this sector.Oneof the objectivesof this paper is the calculationof the
charactersof highest-weightrepresentationsof the SKTvI algebrain the casewhere
supermodularparametersare present.Thesecharactersfail to factorise in the
samemanneras those correspondingto the other spin structuresbecausethe
zero-modeof the supercurrentcouples the two algebrasin the direct-product
structureof Kac andTodorov.

The resultis that if the theoryadmitsseparatelyconservedleft- andright-handed

fermion parity operators( j)Fi~ and (
1)FR (correspondingto the left and right

moving sectorsof the theory), then the characterfor the (+ +) spin structureis
nonvanishingif the SKM algebrais that associatedwith an even-rankgroup, and
the characteris even in the Grassmannparametersdescribingthe supermoduliof
the backgroundfields. If the demandfor separatelyconservedfermion parity
operatorsis dropped,then therearenonvanishingcontributionsto the characters
associatedwith odd-rankgroupswhich are odd in the supermoduli. It is shown
that the odd superconformalsupercharacterscomputedby Cohn and Friedan[4]
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for highest-weightrepresentationsof the unitary discrete superconformalseries
with c < canbeconstructedfrom theseusingan analogueof the GKO construc-
tion [5]. This can be madecompatiblewith the standardGKO constructionof the

charactersof thesuperconformaldiscreteseriesassociatedwith the spinstructures
(+ —), (— +) and (— —) if the standardconstruction is accompaniedby a
“spectator” spaceof free fermions which couplesnontrivially in the (+ +) spin
structureto yield the odd superconformalsupercharacters.

A secondobjectiveof this paperis to showthat the charactersof SKM algebras
canbe interpretedin termsof a fixed-point formula on a homogeneoussuperspace
associatedwith thealgebrain muchthe samewayas for charactersof ordinaryKM
algebras[61. This provides a unified approachto the calculation of the SKM

charactersin all spin structures,and in particular allows the calculationof those
contributingto the partition functionsof super-Wess—Zumino—Wittenmodelsfor
the (+ +) spin structure.Unlike the Kac—Todorovdecomposition,this construc-
tion is manifestly supersymmetric,and suggeststhat an analogueof Borel—Weil
theory is at leastformally relevantto the studyof representationsof SKM algebras.

The paper is organisedin the following manner. In sect. 2, SKM algebrasand
their relationsto toruspartition functionsof super-Wess—Zumino—Wittentheories
are discussedandthe notationto be used in the restof the paper is established.
The charactersof highest-weight representationsin the Neveu—Schwarz(NS)
sectorareshownin sect. 3 to be interpretablein termsof a fixed-point formula on

a homogeneoussuperspace.This constructionis extendedto the Ramond(R)
sector in sect. 4, where it is usedto calculatethe charactersin the presenceof
supermoduli.The result is confirmed by analysis of Verma modulesassociated
with the highest-weight representations.Sect. 5 contains the calculation of the
SKM charactersfor odd-rank groups in the casewhen separateleft- and right-
handedfermion parity operatorsdo not exist, and they are used to give the
GKO-like constructionof the odd supercharactersof the discretesuperconformal
series. The concludingremarksare in sect. 6, and some calculational details are
relegatedto appendicesA andB.

2. The super-Kac—Moody algebra and torus partition functions

The theoriesof interest in this paper are (1, 1) super-Wess—Zumino—Witten
(SWZW) theories[7—91coupledto supergravityand supersymmetricYang—Mills
backgrounds.As they are superconformallyinvariant, the supergravitybackground
can be describedlocally by superconformalcoordinates(Z, Z) = (z, 0, 2, ö) [10],
and the field content includes a scalar superfield g(Z, Z) taking values in a
compactsimple Lie group G. The local GL x GR transformationsg(Z, Z)

g~(Z)g(Z,~) g~(Z)aresymmetriesof the theory, andtheseanalyticandantiana-
lytic (respectivelyL andR) transformationsaregeneratedby currents)~(Z)and
~ (where Ta denotesa basis of generatorsof the Lie algebrag of G). The
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transformationof a primaryfield cP(Z, 2) belongingto a representationof GL with
matrices tLa is specified by the OPE

— (6—6’) —

z—z’ tLa’I~(Z,Z) + ... (2.1)

with Z — Z’ = z — z’ — 66’ (and similarly for GR and ,~).For a level N SWZW

theory (with N a nonnegativeinteger), the transformationof the currents ~
underGL transformationsis specifiedby the OPE

k(T ,Tb) (6—6’)
(Z-Z’) +Jb(z Z~)~~(Z)+...~ (2.2)

where [Ta,Tb] = ~f~bTC and ( , ) is an inner product on g invariant under the
adjoint actionof G (this metric is uniqueup to normalisation),and N = 2k/(~i,~i)

with ~i the highestroot of g. A supersymmetricYang—Mills backgroundcouplesto
the theoryvia the currents,/~ and )~.

Local superconformaltransformationsaregeneratedby ~9~(Z)and~(7) of the

super-Sugawaraform [7,9]

1
Y(Z) = ~~:/‘~D0J~:(Z) + fabc :~/:J~,,,i~::(Z), (2.3)

where the normal ordering is according to the prescription in ref. [11]. This
regularisationprocedurepreservessuperconformalinvarianceat the cost of intro-
ducing a gravitational anomaly,which is characterisedby the failure of Y to
transformas a primary field undersuperconformaltransformations[7, 9]:

c 1 (6—6’)
+0 (2.4)

6 (Z—Z’)
3 (Z—Z’)2

with c = ~dimG + [(k — ~c
4)/k]dim G, where c~,is the quadraticCasimir in the

adjoint representation.This can also bewritten as

c = (~—g/N)dimG, (2.5)

where g = c4/(~i,~‘) is the dual Coxeternumber.
For the purposesof this paper it suffices to take Z to be coordinateson the

sphere.The superfieldsof currents,/~ and Y havethe decompositions

/a(Z) =ja(Z) + OJa(Z), ~(Z) = ~G(z) + OT(z), (2.6)

into component fields which in turn have mode decompositionsof the form
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(with n E ~)

1 1
Jn+s,a = ~___~dZZP~~1/2ja(Z), “n,a = ~~~dZZ~Ja(Z),

G~+~= ~~dzzn+s+1/2G(z), L~= ~~dzzn+1T(z), (2.7)

(moregenerally,theseshouldbe consideredasdescendentsof the identity opera-
tor at z = 0). Here, s = 0 or s = ~, dependingon whether fermion fields obey
antiperiodic (R) or periodic (NS) boundaryconditionsabout punctureson the
sphereat z = 0 or z = (i.e. correspondingto the choice of spin structureon the

twice puncturedsphere).
The OPEs(2.2) and(2.4) andthat for the transformationof ~ as a supercon-

formal field of weight (-k, 0) are equivalentto the following representationof the
semidirectproductof the super-VirasoroandSKM algebrason the descendentsof

the identity:

Ft j 1 f~1 --k~T ~L ma’ nbi “Jab m+n,c k a’ hi m+n,O

[dma, Jn+s,bl = ~faCbfm+n±s,c, {Jn+s,a,Jm_s,b} = k(Ta, Tb)~m+flO, (2.8)

ELm, L~]= (m — fl)Lm+n + ~cm(m2 — 1)i3m+no,

[Lm,Gn+sI = (~m—n ~S)Gm±n+S,

(Gm+s,G~~)= 2Lm+n + ~c((m + s)2— ~m+n,O’ (2.9)

[Lm, ~‘nal = T~’m+n,a~ [Gm+s, ~mnal= ~2Jm+n±s,a,

[Lm, Jn±~a]= —(km+ n + S)Jm+n+
5a, {Gm+s,jn_sa} = ~m+n,a~ (2.10)

We will also requirethe existenceof a conservedfermion parity operator(~
which commuteswith ~

1ma and Lm and anticommuteswith Jm+s,a and Gm±s.This
requirementwill be relaxed in sect. 5. There is a correspondingalgebrafor the
generatorsof antianalytictransformationswhich (anti)commuteswith thisone.

The fields (1/ ~/k)Jaof conformal weight (-s-, 0) area set of free (LH) Majorana
fermionsbelongingto the adjoint representationof G, andthe currents

Jj~(z)= —(~/2k)f,~:jbjC:(z) (2.11)

form a K~vIalgebraof level-g relativeto which Ja is a primary field in the adjoint
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representation.Further,J transformsas a primary field in the adjoint represen-
tation with respectto ~‘a~ Thus if

J~=Jam1: (2.12)

then

- - (k—’c ) f(w

)

24 c c
2 (Ta, Tb) + “fab +(z—w) kzW)

andthe OPEof J~with Jb hasno singular terms.This is equivalentto the algebra

~ma,
1nb] = ifaCJm+n,c + (k — ~c

4)(~, Tb)m~m+flo,

[‘ma’Jn+s,b] = 0, (Jm+sa’Jm_~b}= k(Ta, Tb)~m+flO, (2.13)

the direct productof an ordinaryKM algebraof level (N — g) and a free fermion
algebra.

As a result of this decomposition,first observedby Kac and Todorov [3], the
energy—momentumtensorfor theSWZW theorycanbe constructedas the sumof
the Sugawaraenergy—momentumtensorfor the level (N — g) KM algebraandthe
energy—momentumtensorfor the free fermions, contributing((N — g)/N)dim G
and ~-dim G to c in eq. (2.5) respectively:

1__ 1
T(z) = ~~~:JaJa:(z) — ~j,~:jaazja:(z). (2.14)

Note that eq.(2.14) is equivalentto the manifestly supersymmetricexpressionfor
T(z) obtainedfrom eq. (2.3) using(2.6), eventhough(2.14) containsfour-Fermi
termsvia — (1/2k):J’~J:while eq.(2.3) is at mosttrilinear in Fermi fields. This is
because(1/2c4):J J: is the Sugawaraform of the energy—momentumtensorfor
the free fermions, and can be replaced in eq. (2.14) by the canonical
energy—momentumtensor _(1/2k):ja8j0: (this equivalencefor free fermions in
the adjoint representationwas discussedin ref. [12]). The Hilbert spacesfor the
KJvI algebraandthe freefermionsaremixed if theactionof the full super-Virasoro
algebra(and not just its Virasorosubalgebra)is considered.This is becausefrom
eqs.(2.3) and(2.6) the Sugawaraform of the supercurrentis

1 — 1
G(z) = ~:jaJa:(z) + ~ (2.15)

the first term of which couples the two spaces.This will have importantconse-
quenceslaterfor the calculationof charactersin the Ramondsector.
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The natureof the vacuumused in the canonical quantizationof the SWZW
theory on the spheredependson whetherFermi fields haveperiodic or antiperi-
odic boundaryconditionsaroundpuncturesat 0 and co• However, in bothcasesit
canbe consideredas a tensorproductof the vacuum O)KM for the KM algebra
with generators~a andthe free fermionvacuum

0~F~If 1, i = 1,..., r (= rankG)
denotes a basis for the Cartan subalgebraof G and Ta, a > 0 denote the
generatorsof gC associatedwith the positiveroots,then IO)KM is the highest-weight
statefor the representationof the KM algebrawith generatorsL~on descendents
of the identity and is definedby Jna~°)KM = 0 for n >0 and n = 0, a = a > 0, and

JOiI°)KM = 0. The free fermion vacuumfor NS boundaryconditionsis definedas
usualby Jn±~,aI0)~~= 0 for n >0, which via eq. (2.11) implies J,~I0)~S= 0 for
n > 0 and n = 0, a = a > 0, and J~0)~5= 0. Thus it follows from eqs. (2.12),
(2.14) and (2.15) that °>Ns= IO)KM ® 0)~satisfies

~na~°)NS°, n>0 and n=0, a=a>0,

n>0,

Jo~I°)Ns= 0,

LflIO)Ns=O, n>—1,

GflO)Ns=O, n>0. (2.16)

The free fermionvacuumin the Ramondsectoris morecomplicated.Oneof the
defining properties is Ina~0)I~= 0 for n >0. Further, to obtain an irreducible
representationof the Clifford algebra{J0~’ Job) = k(Ta,Tb) formed by the fermion
zeromodes,the conditions

JüaI0)~t”0, a>0 and Joi~0>~=0 (2.17)

are imposed,where j~=j~21~ + “JO,2i’ i= 1,... ,[r/2], relative to a basis for the

Cartan subalgebrawith (Ii, 1.) = 5,~,[3,111. Basically, the representationof the
operators Jna is on the Fock spacefor [(dim G)/2] Weyl fermions (plus one
Majorana—Weylfermion when r is odd). As a result, J,~0)’~= 0 for n >0 and

n = 0, a = a> 0, but J~I0>~=p(T1)I0)~, where t = 2~a>O The latter follows
from

1F fl\F — ~
JOI ‘

3/R — , ii JOaJO, —c~
~ a>O

= Efa~Jojoflo>~= ~
k a>O a>O
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where we haveused (Ta, T_a) = 2/(a, a). So in the Ramondsector,the fermion
vacuum is the highest-weight state for a representationof the KM algebra
generatedby the currentsJ,~of highestweight p. Moregenerallyit canbethought
of as beingconstructedfrom the NS vacuumby theactionof a “spin” field relative
to which the fermionshaveantiperiodicboundaryconditions[13].For moredetails
of the Ramondvacuum,seeref. [11].

The vacuumIO)’R = IO)KM ® I0)’~for the SWZW theory in the Ramondsector
is thuscharacterisedby

~naI°)R°’ JnaI°)R°, n>0 and n=0, a=a>0,

JO,~IO)R=O, 1= 1,...,[r/2],

~oEIO)R=p(T,)IO)R, LOIO)R = ~dimG I°)R. (2.18)

That the conformalweight of the Ramondvacuumis ~ dimG canbe seenin two
ways. Replacing — 1/2k:jaäja: by the Sugawaraform 1/2c4:J~J:in eq. (2.14)
gives

LOIO)R= ~ ga_aJOFJOF+giJJ~J~}~O)R
a>O

= ~ (p,a) +(p,p)II0~R= 2I0~,
a>O C4

which is equivalent to the result in eq. (2.18) using the Freudenthal—deVries
“strange” formula (p,p)/c4 = (dim G)/24. Alternatively, performing the normal
orderingin — 1/

2k:J’~3Ja:carefully in the Ramondsectorleadsto the sameresult
due to a contributionof ~ to the vacuumenergyon the spherefrom eachof the
dim G free Majoranafermions Ja [14].

Given a multiplet of primary superfields‘1(Z, Z) transformingas in eq. (2.1)
accordingto a representationof GL with highestweight A, thereis a superfield

~A(Z,Z) correspondingto the highest-weightvector, so its OPEwith ~ a > 0 is

nonsingularandits OPE with J is

— (6—6’) —
J(Z)~iA(Z’,Z’) ~ ~ ~A(Z’,Z’) + ... . (2.19)

Using theseand the Sugawaraconstruction(2.3), ‘A is a primary superconformal
superfield of weight (cA/2k,cA/2k), where CA = (A + 2p, A) is the quadratic
Casimir in the representationwith highestweight A (and A’ is the highestweight
for the representationof GR underwhich Z transforms)[7,9]. The 0 = U = 0
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component4A of ~A is a field of conformalweight (CA/2k, CA./2k), andit follows
from eq.(2.19) that

- ______

J,.(z)~A(z’,z’)~A(7~.) (z-z’) + (2.20)

and that the OPEsof Ja and ~a with 4A are nonsingularfor a> 0. The states
A)NS and IA)R are definedin the usualmanneras ~A(0,0)~O)Nsand 4A(O,0)I0>R
respectively(they shouldcarry labelsfor their transformationpropertiesunderGR
as well, but thesearesuppressedhere). Using eqs. (2.16), (2.18) and (2.20), these
statesobeythe highest-weightconditions

~‘na~)N5°, n>0 and n=0, a=a>0,

n>0,

J
0JA) =A(I~)~A)Ns, (2.21)

‘
1naI’~)R°, n>0 and n=0, a=a>0,

Jna~)R’°, n>0 and n=0, a=a>0,

JOIIA)R=O, i= 1,...,[r/2]

JoiIA)R= (A +p)(Tj)IA)R. (2.22)

Note that A)R is a highest-weightstatefor the representation(A + p), correspond-
ing to the fact that 0)R is not a singletwith respectto ~Oa~ Also, combiningthe
conformalweight of 4A with thoseof the respectivevacuain eqs. (2.16)and(2.18),

Lo~A)Ns=~A)NS, LOIA>R= + ~)(A)R. (2.23)

The statescorrespondingto the descendentsof the primary superfield ‘A in the
NS and R sectorsare constructedby acting with the “lowering” operators ~fla

(n <0 and n = 0, a = a <0), Jn+I/

2.a (n <0) and ~na’Jna (n <0 and n = 0,
a = a <0) respectivelyon the highest-weightstates,andtheyfurnish highest-weight
representationsof the combined SKM and superconformal(via the Sugawara
construction)algebraswith the appropriateboundaryconditions.More generally,
onecan considerthesestatesto be constructedby actingon the NS vacuumwith
descendentsof the primaryfield

4A (for NS boundaryconditions)or theproductof

~t’Aand the spin field (for R boundaryconditions), the representationsof the
algebrasbeing on the spacedescendentfields.
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The states A) arealso highest-weightstatesfor a level (N — g) representation
of highest weight A of the ordinary KM algebrawith generators~‘a defined in
eq.(2.12).This is a unitary representationonly if the condition

2(A,ç~i)
N—g> >0 (2.24)

is imposed(see,for example,ref. [151).This is assumedto be the case here.The

representationof the current Ia on the free fermion Fockspaceis unitary.
So far, only the local structure of the supergravitybackground has been

considered.The global structureis specifiedby requiringthat the backgroundhave
the topologyof a torus,andwe areinterestedin computingthe contributionto the
torus partition function of the SWZW theoryfrom the descendentsof the primary
field ~~AA’ (where A’ specifiesthe transformationpropertieswith respectto GR). In
ordinary conformalfield theory, the toruswith modularparameterT is considered
as a cylinder of length2~Im T with standardcomplexstructure,andjoined after
making a twist by an angleof 2~ReT. Statesare propagatedalong the cylinder
with the hamiltonian(L0 — *c) + (L0 — ~C), and the rotation is achievedusing
the momentumoperator(L0 — *C) — (L0 — ~ (for a review, seeref. [16]). The
contributionto the torus partitionfunction from the descendentsof a primaryfield
is

Trexp[2~~r(L()— ~)]exp[_2~~r_(Lo—

where the trace is over all descendentstatesof the primary field (excludingnull
statesandtheir descendents).Alternatively,this follows by consideringthe cylinder
as thecomplexplanewith the identificationsz z + 1, z ‘~ z+ r, andexp[2~r~~r(L()
— C/24)] generatesthe translation z—* z + T. In the caseof an ordinary WZW
theory, thereis also the possibility to couplea backgroundgaugefield A~(z,2) via
the currents ~a which generatethe KM algebra associatedwith the left-moving
sector of the theory. The nontrivial gaugeconfigurationson the torus can be
parameterisedin the form A’

2T~,=g~’3g~,where g~is not single-valuedon the
torusbut is multiplied by exp(~u’T,.)undertransportaroundthe cycle z —‘ z + i- (u1
are complex constants)[17,18]. The correspondingtorus partition function con-
tainsa contribution from the descendentsof a primary field 4A (with respectto
GL) of the form

Tr~exp[2~T6r(Lo —

where the trace is over the statesassociatedwith the descendentsof 4,~ with
respectto the KM algebra.This is a characterof the KM algebra.
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The supersymmetriccaseis more complicated.Thereare four spin structureson

the torus.The supertorusfor the evenspin structures(±—) is obtainedfrom the
complexsuperplane(z,0) via the identifications

(z,0)=(z+1,±6), (z,0) =(z+r,—0)

andfor the evenspin structure(— + ) via the identifications

(z,6) —‘(z+1, —0), (z,6) —(z+T,6).

The odd spin structure(+ +) is special in that it admitsgravitino configurations

which cannot be gaugedaway. These are parameterisedby a supermodular
parameterc and the supertorusis constructedvia [19,20]

(z,6)=(z+1,0), (z,6)—’(z+r—e6,0+�).

There is a global supersymmetryin this case,related to the existenceof a Killing
spinorfor the oddspin structure.

In the threeevenspin structuresthe nontrivialsupergaugebackgroundsare the

sameas those in the nonsupersymmetriccase,and the contributionto the torus
partitionfunction of the SWZW theory in this backgroundfrom the descendentsof
a primary superfield bA is

Z~~(T,u) = Tr 5)[exp[2~(T(L() — ~yc) + u’J
0~)]}

XTr?
5~[exp[—2iri(~(Lo— ) +u’J

01)~}, (2.25)

Z~~(T,u) = Tr~’~[exp[21ri(T(L()— ~c) + u’J01)~( 1)FL]

XTr?~[exp[ — 21rI(~(L()— ) + u’101)] (1) FRJ , (2.26)

Z,~j~(r,u) = Tr~[exp[2~(r(L0 — ~yc) + u1Jo,)]I
XTr~[exp[—2~(~(L0—~) +iVJ0~)}}. (2.27)

ln the spin structures(— —) and (— +) the tracesareover the descendentstates
appropriateto NS boundaryconditions (excluding null statesand their descen-
dents)while R boundaryconditions prevail in the case(+ —). The insertions
( 1)F in the tracesfor the spin structure(— +) changethe boundaryconditions
for fermions aroundthe cycle z z+ ‘r from antiperiodic to periodic (see, for
example,ref. [16]). The partition functions are productsof charactersof highest-
weight representationsof the SKM algebra.
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For the (+ +) spin structure, in addition to the nontrivial gaugebackgrounds
coupling as u’J0, therearenontrivial fermionic supersymmetricYang—Mills back-
grounds parameterisedby constantGrassmannparameters~ and coupling to
the currents‘a as ~‘j01.Thesenontrivial fermionicgaugebackgroundsare related
to the existenceof (~, 1) conformal fields on the torus with this spin structure
which cannotbe expressedas derivativesof globallydefined(i-, 0) conformal fields
and which representnongaugedeformationsof the supersymmetricYang—Mills
background.Since vL0 + eG0 producesthe supersymmetrytransformationassoci-
atedwith the identificationsz z + r — cO,6 0 + e, the partition function in this
caseis

~ = Tr~~[exp[2~ri(r(Lo— ~yc) + eG0+ ulJ01 + ~i~i)I( — 1)/i]

X Tr~[exp[ —2ir1(~(L0— + ~G~J + i~.J0,+ ~‘J~~)I(— 1)FR} . (2.28)

Onemight expect that the tracesin eq. (2.28) vanish as they contain no explicit
insertionsof fermionic currentswhich soak up the zero-modesJo, ±a~ However,
thesearecontainedin the insertionsJ01 via eqs.(2.11) and(2.12).

The calculationof the charactersof the SKM algebrawhich appearin eq.(2.28)
is the subjectof sect.4. To do thiswewill usean interpretationof thecharactersin
terms of a superspacefixed-point formula, which is givenin the next sectionin the
caseof NS boundaryconditions.

3. The SKM characters in the NS sector

The representationtheoryof an ordinaryLie group G with maximal torus T is
closely related to certain holomorphic line bundles over the complex manifold
G/T. In particular, if A is a dominant weight then the mapping A: T —÷ U(1)
induced by it can be used to constructa line bundle over G/T whosesections
inherit a natural G-action. This is a holomorphic line bundle when G/T is
consideredas a complex manifold and the Borel—Weil theoremstates that its
spaceof holomorphic sectionsfurnishesan irreducible representationof highest
weight A. Furthermore,the Weyl characterformula can be provedby useof the
Atiyah—Bott—Lefschetzfixed-point theorem[23] anda knowledgeof certain coho-
mology classesassociatedwith this bundle (see ref. [21] for a discussion of
fixed-point theoremsand their applicationto physics).

The Borel—Weil and the fixed-point interpretationof charactershaveat least
formal analoguesfor KM algebras[6]. In this section it will be seenthat the SKM
charactersin the NS sector also have a formal interpretation in terms of a
fixed-pointformula for a line bundleovera homogeneoussuperspacewhichcanbe
associatedwith the SKM algebra.The characterdeducedusingthis interpretation
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decomposesaccording to the Kac—Todorov decomposition(2.13) of the SKM
algebra.

The SKM algebra(2.8) with NS boundaryconditionstogetherwith the elements
L0 and k (wherek denotesthe centralelementof the algebra,takingeigenvaluek
in the representationsconsideredin sect. 2) generatea superalgebrawhich will be

denoted~ ~ Jn+ ~,a and L0 will denotebothgeneratorsof the algebraandtheir
representationin the SWZW theory). The fermionic generatorsare contracted
with Grassmannparametersso that the elementsof the superalgebraare Grass-
manneven. If T,, i = 1, . . . , r = (rankG) is a basisfor the Cartansubalgebraof G,
then the subalgebrai spannedby J01, L0 andk is abelian.The complexification~c
admitsa decomposition~ = ~ ® iui, where iui÷is spannedby the genera-
tors of ~ which annihilate primary fields, namely ~na for n > 0 and n = 0,
a = a > 0 and J~+ ~ for n > 0. The spacesth ± areclosedunder(anti-)commuta-
tion and thus form subalgebras.As with ordinary KM algebras,ill ± are direct
sumsof one-dimensionalrepresentationsof 1, and the roots in ~ determinedby
theserepresentationsare a,, = a — nL~for the representationon .1,,,,, — nL~,for
.J,,,, ~÷ = a —(n + -~-)L~for J~+ ~ and —(n + ~-)L~ for the representationon

~. The “positive” roots are thoseassociatedwith ii,~,andthe “negative” roots
are thoseassociatedwith iii.

If ,~‘ and .7 denotethe groupsobtainedby exponentiating~ and~respectively,
then there is a natural left action of ,~ on the homogeneoussuperspace*,g,,’ ,~

given by g’ •p = [g’g], where p = [g] is the point on ~/.Y determinedby the
equivalenceclassof the point g in ~9. Of interesthere are the fixed points of the
action of h’, where h = exp[2~-~(TL~1+ u’J0~+pk)] is the elementof ~ which
appearsin eq. (2.25) (the reasonfor consideringh

1 ratherthan h is given later).
A fixed point p = [g] E ~ of the action of h~ occurswhen h~g=gh’ for

some h’ E Y, so g 1h — = h’. Thus a fixed point p is associatedwith a point in
.~~K(,9)/5~where ~y(g) is the normaliserof the torus .~ (this is just as for
ordinary KM algebras,seeref. [61).The group 9~)//Twill be calledthe Weyl
group of ~ and in appendixA it is shownthat it coincideswith the Weyl groupof
theordinary (extended)KM algebrawith generators.1,,,,, L~and k containedin ~.

That is to say,the Weyl groupW of ~ consistsof mapsw: Y—~5~,w(h’) = g th~g
where g is an elementof the group associatedwith the subalgebrageneratedby

J~ L
0 and k. This KM algebrawill be termed the KIvI subalgebra of the SKM

algebra,andis not to be confusedwith the KM algebrawith generators‘na which
appearsin the Kac—Todorovdecomposition.

The mapd~jgcdg~~,where ir: ~ ~9/ ~7 is the naturalprojection, allows the
identification of the tangent space to ~ at p = ir(g) = [g] with ~ The

* Ordinarysuperspaceis itself a homogeneoussuperspace,albeit finite dimensional,and supersym-

metrytransformationsare naturalgroup actionson thehomogeneoussuperspace;see,for example,
ref. [221.



IN. McArthur / Kac—Moodyalgebras 161

closureof iii~ and 1IL alreadynoted gives rise to an integrablesplitting of the
complexification of T(~/.~)into a direct sum of componentsidentified with
thesetwo spaces.In thecaseof anordinarygroupG, thisconstructiondefinesthe
complex structureon G/T; here ~9/~ inherits a superanalyticstructureassoci-
atedwith this splitting. Further, at the fixed points p of the action of h on
~9/Y, thereis a linear action of dh~~induced on the complexifiedtangent
spacewhich preservesthe splitting. In particular, if p = ir(g) and h —

1g = gh’ and
Xi,, = d~r~odLgle(X) for XE iii~ (where Lg denotesthe left action of ~9 on
itself), then it is straightforwardto checkthat

dhi~(X~)= d~I~odL~e(Ad(h’)(X)), (3.1)

where Ad(h’) denotesthe adjoint action of h’ on iIi÷. As g E ~iK(Y~) and
h’ =g1h’g, we canwrite

h’=w(ht) (3.2)

where w is the elementof the Weyl group associatedwith [g] E

A highest-weightstate IA)NS provides a one-dimensionalrepresentationof ~

which, from eqs. (2.21) and (2.23), is characterisedby the weight A = A +

(cA/2k)L~+ kk*E ~ Thus if h’ = e” with HE ~t,then h’~A)Ns= e”(h’)~)NS
wheree”(h’) = e’~”~.This allows the constructionof a complexline bundle* over

~ associatedto the representationof ~ on IA)NS: we consider ~ x V/
whereV is thevectorspacespannedby IA)Ns and(gh’, v) (g,A(h’)v). Thereis a
natural left action ‘g’ of ~9 on the vector bundle given by lg[(g, u)] = [(g’g, v)],
mappingthefiber over p onto that overg’p. (The reasonwe havebeenconsider-
ing fixed pointsof h ratherthanof h is that usingl~it is possibleto constructa
natural left action of h on sectionsof this bundlewhich is a lifting of h rather
thanof h.; seeref. [23] for the caseof the ordinaryWeyl formula, which hasbeen
closely followed here). Using thesedefinitions it can be checkedthat at a fixed
point of h 1~acts linearlyon the fiber over p andis representedby

eA(w(h)) ~e~©(h), (3.3)

with w(h) defined in eq. (3.2).
The supercharacter~Ns)(h) of h E ,9~will be definedas the supertraceof h in

the highest-weightrepresentationof ~ determinedby the stateIA)Ns,

~(N5) = sTrA( h) Tr~(h( — 1) FL)

This supercharacterappearsas the left-moving contributionto

e2~~~(d1’24)T~ u)

* Again this constructionis familiar in ordinarysuperspace,where tensorsuperfieldsaresectionsof

vectorbundlesover superspaceconstructedin this way.



162 I.N. McArthur / Kac—Moodyalgebras

in eq.(2.26) for h = exp[2~r~(rL0+ u’J0~)1.The main resultof this sectionwill be
to show that the supercharactercanbe expressedin the form

sTr(lhI )
~(NS)(h) = ~ sdet(1— dh~I~) (3.4)

where the sum is over all fixed points of the action of h on ~/ Y~, the
numerator is the supertraceof the action of

1h in the fiber over p, dhf~,~

denotesthe actionof dh ~ on thesubspaceof TC~//7)~correspondingto iii

andsdetdenotesthe superdeterminant.The notationsupertracein the numerator

is redundantin this case as it is over a one-dimensionalspace,but it will be
nontrivial in the Ramond case in the next section. The similarity with the
fixed-point formulation of the Kac—Weyl character formula for ordinary KM
algebras[6] is obvious, with traces anddeterminantsreplacedby supertracesand
superdeterminants.Eq. (3.4) will be provedby showingthat it factorisesas the
productof the characterof h in an ordinaryKM algebraandthe supertraceof the
action of h on theFock spacefor free Majoranafermionsin the adjoint represen-
tation of G, in accordancewith the Kac—Todorovdecompositionof the SKM
algebra.However, unlike the Kac—Todorovdecomposition,eq. (3.4) is manifestly
supersymmetric,and is of the form that would be expectedwere a fixed-point
theoremof the Atiyah—Bott—Lefschetzform [231applicableto the supertraceof
the action of h on the sectionsof the given line bundle over ~/ 5~.The inverse
superdeterminantis the jacobianwhich results from replacingan integrationover
the supermanifold~9/Y of a delta-functionwith zeroesat the fixed point by a
sum over the fixed points. Any attemptto examinethis fixed-point interpretation
of eq. (3.4) is beyondthe scopeof this paper,but it is suggestivethat at least a
formal analogueof Borel—Weil theorybasedon the superanalyticstructureof the

superspace~/ ~ is relevantto the representationtheoryof the SKM algebra~.

In the next sectionthe formula correspondingto eq.(3.4) for the Ramondcaseis
examinedfrom the point of view of Verma modules— a correspondinganalysis

could be carriedout here.
The trace appearingin the left-moving contribution to ~ in eq. (2.25) can

also be accommodatedin this formalism: it can be consideredas ~Ns)(h( —
1)FL)

whereI hasbeenenlargedto containtheoperatorFL, andis givenby (3.4) with h
replacedeverywhereby h( — 1)”-.

To evaluate eq. (3.4) we use eqs. (3.1) and (3.3) in the denominator and

numerator respectively.The adjoint action of h’ = w(h~)on iI~ in eq. (30) is
representedby a diagonal matrix relative to the basis for ih÷given by the
generatorsof ~ correspondingto positiveroots, andhas a gradingdeterminedby
the bosonic or fermionic natureof the generator.Using e”’(w(h’)) = e~”~”~(h),
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eq. (3.4) becomes
11 — _w(~~i)~q — ~

a fl~O\ e / (h)
A ~ wOW fla>0(1 — e (~>))fl,,fl,,>0(1— e~”~)(1 — ~

(3.5)

In thecaseof kcNs)(h( — 1)FL) the adjoint actionof h’( — 1)FL on iii~ is the sameas
that of h’ except that the eigenvaluesof the fermionic generatorschangesign
because(_1)~~LIn+~,a(_1Yi~=Jn+~,a~Thus the numeratorin eq.(3.5) becomes

fl fl (1 + e~~*P)(1+ ew(_(n)L~)r.
a n~’()

To show that eq. (3.4) agreeswith the result expectedon the basis of the
Kac—Todorovdecomposition,it is necessaryto rewrite the numerator,which will

be denoted l1~.>~(1— e~”~’~), where a,, I~>0 label all the positive roots
correspondingto fermionic generatorsof ~ (i.e. a,,~1for n >0 and —(n+ ~)L~
with r-fold degeneracyfor n > 0). By manipulationssimilar to thoseused in the
ordinaryKac—Weyl formula [6, 24], we have

fl (1 — e_wt~1))= (~ 1)~e~ fl (1 — e~r)
1’>o 1’>o

where I(w) denotesthe numberof the positive roots a,~such that w i(ã,,) is
negative,and .~(w)is their sum. It is shown in appendixB that 1(w) is evenand
that

.~(w)=p~—w(p~)

where 5 = ~C4k*. If ~,, I> 0, denote the positive roots of ~ correspondingto
bosonicgeneratorsthen the denominatorof (3.5) is [6,24]

[1 (1 — e~~W(&J)) = (— 1) 1(w) —s(w) fl (1 — e
1>0 1>t)

where 1(w) is the numberof a, which becomenegativeunder the action of w

and s(w) is their sum, s(w)= — w(j5) with ,5 = p + ~C4k*.

Thus combiningtheseresults,

e”’~”—~)+~5)
~(Ns)(h) = ~ (~ 1)’~e~ - (e~fl (1 — e~1))(h). (3.6)

wOW fl1>0(1—e ) 1,>0

This expressionfor the supercharacteris of the form required,as it is the product
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of an ordinaryKM characteranda supertraceon the fermion Fock space.To see
this, recall from the resultof appendixA that the Weyl group in eq.(3.6) coincides
with that of theunderlyingKM algebrawith generators~~na’ andthe action of this
groupon 1* is (fortunately)independentof the level of the KM algebra.Since

A —,~ = (A + (CA/2k)L~ + (k— ~C
4)k*) (3.7)

it follows that the first bracket in (3.6) is the KM characterof h in a level N— g
representationof highestweight A (see the appendixof ref. [151for an exposition
of KM characterswhich matchesthe notationabove).The factor (CA/2k)L~ in eq.
(3.7) is correct, becausethe conformal weight of the primary field for the level
N — g KM representationof highestweight A is C5/2k (see ref. [25]).

It is easyto verify that thesecondfactor in eq.(3.6) is the supertraceof h on the
Fock spacefor free Majorana fermions (with NS boundaryconditions) in the
adjoint representationof G. The factor e’

1 is dueto thefact that thecentralcharge
of the KM algebraconstructedfrom the free fermionsis ~c

4.
In the caseof ~cNS)(h( — 1)FL), the analysisis as above,exceptthat thefermionic

factor is e~lJ,>0(1+ e~”),which is the supertraceof h(—1)FL (or the trace of h)
on the fermion Fock space.

4. The SKM charactersin the Ramond sector

In this section the fixed-point formula is consideredfor the extendedSKM
algebra with R boundaryconditions and we show that it yields the correct

characterfor the (+ —) spin structure.For the charactercorrespondingto the
(+ +) spin structure,in which supermodularparametersappear,it is shown that

the result obtainedagreeswith thatwhich follows from the considerationof Verma
modules, thus providing a check of the result. A further check is that in the
absenceof G0 terms the supercharacterfactorisesin the mannerexpectedfrom
the Kac—Todorovdecomposition.

In the Ramondsector, we considerthe group ,~ generatedby the extended
SKM algebra~with basis ‘~na,Jna, L0, G0 andk. The subgroup~ is chosento be
that correspondingto the subalgebraI of ~ generatedby J01, JOj’ L0, G0 and k.
Note that I is not abelian,ascanbe seenfrom eqs.(2.9) and(2.10).The “positive”
generatorsof ~ are ~na and ‘na for n > 0 and n = 0, a = a > 0, andthey form a
subalgebrath + (there is similarly an algebra ill — of negativegenerators).The
conceptof roots is more subtlehere as the nonabeliannatureof I meansthat its
irreducible representationson th ± via the adjoint action are no longer one
dimensional.However,the subalgebra

t~of I with bosonicgeneratorsJ
01, L0 and

k is abelian, androots in I~ canbe associatedto the one-dimensionalirreducible
representationsof t~on iii ± in the mannerof sect.3. The roots are a~= a — nL~

corespondingto therepresentationson .1,,,, and ‘na’ and —nL~for the represen-
tationson J~and J,,~.
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The homogeneoussuperspacec~/Y hasa naturalleft ~ action,andas in sect.
3 the fixed points p of the actionof h1 for

h = exp[27r.~(u’JQ
1+ rL0 + ~‘j1~,+ EG0 +pk)] (4.1)

areclasses[g] = ~r(g) whereh
1g =gh’ with h’ E5~ Thusthe fixed pointsare in

one—onecorrespondencewith the pointsof ~ which will be called the
Weyl groupW of ~. As shown in appendixA, the representativeg of a fixed point
p can be chosento be an elementof the subgroupof ~9 determinedby the KM
subalgebrawith generatorsdna’ L

0 and k. Becauseof the nonabeliannatureof I

the point g~h
1g dependson the representativeg chosen; we will denote

g1h’g for the representativein the KM subalgebraby w(h’) for w E W.

Exactly as in the NS sectorthe mapping d~rI
5°dLgL can be usedto give an

integrablesplitting ofT(~/~9~)cas adirect sumof subspacesidentifiablewith iii~

and th_, providing ,~/Y with a superanalyticstructure.At a fixed point of the
actionof h~’the map dh~hasa representationon the subspaceof TC~’/YY
identifiedwith iii~ which is equivalentto the adjoint representationof h’ = w(h ‘)

on iii~, the equivalencebeing up to a similarity transformationby an elementof
~7. Letting dh

1If
17~denotethis map, sdet(1— dh~I~7~)is thus well definedand

equivalentto sdet(1—Ad(w(h~))~).Note that the superdeterminantis also
independentof the choicemadein specifying w(h i), asthe ambiguity is also only

up to a similarity transformationby an elementin I.

A highest weight state IA>R defined by eqs. (2.22) and (2.23) furnishes a
representationof

1B with weight vector

- CA dimG
A=(A+P)+(~+ 16 )L~+kk*. (4.2)

The fermion zero modesj~,associatedwith I togetherwith the operator(
1)FL

form an(r + 1)-dimensionalClifford algebra,which admitsa reduciblerepresenta-
tion on the 2

T-dimensionalspaceof statesobtainedby actingwith the ~ on
imposing the condition 1OIIA)R = 0 (with the ~ defined in sect. 2) determinesa
~ i)/2] dimensionalsubspaceV

0 on which the fermion zeromodes~ and the
operator( [)Fi~ havean irreducible representation.It will be verified later that
this spaceprovides a representationfor I. The requirementthat a conserved
fermion parity operator(~ 1Y’- exist meansthat it is possibleto choosea basisof
eigenstatesof ( 1)FL for V0. In sect. 5 this requirementwill be relaxed,in which
casethe Clifford algebrais only r-dimensionalandthe irreduciblerepresentations
are 2

1’~2~-dimensional.
Using the representationu of ~ on V

0, a vectorbundle ~9x V0/ ‘~ with fiber
V0 can be constructedover ,~/~ where the equivalencerelation is as usual
(gh’, r) (g,o-(h’)v). A naturalleft action ‘g’ of ~9 on thisvectorbundleis defined
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asin the NS case,and I,, actslinearly in the fiber overa fixed point p of the action
of h andis representedby ff(w(h)), where w is the elementof the Weyl group
associatedwith the fixed point.

Again motivated by an interpretation of the supercharacterin terms of a

fixed-point theoremon the homogeneoussuperspace4~/Y, the following formula
is proposedfor the supercharacterof h in the representationof the R sectorof the

SKM algebrawith highestweight A)R:

~(R) sTr(lh~P)
XA (h)=~ 0-)

p sdet(1—dhi’~~)
with the samenotation as in eq. (3.4). Using the results obtained above, this

becomes

sTr(w(h)~~)
~(R)(h) = . (4.3)

woW sdet(1_Ad(w(h_i))L)

Up to a term involving the centralcharge,this supercharacteris the contribution
of the left-moving sectorto the partition function ~ in eq. (2.28). The restof
this sectionwill be concernedwith establishingthe validity of eq. (4.3).

The partition functionZ~j~in eq. (2.27)involvesthesupercharacterof h(—
1)FL

(rather than of h) in the samerepresentation.Note that h defined in eq. (4.1)
dependson the supermodularparameters~‘ and E, but ~ cannotbe expected
to have any such dependencebecausenontrivial gravitino or fermionic gauge
backgrounds do not exist on the torus with the (+ —) spin structure. The
calculation of the supercharacterof h( — 1)FL by replacing h in eq. (4.3) by

— 1)Fi will show that the termsproportionalto ~‘ ande do indeedvanish,which
is gratifying — it is not necessaryto known a priori about the nonexistenceof

appropriatebackgrounds.As in the NS sector,the calculationof the supercharac-
ter of h( — iY’ is accommodatedby enlargingI by the inclusionof FL.

In the evaluationof eq. (4.3), we will begin with the numeratorand so must

considersomedetailsof the representationof I on the spaceV0 in moredetail. It
is useful to distinguishthe two casesr evenand r odd (where r is the rank of G).
In the case r even, the operators ~ and (— i)’~ generatean odd-dimensional
Clifford algebraand so (— I )ñ~canbe representedon V1~as

(—1)~ = (—~y~
2(2/ky72~det g’1j

01 . . . J~, (4.4)

where g,1 = (7~,T1) denotesthe metric on the Cartansubalgebraof G. For r odd,
the Clifford algebra is evendimensionaland thereis no such representationfor
(~ l)’~.BecauseJ01 and L0 commutewith JOj’ it follows from eq.(2.22) and(2.23)
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that they are representedon V0 as

CA dimG
J01=(A+p)(T1)1, L0= (~+ 16 )i. (4.5)

Also, usingthe Sugawaraconstruction(2.15),

G0= (1/k)J~Jüa — (2/3k)j~J~

on V0. By a calculationsimilar to that usedin finding theconformalweight of 0)R

in sect. 2, G0 is representedon V0 as

G0 = (1/k)g’~( A + p)( T,)J0J. (4.6)

Using the Freudenthal—deVries formula, it is possible to check that (G0, G0) =

2L0 — -~Con V0, in agreementwith eq.(2.9).
For h given by eq.(4.1), it follows from eqs.(4.5) and (4.6) that

CA dimG
sTr(h~v)=exP[2~((A+P)(u) +(~+ 16 )T+Pk)I

XTr[exp[2~i(~+ ~g”(A +~)(~))J0~]( — 1)~~], (4.7)

where u = u’?’1. The terms without any Grassmannparametersvanish because
Tr(— 1)’

1~v,= 0. In the caseof aneven-rankgroupG,(—
1)FL is representedby eq.

(4.4), andthe only nonvanishingterms in the expansionof eq.(4.7) in Grassmann
parameterscorrespondto the totally antisymmetrictensorfor SO(r),yielding

CA dimG
sTr(hIV)) = (_i)T/2(2 YexP{2~i((A+p)(u) + + 16 )T+Pk)1

x2r/2(k/2y/
2~

1 A (~+ (�/k)(A +p)g”(~)), (4.8)

where the factor2T/2 comesfrom Tr(1 I~,) andthe symbol A is usedto emphasise
the fact that the productof Grassmannparametersis antisymmetric.The situation
for an odd-rankgroup G is different, as the ‘Oj and (~ 1)FL are the generatorsof
an even-dimensionalClifford algebraandthereis no nonvanishingcontributionto
the tracein eq.(4.7).

If insteadwe considersTr(h(— 1)Ft. v,) = Tr(h Iv)’ asappropriatefor the parti-
tion function Z$J~~in eq. (2.27), all terms containing Grassmannparameters
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vanish,but thereis a nonvanishingcontribution

r+1
— CA dimG

sTr(h(—1Y~v)=2 2 exP[2~((A+P)(u)+(~+ 16

r+

=2 2 eA(hB), (4.9)

where

hB = exp[2~~~(u~Jo1+ ‘rL0 +pk)]. (4.10)

This applies for both r even and r odd. The numeratorof eq. (4.3) requires
considerationof sTr(w(h(—1)~~L)Iv,,).As hasbeenshown,w(h) =g’hg with g an
elementof the KJvI subalgebra,so that it containsonly bosonic generators.Thus

(w(h))B = w(hB), andwe canuseeq. (4.9) to obtain

r+ 1

sTr(w(h( — l)FL)~)= 2 2 eA(w(hn)), (4.11)

where w and hB are now regardedas elementsof the KM subalgebra.
Next we turn to the denominatorin eq. (4.3). The adjoint action of Y on

can be decomposedinto two-dimensionalirreducible representationswith basis

vectors (dna’ J,,,~,) for n > 0 or n = 0, a > 0 and (f,,,, I,,,) for n > 0. For h in eq.
(4.1), the adjoint action of h’ on (~,,a’J,,a)is representedby the matrix e

2~~M

with M given by

a(u)—nr a(~)—nc

E a(u)—nT

with ~= ~‘1, andby the samematrix with a = 0 on (f,,,, I,,,), while (— 1YLh~ is
representedby e_2~~M~71.It is straightforwardto compute

e
sdet(1— e_2~~M)= 1 + 1 — e2~”1(2ir)2a(~)e,

(1 — e2~)
sdet(1— e2~1~M~)= (1 + e2~”1) (4.12)

where A = a(u) — nr.
For the casekf~(h),it follows from eq. (4.12) that the denominatorin eq. (4.3)

canbe takento be 1. This is becausethe numeratoris of the form (4.8) with h
replacedby w(h), and it contains r Grassmannparameters.Since thereare only
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(r + 1) Grassmannparameters,the termsin sdet(1— M) bilinearin the Grassmann
parametersvanish.This is a greatsimplification, meaningthat

= ~ sTr(w(h)~~.,) . (4.13)

woW

On the other hand,from eq. (4.12)we seethat

sdet(1_Ad((_1)~h1)~ ) =sdet(1_Ad((~~1YLh~1)L),

where hB is definedin eq.(4.10). Further,as alreadynoted, (w(h))B = w(hB), so

sdet(1— Ad(w(( — l)FLh_1))~ ) = sdet(1— Ad(( — 1)FLw(h~1))~).

Combining this with eq.(4.11) andusing(4.12),we obtain

[~i±} Tr(w(h~)~ )
~ 2 2 V

0

wOW sdet(1— Ad(( — 1)~w(h~))~)

fl (1+e~’)
= 2 2 ~ ~ n’>°ii— e~’~(w(hB)),

woW 1>0k 1

where a1, I> 0 denotethepositiveroots in theR sector.Since the sumis over the
Weyl group of the KM subalgebra,it is possible to extract an ordinary KM

characterfrom this. As in sect. 3, the product

(1 +
(I —w(~j)

1>0 ~ — e

can be written in terms of productsof factors involving only positive roots. The
factorse’

0-~ande_s~are in this caseequal,leaving

r+1 w(A)
— l)FL) = 2 2 ~ ( — i)’~0-~ I~I(1 + e~’)(h

8)

w~W l1~>~(1— e ) 1>0

(4.14)

With the help of eq.(4.2), the first factor in (4.14)containsthe characterof hB for
a KM algebraof level N — g andin a representationof highestweight A (for which
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L0 haseigenvalueCA/
2k on the highestweight state)[15,24], leavinga factor

dimG -2 2 exp p+ L~+~C
4k*fl(1+e~’)(hB).

16 1>0

This is the traceof hB on the Fock spacefor thefree fermionsIa with R boundary

conditions, the ~C4 being the central chargeof the KM algebrageneratedby the
J~,(dim G/16) beingthe vacuumenergyof the fermions and p correspondingto
the fact that J~I0)’~= p(T1)I0)’~.There is a ~ ‘~“

2~-folddegeneracyof the
representationon the Fock space[3, 11] (where we have demandedthat the
conservedfermion parity operator (

1)Fi exist). Notice that the generatorsG0
and .‘Oj do not contribute to k~(h(— 1)FL) as expectedfrom the absenceof
nontrivial fermionic backgroundin the (+ —) spin structure.The expectedfactor-
isation of the supercharacteron the basis of the Kac—Todorov decomposition
occurs.

In the caseof ~‘~‘~(h),correspondingto the partitionfunction in the (+ +) spin
structure,we are left to evaluate(4.13). This is nonvanishingonly for even-rank
groupsG. As explainedearlier, the Weyl group is that of the KM subalgebra.This
group is generated[15,24] by elementsw,~associatedwith theroots a,, = a — nL~
and defined in eq. (A.2) in appendixA. Using [J0a, fo, -a] =x’f01 with x’ =

[2/(a, a)]a(?.)g’~,eq.(A.2) canbe written

w,~(H) = (u’ — nTx’)(wa) ~~oj+ (~— nex’)(w~)~jo1

2n
+rL0+eG0+ p— (a(u)—nr) k,

(a,a)

where H = u’J01 + ~ + TL0 + �G0+pk and wa denotesan elementof the ordi-
nary Weyl group of G, W,,(T1) = (Wa)/Tj. Using this in eq. (4.8) and rearranging
terms,

sTr(wa,,(h)~V)

r/

2(2~)’exp2~,. Wa (A +p)+nN~’~a (u)
(a,a)

C

5 dimG 1 (~t,~1i) 2

+ + 16 + ~ _IA+pI2+~A+p+nN(a,a)H T+pk

xkr/2 [det g,~detWa A (~t+ ~glJwa((A p) nN ~‘~a)( ~))
(4.15)
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where 1A12 = (A, A). In eq. (4.15), the familiar factorisationof the Weyl group of
the KM algebrainto the semidirectproductof the Weyl group of G anda groupof
translationsby the lattice M generatedby the long roots of g [15,24] can be
recognised([(i/i, tfi)/(a, a)]a is an elementof M). So, the sumoverthe Weyl group

in (4.13) can be replacedby a sumover the ordinaryWeyl group W
0 of G and a

sumover translationsby elementsof M, and eq.(4.15)yields

= (_1)r/2(2~6)r exp[2~ir( dimG — (~‘~ )]e2~~~ ~ (~

woW0

x ~ kT/
2~detg

1~ A (~l+(e/k)g~1(w(A+p)+n~)(Tj))
J30M t=1

xexp[2~((w(A +p) +N~)(u)+r~w(A+p) +NP~2/NI~I2)1,

(4.16)

where we have used det w = (— 1)10-). Introducing the level-N theta function
[15,24],

ØA,N(U,r,p) =e
2~’~E exp[2~((A+N~)(u)+r~A+Np~2/NI~I2)](4.17)

~3oM

eq.(4.16) canbe written in the form

= ( ....,,)r/2 ~ ~ ( — 1)~©Ok0-2~detg~
woW

0

x A (2~~’+ igh)~)0O+)N(u,T,P), (4.18)

where the Freudenthal—deVries formula has beenusedto write

dimG — (p,p) —

16 2k

This factor of *C cancelsout of the torus partition function. Eq. (4.18) is oneof
the main resultsof the paper.It shouldbe rememberedthat it appliesonly when r
is even.

A proof of eq. (4.18) canbe given by consideringVerma modules.The Verma
module V~basedon the highest-weightstate IA) R is the set of statesobtainedby
actingwith all possiblecombinationsof the “lowering” operators,consistingof ~na

and Ina for n <0 and n = 0, a = a <0, togetherwith the Jo,. Becauseof the
relations(2.8), a basis for J7,~ consistsof states symmetric with respectto the
interchangeof any pair of bosonic indices or any pair of bosonic and fermionic
indices, and antisymmetricwith respectto interchangeof a pair of fermionic
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indices.Someof the statesin the Vermamodulearenull states,meaningthat they
are highest-weightstateswith respectto the SKM algebra.Crudely speaking,the
supercharacterof h in the representationwith highestweight A is the supertrace
of h on VA with the contributions of the null statesand their descendents
subtractedout, being carefulto correct for doublesubtractions.

We begin by computingthe(formal) supertraceof theactionof h on the Verma
moduleVA. This splits into a product of two factors:the supertraceof the actionof
h on the vector spaceV0 consideredearlier, and the supertraceof the adjoint
actionof h on the spaceof formal products

~n1a1~n2a2”~ Jm~b0 (4.19)

in the envelopingalgebraof ~, where the operatorsare elementsof ill — and the
productsare appropriatelysymmetrizedor antisymmetrizedwith respectto inter-
changeof pairsof operatorsas describedabove.The supertraceof the actionof h
on V0 has beencomputedin eq. (4.7). As alreadynoted,the supertraceof the
action of h on th is reducible, the irreducible representationsbeing on the
two-dimensional spaces (j-na’J-na) for n >0 and n = 0, a =a <0. Thus
the supertraceof the action of h on the spaceof formal products(4.19) is the
productover all the valuesof n and a correspondingto th — of the supertraceof
the action of h on the spacesof appropriately(anti)symmetrisedformal products
(f,,~)P(j_,,~)~ for q = 0,1 and p = 0,2 If the adjoint action of h on the

space(Ln,a,J,,,a) is given by the 2 >< 2 matrix N, then the latter supertraceis
sdet ‘(1 — N). This can be provedby usingthe isomorphismof the set of formal
products(~,,a)”(J,,a)° with the Fock spacefor a bosoniccreationoperatorat
anda fermionic creationoperatorbt. The supertraceis easily computedusingthe

following representationof the identity on the Fock space:

1 = fdy d~5fd~7d~e~~e~’1e~’e btIO)(OIeYae
0-,

where ~ is a Grassmannparameterand y is a complexnumber.

Combining theseresultsandusingthe fact that the adjointaction of h on iui~is
the sameas that of h~ on iIi~,we find

sTr(hI~)
sTr(hIv)= 0 (4.20)

A sdet(1_Ad(h1)~th)

The characterformula (4.3) follows from (4.20) if we can show

~(R)(h) ~ sTr(w(h)1v).

wOW

It follows from eqs.(4.8) and(4.15) that

1(w)sTr(w(h)IVA)= (—1) sTr(hIv(A)). (4.21)
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So it suffices to show that

~ (~1)”0-~4Jw~, (4.22)
woW

where 40A (h) = sTr(hI
The proof of eq. (4.22) is similar to that of the correspondingresult for KM

algebras.The proofin ref. [6] is followed closely here.The characteris of the form
~R) = ~ where~i are theweightsfor the null vectorsin the Verma module
VA, and n4 is the integer multiplicity with which 4~ must be added to or
subtractedfrom

4A to yield to character.Since k’~’~(h)= ,~ccR)(w(h))by Ad-invari-
anceof the supertrace,eq.(4.21) implies that

= (— 1)10-1n,~, (4.23)

so that ~w(
4) is nonvanishingif n1, is. If n5 ±0, choosew E W such that i = n4 is

dominant(i.e. w(~)differs from w’(ji) by a positiveroot for all w’ E W). If it can

be shown that i = A, then the characterformula follows from n1 = 1 and eq.
(4.23).

To prove i = A, we note that since IA) R and I ~)R arehighest-weightstatesfor
representationsof thelevel-N SKM algebra,they arealso highest-weightstatesfor
the representationof the level N — g ordinary KM algebrageneratedby the ~na

(see eq. (2.12)) with highest weights A — ~5and 1 — ,5 respectively(where 5 = p
+ ~C4k*). As such,they aredominantweights for the KM algebraandsatisfy [6]

(A-~i,~~)>o,(~-~)>0,

where ‘5, (i = 0,.. . , r) are the simpleroots definedin appendixB, and ( , ) is the
Ad-~9invariant inner product definedby (~, ii’) = ~ — qp’ — q’p for ji = p. +

qL~+ pk*. Since (~5,‘p,)> 0 for all the simple roots, (A + i~,~)> 0 for all positive

roots a. As I~)Ris one of the statesin the Verma module VA, it follows that
A — = a, where a is a positiveroot or zero.So(A + ~, A — ~)> 0 unlessA = j3, in
whichcaseit vanishes.On the otherhand,giventhat I ~) P. is a highest-weightstate
for a representationof the SKM algebrain the R sector,eq.(4.2) yields

C dimG

16 )L~+kk*,

andit is easyto checkthat (A,A) — (‘~,~) = 0, thusproving ~ = A.

A similarproof holdsfor the characterformula (3.4) in the NS sector,although
the factorisationof the supercharacterinto the form expectedon the basisof the
Kac—Todorovdecompositionalso provesit.

As noted several times already, the nontrivial G0 contributions in
preventsits factorisationin the senseof Kac andTodorov,becauseG0 manifestly

mixesthe free fermion Hilbert spaceand the Hubert spacefor the KM algebra
with generators~ However, setting � = 0 in h in eq. (4.1) should lead to a
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factorisation of the supercharacterinto a product of terms attributable to the
respectiveHilbert spacesin the direct product. This does indeed occur: setting
c = 0 in eq.(4.18)yields theproductof the characterof hB for a representationof

a level-(N — g) KIVI algebraof highestweight A andthe supertraceof h on the free
fermion Fock spacein the R sector.

To conclude this section,we note that the supercharacter(4.18) obeysseveral
differential equationsas a resultof the Sugawaraconstructionof L0 and G0 which
describeits dependenceon modular andsupermodularparameters:

a g~ o~

XA (h)=0,

3 g’
1 3 0

(2~-~~— )~R(h) =0.

5. The GKO construction and odd supercharacters

In the previoussectionit wasseenthat the partitionfunction ~ in eq. (2.28)
vanishesfor groups of odd rank. This arises from the demandthat thereexist
separateconservedfermion parity operators(

1)Fi and (. 1)F~ associatedwith

the left- andright-movingsectorsof the theoryrespectively.If this requirementis
relaxed,it will be shown that thepartition function is nonvanishingandthat it can
be written as a product of “odd” supercharacters(containingan odd numberof
Grassmannparameters).Further, thesewill allow the constructionof the discrete
unitary seriesof odd superconformalsupercharactersof Cohn andFriedan[4] via
an analogueof the celebratedGKO construction.

To begin with, we concentrateon the algebra{J~~J~) = k~ of the zeromodes
of the fermionicgeneratorsassociatedwith the Cartansubalgebra(whosegenera-
tors 7~havebeenchosento diagonalisethe metric g,3). For an even-rankgroup,its
2”

2-dimensionalirreducible representationon the vector spaceV
0 built on the

highest-weightstate IA)R has been describedin sect. 4. In this casea conserved
fermion parity operator(. ~)Fi alwaysexists, as it canbe representedon V0 in the
form (4.4).

On the otherhand,for odd rankgroups,demandingthe existenceof ( 1)FL is a
nontrivial requirement(the operator101102 .. JO,. commuteswith the JO) and so
cannotbe used to construct(~ 1YL in the zero-modesector). In this case,the
operators~/(2/k)j0~ and ( 1)FL generatean (r + 1)-dimensionalClifford algebra,
whoseirreduciblerepresentationsare 2(r+1)/2 dimensional.Relaxingthis require-

ment meansthat we haveonly the r-dimensionalClifford algebrageneratedby the

JOi’ and the irreducible representationsare 2(’’V
2~dimensional.In fact, the

2~~~2-dimensionalrepresentationin the presenceof a fermion parity operatoris
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a direct sumof that of two of theserepresentationswhich are mixed by (
1)Fi.

(see ref. [16] for a discussionof the caseof a singlefermion).
To illustrate this explicitly, let a, = (1/ V~~)(J0,2_ + ~J0,2,), i = 1,.. . , (r — 1)/2,

and define IA)R as in sect. 2 by a,IA)R=O. The operatorsJ~,(i= 1,...,r) and
(_l)’~Lhavea representationon the 2~”~’~’

2-dimensionalFock spacewith basis
vectors

IA)R, JOrIA)R, a~IA)R, bra A)R,. . . ‘JOral .. . a(r
1)/21A>R.

This Fock spaceV0 can be decomposedinto two 2~”
1~~2-dimensionalspacesV±

with basisvectors

(1±~JOr)IA)R~ (i ~ ~Jor)aflA)R

The operatorsJo, act irreduciblyon V~,but (

1)FL mixesthe two spaces.Further,
the product101102. . . Jo,. is representedon V±as

— .(r— 1)/2[ / ~r/2
Joi Jo~v~ —“ k / )

Thus, with h as in eq. (4.1) and using the Sugawaraconstruction of G0,
Tr(hI~) has a “top” component (i.e. top component in its expansionin the

Grassrnannparameters~‘ and c) coming from the nonvanishingtraceTr(J01

Jo~exp[2~’(u’Jo+ rL0)]I~),

( )(r_1)/2

Tr(hIv)~0 = ± “~ (2)”kr/
2~det g

11 A (~e+ ~(A +p)(~)ghJ)

c5 dimG
16 )+Pk)I, (5.2)

where we haveusedeqs.(4.5) and(4.6).
The vectorspaceV~canbe usedas a highest-weightspacefor a representation

of the combinedSKM and superconformalalgebras.Although a fermion parity
operatordoesnot exist for this representation,theredoesexist a “partial” fermion
parity operatorassociatedwith the modesother than the Jo,,

(a,a)
(~ 1)~-=(_ 1) >0~~J0._~J0~(— ~ (5.3)

Using this operatorto constructthe supertrace,we can considerthe supercharac-
ter kA ÷(h)in this highest-weightrepresentation,givenby the supertraceof h over
the descendentsof the highest-weightvector space(subtractingout the contribu-
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tions from null statesandtheir descendents).Consideringthe characterfrom the
viewpoint of Verma modules,we find as in sect. 4 that the supercharacteris the
sum over w E W of the supertracesof h on the Verma modulesV~~,ç1.~.,where

VA + is the Verma module basedon the spaceV~.The contribution to the
supertraceof h on the Verma module VA + from the enveloping algebra of
lowering operators is exactly as in sect. 4 and given by terms of the form
sdet(1— M) in eq.(4.12). Thus if we consideronly ,~°~(h),the top componentof
the expansionof ~A,+ in its Grassmannparameters,then the envelopingalgebra
again only contributesa factor 1, leaving only the contributionsfrom the trace of

w(h) on V~.
Combining theseresultsandusingeq.(5.2),

( — (r—1)/2
,~tOp

1h~= 2i~-,i-(c/24) _1Y(0~kr/2Id t
X

5,+~ , /;;- e ~. ,
wOW0

r ~ 3
x ,‘\ 2ir~’+ ~g’~—1 ~9w(A+p),N(U,T,P). (5.4)

Theseare the SKM analoguesof the odd superconformalsupercharactersfound
for the purely superconformalalgebraby CohnandFriedanin ref. [4]. This canbe

comparedwith the results in ref. [26], where odd superconformalsupercharacters
for SKM algebrasare consideredas a basis of solutions for a set of differential

equations.It shouldbe noted that the analysisin ref. [26] applies for a nontrivial
gravitino background,but thereis no “gaugino” background.The authorsfind that
odd superconformalcharactersvanish for even-rankgroups,and conjecturethat
they are nonvanishingonly for SU(2). This is consistentwith eq. (5.4), which
vanishesexcept in the caseof SU(2) when the ~‘ are set to zero.

Now we turn to the partition function on the torus in the (+ +) spin structure,
which vanishesfor odd-rankgroupsif separatelyconservedoperators( 1)Ft and
(~ iY~ exist. If they do not exist, thenbecause{J1~,,J~} = 0, the operatorsJOj and

Jo~generatea 2r-dimensionalClifford algebrawhoseirreducible representations
are 2~-dimensional(as opposedto 2’~ dimensionalwhen the fermion parity
operatorsexist, being a tensorproductof left and right representationsof dimen-
sion ~ 1)/2) Further,the operator

(—1)~=±(2/k)rdetgtlj,]1 (5.5)

anticommuteswith all the fermion zeromodesand squaresto 1, providing a total
fermion parity operator in the zero-modesector. A fermion parity operator can
thusbe constructedas

(_1 \F — 11 _1 \F1( — l\FR
k I k 10k )<k 1)<
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using eq. (5.3) and its right moving counterpart.The partition function in the
(+ +) spin structure involves a supertraceformed with the aid of this total
fermion parity operator,

= Tr(( —1) ‘~exp(— 2i~-~’*cr) 2hh)AA,,

where thetraceis overa representationof highestweights A andA’ with respectto
GL and GR respectively.This is nonvanishingand takesthe form

= ~ (5.6)

The sign dependson the choicemadein eq. (5.5). Note that unlike the partition
functions(2.25)—(2.28), eq.(5.6) involves a mixing of the left and right sectorsof
the theory. This is because,for example,,~t0t~ is odd in the supermoduliassociated
with the left-movingsectorof the theory, andcannotbe thoughtof as arising from
“diagrams” in which the backgroundfields couple to the left-moving quantum
fields — by conservationof total fermion number, such a contribution to the
partition function vanishes.This is perhapsanalogousto a Pauli—Villars regular-
isation of a theory with a supergravitybackgroundcoupled to quantummatter
fields, wheretherearenot separatelyconservedfermion paritiesandthe left and
right sectorsof the theorycouple, as opposedto a regularisationwhich doesnot
mix the left and right sectorsfor which conservationof total fermion number
requiresthat left and right fermion parities be separatelyconserved.

To prove eq. (5.6), note that if F, and F, denote the 2~~”2-dimensional
representationsof ~/~/i~J~ and %‘~7~]~~on V~ and V~respectively, then an
irreducible representationof the large Clifford algebrawith generatorsJOi and JOj

is given by

~7~j
01F,t~)tT1, Vioi—1®T®o2.

Using this in eq. (5.5) with the help of (5.1), (— 1)~= ± 1 ® 1 ® cr3, providing the
required factorisationin eq. (5.6).

Cohn and Friedanshowedin ref. [4] that in the absenceof conservedfermion
parity operators(. 1)Fi and ( 1)FR the partition function for a superconformal
field theoryon a torus with the (+ +) spin structurefactorisesas a productof odd
supercharacters.We haveverified this for the casein which the superconformal
field theory is a SWZW theory. The odd supercharactersfor the discreteseriesof
superconformaltheorieswith central chargec < were explicitly constructedin
ref. [4] by considerationof the Verma modulesfor theserepresentationsof the

superconformalalgebra.Given that the GKO construction[5] providesa technique
for obtaining the superconformalcharactersfor thesetheories in terms of the
charactersof SU(2) KM algebras,it is natural to ask if the odd superconformal
characterscan also be accommodatedin this scheme.The answer is in the
affirmative, althoughtheconstructioninvolvesanSU(2) super-KMalgebra,specifi-
cally its odd supercharacters.
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SU(2) hasa singlepositiveroot a which is also the highestroot, cIt = a. Highest
weightsareof the form A =ja for I = 0, -~-,1 The lattice generatedby the long
roots is M = {na: n E ~}, andthe dual Coxeternumberis g = 2. We chooseasthe
generatorfor the Cartansubalgebraf3 = ~[Ta, T_a], so the metric on the Cartan
subalgebrais (J3, f3) = 1/(a, a). The Weyl group W0 has only one nontrivial
elementw with w(a) = —a. Letting h = exp[2ir1(uJ3 + TL0 + ~j3 + eG0)] with J~

the supersymmetricpartnerof f3~then for a level N= 2k/(a, a) representation
of the SKM algebracorrespondingto a highestweight A =ja, we find using(5.4)
that the odd supercharacteris

top h =

2~’~cN/24 ~ 2~r(j±++nN)2/N
Xj,N( ) h~ e e

nolZ

x{~(~+ ~

—~(~—~(j+ ~ +nN))e2~~n~}, (5.7)

where

CN (~—g/N)dimG = 24(~— 1/4N).

We havechosento label the supercharacterin eq. (5.7) by I and N ratherthan by
A as in eq. (5.4). The unitarity constraint(2.24) is

0~2j~N—2, (5.8)

and in particular N> 2.

In the conventionalGKO construction [5], the charactersfor highest-weight
representationsof thesuperconformalalgebracorrespondingto thememberof the
superconformalunitary serieswith c = ~(1 — 8/N(N + 2)), N= 2,3,..., is ob-
tainedby decomposingtheproductof SU(2) KM charactersat levels(N — 2) and2
into a direct sumof charactersat level N. The level 2 KM characteris realisable
on the Fock spacefor free Majorana fermions in the adjoint representationof
SU(2). Given that in the absenceof cG

11 terms in h, a level-N SU(2) SKIvI
charactercontainsan ordinarylevel-(N — 2) characterand that the level-2 SKM
characteris equivalentto a free fermion partition function, this suggeststhat we
considerthe product

and try to decomposeit with respectto the odd supercharacters~çj?~~2(h). It is
convenientto set 1 + ~ = ~p, in which caseeq.(5.8) implies

1~p~N—1, N>2. (5.9)
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Using eq.(5.8) anddroppingthe argumentsh, and rememberingthat c and ~
anticommute,

~top ~top
X~_nNXo~2

2

, 2

I L~w/\

~ ~ ~ exp[2~ri(r(~p+ nN)
2/N + + 2m)2)]

m,nO 1

x{(~~~ _~~_~(m_n))
yN2

X2/sin2~u(~ ~ +n(N+2) +2(m
2

~ +‘~~
~,YN2 V2~

(p—i)
X2isin2~u( 2 +n(N+2) _2(m+n))J.

Let m’ = (m — n) in the first term and m” = —(m+ n) in the second term.
Rearrangingthe exponentialto give factorsappropriateto

~N+2 X~°,,~±p2 - and E” 2 top

we obtain

123r,1 I~top —top_
X(p-l) X()

2 — ~- ~-)exP[2~r/T(cN +C2 — cN+2)/24]~ ~ (—1)~~÷~,N+2
2

2

2

~N2 ~2

/ 2 2p Ni - N+2+ ~, X~ 11±P

V N+2 (G~~ - ) m”oL

xexP[2~/Tl~ — —
/ ~N 2

Xci!
VN+2(~~ Y22/ 2 2 P~1~~)}
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The two termsin thisexpressiondiffer in sign, and thefirst containsonly 2m’, the
secondonly 2m” — 1, but otherwisethey have the sameform. So they can be
replacedby an alternatingsumovera singleintegern,

2ir,c
X(

1~—1) ~ ~ (—1)”~
1”~°P exp[2~r~r(CN+c

2—CN+2)/24]

2 nol 2 2%[N+2

/ !__~__p
xexP[2r~V~ ~_~(n+n)/(N+2)j

XL~ -~(n+~)). (5.10)
~VN~ 2

To proceed,it is necessaryto makeuse of the symmetryproperties

iOp (5.11)= top
j+N,N’ XJ—~,N X—j-!,N.

Parameterisingn +p/
2 asM(N + 2) + q”/2 — ~with m E 7/ and0 ~ q” <2(N + 2)

(so q” —p is odd),eq.(5.10)becomes

a” p
-top ~to
X_1NXo~~ E X(q”—l)

mel q”
2 2

X 2~-/eexp[2~r~T(CN+ C
2 — cN+2)/24] a(pq m) exp(2~/Ta~pq”m)),

where q” is restrictedto thevaluesp — q” odd, 0 ~ q” <N + 2, and

((N+ 2)p —Nq” — 2nN(N+ 2))
a(pqm)= ~8N(N+2)

Using the symmetryproperties(5.11), it is possibleto show that

X(/~+2) =0, X-~,N+2 =0,
2

so the sumover q” canbe replacedby sumsover q and —q + 2(N+ 2) with

1<q.~N+1, p—qodd. (5.12)

With the help of eq. (5.11)again, the result canbe written (with p — q odd)

N+ 1
top -top = \‘ top odd

X(~_i) Xo 2 L_.. X(q—i) Xp,0,N~

2 N q=1 ~,N±2
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where

12 I

Xp,q,N(T,o)_L1) 2 exp 2~ir(~_N(N+2)) 24

x ~ ~ — ~
neZ

(5.13)

and

flN((N+ 2)p —qN—2nN(N+ 2))
ApqN(fl) = (—1) il8NN+ 2)

- q±,,N((N+2)P+q1~2~~(N+2))
APqN(fl) = (—1) ~8N(N + 2)

Up to signs, A~’q~’N(T,e) definedin eq. (5.13)is the odd supercharacteras defined
by Cohn and Friedan in ref. [4] for the representationof the superconformal
algebra with c = ~(i — 8/N(N + 2)) and highest weight hpq = ((N+ 2)p +

Nq)2/8N(N+ 2) + C/24. The factor e2~~T0-24cancelsout of the torus partition
function becauseof the shift L

0 —‘ L~— C/24. The rangesof p, q and N in eqs.
(5.9) and(5.12) are thoseallowedfor the superconformalunitary series.

The GKO-like construction of the superconformalodd supercharacterspre-

sented above proceedsvia a product of two charactersof an SU(2) super-KM
algebra,whereasthe standardGKO constructionof the ordinarycharactersof the

superconformalunitary series(i.e. thosecorrespondingto partition functions on
thetorus for the spin structures(+ —), (— +) and (— —)) involvesthe productof
two charactersfor an ordinary KM algebra.It would be nice to havea structure
wherebythe superconformalcharactersfor all spin structurescouldbeconstructed
from a product of two charactersfor the same SU(2) algebra. This unity is
achievedin the following expressionvalid for all spin structures:

N+1

X(p—1),NXO,2 = X(q—1),N+2Xp,q,N’ (5.14)
2 q-l 2

where XJ,N are SU(2) supercharactersand are superconformalsuperchar-
acters,and where p — q is odd in the R caseand even in the NS case. The
decomposition(5.14)wasverified abovefor the (+ + ) spin structure,whereall the
supercharactersare takento be odd supercharacters.For the SU(2) supercharac-
ters relevantto the otherspin structures,it wasseenin sects.3 and4 that k., N is a
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product of an ordinary KM characterXJ~—2 for a level N — 2 representationof
highestweight ja anda supertraceX~Aovera free fermion Fock space.Thus there

is a factor ~“ on both sidesof eq.(5.14) from the supercharacters,~(~ I),N and

~1). N+2 which canbe decoupled.The remainingstructureis of the form

KM N+1 KM

~ E X~_i~~
2,NXp,q,N (5.15)

2 1 2

with p — q odd in the R caseandevenfor the NS case.Noting that ‘~Q2 is itself a
supertraceover the free fermion Fock spacefor the relevantspin structure,eq.

(5.15) is nothing more than the conventionalGKO constructionrelevant to the
spin structures(+ — ), (— + ) and (— — ) [5].

The factor XF which decouplesfrom both sides of eq. (5.14) to yield (5.15)
comesfrom a free fermion Fock spacewhich has a purely“spectator”role for the

spin structures(+ —), (— +) and (— —). However, for the (+ +) spin structure,
G

0 couples this spaceto the Hilbert spacesfor the KM algebras,it plays a
nontrivial role in the GKO construction.

6. Conclusion

In this paper,an attempt has been madeto presentthe charactersof super-
Kac—Moody algebrasin a mannerwhich is both manifestly supersymmetricand
which accommodatesthe characterscorrespondingto the different spin structures
on the torus in a common structure. The results suggest that a Borel—Weil
interpretationof the representationtheory of SKM algebrasis at least formally
relevant.The supercharacterscorrespondingto the (+ +) spin structure,which
dependon the supermodularparametersof thesuperconformalandsupersymmet-
nc Yang—Mills backgroundson the torus, havebeencomputed,andthey allow the
GKO construction to be extended to include the odd supercharactersof the
discreteunitary seriesof representationsof the superconformalalgebrawith c <

This unified view should be relevant to any attempt to realise the conformal
blocks associatedwith super-WZWmodelson thetorus in termsof a Hilbert space
for a three-dimensionaltheory. Sucha theorycanbe expectedto containfermions,
andthe necessityto include insertionsof supermoduliin the SKM charactersfor
the (+ +) spin structureshouldbe relatedto the presenceof fermion zero-modes
on the “spacelikehypersurface”in the canonicalquantisationof any three-dimen-
sional realisation.The three-dimensionaltheorymust reproducetwo-dimensional
nonabeliananomalies,and as such is unlikely to involve three-dimensionalsuper-

symmetry.

There hasalso beenmuch interestrecentlyin a classof representationsof the
N = 2 superconformalalgebraobtainedvia a supersymmetricversionof the GKO
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construction from representationsof N = 1 SKM algebras [23]. It would be
interestingto examinethe N = 2 representationscorrespondingto the (+ + ) spin
structureon the torus and their relation to the SKM charactersdependingon
supermodularparameters.

Appendix A

WEYL GROUP IN THE SKM ALGEBRA

For the SKM algebrawith bothNS and R boundaryconditions,the Weyl group
is K(Y)/~, where ,~V(Y)is the set of all gE~ satisfying g’tgct. In both
casesit will be shown that given a point [g] in ,Y(~)/Y, it is possibleto choose
a representativeg which is in normaliserof the torus of the KM subalgebrawith
generators~,,a’ L0 and k andso determinesan elementof the Weyl groupof this
KlvI subalgebra.In the NScase,all representativesg areof this form.This result is
very importantin the computationof supercharacters.

First, it is noted that any elementg E ~9 canbe written in the form g = g0 e’~,

whereg0 is in the KM subalgebraand f is a linear combinationof the fermionic

generatorsof ~ (with Grassmanncoefficients). This follows from the fact that ~
hasthestructureof a semidirectproduct(up to centralterms)whenseparatedinto

bosonicand fermionicparts.So if H E t,

g~1Hg=g~1(H_/[f,H] - ~[f,[f,H]] + ...)go. (A.i)

Becauseeachterm is of different order in the Grassmannparametersin f, each
term mustbelongto t if g ‘Hg is to.

Now we considerthe NS andR casesseparately.In the NS case,t is the torus of
the KM subalgebra,so requiringg~‘Hg0 E t meansthat g0 determinesan element
of the Weyl groupof the KIVI subalgebra.Then g~‘[f, H]g0 is a linear combina-
tion of fermionic generators,and as t has no fermionic generators,[f, H] = 0.
Further, since L0 has nonvanishingcommutatorwith all 1,,.,. !,a’ it follows that
f = 0. So we havethat g = g0 andis thus an elementof the normaliserof the KM

subalgebra.
The situationin theR sectoris morecomplicated,as t hasfermionicgenerators.

DecomposingH as H = HB + HF with HB a linear combination of the bosonic
generatorsf01, L0 and k and H~a linear combinationof the fermionicgenerators

L~, and G0, eq. (Al) becomes

— ~[f,[f,H~]] +

+g~1(HF_~[f,HBJ — ~[f,[f,HF]] + ... )go,
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where the first set of terms on the right-handside are proportional to bosonic
generatorsand the secondset to fermionic generators.Concentratingon the
bosonic terms, g~’H~gflE t meansthat g

0 determinesan elementof the Weyl
group of the KM subalgebraas before. Requiring g~

1[f, H~]g
0to be in I forces

the piece fm of f in iii ± to vanish,because[fm’ HF] is a bosonicelementof m
andthe adjoint actionby g0 mapsit into the elementof ill ± correspondingto the
Weyl reflectedroot. Thus fu t, in which case [f, HB] vanishes,[f, HF] E t and
[f, [f, HF]] vanishes.To completethe results,we needto establishthat g~‘H~g0

and g~
1[f, HF]g

0 are in t. This follows if g~‘tg0 c t, which is shownat the endof
this appendix.

Thus it hasbeenshownthat an elementG of ,2V(3~)in the R casehasthe form
g0 e’~where g0 determinesan elementof the Weyl groupof the KM subalgebra
and f is a linear combinationof fermionic generatorsof t. In particular, it means
that g0 canbechosenas a representativefor the element[g] of ,1K(~9~)/Y.It is
important to note that theclass[g] doesnot determinea well-definedmap /T—~~9’

via h —*g’hg, different representativesg yielding results which differ by the
adjoint action of an element of /7 (due to the fact that ~9’~is nonabelian).
However, the supertraceand superdeterminantof the mapping are well defined,
andit is only in suchcircumstancesthat the Weyl group plays a role in sect.4.

Finally, we establishthe result g~ ‘tg0 c t in the R case.The Weyl groupof the
KJvI subalgebrais generatedby transformationsw,5 associatedwith the group

elements[15,24]

si,,= exp ~/~T(fna +J,, ~)

If H = TL0 + u’f0, + �G0 + ~‘j0, +pk, it is not hardto show that

w~(H) =s~Hs,~=H—a,,(H)[f,,0,f_,, _a] —a~(~’~0,—eL0)[f,,,,,j,,0],

(A.2)

which is an elementof t.

Appendix B

COMPUTATION OF ~(w)

In this appendix,the results~(w)= — w(,ô) and I(w) E 271 are proved, where
I(w) is the numberof positive roots correspondingto fermionic generatorsof the
SKM algebra in the NS sector which become negative under the action of
~ §(w) is their sum and 5 = ~c4,k*. As seenin appendixA, the Weyl groupof
~I is that of the KM subalgebrawith generators~fla’ L0 and k. Associatedwith

each root /3,,, = — mL~ is an element w3, of the Weyl group defined by
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w~(H)= s~Hs~for HE I and s3 = exp[(~~w/2)(Jmp+ ~-m, ~)]. The dual map

is easilycomputedto be

w(A) =A_A([fm4,f~m~8I)I~m.

In particular, for a root a,,+

w~(a,,+1)= w4(a) — (n + ~ — ma(H4))L~*,

wherew4 is the elementof the ordinaryWeyl groupof G associatedwith the root
/3, and H4 = [7~, T...4]. The Weyl group of the SKM algebrais generated[15,24] by
the elementsw~,i = 0,..., r, where ~ = —i/i — L~,and ‘p,,. . ‘‘pr are the simple

roots of the ordinarygroup G.
First we will provethe desiredresultsfor the generatorsof the Weyl group.For

= 1,..., r, w1,(a,,±!)can never be a negativeroot for n > 0, so l(w~.) = 0 and
= 0, in agreementwith j~— w~(j5)= 0.

On the otherhand,

w~0(a,,±)= w4(a) — ((n + ~)+ a(H4))L0*.

If a,,~is a positive root (n > 0), this can be negativeonly when a(H4) <0, in
which casea <0. Further,if a < 0, then a(H4)canonly takethevalues0, — 1, — 2,

with the value —2 achievedonly when a = — ~1s’.In this case,w~(= ~ maps
only the positive roots — — +L~ and — — ~ into negativeroots, and their

sum is —2cIi—2L~.
If a(H4) = — 1 then the roots a — ~LØ~becomenegativeunder the action of

Since —
2p + cI’ is the sumof all a < 0 with a(H

4) = 0 or —l,(2p —

is the number of roots a <0 with a(H4)= — 1. On the other hand, using
elementarypropertiesof roots underWeyl reflection by w4, onecanestablishthat
the roots a <0 with a(H4)= —1 comein pairswhosesumis —cI’. If q denotesthe
number of thesepairs, then (2p — cI’)(H4) = 2q, so q =g —2 and their sum is

(2—g)~/i.
Thus the total numberof positive roots a,,+~ which becomenegativeunderthe

action of wt is 2g —2 and their sum is g(—~i —L~)=g’~0. This is precisely
— w~(,5)using g = C4/(tif, i/i).

Since the elements w~(i = 1, . . . , r) generatethe Weyl group of the SKM
algebra,the proofof theseresultsfor an arbitrary elementof the Weyl groupcan
be madeby induction.
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