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This talk summarizes a recent lattice investigation of the chiral phase transition in non-compact QED with light
dynamical Kogut-Susskind fermions done in collaboration with M. G6ckeler, R. Horsley, E . Laermann, P. Rakow, R.
Sommer and U.-J . Wiese. The phase transition is found to be of second order, so that we can take the continuum
limit . Near the critical point the theory is shown to be well described by a Gaussian model of non-interacting
scalar and pseudoscalar fields .

1. INTRODUCTION

Our belief, that elementary particle physics can be

described in terms of a local, renormalizable quantum
field theory, rests to a large extent on the success of
perturbative QED . This success and the great appeal of

gauge theories can, however, not conceal the fact that
conceptually QED is still a poorly understood theory -

let alone more complex non-asymptotically free gauge
theories like the standard model. In spite of great cal-
culational efforts 2, we do not even know whether QED
is a consistent quantum field theory at all in the sense
that it has a continuum limit, in which the cut-off can
be taken to infinity. The main obstacle is that the ef-
fective charge grows as one approaches the ultraviolet
region, so that perturbation theory cannot be applied.

Recent progress in lattice gauge theory and numer-
ical methods to incorporate fermions 3 have made it
possible to study the ultraviolet behavior of QED from
first principles . In order that QED is a consistent field
theory, the Callan-Symanzik Q-function 4 must have an
ultraviolet stable fixed point (zero) . In lattice simula-
tions such a fixed point will show up as a point of second
(or higher) order phase transition, at which the corre-
lation length diverges. The first step in such a study
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will then be to search for a transition of this kind . If

the theory has a second order phase transition, the next

question is what the continuum theory is like, and in

particular whether it is interacting or not. The theo-

retical prejudice is that QED admits only a vanishing

renormalized charge 5 . The true nature of the con-

tinuum theory is reflected in the critical exponents of

the transition, while the effective theory is given by the

renormalized action . The latter involves the renormal-

ized charge and mass . But in general it may also include
higher couplings 6 .

Kogut, Dagotto and Kocic 7,8,9,10 have reported

evidence for the existence of a continuous chiral phase
transition in massless, non-compact QED at strong cou

pling. This result has been confirmed by the Edinburgh

group 11 . In a recent paper 1 we have shown that the

chiral phase transition is second order. We have found
furthermore that the critical exponents of the transition

are consistent with the exponents of a Gaussian model.

In this talk I shall present the basic results of this work .

Because of earlier, unjustified claims 7,8.9 .10 that the
chiral condensate exhibits non-trivial scaling behavior

near the critical point, great importance is attached to

the extrapolation of the lattice data to the chiral limit.

The remainder of the talk is organized as follows.



In sec. 2 we present the details of the calculation . The

predictions of mean field theory and the Gaussian model

for the chiral phase transition are summarized in sec. 3.

In sec. 4 we present and analyze the lattice data . We

conclude with some remarks in sec. 5.

2.

	

LATTICE CALCULATION

We take Kogut-Susskind fermions . The lattice ac-

tion for non-compact QED is S = SG + SF, where

SG = ) E (A,,(x)+A �(x+p)-A,,(x+v)-Av(x))2,

wh
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This action describes four species of light Dirac

fermions . For finite lattice spacings the theory has a

chiral U(1) x U(1) symmetry in the limit m -+ 0, while

the SU(4) x SU(4) symmetry is only recovered in the

continuum limit .

and V is the space-time volume of the lattice, provides

an order parameter for spontaneous breaking of chiral

symmetry . From the scaling behavior of (X)L ). and the

associated Goldstone boson mass, raps, near the phase

transition point one can derive three critical exponents.

The determination of these exponents will be the main
subject of this talk .

We have chosen to compute the chiral condensate
in two different ways . One way is by inversion of the
fermion matrix M, which is the standard procedure.
The other way is by means of the eigenvalue spectrum
of M 12 , which I shall describe briefly below= . In this

case it is convenient to consider the propagation of a
fermion of mass iii through a background gauge field
configuration generated with mass m. Accordingly, we

may write

f
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rr! )

J-oo

	

a + 17t

where p is the eigenvalue density. We now define the

eigenvalue number
a

N(,\, m) = J

	

dAp(A,m),

	

(2.8)
0

which counts the number of eigenvalues per unit volume

between 0 and A . Assuming that p is a power series at

small a, which is generally the case in the broken phase,

we find

N(Xm) = A(XX)=(O,m-) + O(a2).

S'qf(o" 10 2,
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(2.7)

(2 .9)

To compute (XXO it is sufficient to know the lowest

0(100) eigenvalues . This method has the advantage,

that it only requires to extrapolate to m = 0, which

turns out to be less ambiguous. In the quenched ap-

proximation, rn = or-, no extrapolation is needed at

all . On finite lattices equ. (2 .9) is subject to finite size

corrections . For details the reader is refered to ref. 1.

3.

	

PREDICTIONS OF MEAN FIELD THEORY AND

GAUSSIAN MODEL

We shall now seek a description of spontaneous chi-

ral symmetry breaking in terms of mean field theory. By

integrating out the gauge potentials and the Grassmann

fields in equ . (2 .4) one arrives at the effective action

" z"s<v

(2.1)

(3 = 1/C2 , and

SF = -X,T(M + m)zyXyi (2.2)

M.mi, = y,z+
'A

e-iAN (y)b
ll.z - FA

(2.3)

The partition function reads

Z = f[dX] [dx)[dA,]E-S . (2.4)

The chiral condensate

(40) = liô(xX), (2 .5)

re

OW. = T!ia(XX) (2.6)
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-	ma=+rc(Q= + 7rz)

where Qr and 7<r are elementary scalar and pseudoscalar

fields with < v >= (Xh)~. Under chiral Ü(1) trans-

formations Qr and 7r_ transform as

a,.

	

--)

	

?_cos2e T 7r_sin2E,

7rx.

	

-

	

7i_cos2E - Qrsin2E.

	

(3.2)

so that equ. (3 .1) has the same symmetry properties

as the original action . The dots in equ. (3.1) stand

for higher derivatives and higher polynomials. Mean

field theory assumes that o,r = Q and 7rs. = 0. If one
considers only powers of Q up to a4 (which is enough
for the description of a second order phase transition),
then Q is given by the minimum of the effective action,

2KQ + 4(Q3 - 7n = 0.

	

(3.3)

The Gaussian model allows for fluctuations around the
minimum action configuration. The fluctuations are
treated as independent modes with Gaussian distribu-
tion . Writing ar = o, +ôr and 7rr = Wr, we thus obtain

It is assumed that the coefficients 77 , r . and ( are analytic
functions of {3 .

In the chiral limit m -+ 0 we obtain

C- z<

	

rr negative,

l 0 else,

so that we may write n. = ßc(0 - 0, ), where /3, is the
critical coupling . This leads to the critical behavior

0, =oc (Q, -- 1) , for ,0, > Q,

	

(3.7)
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(3.6)

Mps « (ß - ßà 2 for ,0 > l,

At Q = ,0,, (hut m > 0) we furthermore find

Qam3 .

(3.8)

(3.9)

Equations (3.7)-(3 .9) reflect the standard critical expo-

nents, 43 = 1/2, v = 1/2 and b = 3, of a Gaussian

model.

4.

	

DETERMINATION OF CRITICAL EXPONENTS

We shall now locate the position of the chiral phase

transition and determine its critical exponents. The pro-

cedure will be to show that our lattice data are consis
tent with the predictions of the Gaussian model, which

implies mean field critical exponents.
4.1 .

	

Quenched QED
We begin our investigation with quencher' QED.

Though the photons do not interact with each other,

we may have spontaneous chiral symmetry breaking and
fermion-antifermion bound states due to strong fluctu-
ations of the fields. One can also argue that mean field

theory is applicable here . Our interest in this case was
raised by Miransky's proposal 13 of non-trivial scaling
behavior of (Oik) near the critical point and the sub-

sequent work of Kogut, Dagotto and Kocic 78,9"10,

which supported the underlying collapse of the wave
function picture. If we find the same exponents in the
quenched approximation as in the full theory, we could
argue furthermore that the theory with a single Dirac
fermion should show the same behavior .

I will first discuss the data that have been obtained
with the standard method . This gives me the possibility
to compare both our and Kogut et al .'s data and to
pinpoint the origin of the discrepancy . The data are
shown in figs . 1 and 2. Our results are on the 164
and 224 lattice and are marked by open symbols. The
data of Kogut et al . 10 are on the 104 lattice and
are marked by solid symbols. Note that the raw data
obtained by the two groups are in good agreement . The

Seff(Q,7r) = {77
[
(aa

6
r) 2 + (a"IFr)2J

r
( + 6(0r2)Qs + (t. + 2(v2 )

T
â

- 772Q + rco2 + SQ4}. (3.4)

This gives the Goldstone boson mass

rh rt
mps

2 2(Q2
= (3.5)7



0 .15

0.10

0.05

0.0

0.04

0.03

0.02

0.01

0.0

0.20 0.22

	

0 .2 *4

	

0.25

	

0.28

	

C.30 .~ 0.32

0.0 -0 .01 0.02 0.03 0.04 0.05 0 .06 0.07

ni

G. Schierholt /Is QED trivial?

Figure 1 : The chiral condensate 0,2 (a = (XX)) as a

function of ,ß in quenched QED for masses between

m = 0.002 (bottom) and m = 0.06 (top). An open

symbol indicates data from ref. 1, a solid symbol from

ref . 9. The solid lines are a mean field fit . The dashed

curve is the extrapolation to m = 0 .

0 .06

Figure 2: The chiral condensate a3 as a function of m

in quenched QED for couplings between ß = 0.28 (bot-

tom) and Q = 0.20 (top). An open symbol indicates

data from ref. 1, a solid symbol from ref . 9. The solid

lines are a mean field fit .

solid lines are a fit of the mean field relation (3.3) to
he combined data . For details of the fit see ref. 1. We

find that the data are very well described by mean field
theory. Figure 2 shows clearly that (7rx~ oc m13 at the
critical point. Kogut et al . have computed (3~X) first
8 at two and later 10 at three mass values and done

a linear or quadratic extrapolation to m = 0, which is

not justified as we see. The critical coupling comes out
to be 6, = 0.2482(1), which is substantially lower than

the value quoted elsewhere 8,10 . This is due to the fact

that we do not find a Miransky tail 13 .

Let me now turn to the results obtained by means
of the eigenvalue spectrum. These are shown in fig. 3.

In this case the lattice sizes are 124 and 16' . The solid

lines are again a mean field fit. This involves solving

equ. (3.3) for the eigenvalue density p. We find very

good agreement of our data with mean field theory also
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Figure 3: The eigenvalue number N as a function of

A in quenched QED for couplings between 6 = 0.27

(bottom) and 6 = 0.22 (top). The solid lines are a

mean field fit .
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here . The critical coupling is ,Q, = 0.2495(6), which

is consistent with the previous value. This gives us

confidence that our interpretation is correct.

4.2 .

	

Dynamical QED

We shall now consider the theory with one set of

dynamical ICogut-Susskind fermions. We have used the

hybrid Monte Carlo algorithm to simulate the field con

figurations 3. So far our calculations are done on 84

and 129 lattices. In this case we have also computed

the Goldstone boson mass, so that we are testing .all

three critical exponents here.

I first like to discuss the results for (XX)(m,m) and

mps as obtained by the standard method. Our data

are shown in figs . 4 - 6. The solid lines are a fit of the

Gaussian model to the data . We find good agreement

between the data and the model. Figure 5 shows, even

without, a fit, that (XX) oc m13 at the critical point . The
critical coupling is ,3c = 0.1950(2) .

We have computed the chiral condensate via the

eigenvalue spectrum in this case as well . This gives
us (XX).(0, m) . For this quantity one can also derive

0 .3

0.2
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Figure 4: The chiral condensate 0,2 (a = (TX)(m,m))
as a function of /3 in dynamical QEDfor masses between

m = 0.02 (bottom) and m = 0.09 (top). The solid lines
are a fit of the Gaussian model. The dashed curve is
the extrapolation to m = 0.
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Figure 5: The chiral condensate a3 as a function of
m in dynamical QED for couplings between ß = 0.26
(bottom) and ,0 = 0.16 (top). The solid lines are a fit
of the Gaussian model.
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Figure 6: The Goldstone boson mass mps as a function
of Q in dynamical QED for masses between m = 0.02
(bottom) and m = 0.09 (top). The solid lines are a
*it of the Gaussian model . The dashed curve is the
extrapolation to m = 0 .

a mean field equation like equ . (3 .3). The data are
shown in fig . 7 together with the mean field fit . As

expected, (XX).(0, m) is much closer to the chiral limit



than (3~X)(m,m) is, which reduces the ambiguity in the
extrapolation of the data to m = 0 to a minimum.
Again, we find that the data are very well described by
mean field theory . The critical coupling comes out to be
,ß, = 0.1948(8), which agrees with the previous value.
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Figure 7: The chiral condensate a;2 (if = (XX).(0,m))
as a function of 13 in dynamical QED for masses be-

tween m = 0.02 (bottom) and m = 0.09 (top). The

solid lines are a mean field fit . The dashed curve is the
extrapolation to m = 0.

5. CONCLUSIONS

Is QED trivial? The agreement of the data with the

Gaussian model suggests that the continuum theory is

non-interacting . It cannot be excluded though that the

behavior will change at correlation lengths much larger

than we were able to probe. We can also not claim

yet that our results are able to rule out a very small,

non-vanishing renormalized charge at the critical point,

as the results do rule out larger charges. It is of great

importance now to compute the renormalized charge

and also the renormalized mass down to ,ß = Q~ and

m = 0 in order to settle this question .

If this behavior persists, our QED must have at least

one more relevant, dimensionless coupling (C ?) in or-

der to be a consistent field theory . This would call into

G. Schierholt 11s QED trivial?

question the whole concept of constructing renormal-
izable quantum field theories on the basis of classical
Lagrangians, at least for non-asymptotically free theo-
ries .
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