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We propose changes in the GHEISHA 6/7 code concerning the simulation of energy loss of charged particles, 8-rays, multiple
scattering, negative particle absorption, light quenching in scintillators, and neutron capture. These changes have a profound
theoretical motivation and are supported by comparing the resulting detector simulation with Crystal Ball data.

1 . Introduction

Uncertainties in the simulation of the detector re-
sponse at c: one of the main sources of systematic errors
in the analysis of high energy physics experiments.
Improvements in the detector simulation would increase
the precision of measurements and thus open new possi-
bilities to measure more subtle effects. Even though
each experiment has to select the most appropriate
Monte Carlo simulation program for its own detector,
the physics under study, and the available computer
resources, there are a few program packages of which at
least some parts are used in most experiments. In the
following we will report on proposed improvements for
one of these codes, the GHEISHA package [1], which
stands for Gamma, Hadron, and Electron Interaction
and SHower Algorithm.

In the sections 2 and 3 some substantial modifica-
tions are proposed for the GHEISHA 6/7 simulat:on
program, which are expected to be of importance for
calorimetric devices or high precision energy loss mea-
surements. Since many of our changes to GHEISHA
are motivated by the observation that the applied for-
mulae differ from the exact theory, we will review the
results of the theory of energy loss, 6-rays, and multiple
scattering in section 2.1 and list the formulae applied by
GHEISHA 6/7 in section 2.2 . Section 2.3 will introduce
-pair data samples for testing these interactions, and

describe their Monte Carlo modeling . In section 2.4 we
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will list our changes to the corresponding GHEISHA
routines and discuss their influence on the simulation .

The complexity and variety of hadronic interactions
in a calorimeter requires to start investigating this part
of the GHEISHA code with the help of real data rather
than from the theoretical side . In section 3.1 a careful
interpretation of discrepancies between the measured
and the simulated distributions of event shape variables
of multihadron events allows us to find out the interac-
tion processes crucial for the correct simulation of these
variables. An inspection of the corresponding
GHEISHA routines reveals shortcomings in the model-
ing of negative particle absorption, light quenching, and
neutron capture. Our improvements to these issues will
be discussed in section 3.2 .

In section 4 we summarize our results and present
our conclusions .

2. Simulation of energy loss

In the following we will confront the CTHEIISHA
simulation of energy loss with theory and data, propose
changes, and show the resulting improvements in the
reproduction of the data.

2.1 . Energy loss of charged particles

All visible energy in a calorimeter is deposited via
the energy loss of charged particles, regardless whether
these particles come from the primary interaction or
from secondary processes in the detector. A proper



description of these electromagnetic processes is a
fundamental basis for the simulation of any kind of
interaction. For the identification of primary particles,
the knowledge of the expected energy loss in a given
detector component is often necessary to percent accu-
racy .
We first review the results of the theory of energy

loss, 8-rays, and scattering in order to provide a basis
for the examination of the corresponding GHEISHA
routines . We restrict ourselves to incident charged par-
ticles other than e- and e+ . Following the above argu-
ments, we must not neglect corrections which may
influence the energy loss predictions by a few percent .

The amount of energy lost by excitation and ioniza-
tion of the atoms can be quantified in three different
ways, which will be discussed in the following sections,
namely the mean energy loss, the restricted energy loss,
and the most probable energy loss .

2.1 .1 . The mean energy loss
The mean energy loss includes all energy transfers Te

to the atomic electrons up to the kinematic limit Te a'
(see eq. (3)) . It is expressed by the Bethe-Bloch formula
[2,31, extended by the density effect correction S :

- ( dE )
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Here and in the following the values without a subscript
refer to the incident particle whereas the subscript e
denotes the atomic electrons . The kinematic variables of
the particles are parametrized by ß = v/c and y =
E/me2 , Q is the electric charge in units of e, 1 is the
mean ionization potential, and D is proportional to the
electron density n e of the traversed medium :
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Here p is the density and Z/A is the ratio of she charge
to the mass number of the medium. For compounds one
has to replace this ratio by (Z>/(A). The density
effect correction S will be described in more detail in
Suvacwvu ..iubs�ction 2- ~ c. .r .

The validity of formula (1) is limited on the low
energy side by a correction term for nonrelativistic
particle velocities, the so-called shell correction for
velocities of the order of those of the bound electrons in
the medium . For highly relativistic particles with ßy =
O(m/me) corrections arise from the rate of energy
transfers near Temax, which then deviates from eq . (7) . In
addition the energy loss via bremsstrnlaung and pair
production becomes increasingly important at those high
energies .
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The value of the expression in the square brackets
lies for the majority of applications between 10 and 40.
To estimate the influence of several corrections to the
energy loss formula, we will assume a value of 20
hereafter .

2.1.2 . The S-rays
The shape of the energy loss distribution is in gen-

eral not purely Gaussian, but rather a Landau distribu-
tion showing a tail towards higher energy losses. This is
due energy transfers to single electrons much greater
than their typical binding energy . These electrons are
called knock-on electrons or 8-rays .

The detailed shape of the tail, however, depends
strongly on the layer thickness and the incident particle
energy : Only those 8-rays contribute to the tail, which
have energies greater than the width of the Gaussian
part of the distribution, which in turn depends on the
layer thickness . In addition the maximum kinetic energy
of knock-on electrons is given by

Tmax 2mec2p2Y2=e

	

2
1+2ym +( me)

and thus depends on the incident particle energy . The
S-ray electrons are ejected under an angle 6 with re-
spect to the incident particle direction which is obtained
from 4-momentum conservation :

( E +r3tec2 )( Ee - meC2 )cos 0 =
PPe
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For y << m/2 m e the maximum S-ray energy reduces to
Tmax = 2m C2ß2y2 .
e

	

e

Thus for nonrelativistic particle momenta (ßy = ß <<
1) Te << 2meC2 holds for all Te , and we get in the low
momentum limit in agreement with the result of ref . [41 :
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4

The number Ne of 8-rays produced with energy Te in
a given thickness dx has been calculated n the years
1938-1940 under the assumption of heavy pointlike
particles and free electrons [51 :

This formula is exact for spinless particles only . The
spin-dependent terms are small except for Te >> me` .
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(For 5 GeV muons they increase the value of the

bracket by only 0.0005 at Te = 150 MeV, but already
about 0.05 at Te=

émax = 1.5 G(N, approaching 0.5 for
higher energetic muons and ma)dmum energy transfer .)

The energy transfer to 8-rays above a limit Teo is
obtained by integrating the above expression :

7-mai d2N,
,)~To

	

Te dx dT. dTe
e

2 Tmax

DQa In 7-0
TIO

The restricted energy loss
The restricted energy loss is defined as the mean

energy loss including all single energy transfers below a
limit T,,°. It is the relevant quantity, if 8-rays above an
energy Te° are not measured or treated in a special way,
e.g . if they escape a given detector component.

It is usually cited [6,13] in the limit To << Temax as it
was found by Bethe [2] in the derivation of the formula
for the mean energy loss (1). We now deduce it from a
reverse procedure, nam,:ly by subtracting the amount of
energy transfcred above 7ë° (eq. (8)) from the rr:ean
energy loss (1), yielding.
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Compared to the result of Bethe our formula reveals an
additional factor ;1 + T°/T~`), which extends the
validity of eq . (9) t o all Teo < Temax provided that Teo is
large compared to the electron binding energies, and
creates a smooth continuation of the restricted energy
loss into the me<<n energy loss (1) as Teo = Temax. The
factor reduces for T° <_ Temax the calculated value for
the restricted en.-rgy loss by tip to -- 5% . Propagating
the spin-dependent terms, neglected in eq . (7), would
affect the result by less than 0.1% for Teo below 1 GeV.

2.1 .4 . The most probable energy loss
It' the energy loss distribution is not Gaussian, the

most probable: energy loss (AE) ma in a given layer 1)x
differs from (dE/dx)meanAx. According to Landau [7]
the most probable energy loss is approximately given by
the restricted energy loss of eq . (9), if the cutoff parame-
ter Teo is chosen to be
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yielding
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The contribution of energy transfers greater than ~ to
the most probable energy loss value is accounted for by
the numerical correction term 0.198, which raises the
peak position generally by about 1% . The final value of
this term was determined by Maccabee and Papworth
[8] . Formula (11) is only valid for thin layers such that
/Temax < 0.05 and (A E) mp << T, where T is the kinetic
energy of the incident particle . Provided the first condi-
tion is fulfilled, the latter one is implied for fly < 10 .

The physical meaning of ~ can be deduced from the
expression for the produced number of 8-rays above Te°

in Ax :
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i.e . on an average there is one 8-ray produced above an
energy ~. Simply spoken, the 8-rays below 5 contribute
merely to the energy loss peak position (0 E) mp , whereas
the 8-rays above ~ create the tail of the Landau distri-
bution .

2.1 .5. The density effect correction
It is well known, that the restricted (eq. (9)) and the

most probable (eq. (11)) energy loss via ionization and
excitation reach a saturation for highly relativistic par-
ticles . It has its origin in the polarization of the medium
by the incident particle and is called density effect . The
mean energy loss, however, keeps increasing, since the
rising maximum energy transfer Temax (see eq . (3)) to
single 8-ray electrons extends the tail of the Landau
distribution to higher energies .

After a first suggestion by Swann [9] in 1938 an
analytic expression for thG density effect was derived by
Fermi [10], which still suffered from the incomplete
knowledge of the dispersion law affecting the ßy and
material dependence in the region below saturation .
Sternheimer introduced a method [11] to calculate the
functional dependence of 8(fly) numerically from the
measured values of the mean ionization potential 1 and
the atomic absorption edges hw ; . Throughout the years
1952-1984 Sternheimer [11-15] obtained results for an
enormous number of materials. (In the most recent
pubrication [15] the correction parameters for a total of



278 substances are given.) The numerical results of
8(fly) were fitted for each material by the following
empirical expression involving the Sternheimer parame-
ters C, b, n, Yo , and Y1 * .

C=2 1n ( bw

	

+1,
P )

where h(,) p is given by

=LQ2

Z, . Jakubotivski, M. Kobel / Ar. verified upgrade of GHEISHA b 7

1/2
htop = (2mec2Dao)1

/2 = 28 .8 eV

	

p3 _Z
( g/cm A )

-

	

lim

	

dE

	

o =DQ 2 In'
2mec2To

p.-_ ( dx }7e<Te

	

hw< < P)

_ Teo
111/ Da

	

- l:V1dJt .
,\ o

(13)

The exponent n is found to be close to 3 for most
materials . The boundary momenta of the transition
range between the uncorrected energy loss without den-
sity effect and the saturation value are formed by the
parameters Yo and Y1 . The boundary condition at 13y =
Yo fixes tire parameter b to

b = (C - in Yo) In-!!) -- .

	

(14)
0

Finally, the parameter C is given by the fact that for
very high energies the energy loss no longer depends on
the mean ionization potential I but merely on the
electron density ne [10], expressed in terms of the
electron plasma frequency wP . The theory yields the
following expression for C which cancels the I depen-
dence of all three energy loss formulas for fl -y > Y,

(15)

(16)

and ao = b2/e2me is the Bohr radius .
Using eqs . (13) and (15) the saturation value of the

restricted energy loss becomes

The only material parameter entering via D is the
electron density .

* In comparison to the original Sternheimer parametrization
using _theparameters C, a . m, X0~, 11'1 our parameter set C,
b, n, Yo , Y1 is definer by : C = - C, b = a/(In 10)', n = m.
Yo =10 X°, Y1 =10 X - .
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Table l
Calculated and measured mean ionization potentials 1 (in eV).
For compounds, (Z) mas used in eq . (19)

MateriL I
Al Fe Cu Pb U Nal OGO

Formula (19)

	

163

	

285

	

314

	

826

	

923

	

343

	

439
Measured 1151

	

166

	

286

	

322

	

823

	

890

	

452

	

534

In the intermediate range Yo < IOy < }j the restricted
energy loss reads :
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The momentum dependence is governed by the
Sternheimer parameters Yo , Y1 , and n, which depend on
the absorption edges of the atomic spectra . For solids
and liquids the above expression covers the most im-
portant momentum range for typical high energy physics
experiments, since the fit yields Y parameters in the
range 1 < Yo < 3 and 10 2 < Y1 < 103 . For gases
Sternheimer finds values of 40 < Yo < 100 and 104 < Yj

10 5 .
Since the fitting procedure has to be performed for

each material separately, we call the result the density
effect expression from material fits . Its inherent errors
are expressed in ref . [15] by quoting the maximum
deviations at any point between the fitted expression
and the numerical values of S . For the various materials
they lie between 0.02 and 0.12 corresponding to errors
of the energy loss ranging from 0.1% to 0.6`x .

In 1971 Sternheimer introduced a general expression
for the density effect [13] valid for all materials but H_,
and He. It expresses all parameters as a function of C
and the aggregate state of the medium . Since C in turn
depends only on 1 and ne , it opened the opportunity to
derive the energy loss dE/dx completely without
numerically calculating and fitting S(fly) for the given
material, but rather using I and ne as an input . This
"general expression" is expected to be accurate for
d E/dx to about 1 °ßo with a maximum error of less than
2% over the whole momentum range .

In order to facilitate the calculation of ô(ßy) ever
more, Sternheimer proposed the following approxima-
tion [12] for the mean ionization potential I of materials
with Z >- 13 :

-- b In Y]
)n] .

(18)

58.8
I = (9.76Z + îUî9 ) eV .

	

(19)

As can be seen from table 1 the results of this expres-
sion match very well with the measured values from ref .

S = 0 for ßßy < Yo,
n

S=1n ß2y2 -C+bEInyYI for yo <ßy< Y,,

S = In ß 2y2 - C for Y, ~ ßl' .
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[ 15] as far as pure elements are concerned. However,

there may be substantial differences for compounds, if
one uses for Z simp'.y the arithmetic mean (Z) (see

table 1) . For the two compounds listed, this would
introduce errors of the order of 2% in the calculation of

dE/dx . The differences become somewhat smaller, if

one inserts the geometric mean of the components'
ionization potentials In 1= (Z In I)/(Z> rather than
a mean Z value.

?.1.6 . Single, plural, and multiple scattering
Charged particles traversing a finite material thick-

ness Ax undergo elastic scattering in the Coulomb
fields of the nuclei . The number of scatters S2 with a
scattering angle X, defined as the angle in space be-
tween the directions before and after the scatter, is
given by the Rutherford result in the small angle ap-
proximation

dQ 2X~
d -

where the square of the characteristic scattering angle

XC is

2Q2 Q2

X2 = 4-re4n � Ax Z 2 2

	

= 2DLAx Z 2

ß P

and n n denotes the number of nuclei per volume . For
compounds the replacements Z2 =

(Z2
), and DZ a

(Z2
) //(A," have to be made, respectively.
The validity of the Rutherford result is limited for

small X by the screening of the atomic electrons. Using
the ansatz V(r) = (QZe 2/r)exp( - r/r,,) for the screened
potential, a minimum scattering angle X,, can be de-
fined by

1z

X
3 '

Xu = Pr. .
u

The screening radius r, is usually chosen to equal within
a factor of 2 the Thomas-Fermi radius ro. The uncer-
tainty is expressed with the help of a scale factor p, :

For compounds Z113 has to be replaced by the
weighted geometric mean obtained from In Z1 / 3 =
(Z 2 In Z1/3\/(Z2/ . Tbt maximum scattering angle X~
above which nuclear form factors considerably reduce
the elastic Coulomb scattering probability is given by
the size r,, of the nuclei

X - Pr~ .
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(20)

(21)

(22)

(23)

(24)

which can be conveniently parametrized as

2
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(25)
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Using r,, = 1 .13 fm A' ' 3 [16] results in v = 0.40 .
Since X,,/X, =a2(ZA)1/3 << 1, where a = e2/hC is

the QED coupling constant, the total number of scatters
go above X,. can be obtained by integrating expression
(20) from XN, to infinity :
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Given the large uncertainty in the value of p, (compare
the lower values in refs . [18]), it is sufficiently accurate
here to simply insert for compounds their mean Z and
A values .

For pAx >_ 0.1 g/cm2 the value `n0 > 200 implies
that multiple scattering under small angles does occur.
It can be quantified most transFarently by the total
scattering angle projected on two perpendicular planes
containing the incident particle direction (referred to as
the projected angles 0 and 0) and the projected dis-
placements y and z in these two planes . The projected
angles are Gaussian distributed for small angles

2 e-2
/2 dq.

	

(27)

Here

	

n-

	

0/00

	

or

	

71 ---

	

/Oe 1, respectively, is the
reduced projected scattering angle, and 00 =',po is the
width of the Gaussian distributions * . The Molière
theory [19] of multiple scattering yields

0ô=X2B, (28)

where the Molière B parameter can be obtained from
the transcendent equation

B-In B=In 12,-0 .1544

	

(29)

and 0.1544 is twice the Euler constant minus 1 . Scott
[20] gives an approximate solution

B = 1 .153 + 2 .583 log,,,52,,,	(30)

which is accurate to 0.5% for 520 , in the range between
10 2 and 10 5 , and to 3% up to 20 = 104.

For scattering angles larger than about 2.500 the
Gaussian probability does not hold, since this region is
governed by plural scattering. Further away single
scattering dominates, and the probability distribution

* Note th_ difference of v2 in our definition of q, 00, and (P,
compared to other authors using p (TI) a exp( - 71

2
) .



approaches the Rutherford result of eq . (20), which
reads in terms of the reduced projected angle

P(rl) d7i = 4 dn

	

(31)
71

The small angle approximation is justified as long as
X v _< 1 implying p > 175 MeV/c A - t /3 .

Eq . (31), together with eqs. (30), (26), and (27),
shows that the relative amount of single scattering to
multiple scattering is nearly independent of the incident
particle momentum (as long as ß = 1), and only weakly
sensitive to the type of nuclei (via logto(Z4/3/A)) .
However, it varies logarithmically with the material
thickness pAx, which may span several orders of magni-
tude in different applications . The latter is a conse-
quence of the thickness dependence of the characteristic
scattering angle X, featuring that only one single scatter
larger than Xc occurs in a given material layer . The
range of single scattering angles X, contributing to
multiple scattering and determining the width of its
Gaussian distribution, is limited through Xc and thus
depends on p®x. If the root mean square angle of all
single scattering angles tip to the maximum angle X � is
mistaken as the width of the Gaussian, like in ref . [211,
the results on the relative amount of single scattering
becomes incorrect and the logarithmic dependence on
the material thickness disappears . Note, that eqs . (31)
and (27) include a factor of 2 due to restricting rl to
pvSi~ive values

	

definition *, aiir additionaditivlx,.. . . t1rr..,_cr. . . .In our d~.efiitiu
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= ( ~v )a2 (ZA) t13 Sl O B/2 .

	

(32)0 .885
For large enough DO the scattering distribution becomes
purely Gaussian, since 71max >> 1 does not hold any
longer . In the transition range to this limit the scattering
distribution depends perceptibly on the traversed
material (see section 2.4 .3), since the Gaussian limit is

_i :__ r,._ 1 .,_~,._reached earlier for car gger Z.A .

Although these calculations can be performed much
easier within the Molière-Scott formalism applied
above, most experimentalists prefer to use for the width.
of the projected scattering distribution the expression
given in ref . [61,

® _ 14MeV/c
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(33)

* This is also not treated consistently in ref . ',21] .
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It contains the radiation length Xo, which has basically
little to do with multiple scattering. The accuracy of eq .
(33) of roughly 10% is due to a fortuitous near-cancella-
tion of complicated Z dependences . and to the logarith-
mic correction factor introduced by Highland [221 . im-
proving the original formula of Rossi [231 .

The projected displacements y and :: are strongly
correlated with their corresponding projected scattering
angles 6 and 0 . In the small angle approximation they
are Gaussian distributed around the value, which would
have occurred for a single deflection by 8 at the point
Ax/2 and described by the probability density

1

	

(y - 8 Ax/2)2
p(y) dY -

	

~/6 00 Ax
exp

	

dv ._

	

2Î(00 Ax
/2)2

	

.

2.2 . The GHEISHA simulation of energy loss

The energy loss of charged particles other than e +
and e - is simulated in GHEISHA 6/7 in the following
way .

The particles are tracked in steps through the detec-
tor . The step size is chosen, depending on the mean free
path length X, for inelastic interactions of nucleons in

however, without the factor f32 for gases, and with a few
exceptions for unstable particles. The step size is further
reduced in those cases where the step would pass a
boundary of a detector cell. For each step an average
energy loss AE is calculated using, the formula

_AE

	

QZ

	

J 2m .i, 2 T~"'ax

dx
_-- D ß2

	

In'

	

~12
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(34)

with Îèm" taken Srom eq . (5) . This expression is similar
to formula (1), however, there is a factor of 2 in front of
8, and use is made of an -approximation for Temax which
is not valid fo!- highly relativistic particles . To obtain a
numerical value for the mean ionization potential !,
approximation (19) is used . The density effect parame-
ters are talon from their general expression (section

.5) .
The smearing of the energy loss AE is done by the

tor 2/ir in eq . (27) has to be slightly modified to
guarantee the overall normalization of p ( ,q).

the medium, to be

A strong material dependence, however, may be rß2X for ß2 >_0.01 .
introduced via. the maximum scattering angle A, The 20
single scattering tail extends only up to qm~,x , which is (35)

defined from the above equations by 0 .01 20 for p2 < 0 ..01,
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default version of GHEISHA 7 using a Landau distri-
bution of fixed shape

p(AE+0.31aA) dA

with a = 1

	

(0.85)

	

for A < 0 (> 0), whereas default
GHEISHA 6 uses Gaussian fluctuations

p(DE+aA) dA=

	

1
exp[ - ;A2] dA

	

(38)

for all materials, except gases and scintillators . In both
cases the width parameter a is given by

a

	

2
DE

_
ln(1 + D Ox/7 .5 eV) '

(39)

Since the way in which GHEISHA simulates Landau
smearing generates a mean smeared (AE)mean = AE +
0.66x, systematically higher than the initial DE from
eq. (36), GHEISHA 7 tries to avoid this incorrectness
by multiplying the smeared AE with a fixed correction
factox PARMAT(material,l) for each material. Its de-
fault value ranges from 0.86 to 1 .00 for solids, from 0.92
to 0.98 for liquids, and from 0.33 to 0.68 for gases .

Optionally, Gaussian fluctuations may be selected
by the user setting PARMAT(material,l) to a negative
value . In this case PARMAT(material,l) acts only as a
flag and no further correction is applied for the smeared
DE.

In addition to the smeared energy loss, 8-rays are
optionally produced in each step . Default GHEISHA 7
generates 8-rays only for muons, and only in gases and
liquids, whereas no 8-rays are produced in solids . The
user may switch the generation of 8-rays on or off via
PARMAT(material,3). Default GHEISHA 6 generates
no 8-rays at all, but in drift chamber gas . The produc-
tion rate of 8-rays in GHEISHA is described by

2 n2

d
x
dTe = Dz

	

2

	

for

	

Te < Temax

	

(40)
e

which misses the factor (1 _ .82
Te/Ten's") compared to

eq . (7) . Eq . (5) is again applied for Teml. The ejection
angle is taken from the nonrelatiiristic formula (6). The
8-ray threshold energy Te° is calculated from the default
8-ray range requirement of 1 cm . It can be changed by
the user via PHRMA i (" Ti ! " T/maiena1,41,) .

Multiple scattering is simulated in the Gaussian ap-
proximation of eq . (27) . The width is taken from eq .
(33) with a slightly modified parameter value of 15
MeV/c. After each step a displacement is calculated
according to

0 AX
l' =

	

2

	

,
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(41)

which neglects the Gaussian smearing around this value
with a width of 00 Ax/2F (see eq . (34)) .

2.3 . Muon samples for testing the energy, loss simulation

The various features of the GHEISHA simulation of
the energy loss of charged particles have been tested
with the help of two muon data samples from a non-
magnetic calorimeter, the Crystal Ball . The Crystal Ball
detector is a highly segmented spherical shell of Nal(Tl)
crystals covering 93% of the solid angle . Each crystal, of
truncated pyramidal shape, is 40.6 cm deep, correspond-
ing to 15.7 radiation lengths and about one nuclear
interaction length. The detector is described in more
detail elsewhere [24] .

Two [ . + [L - event samples with different muon en-
ergies were used . The high energy [t-pair sample comes
from the annihilation process e + e - --> 1i+ R- at beam
energies around 5 GeV. The low energy sample consists
of R-pairs produced in the two-photon reaction e + e - --
e+ e - R+ w- where the final state electrons escape the
detector under small angles . Here the muon energy
typically lies in the range from 200 to 500 MeV. The
selection criteria were designed to give unbiased distri-
butions of the muon energy depositions in the calorime-
ter [25] . The low energy muons were separated from the
high energy muons by the requirement not to reach the
TOF counters outside the ball, located in a distance of
typically 3 m from the interaction point .

2.3.1 . Monte Carlo event generation
In order to simulate the two ~L-pair samples with

Monte Carlo methods, we composed the high-energy
sample from the Monte Carlo generator ee - ww(y) [26]
together with the highest energetic li-pairs from the
Monte Carlo generator ee --> ee~t~t [27] according to the
corresponding cross sections . Likewise, the low energy
Monte Carlo sample was composed from ee - eepR
and ee - eeTrr. [28] events . These two samples were
subjected to the Crystal Ball detector simulation, the
data reconstruction, and analyzed with the same cuts as
the real data. The requirement of a missing TOF hit was
simulated by a cut on the muon kinetic energy after
passing them through the ball . After the selection proce-
dure the events from ee -> eeR[t contributed 7% to the
high energy muon sample whereas the events ee -> eeim
amounted to 8% of the low energy sample . All other
background was not exceeding 0.5% in both samples .

The detector response to radiative photons an"
knock-on electrons was simulated with the EGS 3 code,
whereas muons and pions were treated with the
GHEISHA 6/7 simulation .

2.3.2 . The energy lass distribution of the muons
Having two muon samples with low and high energy

muons, respectively, we are able to determine the rela-
tivistic rise of the energy loss peak positions between
the two samples . The high energy sample contains
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Fig. 1 . Monte Carlo prediction of the momentum distribution
for the Crystal Ball low-energy muon sample . The hatched part
describes the muons wbich traverse the ball, the other muons

range out in the calorimeter .

240 -

220
r

220 '~

'210

200 -

( AE ),-t ('%kN' )

monocriergetic muons with fly = 45, whereas the low
energy muons, according to the Monte Carlo prediction
(dashed line of fig . 1), are distributed essentially be-
tween ßy = 2 and ßy = 5 .

The theoretical prediction for the energy loss peak
position (AE)peak of muons in the Crystal Ball, as
shown in fig . :!, reveals three momentum ranges, which
have to be described by different expressions . Each of
them has a counterpart in the Crystal Ball muon sam-
ples, as will he seen from the measured distributions of
the deposited energy Edep , displayed in fig . 3 . The
deposited energy Edep of a particle is defined as the sum
of the energies over a symmetric group of 13 neighbor-
ing crystals including the local maximum at its center .
Here all energies are taken into account, which lie well

Z. Jakubowski, M. Kobel / A verified upgrade of GHEISHA 6/7

(arbitrary units)

10

	

::)0 100
f3 _V

Fig . 2. Prediction for energy loss peak positions of muons in
the Crystal Ball . The three curves show the kinetic energy (1),
the integrated mean energy loss (2), and the most probable
en,-rgy loss in thin layers (3) . The solid parts indicate the
momentum range, where the curves are relevant for the energy
logs peak position . The dots are the observed peak values of

Ed ep and their statistical errors.
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Fig. 3 . Energy deposited in the Crystal Ball . The open circles
show the low energy muon sample, the crosses the high energy

muon sample .

above the ADC pedestal, resul "Iing in a cutoff at about
0.35 MeV.

- The muons with fly :s 3 stop in the ball and
deposit all their kinetic ener-y T, so that

(AE)peak = T= mc 2 (11i0 272 + 1 - 1)

for any given value of fly, as depicted in curve no . 1 .
(Only 13% of the stopping R+ decay within the 300 ns
time gate of Crystal Ball data taking, and thus deposit
more than their kinetic energy * .)
The open part of the histogram in fig . 1 shows the
momentum distribution of the stopping muons in the
Crystal Ball low energy muon sample, obtained from
the Monte Carlo simulation . This part of the low energy
muons creates the broad distribution below the Gaus-
sian peak in fig . 3 .

- The Gaussian peak in the deposited energy distri-
bution of the low energy sample arises from the more
energetic muons, which manage to traverse the ball but
do not reach the TOF counters . Their momenta are
predicted to be essentially Gaussian-like distributed
around ßy = 3.5, as indicated by the hatched part of
the histogram in fig . 1 .
Their energy loss peak position cannot be described by
(DE) n,p

	

from

	

eq.

	

(11),

	

since

	

for

	

those low muon
momenta the Crystal Ball Nal crystals (Ax = 40.6 cm,

0.241 at ~~

	

s

	

r lc'ti the

	

.� ..UNar=McV~cm) do not tuttttl

	

conditions to
be a thin material layer :

11 MeV
~-max ( fly = 3 .5) = 12 MeVe

E .I .,, NeV i
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(42)

* The GHEISHA simulation of stopped j . - has been slightly
modified by the authors to account for the reduction of their
decay probability due to possible capture in atoms.
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and

A E

	

200 MeV-
T (Py = 3 .5) = 280 MeV

_ 1 .

For muons with 3 < ßy < 5 rather a Gaussian ap-
proximation * for the energy loss distribution is ap-
propriate in the Crystal Ball . Then the peak position of
the energy loss distribution can be obtained by simply
integrating the mean energy loss from eq . (1) :

(QE)p a � - ~40 .6 cm C dE
(x)~

	

dx.

	

(43)e

	

dx0 cm

	

mean

Using the density effect parameters from material fits
[151 yields curve no. 2 .

- For the high energy muon sample, however, the
Crystal Ball fulfills the conditions of being a thin layer :

10 MeV
T max (fly = 45)

_
1 .4 GeV = 0.007 < 0 .05

e

and

AE

	

0 .2 GeV
T (fly = 45) = 4.7 GeV

	

< 1 .

Thus the peak position in given by formula (11) for the
most probable energy loss in thin layers

(AE)peak = (AE)mp . (44)

The result is valid in the Crystal Ball for ßy >_ 15, and
yields curve no. 3, again using [15] for the density effect
parameters . In the intermediate range 5 :5,8y < 15 none
of our formulae is accurate .

The observed peak values lie at Edep = 202.9 ± 1.0
MeV for those of the low energy muons, which traverse
the ball, and at Edep = 217 .2 ± 0.4 MeV for the high
energy muons. Since Edep includes the final state pho-
ton radiation, an increase in Ax due to the finite vertex
distribution, and the detector calibration, which alone
may give rise to systematic errors of a few percent, their
agreement with the predictions is perfect .

The essential quantity to test a detector Monte Carlo,
however, is the difference between the peak positions,
since most systematic errors mentioned above cancel in
the subtraction . The sensitivity of this test can be seen
from the fact, that not only the three parts of the energy
loss distributions are described by three different ex-
pressions, but also that the predicted (AE)Peak of the

* For these momenta the possible 8-ray energies extend only
up to Temax < 2~, and the number of 8-rays above ~ will be
only AN,(T, >_ ~) < 1/6 (eq . (13)), and thus hardly add a
distinct tail to the distribution .
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muons of ßy = 3.5 lies on a curve with a steeply falling
slope . Therefore small inaccuracies in the detector simu-
lation and its d E/dx parametrization, but also in the
underlying momentum distribution from the generator
for ee - ee[tR, can change the simulated peak value
appreciably . To reproduce the relativistic rise of only
7% in the energy loss peak position from ßy = 3.5 to
ßy = 45 correctly, it is crucial to exactly predict dif-
ferences between d E/dx values for different momenta.
Thus the use of an accurate expression for the energy
loss is important, including a proper choice of the
density effect parameters, which govern the momentum
dependence of the energy loss in the relativistic range.

2. .3.3 . The lateral energy pattern of the muons
Another useful test of the GHEISHA detector simu-

lation is to compare the measured lateral energy pattern
of the muons with those of the Monte Carlo . Besides
the event vertex distribution along the beam axis, there
are two major reasons why the deposited energy is
generally not restricted to one single crystal : multiple
scattering and 8-ray production . While multiple scatter-
ing is the dominant effect for low-energy muons, the
8-rays govern the lateral pattern distributions for the
high energy muons. This makes it more easy to interpret
observed differences between the data and the default
Monte Carlo predictions .

Fig . 4 shows various measured distributions of pat-
tern fractions for both samples . They represent the
probability, that a given fraction of the deposited en-
ergy Edep was distributed among 1, 2, or 4 crystals, and
are called Ft , F2 , and F4 pattern fractions, respectively .
For the Ft and F2 fractions the crystals with the highest
energy deposits are used, whereas the 4 crystals include
the one with the maximum energy deposit and its three
nearest neighbor crystals. A general feature is, that the
low energetic muons tend to extend their energy deposi-
tions over more crystals, which results in a tail to lower
pattern fractions .

2.4. Changes in the GHEISHA code and resulting im-
provements

In the following we propose changes and corrections
to the GHEISH- code, which are motivated by the
observed differences between the GHEISHA simulation
formulae (section 2.2), and the theoretical expressions
(section 2.1) . We will validate the corrections by testing
the results with the help of our data distributions .

The changes concern the items 8-ray simulation,
energy loss dE/dx and its fluctuations, and scattering .
In order to disentangle the effects of different changes,
we will study each item by leaving the simulation of all
other items in their final form .



2.4.1 . The 8-ray simulation

	

4) Use the more exact 8-ray production rate (7) . (In
Our changes in the GHEISHA 8-ray simulation are :

	

GHEISHA 6/7 the factor (1 - ß'`Te/Temax ) is miss-
1) Produce 8-rays in solids, too . (GHEISHA 7 gener-

	

ing in eq. (40) .)
ates them in gases and liquids, only.)

	

5) Use

	

the

	

correct

	

relativistic

	

ejection

	

angle (4) .
2) Subtract the 8-ray energy from the energy of the

	

(GHEISHA 6/7 uses the nonrelativistic limit (6) .)
tracked particle . (This was simply forgotten in

	

All these changes are made in the subroutine DEL-
GHEISHA 6/7.)

	

RAY. The influence of these changes on the lateral
3) Use the correct relativistic formula (3) for Temax.

	

energy pattern distributions from fig. 4 is demonstrated
(GHEISHA 6/7 uses the approximation (5) .)

	

in the following way : Integrating these distributions
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Fig . 4. Distribution of energy pattern fractions as observed with the Crystal Ball detector. The distributions on the left-hand side are
obtained from the low e-aergy muon sample, those on the right-hand side come from the high energy muon sample . For the

definitions of variables see the text .
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from right to left, we get the probability (or cut ef-
ficiency) for a muon, having at least a certain fraction
of its deposited energy distributed among 1, 2, or 4
crystals (see fig. 5) . These efficiencies are compared
with the predictions from several Monte Carlo versions .

Change 1). For a finely segmented detector like the
Crystal Ball, the lateral energy pattern of charged par-
ticles cannot be described without an explicit simulation
of 8-rays, since these knock-on electrons may easily
extend their electromagnetic showers into the adjacent
crystals . This is proven by a large difference in fig. 5
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between the integrated pattern fraction distributions of
the data (crosses with error bars) compared to the
GHEISHA simulation without 8-rays (dotted curve)
especially for the high energy muons. The effect on the
low energy muons is much smaller, since their Temax

ranges from only 2 to 25 MeV, whereas Temax(p
Y
= 45)

=1 .4 GeV .
Switching on the GHEISHA 8-ray simulation with a

range parameter PARMAT(Nal,4) = 0.6 cm corre-
sponding to a threshold energy of To = 2 MeV, we
obtain the dashed curves in the integrated pattern distri-
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Fig. 5 . Efficiency e vs cut on pattern fraction for the low energy muon sample (left-hand side), and the high energy muon sample(right-hand side). Crosses are the Crystal Ball data, solid line is the final Monte Carlo simulation, dots are Monte Carlo without
6-rays, and dashes are Monte Carlo with default GHEISHA 8-rays.



butions . It tends to underestimate the efficiency for the
high energy muons by - 5% in the most commonly
used cut value range below 0.96 . Especially the F4
pattern fractions show a clear difference to the data .
This difference will be substantially reduced by our
following changes :

Change 2) . For the Crystal Ball muon samples this
fix does the least change on the lateral pattern as well as
on the energy loss, since in general Te << T holds . Only
for particles with Te

rra" - O(T), i .e . ßy > m/2me one
would expect sizable effects .

Change 3). The correction of the Temax formula is
very small for the low energy muons . Yet, for ßY = 45 it
reduces Te

rra" by 30% from 2.0 to 1 .4 GeV. For fly >
m/2me, e.g. muons of 11 GeV or more, the GHEISHA
formula (5) would even violate energy conservation,
since then Temax

> T.

For our muon samples, however, this fix plays a
vanishing role, since we selected them by requiring the
deposited energy of each muon to be less than 400
MeV, restricting the encountered 8-ray energies to val-
ues below 200 MeV.

Change 4) . The factor (1_.82T,,/T,`) has a big
influence on the 8-ray production rate near Temax . While
we again are not very sensitive to this region in the high
energy muon sample, the simulated 8-rays for the low
energy muon sample in fact all lie in the range of
(0.1-1)Te

maX . Thus this modification has a perceptible
influence on the pattern fractions simulated for the low
energy muons.

Change S) . Of about equal influence for the low
energy muons is the use of the correct formula for the
8-ray ejection angle . However, for the high energy muons
it causes by far the most important effect on the pattern
distributions . This can be seen from fig. 6, where cos 8
is plotted versus Te for both the relativistic (4), and the
nonrelativistic formula (6) indicated by solid and dashed
lines, respectively . For a 20 MeV 8-ray, one finds e.g .

0 .8

0 .6 -

0 .4 -

02
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Fig . 6 . Theoretical ejection angle for 8-rays . The broken lines
result from the nonrelativistic approximation (6) . the solid
lines show the prediction of the correct relativistic formula (4) .
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for ßy = 45 almost orthogonal 8 values of cos 0 = 0.10
(nonrelativistic), and cos 9 = 0.98 (relativistic).

After applying these five changes to the GHEISHA
8-ray simulation we observe a very good agreement of
1-2% between the integrated pattern fraction distribu-
tions of Monte Carlo (solid line in fig . 5) and data
(crosses) below 0.96. Only for pattern fraction values
near 1 deviations up to 15% for the low energy muons
and 5% for the high energy muons still remain. These
regions correspond to energy depositions of less than 8
MeV outside the considered crystals, which may be
caused by photons radiated off by the final state muons .
We estimate, that an appreciable part of the difference
for the low energy muons can be explained by this fact,
since only the event generator for the high energy muon
sample includes final state radiation . A further sys-
tematic effect for the low energy sample is introduced
by the selection requirement of F2 = 1 for one "tagging
muon", which was applied to suppress background from
ee - eeee . Exactly at this value the simulated pattern
deviates most from the data. Due to the pattern-energy
correlation for the "tagging muon" and the energy
correlation between the two muons, the energy distribu-
tions of the other muon, used for the pattern compari-
son, may become different for data and Monte Carlo.
enhancing already existing differences in the pattern
fraction distributions . Finally, an additional systematic
error of about 1 % for the integrated pattern fractions of
the low energy muon sample arises from the uncertainty
in the Monte Carlo modeling of the TOF cut . Thus the
patterns of the low energy muon sample cannot really
test our changes quantitatively on the percent level, but
rather show the relative influence.

The remaining differences in the high energy sample
may be attributed to inaccuracies in the event genera-
tors, in the EGS 3 shower simulation, the ball geometry
code, or other error sources .

However, altogether fig . 5 justifies and confirms the
correctness of our changes by clearly showing an im-
provement over the default GHEISHA pattern simula-
tion with and without 8-rays through our corrected
8-ray simulation .

2.4.2 . The energy loss dE/dx and its fluctuations
Our changes, wh%-h affect the energy loss distribu-

tion of charged particles are :
1) Explicit and correct simulation of 8-rays (see section

2.4.1, changes 1) to 5)) ;
2 ; Gaussian fluctuations (38) for the remaining dE/dx-

(GHEISHA 7 uses Landau fluctuations (37), regard-
less of whether 8-rays are simulated, or not) ;

3) Use of the restricted energy loss (9) with T° as
threshold for the 8-ray simulation (GHEISHA uses
the mean energy loss (36) with a doubled density
effect correction, regardless of whether 8-rays are
simulated, or not) ;



72

4) A value of the density effect parameter C = 6.06 [15]
for NaI (GHEISHA uses C(NaI) = 3.46) ;

5) Use of the measured mean ionization potentials (ta-
ble 1) (GHEISHA uses the empirical formula (19)) ;

6) Use of the density effect parameters from material
fits (see section 2.1 .5) (GHEISHA uses the "general
expression") .

Changes 1) to 3), and 6) refer to the subroutine DEDX,
change 4) is implemented in the material block data,
and change 5) in the subroutine MATTER).
We will now study the influence of these changes on

the simulation of our two muon samples. For the fol-
lowing comparisons we first adjusted the peak position
and width for the energy loss distribution of the high
energy sample to match with the data within the statisti-
cal errors of 0.3% and 3%, respectively. This was done
by applying a dE/dx correction factor of J PARMAT-
(material,l) 0 also in case of Gaussian fluctuations
(selected by a negative value of PARMAT(material,l)
as described in section 2.2), and by introducing a cor-
rection factor PARMAT(material,5) for the width in eq.
(39). Thus the most probable energy loss of the high
energy sample acts as a reference point for the peak
position of the Gaussian part of the low energy muon
energy loss distribution .

For

	

a

	

correct

	

dE/dx

	

simulation,

	

the

	

factor
PARMAT(material,l) should be very close to 1, and
deviations, e.g . due to systematic detector calibration
errors, should be less than a few percent . Having
eliminated this overall systematic erros via PARMAT
(material,l), the peak position of the low energy sample
can be studied with high enough accuracy to test whether
the simulation reproduces the 7% relativistic rise in the
energy loss peak position between the two samples .
We study the effect of these changes by means of the

generated energy loss distributions in fig . 7 . Table 2 lists
the corresponding values of peak position and width for
the low energy sample, and the correction factors for
the high energy sample .

Change 1) . Simulating the energy loss in a given
detector component, GHEISHA adds up randomly
smeared energy losses in a couple of steps . As long as
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Fig. 7 . Simulation of muon energy depositions in the Crystal
Ball . The results for the low energy muons are shown in the
upper plot, those for the high energy muons in the lower plot.
Crosses are data, lines represent Gaussian fits to the results of
various versions of Monte Carlo simulation . In the upper plot
we added another Gaussian with fixed position for the contri-
bution of the stopping muons, in the lower plot we used power
tails to describe the 8-ray contribution on the right-hand side,
and the small tail on the left-hand side caused by gaps in the

detector. The resulting fit parameters are listed in table 2.

the form of the random fluctuations in the single steps
does not depend on the step size, but is fixed as in eq.
(37), the result from a sufficiently large number of steps
is a Gaussian distribution around the sum of the mean

llllSimulation1V11 Vo± energy loss peak position

Version
(symbol in fig. 7)

and width TI1e err(1rS

IQY = 45
Peak
correction
IPARMAT(NaI,1)

given are on1v

Width
correction
PARMAT(Nal, 5)

fly - 3.5
Peak
position
[MeV]

Deviation
from data
[%]

Width
[MeV]

Default GHEISHA (dotted) 0.780 3.8 216.9±2.6 +6.9±1.4 23.7±1.5
After change 1) (dashed) 0.745 2.9 201.9±2.0 -0.5 ±1 .1 20.1±1 .5
After changes 1-5) (dashed-dotted) 0.975 1 .9 196.7±1 .3 -3.1+0.8 17.0±1 .2
After all changes (solid) 0.995 1 .9 201.5±1 .8 -0.7±1.0 17.7±1.4
Data values (crosses) 202.9±1 .0 17.5±0.8



values of the distributions for the single steps, as fol-
lows from the central limit theorem . The dotted curve in
the lower plot of fig . 7 shows this behavior for the about
20 steps in the NaI crystals of the Crystal Ball : Even
though the single energy losses are smeared according
to the Landau fluctuations (37), the summed result
appears to be Gaussian and cannot decribe the ob-
served data (crosses) . In addition the decrease in the
peak position for the 18Y = 3.5 muons (upper plot of fig.
7) is not observed . Compared to the data the peak
position for the low energy muons is thus about 7% too
high (see table 2) and the width is incompatibly larger .
It is important to note, that this result moreover de-
pends on the chosen simulation step size : The peak
position is determined by (AE).,.� in the single steps,
which has been shown in section 2.2 to depend on a
and thus on Ox.

Switching on 8-rays explicitly improves the simula-
tion considerably (dashed curves in fig . 7). The high-en-
ergy muons are well described with a peak correction
factor 0.74., which also reproduces the low-energy
muons peak position . Their width deviates by 1.5 s.d .
from the data value. This result, however, is based on a
purely fortuitous coincidence of several parameters in
our given case (see below). It depends on the chosen
step size as well as on the 8-ray threshold To . Since the
GHEISHA step size can vary by more than two orders
of magnitude for different materials, different particles,
or even for the same particle type at different momenta,
it is impossible, even including a fixed correction factor
PARMAT(material,l), to get a satisfactory description
of the energy loss for all particles at all momenta with
this simulation . As will be shown, both unwanted de-
pendences are removed by applying our changes 2) to
5) .

Change 2). The dependence on the step size Ax can
be removed by choosing Gaussian fluctuations for the
energy loss below To . Then the (AE)mean below To

does no longer depend on the stap size, and the larger
energy losses get the proper step size dependence via the
8-ray simulation. In addition the shape of the energy
loss in each step is correct, as long as To is not much
larger than the width a of the Gaussian . This leads to
the rule, to choose for To a value close to a as calcu-
lated from eq. (39) for the typical GHEISHA step size
Ax in the given material. (e.g. for A(Nal) = 2 cm and
18=1 we choose To = a = 2 MeV.) However, provided
enough computer time is available, one may reduce To
below this limit in order to simulate 8-ray effects, like
the lateral energy pattern, more precisely, or to ensure
correct fluctuations even for tiny steps .

Changes 3, 4). Change 3) guarantees the indepen-
dence of the amount of energy loss from To . The
addition it introduces the theoretically correct formula
for d E/dx as a function of the particle momentum.
This brings the peak correction factor PARMAT(niate-
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rial,l) to the expected value of about 1 for all materials,
given the right material parameters (see changes 4-6)
for our case of NaI) .

The fact that the default GHEISHA simulation with
explicit 8-rays described our two muon samples rea-
sonably well was due to the cancellation of four errors,
as can be seen by confronting the theoretically correct
formula from eq. (9)

DE = DQZ Ox [ln( 2mecZTo
182

	

I2

	

l -Y

To

	

)

-ß2

(
1 +

Te
mx

)
-81,

with the expression (36) used by GHEISHA
2

DE = PARMAT(mat.,l) D Q2 Ox
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The use of Te" = 2mec 218 2y2 instead of To = 2 MeV
together with the doubled density correction S from eq .
(13) resulted in a plateau value for high momenta as
expected from the correct formula . The resulting error
in the amount of the relativistic rise was approximately
cancelled by the wrong density effect parameter C
(change 4)), and the overall amount of dE/dx was
corrected by PARNIAT(Nal,l) . As pointed out above,
this approximate cancellation happened just by chance,
given our special testing samples, Teo parameter choice,
and detector setup .

Change S). The correction of the mean ionization
potential for Nal affects the total amount of dE/dx by
about 2% (see section 2.1 .5), but has negligible effect on
the momentum dependence of dE/dx. Since I and C
are related via eq . (15), only one of both parameters is
needed on the_material input file. As GHEISHA al-
ready offers C on this file, we calculate I from C
according to

1= hwP e«-1 i/ 2 .

	

(47)

The resulting energy loss distributions after changes
1-5) are displayed as dashed-dotted curves in fig. 7 .
'Table 2 shows, that the width of the low energy sample
now fits the data well . However, the peak position is too
low by about 3%.

Change 6). Our final change is the replacement of the
density effect parameters for Nal from the "general
expression" (see section 2.1 .5) by those from material
fits [15], as listed in table 3 . Note that the parameters n,
Yo , Yl , and b are highly correlated, and that even a
large variation of these parameters may change the
result only marginally . For the Crystal Ball muon sam-
ples the modification results in a decrease of the simu-
lated relativistic rise between the two samples from
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Table 3
Density effect parameters for Nal

C n Yo

P(7l) (V)
100.00
50.00

10.00
5 .00

1 .00
0 .50

0 .10
0.05
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Y, b
General

expression

	

6.06

	

3.00

	

2.86

	

1.00 x 10 3

	

1.97 X10-2
Material fits

	

6.06

	

3.04

	

1.32

	

3.91 X 103

	

0.99X 10-2

10.49 (20.5 MeV) to 7.89 (15.7 MeV), in good agree-
ment with the observed value of 7.0% (14.3 MeV). The
simulated energy loss distributions after all changes are
indicated by tic solid lines in fig . 7 . The size of the
decrease is consistent with the expected uncertainty of
the "general expression" for the density effect (see
section 2.1 .5) .

The final parameter for the Gaussian width adjust-
ment has the value of 1.9. It accounts for inaccuracies in
the amount of the simulated dE/dx fluctuations as
well as for the detector resolution of the Nal crystals for
ionizing particles . We cannot test the validity of eq. (39)
for Gaussian dE/dx fluctuations, since the energy reso-
lution for ionizing particles in the Crystal Ball is not
known . That is the reason why we did not separate the
detector resolution into the routine MRKRSP, but
rather included it in our width correction factor
PARMAT(Nal,5) in routine DEDX. For Landau
fluctuations of energy losses below T°, applied in the
first two Monte Carlo versions listed in table 2, how-
ever, is appears impossible to reproduce both widths of
the high and low energy sample with a single correction
factor .

0 1 2 3 4 5

Altogether the changes 1-6) generate a consistent
simulation of dE/dx and its fluctuations, with no
additional correction factors dependent on particle,
momentum, or material, besides those arising from de-
tector resolution . The simulation describes the energy
loss distribution correctly independent of the actual
simulation step sizes . This is confirmed by a comparison
with our data, which also shows that a proper choice of
the density effect parameters is necessary for precise
d E/d x simulations.

2.4.3. The simulation of scattering
For the scattering simulation of GHEISHA we pro-

pose the following changes of the subroutine SCAT:
1) A smearing of the displacement according to for-

mula (34) (GHEISHA neglects it).
2) Additional simulation of single scattering by com-

bining eqs . (27) and (31) (GHEISHA uses the purely
Gaussian approximation (27)) .
In order to simulate single scattering, we use for the

probability density of the reduced projected scattering
angle q a smooth transition of a Gaussian into a 1/,q 3
distribution. To model the influence of the finite nuclear
size, we assume a sharp cut of the total scattering angle
at X, given by eq. (24) . For simplicity we divide the
complete scattering distribution into a Gaussian part
from multiple scattering and an excess over the Gaus-
sian at large reduced angles n, regarded as originated
from single scatters . Only the latter part is cut at Xv,
neglecting possible entries from plural scattering .

The resulting probability distributions of the reduced
projected angle ar-1 displayed in fig . 8 for the materiags

7 8

AI

0 10 11
17

Fig. 8 . Probability density of the reduced projected scattering angle. The dots represent a purely Gaussian distribution describing
multiple scattering. The lines show the inclusion of single scatters for different !2 � values in different materials. The wiggles are due

to limited Monte Carlo statistics .

0.01 _

Al
Nal
U



Al, NaI, and U for three different numbers of scatters
12 0 (compare eq. (26)) . The values 920 =1000, 5000, and
30000 correspond for ß =1 to step sizes of 0.07, 0.35,
and 2.1 cm in Nal, respectively. The curves clearly show
the dependence on 12 0 and on the material as expected
from the discussion in section 2.1 . For j20 ::S 103 the
distributions reveal a pronounced tail of single scatters,
independent of the material, but logarithmically increas-
ing with falling 120 . For 12 0 > 10 5 an approximately
Gaussian distribution will be observed for all three
materials .

The GHEISHA choice of Ax (eq. (35)) results in a
constant 120 value for solids and fluids independent of
the particle and its moiaentum down to (3 = 0.1 . The DO
values for the default step sizes range from 15 000 for
Al, over 30 000 for NaI, to 60000 for U. Thus the above
study shows that the Gaussian approximation for
scattering used by GHEISHA is valid to good accuracy
for materials with Z > 30 . For lighter materials, like Al,
fig . 8 indicates sizable deviations from this approxima-
tion . Only in cases when a cell boundary is crossed and
the default step sizes are reduced, which however may
frequently happen in finely segmented calorimeters,
single scatters may gain influence also for heavier
materials .

From this discussion, one expects the influence of
the changes in the scattering simulation on the Crystal
Ball muon energy pattern to be very small . Indeed,
neither the high energy muons are affected, nor are the
F2 and F4 pattern fractions of the low energy muons.
Only in the efficiency simulated for cuts on the Fl
pattern fraction of the low energy sample (see fig. 9) a
change of up to 2% is observed.

This effect is just at the border of statistical signifi-
cance, given the amount of Monte Carlo events. Of

,F(F� > F,," )
0 .9
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course we cannot test the parameters tL and v in this
way, which describe the boundaries of the validity range
of the Rutherford formula (20), and influence the rela-
tive abundance of single scattering compared to multi-
ple scattering .

3. Simulation of hadronic interactions

75

The correct simulation of hadronic interactions is of
course a even more complex problem than the simula-
tion of energy loss and scattering . The huge variety of
hadronic processes covered in GHEISHA, and a lack of
precise predictions from theoretical models render in
many cases a comprehensive comparison between the-
ory and simulation virtually impossible .

Important information on the ability of the Monte
Carlo package to reproduce the detector response to
strongly interacting particles, emerges from a compari-
son with test measurements . They were performed with
pion beams (both ir+ and it- ) at CERN using a test
setup built of exactly the same NaI(T1) crystals as the
Crystal Ball detector [29]. For further study of hadronic
interactions the Crystal Ball detector offers only global
event features of multihadron events, like the amount
and distribution of deposited energy, since it has no
ability of particle identification . The predictions for
these event shape variables, however, do not only de-
pend on the detector simulation, but also on the event
generator . We used the Lund generator, version 6.2 [301,
to model the reactions e+ e - -hadrons and e +e - -
T(1S) - hadrons .

As will be described in the following, a careful
interpretation of discrepanciti between these measure-
ments and the Monte Carlo simulation has finally en-

-3 .5

1 .0 0.7

	

0.8

	

0.9

	

1 .0
F

1
"t

0.9

0.7

0 .5

0.3

Fcuf
2

Fig. 9 . Influence of scattering on pattern cut efficiency . Crosses represent the data, the solid line the final MC simulation, while for
the dashed line no single scattering was simulated .
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abled us to find insufficiencies in the GHEISHA simu-
lation of hadronic interactions even without particle
identification.

3.1 . Comparison of the Crystal Ball data with the Monte
Carlo

The multihadron event sample taken by the Crystal
Ball group [311 was used to test the simulation of the
hadronic interactions of the GHEISHA Monte Carlo
[32,331 . Figs . 10-12 show some distributions with strik-
ing disagreement between the multihadron data and the
standard version of the GHEISHA simulation .
We analyze the event shapes using the momentum

tensor Q"R :

N
Qali -

	

p2sa/3 . papß,

=t

where p = (p", py, p Z ) is a pseudo momentum vector
formed from the product of the energy deposited in the
crystal and the unit vector of the crystal axis . The sum
runs over all illuminated ball crystals (N) . The smallest
eigenvalue obtained by diagonalizing the tensor Q'O is
denoted by pT_jet . The Monte Carlo prediction for the
PT-jet distribution is shown in fig. 10 together with the
one obtained from the hadronic data taken in the
continuum at W = 9.39 GeV. In addition we display the
input distribution without detector response, calculated
from the momenta of the generated particles after frag-

arbitrary- units
0.15

0.10

0 .05

0.0

a, a E ( X, y, Z 1,

	

(48)

0.0
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mentation . As can be seen, the measured P2
-jet distribu-

tion is governed by apparatus effects .
However, also the p2 input distribution influences

the observed pT_iet, since about two thirds of the hadrons
undergo strong interactions in the Crystal Ball calorime-
ter, and deposit energy correlated to their momenta. In
order to obtain agreement with the data we would have
to shift the input width a for the pT used in the Lund
fragmentation scheme (2a 2 = (pT >) from 400 to 150
MeV. To get a similar agreement for the T(1S) reso-
nance data we would have to make an even more drastic
change - to the level of 50 MeV. Such a huge deviation
from the default Lund value indicates that there have to
be other reasons for the observed discrepancy.

In the Crystal Ball a cluster is defined as a group of
geometrically adjacent crystals, each having at least 10
MeV deposited energy . Fig . 11 shows the distribution of
the cluster energy of the multihadron events at W= 9.39
GeV . The Monte Carlo distribution is shifted towards
higher energies with respect to the experimental data.

Taking these two facts together suggests that the
energy deposited away from the jet axis is overestimated
by the GHEISHA detector simulation . An inspection of
the charged particle spectra generated by the fragmenta-
tion models of multihadron events reveals a large frac-
tion of particles supposed to range out in the Crystal
Ball calorimeter, and gives rise to the expectation, that
it is very important to treat stopped particles correctly .
For debugging purposes we invented a test Monte Carlo
simulation, where negative pions were not allowed to
interact strongly after stopping. The fact that the agree-
ment between data and Monte Carlo improved (see fig .

--- data

- - - standard GHET-,iA

input without detector response

0.5 1 .0
1)2

	

_j, t

	

(
(
;(.N-2/C2

Fig . 10. The pT-yet distribution for the continuum data . The continuous curve shows the Crystal Ball data, the dotted one the input
distribution from the generated particles after fragmentation with a = 400 MeV, and the dashed line marks the detector response

simulation by standard GHEISHA.
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Fig. 11 . The distribution of Ecluster, where each cluster in an event gives an entry. The Crystal Ball data are represented by the
histogram . The crosses are the result of the Monte Carlo simulation. The peak at - 200 MeV is due to the purely ionizing particles .

For the arrow see section 3.2 .3 .

12), reinforces our expectation . In fact, a close examina-
tion of the GHEISHA 6/7 code revealed shortcomings
in the treatment of stopped ir- and K - . Below we will
outline the changes which we applied to get a better
agreement between data and Monte Carlo.

10

	

50 100

	

500 1000

	

5000
E,Iuster (MeV )

50 100

3.2 . Changes of the GHEISHA 6 / 7 code

Our proposed changes in the GHEISHA code, rele-
vant for the simulation of hadronic interactions, cover
the fields of negative particle absorption, light quench-

standard GHEISHA

-- Crystal Ball data

	

_

T

500 1000

	

5000
Eclustcr ~~'~P~ )
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Fig . 12 . The distribution of Eejuster for a test Monte Carlo simulation, marked by crosses, where negative pions are not allowed to
interact strongly after stopping. The histogram represents the same data as in fig. 12 .
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Fig . 13 . The pulse height spectrum for 200 MeV/c ~+ in a
Nai(Tl) crystal test setup as measured by ref. [29j .

ing in scintillators, and neutron capture . Of course also
the changes described in section 2 are of influence, since
all energy depositions in the calorimeter finally proceed
via the energy loss of charged particles . In all the
following studies we used the final version of the cor-
rected energy loss simulation as described in section 2 .

3.2.1 . Absorption of negatively charged particles
Positively charged particles stopping in matter sim-

ply decay because the Coulomb barrier between the
particle and the nucleus prevents nuclear interactions .
For slow negatively charged particles ( ~", K", ~", etc .)
the dominant process is the absorption by nuclei . The
Crystal Ball detector response simulation is particularly
sensitive to the pion and kaon absorption, as these are
the most frequently produced particles. We expect to
find on an average about eight charged pions and one
charged kaon in a multihadron event at c.m. energies
around 10 GeV.

Data from a test setup [29] built of exactly the same
NaI crystals as the Crystal Ball detector were used for a
comparison with the GHEISHA simulation . The test
module was exposed to 200 MeV/c positively and
negatively charged pion which stop in the detector . The
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disagreement with the GHEISHA simulation (figs . 15
and 16) for negative pions while the positive pions agree
reasonably . Although the scales differ (MeV and "ADC
channels"), the comparison contains an important mes-
sage : For ~r+ and ~_ the measured energy depositions
peak at the kinetic energy of the incident particles,
whereas the Monte Carlo predicts for stopping ~"
mesons a peak at the total energy of the incident
particle . This indicates a serious shortcoming in the
simulation code . For a proper simulation we need pre-
cise experimental data including not only the measure-
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Fig. 14 . The pulse height spectrum for 200 MeV/c ~" in a
NaI(Tl) crystal test setup as measured by ref. [29j.

went of the total energy deposition but also of particle
multiplicites and energy spectra in ~- absorption
processes. Such a measurement was done in connection
with a recent cancer therapy study [34] at SIN in
Switzerland . The experimental results can be sum-
marized as follows :
1) Only _ 759b of the pian mass is available for the

kinetic energy of the particles emitted after the ab-
sorption process . The rest goes into binding energy .

2) Most of the energy is carried away by neutrons (see
table 4) .

3) The momentum spectra can be parametrized ap-
proximately by an exponential function : - exp
( -pc/200 MeV).

An important number is the ratio 5 :1 between the
number of neutrons and protons . The GHEISHA
parametrization assumes this ratio to be - 1 :1 . Ad-
ditionally the ratio of protons to heavy fragments was
overestimated, and the entire mass of the ~- was
assumed to be available for the kinetic energy of the
produced particles.

Table 4
Features of particle production in the process of ~" absorp-
tion on "C according to ref . [34j

Particle
type

Average
multiplicity
per ~r" stop

Average released
kinetic energy
per ~r" stop [MeVj

n 2.5 76.0
p 0.485 10.4
d 0.356 6.3
t 0.249 3.0
He 0.84 6 .2
6Li 0.12 0.8
~Li 0.12 0.8
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Fig. 15 . Default Monte Carlo prediction for the energy distribution
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Fig. 16 . Default Monte Carlo prediction for the energy distribution of all clusters created by 200 MeV/c m - stopping in the Crystal
Ball. One pion may give more than one entry.

This allows for a qualitative understanding of the
discrepancies between our data and the GHEISHA
predictions for the pT-. ;et distributions. Particles with
large pT usually have lower energy and are stopping.
GHEISHA releases a too large fraction of their energy
to too many charged secondary particles . This over-
estimates our measured (pTiet> in the Monte Carlo
simulation . The effect is enhanced by the missing simu-
lation of light quenching in NaI (see section 3.2.2 be-
low).

default GHEISHA

200 .0 300.0
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Ecluster (MeV)
of all clusters created by 200 MeV/c ir+ stopping in the Crystal
more than one entry.

The absorption routine PIMABS was completely re-
written using the measured experimental input. Due to
the hermetic structure of the GHEISHA program, al-
lowing for production of fragments heavier than He, is
not trivial . We decided to generate all fragments as
given in table 4 but afterwards to exclude fragments
heavier than He from further tracking . This decision is
motivated by the low abundances of the heavy frag-
ments and the observation that the measured energy
deposition of heavy fragments will be suppressed by
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of the simulated cluster energy spectrum for stopping ir- (crosses), obtained with the modified absorptionFig . 17 . Comparison
routine PIMABS and default neutron tracking, with the measured one from ref . [29] (solid curve) .

light quenching in the scintillator . To our knowledge the
dependence of the absorption process on the mass of
the nucleus was studied neither experimentally nor the-
oretically . We decided to use directly the results on '

,
`C

[34] .
The comparison of the visible energy spectrum ob-

tained with the modified Tr - absorption routine with
the test measurement [29] is shown in fig. 17 . The
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distributions have been normalized to each other to
agree in peak height . The energy scale of the test data
has been set with the help of the Tr+ peak positions .
The continuous line shows the shape of the experimen-
tal distribution (the same as in fig. 14), while the crosses
indicate the results of the simulation . It now gives the
peak in the Tr - spectrum at the expected position .

However, we still observe clear differences above

++ GHEISHA with modified PIMABS
and no neutron tracking

-- test measurement

,4 4,

Eclueter
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Fig. 18 . Comparison of the simulated cluster energy spectrum for stopping ir - (crosses), obtained with the modified absorption
routine PIMABS and neutrons excluded from tracking, with the measured one from ref. [29] (solid curve).



and below the peak region . As will be discussed in more
detail in section 3.2 .3 ., the simulated range of neutrons
is underestimated, and the photons emitted in neutron
capture are too energetic in GHEISHA. Thus the neu-
trons contribute more energy to the iT

- clusters than in
reality. In addition those neutrons, which leave the iT

-

cluster region, may create additional low energy clusters
when they are captured further away. Those additional
clusters clearly show up as a peak at low cluster energies
in figs. 16 and 17 . As a first test of this assumptions we
excluded the neutrons from tracking, which results in
fig. 18 . Now also the energy depositions above the peak
are well described . The broad enhancement below the
peak in the measured distribution cannot be explained .
It might well be due to beam impurities since muons
from the decay of 200 MeV/c pions have a kinetic
energy of several 10 MeV.

Similar problems occur in the treatment of stopping
K-. Negative kaons can form hypernuclei or produce
other strange particles. The assumption of GHEISHA,
to perform only K- p --> Air° and K- p -+ Ay in K -
absorption, is again too crude . Table 5 (from ref. [35])
shows the complexity of the processes following nega-
tive kaon absorption. We used these probabilities to
simulate negative kaon absorption in the routine
KMABS, assuming that the absorption process takes
place as on free p, n and two-nucleon aggregates (NN).
The numbers are normalized such that the branching
ratios for K-p, K- NN, and K- n add up to 100ß'o each.
The process of K- absorption on two-nucleon aggre-
gates has a probability rather independent of the target

Table 5
Elementary processes for pion and hyperon production from
K- absorption [35]

Production

	

K- +p

K - + n

K- +NN

Decay

	

free I+

free 1°
free I -

free A
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Initial Final Branching
state state ratio

[%)

1 + k dE/dx

for organic scintillators,

for inorganic scintillators .
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used and contributes about 20% to the total absorption
rate for targets heavier than deuterium [35] . The relative
probability for the absorption taking place on a single
neutron or proton within the nucleus is taken to be
equal to the (A - Z)/Z ratio. Formation of hyper-
nuclei was not simulated .

The main result of this treatment is that not only
neutral but also charged pions are directly produced in
K- absorption, and that the pion energies now vary
from about 170 MeV for the processes involving A
production to about 500 MeV in those cases where the
absorption takes place on two-nucleon aggregates . As
an example let us mention that the mean visible energy
for 400 MeV/c stopping K- in the Crystal Ball is
reduced from 500 to 380 MeV through our changes, and
that the visible energy distribution is broadened .

3.2 .2 . Light quenching in scintillators
The scintillation efficiency in both organic and im-

purity-activated inorganic crystals is defined by the
fraction of the energy loss dE/dx of the incident
particle, which is emitted as scintillation light dL/dx.
However, the theory of the scintillation process is differ-
ent for both cases [361. In organic crystals the scintilla-
tion arises from the transition of excited molecules into
the ground state . Their excitation may have proceeded
either directly by the incident particle or via energy
transfer from other excited molecules (sometimes de-
scribed as "exciton" diffusion) . In inorganic crystals the
light is emitted exclusively from the impurity sites after
an excitation by exc;ton capture . The excitons are gen-
erated by the energy loss in the crystal lattice. Direct
excitation of the activator centres is in general negligi-
ble .

If the rate of energy dissipation processes competing
with scintillation depends on the primary dE/dx, the
scintillation efficiency will not be constant, and the
scintillation response d L(d E) becomes nonlinear . For
both organic and inorganic scintillators the semiem-
pirical formula [361
dL dE/dx
dx oc f1 + E d E/dx

(49)

describes the measured data with the help of a quench-
ing parameter e .

The factor f in (49) is relevant only for inorganic
crystals resulting in a threshold behavior of the scintilla-
tion efficiency at small dE/d x :

(50)

It gives the number of excitons per electron-hole pair
created by the incident particle [37). Its deviation from
one comes from electron trapping at lattice defects and
is described by the parameter k .

V + -I 22
2° + so 28
E - + IT+ 44
A+ir° 6
2 ° + -ar 30
I - + Ir o 30
A+Rr - 40
~+ +N 33
2° + N 33
1 -+N 33

n + rT+ 48
p+ IT

o 52
A + y 100
n+ iT - 60
absorption 40
n + rro 36
p+ T- 64



82

The second factor in (49) can be motivated for
organic as well as for inorganic scintillators by assum-
ing two types of energy dissipation processes other than
scintillation : The first type having a rate independent of
dE/dx (e.g . internal conversion to molecular vibration
energy for organics, crystal defects acting as traps for
the excitons for inorgancs), and the rate of the second
type linearly depending on d E/dx . The existence of the
latter type of processes gives rise to light quenching.
Following ref. [38], the scintillation response can then
be obtained from an ansatz neglecting "exciton" diffu-
sion to be

dL

	

in(1 + 2E dE/dx)
dx «

	

2E

	

(51)

which can be expanded yielding the second factor of
(49) for sufficiently small dE/dx.

For organics, a detailed model for the second type of
energy dissipation processes [39] yields even directly the
second factor of formula (49) . It includes quenching of
an excited molecule through interaction with neighbor-
ing excited molecules, diffusion of the so-called "exci-
tons" and quenching of such an "exciton" at damaged
or ionized molecules along the particle path.

For inorganic crystals a proposed model [37], moti-
vating the second factor of (49) from a saturation of the
activator centers, has been rules out [40] . Instead the
results indicate the quenching of excitons by the crystal
lattice, independent of the concentration of the impur-
ity centers, but dependent on the primary dE/dx. A
theoretical model for this is missing, however.
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The standard GHEISHA code accounts for light
quenching only for plastic scintillator . The only way
light quenching can be achieved for other materials is
an explicit change in the GHEISHA subroutine
MRKRSP enabling the call to LGTSAT. GHEISHA
parametrizes the effect of light quenching by

AE
DEseen __

	

Ax
Ax

1+E AEOx

(52)

where r, Eseen is the observed energy deposition includ-
ing the detector calibration, 0 E is the calculated energy
loss, and E is the quenching parameter . For particles
with charge Q greater than unity E is modified to

É = 0 .8EQ .

	

(53)

In the absence of a theory for inorganic crystals we
decided to return to the material independent motiva-
tion (51) of light quenching and use for Nal :

0 Eseen =
Ox 2E

Fig . 19 shows that this parametrization, compared to
eq . (52), results in a slightly smaller light quenching (i .e .
increases the ratio 0 Eseen/A E) at large values of
EAE/Ax. Furthermore a saturation of AE,en/L1x, like
in eq . (52), does not occur . The quenching parameter
was scaled by density from BGO, assuming Ep to be a
material independent constant for inorganic scintillators

In I 1 + 2EAz )
(54)

Fig . 19 . The influence of light quenching . The dashed line is the GHEISHA parametrization (52), the full line shows the result from
formula (54) calculated with the same quenching parameter . Both lines refer to the left-hand scale. The shaded areas show the dark
energy per bin due to light quenching for different particle types in a typical multihadron event for the Crystal Ball detector, here the

right-hand scale applies .



[11, and yielding c (NaI) = 0.0038 cm/MeV. The choice
of c is highly uncertain, since it depends on the purity
and the radiation damage of the crystals . The factor f
in (49) was set to 1, neglecting threshold effects in the
scintillation efficiency (see below).

Applying our parametrization, light quenching is
non-negligible for the simulation of hadronic interac-
tions . Fig. 19 shows the average dark energy due to light
quenching for different particle types (including all
secondary particles) in a typical multihadron event in
the Crystal Ball detector at c.m . energies around 10
GeV . In total about 400 MeV/event cannot be de-
tected, out of which -- 300 MeV are from protons . This
has to be compared to a typical visible energy of .5000
MeV for hadronic events.

Because we are using the energy deposits from the
crystals to define the pT-jet variable, quenching changes
the P2 et distribution dramatically, as it lowers the
observed "off jet-axis" energy deposits emerging, mainly
from the nuclear interactions in the calorimeter . The
energy deposited "on jet-axis" is much less affected by
the light quenching effect because the particles pro-
duced close to the jet-axis are usually energetic . After
accounting for light quenching the simulated. p2 et dis-
tribution of multihadron events in the Crystal Ball
nicely agrees with the data (see fig. 20) .

Let us note, that this effect would have been just
inversed, if we used in (eq . 54) the factor f from (49)
with a parameter kp(NaI) = 2 g/MeVcrri2 [37] . In this
case the light output of protons would not have been
decreased, but increased with respect to the lower
dE/dx of electrons, muons, and pious . Thus the data
do not support such a low value of kp for the NaI
crystals of the Crystal Ball .
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3.2.3. Neutron transport
As was noticed by various authors [41,42] neutron

absorption and transport is extremely difficult to simu-
late correctly . Compared to neutron energies in the
MeV range, the cross section for capture is large for
neutron energies of several keV, but very large for
energies below the eV level and for thermal neutrons . In
our case the energies of secondary produced neutrons
are of the order of MeV. The GHEISHA 6 code treats
them as thermal as soon as their energies fall below a
cutoff value of 1 MeV. In this way we get only a very
crude picture of neutron interactions : As they lose their
energy slowly - mainly by elastic scattering - neutrons
with few MeV can travel far inside the detector before
being captured by nuclei . The neutron absorption pro-
cess can be described as a (n, y)-reaction where the y
quantum has a well-defined energy typical for the
nucleus in which the absorption takes place. GHEISHA
6/7 assumes that the absorption leads to emission of
gamma quanta with a total energy of 8 MeV, a typical
nucleon binding energy. The energy is emitted in two
bursts : one gamma is generated with its energy taken
from a Gaussian distribution with a mean of 6.5 MeV
and 1 MeV spread, then a second gamma is generated
to reach the 8 MeV deexcitation energy . This approxi-
mation is only sufficient for applications where high
accuracy down to deposited energies of a few MeV is
not required . Because of the 10 MeV threshold for the
Crystal Ball cluster energy we have to simulate the
absorption process with more care, as can be seen in
figs . 11 and 12 . In fact, the mean energy released in the
capture process of neutrons in NaI is much lower than 8
MeV [43] . We have modified the GHEISHA routine
CAPTUR so that y lines with a total energy of about 3

-- Crystal Balldata

--- corrected GHEISHA

standard GHEISHA w/o light quenching

0 .50 0.75 1 .00
P7--~Et (GeV2/C2)

Fig. 20 . The PT_.jet distribution for the continuum data before accounting for light quenching (dotted) and after all changes
(dashed-dotted) compared to the data (solid).
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MeV are emitted for Nal, whereas we use the default
GHEISHA procedure for the other inactive materials in
the Crystal Ball detector . These changes were necessary
to describe the data just above the threshold of Eetuster,

as demonstrated in fig . 21 .
The cutoff value for the neutron transport was not

changed . An improvement is readily available through
the routine NSLDOW in GHEISHA 7, which simulates
the moderation down to thermal energies . However, our
studies of neutron simulation were done with GHEISHA
6, only .

4 . Summary

The increasing accessible and measurable energy
range of high energy physics causes that the detector
simulation programs grow in size and complexity . This
renders the programs very hard to change and to debug.
Nonetheless, combining several Monte Carlo testing
techniques and comparing the results to experimental
and theoretical knowledge, we were able to go beyond
the level of simple tests and to propose substantial
improvements of the GHEISHA code.

As a by-product of reviewing the well-known theory
of energy loss we deduced an expression for the re-
stricted energy loss with an extended range of validity .
Important dependences on layer thickness and material
re-emerge from our study of the multiple scattering
theory suggesting caution in the application of the
Gaussian approximation for the finite step sizes used in
Monte Carlo calculations.

Our proposed changes in the GHEISHA .-nergy loss

0 .06

0.04

0.02
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arbitrary units

routines considerably improve the 8-ray treatment and
create a consistent simulation of dE/dx and its
fluctuations, expected to work without °any ad hoc cor-
rection factors regardless of material or simulation step
size. In addition we propose to extend the GHEISHA
multiple scattering parametrization to account for single
scattering .

Concerning the modeling of hadronic interactions,
the GHEISHA package covers the large variety of pos-
sible processes with an unprecedented completeness .
However, further improvements are suggested, which
affect the abundance, type, and energy of secondary
particles released in the absorption process of negative
pions and kaons. It is shown that light quenching in
scintillators is an important effect, which cannot be
neglected . However, there is a great uncertainty in its
parametrization . We encounter difficulties in correctly
treating interactions of neutrons. In this context a gen-
eral problem for the modeling of hadronic showers
shows up . In contrast to the electromagnetic case (EGS)
the meaning of a simple energy cutoff in terms of the
required simulation accuracy becomes unclear, since
processes below the cutoff may gain importance .

Concluding, the performance of a detector Monte
Carlo depends on the modeling of hadronic showers
even down to energies of few MeV as well as on the
energy loss simulation which finally converts all
processes into measurable signals . Our proposed changes
in both fields are motivated from theoretical and experi-
mental reasoning . They are additionally supported by a
distinct improvement in the description of the Crystal
Ball data, though not always complete agreement with
the measurements is obtained . A similar influence can

-44

500 1000

	

5000
Ecluster (Mehl)

Fig. 21 . The distribution of

	

The data are represented by the histogram. The crosses are the result of the final Monte Carlo
simulation .



be expected on the GHEISHA simulation of the detec-
tor response also for other calorimetric detectors or high
precision energy loss measurements.

Finally, we would like to mention that most changes
concerning energy loss and 8-rays have already been
implemented by H. Fesefeldt in the latest update of
GHEISHA, version 8 . Those changes, however, have no
effect on GHEISHA in LEANT, since LEANT has its
own energy loss simulation.
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