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We formulate an effective action l'~ for averages of fields taken within a vo-lun~te of size
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space, preserving all symmetries . We establish how expectation values of orators ~~it~ gno-
menta smaller than k can be computed from l'k. The average action at different seines is related
by an exact renormalization group equation. We apply these ideas to the 11F-comment c~~

theory in the spontaneously broken pYase and derive the one-hp renormalization group
equations for the average potential . The average potential becomes convex ask ~ fl.

1. I®troductio®
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In field theory the laws of physics are formulated at some short-distance scale
(which may be finite or arbitrarily small). From this starting point one has to
compute the behaviour of the theory at long distances. A similar problem arises in
statistical mechanics whenever the correlation length is large compared to the
scale where the microphysical laws of a system are known. In a formulation of field
theory or statistical mechanics on a lattice, Wilson and Kadanoff [1] introduced the
concept of a "blockspin", i.e. the average of the field over a block of lattice sites.
They defined an effective action for blockspins with blocks of size k-d - the
"blockspin action" Tk . The physics at length scales ~ k -1 is well described by Tk .
In particular, the vacuum expectation value of some scalar field (or operator) cp is
given by the minimum of the effective potential Uk(cp) - the nonderivative part of
Tk - in the limit k -~ 0. There is a close connection between the change of Tk in
dependence on k and the renormalization group equations in field theory. Unfor-
tunately the block-spin action becomes very complicated for practical purposes .
This can be understood from the fact that physics at small k is supposed to obey
the continuous symmetries of space rotations and translations whereas Tk is
formulated on a block lattice. Complicated interactions in Tk must compensate for
the discrete formulation.
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In a different approach th~; effective action T and the effective potential U are
defined [?] by a Legendre transformation from the partition function in the
presence of sources. Scalar expectation values are again given by the minimum of
U( ). It can be shown that U(~p) indeed corresponds to the limit k -~ 0 of a
suitably defined `iblc~k-spin potential" U~(~p). A perturbative loop expansion for
the effective tential for a scalar ~ theory (also coupled to gauge bosons and
fermions) was provided by Coleman and V~einberg [3]. These authors also com-
puted U( ) in the one-loop approximation . Although there is no dependence of U
on an explicit length scale k ® ~ (U relates to infinite distances), it can be argued
that the role of k is now played by the infrared cutoff provided by some constant
`'background" field

	

. The block-spin action I'~ obtains from the short-distance
action ~ by functional integration over modes with moments q- > k 2 . The effec-
five action T involves an integration over all modes, but the contribution of modes
with q -' ~ ~-' is suppressed by mass teams ~ 'P . Thus the renormalization group
equation for the quartic scalar coupling can now be related to the ~ dependence of
the fourth derivative ~~U~a~~ ( _ ) etc . The definition of T by a Legendre
transformation has the important advantage to exhibit fully the continuous space-
time syanmetries

	

d be compatible with faeid-theoretical expansion methods (e.g.
perturbation series based on Feynman graphs). 1Viost practical applications so far
have concen

	

fed on this latter approach.
for certain questions, however, the effective action T and, in particular, the

effective tential U fail to give a useful description . Being defined by a Legendre
transformation the effective potential must be convex [4] . In the spontaneously
broken phase of a scalar theory the potential U(cp) must therefore have an "inner
region" which is completely flat . lvio information can be extracted for values of cp

within this inner region, In this region a background field ip does not implement an
effektive infrared cutoff. The direct relation between the shape of U(cp) and the
k-dependence of U~ is lost . The renormalization group equations relevant for the
inner region cannot Le extr~:cted from U(cp). In addition, naive perturbation theory
breaks down for the inner region [3]. The one-loop effective potential develops an
imaginary part and the perturbation series does not converge to a convex potential .
(Compare refs. [5, 6] for improved perturbation series giving a good approximation
to the convex U, and ref. [7] for an interpretation of the naive perturbative
potential .)

In this paper we discuss an ac~erage action T,~ [8] which generalizes the block-spin
action to continuous space . This formulation preserves the simple physical inter-
pretation of T~ as an effective action for averages of fields over volumes with size
k -d and the direct relation between the scale dependence of Tk and the renormal-
ization group equations . On the other hand, it incorporates the advantages of the
full continuous symmetry of space translations and rotations and the possibility of
using field-theoretical methods like the steepest-descent approximation . In particu-
lar, the average action is an appropriate tool for questions related to the "inner
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region" of the potential in spontaneously broken scalar field theories, which are
difficult to access by other methods.

Effective actions with the full continuous symmetries have been used previously
in a somewhat different context [9], namely the derivation of exact renormalization
group equations by integrating out successively modes with a continuous momen-
tum spectrum . Our concept overlaps in some aspects with this earlier work, but our
main emphasis is here on the notion of averages of fields. These averages are not
merely technical tools. They acquire a direct physical meaning in problems with
coherent motion of fields or with effective interactions between averages of fields.
Among the applications for models with spontaneous symmetry breaking are

issues where the local short distance interactions have to be compared with
(effective) nonlocal interactions involving averages of fields over large distances. A
well-known example in statistical mechanics are the Weiss domains in ferromag-
nets, where the size of the domains results from a com~tition between strong
local ferromagnetic interactions and weak nonlocal magnetic interactions . In field
theory, a similar problem arises in the standard model if one wants to as~ss the
relative importance of the effective nonl~al interactions for the Higgs scalar which
are generated by the fluctuations of quarks etc. It is conceivable that naive
perturbation theory gives a misleading picture of electroweak spontaneous symme-
try breaking and that the Fermi scale is generated by long-distance physics. making
the parameters of the short-distance scalar potential irrelevant (within a certain
range). This would solve the gauge hierarchy problem [10] and the scalar mass
would become in principle predictable [11] .
Another issue concerns the coherent evolution of scalar fields in cosmology . The

time evolution of scalar fields plays an important role in a variety of contexts :
inflation, phase transitions in the early univer~P and aspects of late cosmology
related to the problem of the vanishing cosmological constant . The usual approach
uses classical field equations derived from the perturbatioe effective potential.
The exact conditions for the validity of the perturbatioe picture are yet to be

worked o:a. In general, if one is interested in the zero temperature dynamics of a
scalar field mode with typical length scale 1 eye should consider the effective
action for averages of fields over volumes ~ 1d i.e . k = tcl-1 with K > 1 some
constant of order one. This means that quantum fluctuations with momenta
p2 > tc2 1 - 2 are "integrated out" . (The inclusion of quantum fluctuations with
p2 < rc2l -2 needs a more detailed investigation depending on details of the
effective infrared cutoff at the scale l- '.) Of course, if the scalar fluctuations
(around some background field) have a finite coherence length to < 1 it is sufficient
to consider k = l~ 1 . (Quantum fluctuations with momenta p2 « m2 = l~ 2 give a
negligible contribution.) Nevertheless, in cosmological models one often en~oun-

* There is a critical value of k where the minimum of Uk jumps from the boundary of the inner
region to zero.
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tars problems where ,~~ ` is very small or even negative (unstable modes) so that l

tc~r, in case of dynamcal evolution, an appropriate time scale) determines the
relevant k. In particular, for overall homogeneous and isotropic cosmology the

relevant scale is set by the bubble parameter, k ~ ~1. The relevant potential for

the dynamics of slowly moving spatially constant scalar fields (e.g . inflation) is the

a~Femge

	

fennel U~{ ), k = ~e

	

, rather than the perturbative potential T~~( ) . VVe

will see that these two potentials

	

inside only f®r rfY~

	

k~. For nonzero tempera-
ture the relevant

	

fennel is further m

	

l ie .
he purse of this p-spar is twofold, in the first part (sects. 2-~) w®e give a

precise definition of the average action and discuss its general properties . The
second p-art (sects. ~- lp~ applies these concepts to the ~component ~P~ theory,
with particular e phasis on the renormalization group equations for the average

i~~ .
In sect. 2 :age define the average field

	

~Cx) with the help of a smooth test
functi+~n

	

~ whic

	

is almost constant within a volu::~e ~~ ~ k -`i around x and
creases fast Ce.~

	

nentially) outside this volume. The test function is compatible
~~~ith translation and rotation s

	

mettles. It is chosen such that the average of an
ai~erage field is again an average field, now over a larger volume . The average
action 1"~ is for~nall~, given by

~C

= xP~[~,xle -s[xl~

( $) -~(~))e~-s[xl

e define this expression by the use of a gaussian constraint Pk . This essentially
fuses the average ~ of the field X to coincide with a given configuration cp,

~(a ) _ ~{x ) . ~ certain amount of fluctuations of ~k around cp, however, is still
allo`ved. This enables us to formulate the constraint in continuous space, respect-
ing translation and rotation symmetry. The average potential Uk(cp) is obtained for
~ = const .

In our formulation In Pk can be written as an integral over space, permitting the
introduction of a constrained action Sk = S - In Pk such that exp( -Tk ) is obtained
as the, partition function from Sk

This opens the door to the use of standard field-theoretical methods like steepest-
descent approximations for a computation of Tk . The constrained action Sk
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contains new nonlocal terms which originate from the nonlocality of the constraint
~k(x ) ~ cp( x). These nonlocalities are quadratic in X and can be handled rather
well, as we will demonstrate for the cp4 theory .
There is a one to one correspondence between operators O~[~] and orators

Ok[~k] (Ok[cp] has the same functional dependence on ~ as Ok[~bk] on ~~}. The
expectation value of Ok[cp], evaluated with the average action l'~[~], is the same as
the expectation value of Ok[~k], evaluated with the original action StX) (sect . 3}:

~-' f D~P Ok~~P~exp - T~[~~

The (calculable) corrections are tiny and vanish in the infinite volume limit fa -3 ~.
This estabüshcs that r [~1 is indeed the effective action for averages of fields . The
operators relevant for the long-wavelength physics vvitiâ q2« k' (e.g . appropriate
n-point functions) have typically simple expressions in terms of ~~ . concerning this
type of operators, no relevant information is lost when passing from S[X] to ITS[~P] .

In contrast to the lattice formulation, where the number of b'~3ck-spins is less
than the original number of spins, the number of degrees of freedom cp and X
remains the same in our case . Nevertheless, the average action ~k[~] has the
property that the high-momentum modes cp (q2» k ~) decouple from the low-
momentum modes cp (q -' < k2). Thus Tk[cp ] is an effective action far the Iow-
momentum modes where the high-momentum modes have been integrated out.
For practical purposes the situation is completely analogous to the block-spin
action in thi~ respect . More precisely, the scale k provides an infrared cutoff for
the constraüred action Sk . The functional integration (1.2) involves effectively only
the high-momentum modes X (q2 > k2). As one of the consequences, the average
potential Uk(~) is not necessarily convex for k ~ 0, even in the infinite volume limit
.fl -~ ~. It is shown, however, that Uk approaches in the limit k -~ 0 the convex
effective potential U (defined by a Legendre transformation) . It interpolates
between the classical potential V(cp) (k ~~) and the effective potential U(cp)
( k -~ 0) (sect. 4) .

As we have mentioned already, the use of the constrained action in (1.2) allows
for a steepest-descent approximation. We can therefore attempt to compute Tk in
perturbation theory . We begin with the average action for the N-component cp`~

theory in lowest order in perturbation theory, i.e . the classical average action. We
derive in sect . 5 the classical field equations from the nonlocal constrained action
Sk and discuss general properties of solutions Xofx ) with constant norm (Xo(x ) ~ z -

const . In momentum space the nonlocality of Sk finds its expression in the
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only ve ' little potential energy is needed since IX®( x)~ ' is close to tire minimum of
the classical otential at ~~;~ . Also gradient terms give only a co~:¢ribution

he classical average potential in the inner region obtains by inserting
the spin-wave solution into S~

Uti' _ - k `cpcp + tonst .

	

(1 .7)

t is independent of the parameters ~, and ~l . For k -~ 0 the classical average
potential develops a flat inner region and becomes convex. In contrast to naive
perturbation theory w;, have here a good starting point for a perturbatioe computa-
tion of Uk .
A study of the gradient terms in the classical average action Tk[cp] (sect. 7)

needs solutions of the nonlocal field equations derived from Sk[ cp, X ] with cp(x )
varying in space . VVe find exact solutions for some special choices of cp(x) .
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distinguishes two different regimes. In the "scaling region'' k ~ » 32_	~~~/(l~~- 2)
the minimum scales with k, cp®(k ) ~ k, and the ß-function for the guards coupling
takes the Coleman-Weinberg [3] form ß~ _ ( F ~ ~)~ß/l6z? . For small k -
32~s~c®Q/(1V + 2) the minimum of U~ settles near the vacuum expectation value
(vev) ~P®(k --~ 0) _ ~®, whereas ßa still gets contributions from "Goldstone fluctua-
tions", ßa = (N - 1)~1R/16~s -' . As a consequence, the theory is infrared-free even
for finite cutoff A and finite vev cp®.

Due to the quadratic contributions from fluctuations a mass term ~z of the
order AA2 is needed to obtain a small vev, cpô « A2 . In this case cps belongs to the
inner region of the classical average potential U~' for small values of k and one
may doubt the validity of the RGE derived for the outer region . By a computation
in consecutive steps (renornialization

	

_groupimproved perturbation theory) we can
extend, however, the validity of ~he RGE for cpo and A_

	

R to arbitrary small k.

	

e
establish that cpo(k ) always bel~~ngs to the outer region in a renormalization group
improved treatment . The expansion arou~id a constant field is valid in the vicinity
of the minimum cps(k ) . The inner region only appears for small enough k and

* We do not use explicit graphical methods here . they can be systematically developed on the basis
of the constrained action S~, using sources and the average propagator P(g).
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fk ( xw ) =fk( x~
- nL~)

	

for (n - 2 )~~. <x~ < (

	

$ 2 )L~ .

	

(2. )

d~~fk( ~ -x)e

	

aq~~~) =fk(q)e

	

(~q~x~) .

	

(2.h}

e no

	

alization (2.2) ~ ~lies

(In the infinitevolume limit our normalization is fk(x) _ (2`z)- ~ d~gf~(q) x
exp(-iq~x~).) In terms of the Fourier modes the average field reads

~k(x) _ ~fk(q)x(q)exp(-

	

~x~)=

~k(q) =fk(q)x(q)

) for k as for t e fields x~

(2.v 1̀

The function fk(q) should depend only on q~=q~q~ to be compatible with
rotation invariance. ~~e assume that fk(q) is a continuous function of both q2 and
k obeying (fork ~ 0 and finite k and q)

0 <fk(q) ~ 1 ~ (2.9}

fk(q) < 1 for q2> 0 (2 .10}

lim fk(q) = 1, (2.11)
k-~~

lim fk(q) = 0 for q ~ 0 . ( 2.12)
k~0

In addition, we require the composition property

fk2(q)fkl(q) -fk(q) ~ (2 .13)
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with

is i plies
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For

e ne~w average is ta~~en

erefore that the average of a

k =k(k,,k,) =k(k,,k,) <min(k~,kz),

lim k(k~, k,) =

	

, .

	

(2.14)

exp -~kf~l -~

verage field is again an average field

) .

wer a wolu e with similar shape but larger in size as
given by k( k ~, k, ),

	

is can be un erst

	

intuitively since averaging of averages
extends

	

e range where f( ) di ers substantially from zero . As an example we
ay consider

~ the function f~(q ) approaches the step function ®( k 2 - q 2) and the
com sition property degenerates, k = in(k,, k 2 ) . In the limit L~ ~ ~ the func-
tion f~(x ) is obtained as the Fourier transform of f~(q) . For example ß = 1 leads
to the gaussian (for ~~1 ~ ~) [8]

The average action T~[cp] is formally given by (1 .1),

~(~k(x) - ~P(x))exp - S~XI

(2.15)

(2 .1b)

(2 .18)

n t'~e lattice formulation the number of lattice sites is discrete and there are fewer
block lattice sites than original lattice sites . The variable x in eq. (1 .1) corresponds
to block latticE sites and (l .l) is well defined . For continuous space, however, we
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have to specify the meaning of IIx S(~~(x ) - ~,`x)). As a next step we want to
construct a constraint operator P^ ~~hich replaces the constraint

	

~ S( ~(x) -
cp(x)) in the lattice block-spin approach . Since in our context the set of

	

rots x is
continuous we Lannot use the 8-distribution. If the average field

	

~(x) is exactly
equal to cp(x) for every point x then X( x ) is uniquely dete

	

road by

	

x) (the

	

o
are equal up to a q2-dependent wave function renormalization) .

	

e only would
change our variables and no progress would be made.

	

e therefore should re uir~
~(x) to be equal to cp(x) only within a certain variation .

	

is idea is realize
the "gaussian constraint operator"

_ (~ -f~(Q))~~'~
0

xexp -~v(q)(~-f~(q})-' ~~( ) -f~( }X~(q})~

(See appendix A for the precise definition of the Fourier modes X~,(q).)

	

e
effective action for average fields cp - the "average action" - is then defined by

exp - Tk[~~ = J ~X Pk[~P= X~exp - ~~X~ -

	

(2.2I )

p-1 dcP� P~~(~Pn~Xn) = 1

Let us discuss a few properties of Pk. The coefficient C� = pfr-1~2A~~2 is chosen
such that P� is normalized,

The function v(q2 ) should not depend on k . We will choose v = q2, ß > 2, or

v = constant, ß > 1, for reasons to be explained later. For a constant v this
parameter should be larger than all physical mass scales, for example of the order

of the momentum cutoff ~2 or beyond . For q a ~ 0 the function fn --_ fk(q )
approaches one (2.8) and A � diverges, with

(2.23)
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t e average action for large vola
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all k ) by repeated use of averaging
over smaller volumes - in correspon 'ente to repeated block-spin transformations

e lattice . In
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the limit k` ~ ~ an exact
terra

	

elution grau equation ,

a'rk

2,f1v a ( a~ra)~
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2~flva afra
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( 2.24)

(2.261

( 2 .27)

(2 .2s)

The effective action rk (2.2i) leads to the same partition function as the original
action S,

Z= f DXexp - S[X~ = J D~Pexp - rk[~P~~

	

(2.29)

( is can be obtained by insertion of (2.22).) The relative probability for a

* For other formulations of exact RGE compare ref. [9] . The precise relation to our formulation is
not yet clear to us.
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configuration ~P is given by the expectation value of the gaussian constraint
operator

Z-i exp - rk[~] _ ~ pk[~~X ]~

=Z-t OXp~~~~X exp - S X

Since P~ is a well-defined strictly

	

sitive operator for all finite values ~ (it
decreases exponentially for large cpn) we conclude that I`~['P] is well

	

efined and
finite for all finite ~n (and finite

	

, ~l ). t~Iternatively, we can irate

	

ret e

	

-

	

)
as the partition function of a "constrained r::aion" S~ with "parameters" (bat -
ground fields) 'D,

exp - T~[~ =

	

Xe

	

-S~[~-X .

	

(2.~

s& [~aX~

	

S(X_

	

- lnpk[~aX

e perform the trivial part of the functional integration for the q =

	

m
identify X(q = 0) with ~(q = 0). The remaining constraint to

es and

Sc®ns~~=~ ~ v(q)(1-fk(q))_°(~~(q) -Î~(q)X*(q))(~(q) -f~(q)X(q))

(2.33)

describes a nonlocal interaction. It is obviously invariant under internal orthogonal
(or unitary) transformations, provided ~Pa and Xa are transformed simultaneously.
If S[X] possesses such a symmetry with respect to rotations of X°, the average
action Tk[~P] will have the same symmetry with respect to rotations of spa . The
same holds for translation invariance . Euclidean rotation invariance is also pre-
served up to finite-size effects from the discretization of momentum space on the
torus . In the infinite volume limit Tk possesses the full Poincaré symmetry.
Expanding in powers of momentum we obtain potential, kinetic term and terms in
higher order of q2. Only a few terms will be relevant for small q2 and the
corresponding invariants can be classified by the usual methods of dimensional
analysis . This is an important advantage compared to the block-spin concepts on
the lattice where the number of relevant terms in the block-spin action increases
rapidly since only discrete lattice symmetries can be used for a classification of
operators . In addition, the formulation (2.31) in terms of the constrained action Sk
allows the use of perturbation methods (like the steepest-descent approximation)
for a computation of Tk[ cp ].
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~'_d d~~ (~):
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odes with a given momentum q is mapped
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~ correspond to products of Oq,

®kq(~y(q))~~CXI =

For any operator Ok which admits a Taylor expansion in cpn we have a similar
expansion for O(Xn ),

L.rpi - ~~ an~ . . .n k ~n~ . . . lpnk

~

	

e ® k ~P ~

	

(3.1)

q(Xy(q)) .

(3.4)

(3.5)

m
~~(Xn?

	

S(

	

pi -m)a n~ . . .nkFnI(Xn~) " . . Fnkk\Xnk) ~

	

(3.6

m k=1 p~ . .Pk
n~ . . .nk



with (cf. X2.20))

one obtains
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Fn(Xn) = fP-i d`Pn tPnPn(~n=Xn)

~n = ~vn( 1 - fn' -'

exp{ -

This relates the n-point functions in terms of Xn to those in to

	

s of cpn . using

0

~-PO2.~- g/ZI'n

	

2 ,

F'(Xn) -fnXn ~

1 -Î Z

( .fnXn) ~vn

Ok(~n) ~ ®( Xn) - ~k(fnXn) ~

n(

	

n- rrXn)2 ~ (3. )

for p

for p even

543

(3 . }

The correction in (3.10) contributes lower powers of .fnXn with tiny coefficients.
They vanish for ,f2 ~ ~. We conclude that up to these (calculable) finite-volume
corrections we can identify

The operators Ok[ w ] correspond to operators O[X ] which depend on the average
field ~k in the same functional form as Ok depends on cp . This justifies to call
Tk[cp] the average action, i.e . the effective action for average fields. At this place
we remember (2.8) that even in the long-wavelength limit q2 « k 2 the fields X and

~k differ by a q2-dependent "wave function renormalization" fk(q). We will see in
sect . 7 how this shows up in the kinetic terms of Tk[~P] .
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(4.3)

e `vill `work wit

	

s

	

th functions fk(q') which have the qualitative feature of
a step function .

	

he average action therefore reflects the process of "integrating
out"' the short-distance modes. For modes with q2 » k 2 it approaches fast the
quariratic action

t is interesting to study the limit k ~ 0 where fk(q) reduces to the step function
fk( ) = 1, fk(q ~ 0) = 0 (3.12), or equivalently fk(x) _ ,~l -1 . In this limit ~k corre-
sponds to the average over the whole volume ,~, ~hk(x) = X(q = 0). The average
action can again be divided into a gaussian part Tq z , o and a remaining part
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T®[cp(0)] which is obtained by integrating out all modes with q2 > 0,

exp - T®( ~P ) =

The quantity ,fl-~T®(cp) is the "constraint e active

	

tential"

	

i

	

seed earlier `
ref. [5]. n particular, ~l ®~T®(gyp) approaches for ~1--~ ~ the usual e active

	

tential
iJ(cp) which is obtained

	

y a

	

gen re transfo

	

anon an

	

t erefore convex

	

]. In
the ope

	

site li

	

it k -~ ~ P~ becomes a pr

	

~ct of S-distri utions a

e define the classical

	

tential V(cp) and the average
non-derivative parts o S[~] and T~[~P], respectively

lim I'~[

	

=S[cp

	

.

d~x XQ( x) e

	

-S X

	

-

	

(

	

.

S[cp] =

	

d~xV(

	

(x)	~ derivative te

	

s,

tential

Tk[~ ] =

	

d~xf1k (

	

( x)) + derivative terms .

	

(

	

.b)

In the infinitevolume limit ,!~ -~ ~ the average potential i1~ rote

	

fates continu-
ously between the classical potential V(cp) (k -> ~) and the convex effective
potent=al U(~) (k ~ 0). We emphasize that the approach to convexity results from
a successive integration of quantum fluctuations. Convexity is a physical effect and
not merely a technical construction corresponding to a "supe

	

sition of states".
To close the first part we should mention that our concept of the average action

does not depend on the particular regularization (with momentum cutoff) de-
scribed in appendix A. We may use any other short-distance regularization which
keeps the relevant functional integrals finite even for infinite momentum cutoff
The sums and products over q become then infinite sums and products . ®ur
discussion applies to this case as well . We also may easily modify the infrared
cutoff implied by the finite volume ~l. In any case, we expect no problems VtTith
the limit ~l -~ ~ as long ask ~ 0 provides an effective infrared cutoff for the com-
putation of Tk . We note that all arguments of this section are valid for positive
i~:~r~ctions v(q2) as long as lime ~ 0(1 - fk(q))v- '(q) = 0.

5. hdonlocal feld equations and exact solutions

We want to compute in perturbation theory the average action for the 5®(N)
symmetric cp4-theory [8]. The action for M complex scalars X (M = N/2, N even)
is

(s .~)
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x~(q~)x(q,+q2) x(q-q~)

(5 .2)

+ ~'( ) ( ) x( ) +~

	

x'( ,)x(~,))x(q)

(s .3)

The nonlocality of the field equation arising from the constraint has a simple
et-pression in omentum space. VVe concentrate on configurations cp which admit
solutions x®( x ) with x®(x)X®( x ) = const. = X 2,

X2 =x®(x)xo(x) _ ~~(®)~(®) +

	

x~(q)xo(q) ~

	

(s.4)
q~0

~'(®)xo(q) +xô( -q)~(®) +

	

xô(q~)xo(q +ql ) = 0,

	

(s.s)
q, ~0, - q

for all q ~ 0. In this case the field equation simplifies eons~derably since the two



last terms of (5.3) vanish
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(q2 + 6~k(q) .~k (~) -~2 + ~X2 )xo(q) _

	

k(q) k(q~

e condition for cp( x ) can be worked out by inserting t e

	

lotion of (~. ) i
(5.5). As an example, for constant

	

(x) [~a(q

	

) = o l there _always

	

`sts t e
constant solution x®(

	

) = , but there may

	

e additional

	

lutions

	

`t

	

+
A

k k
- 2+ßx2=®.

VVe next expand around an arbitrary solution xo( x ) o the fiel

	

equation ( . ),

x(q) =xo(q) +sx(q)~

	

(5 . )

a

	

insert in Sk

S~ _ ~ (,~X2 -

	

2)~P~(®)

	

(®) - ~~(X 2 )2 +

	

Irke~~(q)(~P(q) - kxo(q))

(5 .9)

®Sk =~l ~ (q2 +hk Î~ -112+~X2)Sx'(q)~X(q)
q~o

+2~ J ddx[xô(x)~x(x) +Sx=(x)xo(x) +sx'(x)sx(x)]2 .

	

(5.10)

A solution xo corresponds to the absolute minimum of Sk if ~Sk > 0. In this case
Sk is the classical approximation to the average action Tk. The second term in ~Sk
is always positive (or zero) ( Sx(x) _ ~9 $ o Sx(q )exp( - iq~`x~)). We derive a suffi-
cient condition for a solution with constant IXo(x) 1 2 to be the absolute minimum
of Sk , namely if

for all values q ~ 0. VVe denote by pô the value of q2 which minimizes the
q2-dependent part of (5.11), P(q ), and by k2 its minimum value

P(q) =q2+hk(q) .fk(q)~

	

k2=P(po) =minP(q)~

	

(5.12)
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f r~ solution with constant ~,~®C~: )~' exists, it is always the absolute minimum of S~

if
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~~~,' (which only

	

ors for a negative quadratic term in Sfx], ~z > 0) a

ore detailed investigation is necessary. In particular, if at least one (real)
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lotion ~~( x ) vanishes one can always construct an orthogonal

~aariation ~,~ ~ (~ ) such that the aqua ratio part

S'` _ ~A

	

d~x

	

~

	

x

	

A

	

+~

	

~

	

x

	

x

	

l
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~()~C) ()o()

K nishes. S all
1 sled for q =,p~.
ini uni. For

t+~

	

acids whe
~s
er

uctuations ~X ~( ®) lead to negative ®S~ whenever (5.11) is not
e solution corresponds then to a saddlepoint rather than a
of solutions expression (5.11) constitutes a simple criterion

ey comes

	

nd to the absolute minimum of S~ for

or, in the op

	

site case, to a saddlepoint.

6. The classical average potential

(5 .14)

(5 .15)

The average potential U~(cp) reads for a constant field cp(x) = cp, (cp(q ~ 0) = 0,
NCO) _ ~)

1
Uk(~P) _ - ~ ln

1
DX exp - Sk~~P~ X~ ~

	

(6.1)

The field equation (5.6) always admits the trivial solution with constant Xo( x) _
~(x) _ ~,

Xo(0) _ ~P(0) ~

	

Xo(q ~ U) = 0~

	

X 2 = ~P~~P ~

	

(6.2)

For k 2 - ~2 + Acp~cp > 0 this corresponds to the absolute minimum of Sk . In lowest
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order (tree approximatio

	

the average potential is then given by S~ (5.9),

For k z e ~2 , however, there is always a range of small I~P I

for which (5.16) is violated and Xo(x) _ ~ corres~nds to a saddle

	

int.

	

e

	

11
these values of ~ the "inner region" . %t us consider the

	

>2 and

	

e
~ in the one-direction ~P~ _ ~ i = cp . ~Ve can then %nd a different

	

ution

	

`th
IX®(x) 12 = const ., namely

Xo.~(®) = ~P=

Pov~Pô =Pô

~~® (~2 ~ k2)/À

X
Z =~P~ .

Uk =~
_
lsk = - 2À~cr -+- ~ À~cr -

~2
~~~~

_ - zASPcr - k2SP~~P .

(6.3)

(6. )

( 6.~)

The direction of p® is arbitrary and we can of course rotate X®,~( p~) into some
other direction in internal space orthogonal to ~P~ . This solution is a "spin wave" in
the direction of p® and corresponds to the absolute minimum of Sk . For the inner
region with I ~P ~ < ~P~, the average potential in lowest order is again obtained from
(5.9),

(6.6)

This potential is quadratic in cp and matches (6.3)

	

_for Sp~cp = ~P~. The quadratic
term ~k2 is of order k 2 - the exact relation berueen k 2 and k 2 depends on the
choice of fk(q) (cf. sect . 2) . For k -~ 0 the quadratic term in the inner region
vanishes and ~P~r approaches the minimum of the classical rotential ~Pm;n = ~2/A .
Already in the tree approximation the average potential becomes convex for
k ~0.
The reason for the flattening (with k -~ 0) of the "inner part" of the potential is

easily understood [11] . One can obtain an average value ~k = 0 by slowly rotating a
vector with constant X

2 ^

	

min . Such a spin wave "costs" only gradient energy
k 2~m;n . Our result translates trivially to the ~P4 theory with N real components

for N > 3. For N = 2 the tree average potential should have a similar qualitative
behaviour. Quantitative differences may occur since the spin-wave solution has to



~ 't'ItE°~3C'~t

	

% .~Z'E'ô`st7~E' dC3~~Zt)~8

ific - .

	

contrast, for t ~ case of

	

iscrete s
s oe°e

	

a te i

	

of t e i

	

er

	

art o

	

t
surf ~°e ener~

	

arises at t e

	

a

	

of ruions `vit
c

`tiith ~, real

with constant x~(x )~®(x ) = X--,

c ter

	

i

~(x)

~,( :~ ) ®

	

~

tv

~e ~el

	

e

	

ation (~.~)

	

as a solution

	

~(x),

xt~

	

~) _

	

(

	

)~(

	

~) ,

	

x®(

	

) _~(®)

ave a e actio .

	

e co si er a

et

	

(

	

_ ) we expeCt a
te tial ( ~ l~ ) since

	

finite
x = ~°

hk( Q)fk( ~)
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Q2 + hk( Q)fk ( Q) - ~2 + AX 2 '
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(7.3)

(7.5)

X2 = ~Pi +A 2 (Q)~PZ ~

	

(7 .6)

(This solution always exists provided QZ + hk(Q)fk(Q) - ~
a + A(cpl +A 2(Q)cp2) ~
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n this region the classical approxi anon to the average action can be
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().fk())~ ()~(q) q~ -	~

	

-~ fik(q)(1

+ ;~ (q,)A(gz)A(q3)

X (~~(q3)~(q, -q2+q3)) + ®r~ +C®nst.,

	

(~.9)

The piece ®Tk only contains terms which vanish for configurations cp~(x) _
cpg exp( -iq~x ). (This can be checked easily by generalizing our procedure to such
configurations.)

Several features of T,° [eq. (7.9)] are worthwhile noting :
(i) The fields cp(q) are always multiplied with a q2-dependent wave function

renormalization factor A(q). For large q2 » k 2 the factor A(q ) ~ hk(q)fk(q~q2 -
~u,2 + ~XZ)- ' decreases exponentially . As a consequence, the term ~ 2~cp4 in (7.9)
disappears rapidly for large moments. The average action becomes quadratic to a
very good approximation,

2 -1

k( ) k q2-~2+Ah,2

+ ®( .~AA4(P4) .

(q~ -Qz ~ q~)( ~(q~)~(q~))
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h~(
__ ~(g)

)

	

1 ®f~(q)

ß>3 forv(q)=q2 .

c~h -~ 9
(7 .12)

( 7 .13)

t e first t<vo to

	

~s in t e curly bracket in (7.12) vanish for

	

> 1. For v = coast.
this condition is sufficient to guarantee A = 1 + O(Q'ß). For v(q) = q 2, however,
`~Te have to i

	

pose

	

> 2 in order to make the last term in (7.12) vanish . We will
al`vays i

	

se the conditions

ß > 2

	

for v = tonst .

	

(7.14)

which imply at least A = 1 + O(Q 4) and similarly h(1 -Af )2 = O(Q4 ) in (7.9) . In
the outer region the classical approximation to the average action Tk coincides
then with the classical action S up to corrections from higher derivative terms at
most of order Q4. For Qz «k2 the average action is effectively local. Nonlocali-
ties appear only for the short-distance modes Qa > k2 for which the average action
is not an appropriate tool anyhow. We will see that (for finite ß) these features
persist including quantum corrections .
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(iii) We finally note t at all these features already appear in the free theory
(à = 0, f~2 < 0) where

7.2. I~iI~ER REGT®1V

where

~X~_ ~(~Pi +A-( Q)SP2 ~ X3 )

= 1u2 _ IC 2 . ~~~ .

B(Q) - hk(Q)(1 -A(Q).fk(Q))

Q
2 - k2

	

-1

- (Q2
- k2) fk(Q) + hk(Q)

(q) ~- const .

	

(7.1~)

For ~(~i ~- A2(Q) ~ ) <

	

~ -k2 the solution (7.4) comes

	

nds to a saddle
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(at least for

	

> ) rather than a minima

	

of S~.

	

e again ave to find a ne
solution minimizing S~ in the inner region . (
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tions ~(x).) For technical simplicity we consider the case

	

>3 (or

	

>5) wl~ic
should, however, reflect all the qualitative features of k for the

	

els

	

it
.~ > 3 as well . In this case it is easy to find a new solution with constant Q'X (x) '
where the phase of the third component of X~ rotates as a spin wave,

Here ~4(Q) is again given by (7.5), p® minimizes P(q) (5 .12), and X~ (real) is
chosen such that

(7.17)

The inequality (5.11) is fulfilled and (7.16) indeed corresponds to the absolute
minimum of Sk .
The tree approximation for the average action reads after inserting (7.16) into

(7.18)

(7.19)
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(7.20)

( 7.21)

(7 .22)

( 7 .23)

This configuration needs potential energy for the difference cp~~ - ~ z and the
kinetic energy ~ Q'cp2 is minimized for ~z ~ 0. The second configuration has a
wavelength near k-', namely at the boundary of the inner region at q 2 = q~, with
tl(q~) = cp~ r/cp, (7.22) . ®ne finds

~_ trk = -

	

1 (~4 - k 4 ) + k 2 ~~~~ - cPi) + (B(q4) + k2)~2

	

(7 .24)
2A
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negative and almost cancels the

	

tential ener
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nfig rations wit

	

~( ) ~ _
coast. «cp~ have a much lower average action for spin waves
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~ =
-
~ t an

for constant fields! The immediate neigh

	

ur

	

of

	

~ =p~, finally. i s

	

e

	

i
again by the solution (7. ). For q~ =p® one has

and

ln( ~c/

	

2)	2B(qc) ~k 2 z -k2 ~2 ~
-

	

° 2

	

2

	

-
ln(v/(k -p®))

One obtains, for not too small roe ,
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gyp, = 0 where (v = coast.)
We consider again conb

'/3~2 ~l3
{v(kz

	

p0)1 1/6( p®)

-lrk ~ v~2

	

2
_

	

1~3v2i3`k2 _PO),/3~2~3

forcp2>Acpc(v(k2- PQ))
- ~ /2

otherwise .

(7.2~

( 7.2

	

)

gyration with

( 7 .27

( 7.28)

(7.29)

We conclude that the kinetic terms have û standard form only for small momenta

q2 « k 2, whereas the threshold behaviour for q2 near k2 is rather complicated .
Spin-wave configurations with q 2 ~= k a have much lower euclidean action than
expected from a standard kinetic term. The onset of nonlocality at q2 ~ k2 differs
for the inner and outer region . It depends bath on details of the theory and of the
physical ç~uestion that is investigated .
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para

	

star we use the renor alized quartic coupling A R(k) which we define by

bar of real scalar components, the average propagator P(Q) is

(8 .2)

and we exploit the fact that U~ is a function of the invariant cp~cP only . As a second

(8 .3)



e note that ~ ß(k ) is directly related to the mass matrix of the scalar excited
around the minimum at

	

®(k). For ~P® _ ~P~, ~® =
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star

ns

e (non-Goldstone) scalar

	

ass squared is 2 ~(k ).

	

sing t e variable x = q z the
quantities ~P®(k) and AR(k ) can be written in the fo

V~'e are interested in the dependence of cpô and Jl R on the scale of the average
volume . For v = const. the average action Tk depends on two parameters with
dimension mass e , k 2 and v, in addition to the physical mass parameters contained
in the renormalized couplings . (It also depends on dimensionless parameters
specifying the form of fk(q).) The relevant physical scale corresponds to the
effective infrared cutoff arising from the average propagator P(q). We identify this
scale with the minimum value of P(q), i.e . k 2 . For v =q2 , in contrast, k 2 is the
only scale relevant for the averages and we have k ~ k . The change of the a`Jeia~°
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potential for different values of k is parametrized by the evolution equations

in1^west order in ~R . ThP appearance of two terms (e,g_ ,~ i and ,L3 2) reflects the
fact that the integrals K� depend on the scale k both explicitly through the
~.-dependence of the average propagator P(q) and im~nliçitly through the k-depen-
dence of cp® in the argument of Kn. The second term in _the RGE (8.12), (8.13)

accounts for the change of the renormalization point cpô(k), whereas the partial
derivatives aKn/at are taken at fixed cpô . For eqs . (8.14)-(8.17) we have used the
lowest-order relations ~ _ ~ß and ~lcpô = ~

a in the arguments of the derivatives of
Kn . The second approximation is valid for

I~~Pô - I~2 I «k 2 (8 .18)

and we will justify this lager . The arguments 2A R Cpô and 0 for the derivatives of Kn
correspond to the masses m' of the scalar excitations around the minimum which
appear in the propagators ( P(q ) + m a ) -' . (There are N - 1 Goldstone bosons.)

Let us concentrate on four dimensions (d = 4). VVe have evaluated the ß-func-
tions in appendix C and find approximately (using a definite choice fk(q) for the

a~ô 1 2_ a a~Po- k = c k2 +
at ak ~PZ

° ' 2cpô ar
cak2 (8 .12)

a~R a i a 2
=k - ~ R - ßl + 2 ~° ß2 ( 8 .i3)at ak 2cpo at

e want to compute the quantities cl and ß; ("ß-functions"),

cik
aK~ ~ aK,

__ -3 (2AR~ô) - ( N - 1) (®) , (8.14)
ar at

aKl aK l
c, - 3~Po (2~ß~Pô) - (N - i)~Po (0) , (8 .15)

a~° a~o

ß~
aK2

_
-9~-'

-R (2A R~2o) (N-
i)~RaK2

(0) , (8 .16)
at at

aK aK2
ß, _ -9~lR~Po

ac~2
(2~R~ô) - (N- 1 )Aß~Po (0) ~ (8 .17)

a~P~
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k2
16-rr2 + 16~r2 k 2 + 2ARCpô

N- 1

	

9

	

k 42

	

2
ßl -

	

16Tr2 ~R + 16Tr2 ÀR

	

k2 + 2A cp2 2
(	R 0)

~ -

	

9

	

A3
SPô(k 2 + ~R~Pô) .

F'2

	

2

	

R4~rr

	

(k2 + 2~.RCpô)

All these quantities are essentially independent on the ultraviolet cutoff ~ (and
the parameter v for v = const.). In this sense they are universal . 1Viore precisely,
the 11-dependence of c; and ßl is exponentially suppressed . The prec . .~e definition
of the ultraviolet cutoff becomes therefore irrelevant . This distinguishes the
universal quadratic contribution to a~ô~ar from the non-universal quadratic cutoff
dependence of K 1 (often called quadratic divergence) which depends very sensi-
tively on the choice of the cutoff. The quantity ß1 + ß2 is also independent of the
precise definition of the scale k and the average field (fk(q)). In contrast, the
"threshold dependence" in c 1 _ _and ß 1 as well as the absolute magnitude of c 1 (not
the sign!) depend on fk(q) and the definition of k . Obviously, a rescaling k --~ yk
leads to a rescaling c; -~ y - 2c; whereas ßl remains invariant .

9 .

	

~!ad~-atic à'eaàoi'malization

The renormalization group equation for cpô(k) is governed by a "quadratic
renormalization" (c = c 1 ),

a
k~kcpô = ck 2

c_
~ô(k) - 2kz+~Pô~

c2=0,

(8.19)

Except near the threshold k 2 ~ 2JlRCpô we can approximate c by a constant and
find the simple solution

(9.2)

The qualitative behaviour of the model depends on the integration constant cpô. As
long as

k2 » ?~cpci~~

	

(9.3)
c
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one is in the "scaling region" . For decreasing k the minimum of the average
potential moves inward as cpô = '-,ck 2. All relevant scales are proportional k,
implying the Coleman -Weinberg RGE [3]

aAR

	

N+ 8

	

2

at

	

=ß~ +ß2= 16rr2
AR .

Assuming validity of perturbation theory, cal R « 1, one finds for the scaling region
h -' » 2A Rcp®. The contributions from c2 and ß2 are therefore negligible in this
region .

	

_
The scaling region ends for k - ~ (2/c) Icpô I . For negative cpô the minimum cpô( k)

is driven to zero for a finite value k® _ -(2/c)cpô. The theory is in the symmetric
phase without spontaneous symmetry breaking in the vacuum. Although we have
started at short distances with a _negative quadratic term -~2cp2 and cpô(k) is
different from zero for large enough k, the long-distance average potential
(k -' ~ k~) has its minimum at cp = 0 with a positive quadratic term. In contrast, a
positive constant cp® sets the asymptotic value cpô(k = 0) in the spontaneously
broken phase. (Positive ~® requires Imo' to be larger than some critical value 1~~ .)
For k -' « (2Jc)cp® the relative renormalization effect for cpô becomes very small
and the minimum of the average potential is stationary. We note, however, the
nonvanishing ß-function for ~R even for ka « 1l Rcpô (8.19) which implies that the
theory is infrared-free ("trivial") even for finite cutoff A and finite scale of
spontaneous symmetry breaking cps . The phase transition between the symmetric
phase and spontaneous symmetry breaking occurs for an "infinite scaling region",
cpâ =0. The phase transition corresponds to the fixpoint in the renormalization
group equation for the ratio y = c~~/='t `',

ay

at -ß
'' -c-2y

(9.4)

(9 .~)

at y = c/2 . This fixpoint is infrared unstable and a value cpô(k = 0) « A2 requires
an initial value cpô(k = A) extremely close to the fixpoint . This is another facet of
the "gauge hierarchy problem" [10] .
So far we have implicitly assumed that cpo(k ) always lies in the outer region . For

large enough k, k 2 > ~2 (5.13), the outer region covers all values of cp . Using the
lowest-order relation

~2=AR(~)~Pô(~)

	

(9.6)

and (9.2) we conclude that for a range of k 2,

k~~(~) = ic~ R(~)~2 +JlR(Il)~Pi <k 2 < .~2 ~

	

(9 .7)
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there is no inner region of Uk and the constrained action Sk always takes its
absolute minimum for a constant field . For cpô «<l 2 and 2cJlR(11) « 1 this range
extends to small enough values of k 2 so that the cutoff dependence in the
renormalization group equations can be completely neglected . In this range our
one-loop computation of Uk in the outer region is therefore valid. For smaller
values of k, k2 <k~(Il), the potential develops an inner region which extends to
values of the average field [cf. (6.4)]

2 < 2 li = C112+ ^2_

	

k 2
~Cr( ) 2

	

~PO À (11)
R

(9 .8)

For small ( cpô ~ « âc 2~ R(11)!1
2 one finds that cpô(k) always becomes smaller than

cpT(A) for small enough k . One may naively argue that our one-loop calculation of
the evolution a~ô~ar is not valid for very small k in this case, since cpô(k) does not
remain in the outer region .
This situation can be improved, however, by exploring the region of small I cpô I

and small k 2 in consecutive steps . We will use _"block-spin" ideas as discussed in
sect . 2 in order to introduce the concept of a k-dependent cutoff. Consider first
the phase transition point cpô = 0. We can use the RGE (9.1) to compute the
average potential at a scale k 1 = ~1,

~2_D2kr(~) <~2~

with D a constant chosen such that cutoff effects can be neglected for the RGE at
the scales ~2 and D-2~2. The average action at the scale ~ has essentially the
same form as the "bare" action at the scale ~l, with parameters Jl R( ~i) and ~,R(~)
replacing the original "bare" parameters . The scale ~! acts as an effective momen-
tum cutoff for the average action T~ (cf. sect . 7) . We can now repeat our one-loop
calculation with the new cutoff Ä. No inner region appears for

k 2 > kCr(~) = Zc~(~)~2,

	

k~r(~) <kCT(~)

	

(9.10)

and we have extended the validity of our calculation to smaller values of k2 . The
difference between T; and the bare action 5 appears only in higher order in ~
(except for the transition from sharp to smooth momentum cutoff which is not
relevant here) . To lowest order in ~ one therefore obtains the same RGE as
before . Repeating this procedure we can extend the range of validity of our
approximations to arbitrary small values of k. With this method the inner region
never appears for cpô = 0. A similar reasoning can be applied to justify (8.18) . We
approximate ßu2( ~l) _ ~lR( .~)cpô(Â) _ '-, cA R(11)112 and find that (8.18) is valid as
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long as k ` » 2cA R~z =k~( Â). For small enough AR we can always reliably use
the region kr(11) « k 2 « t12 to compute the perturbative ß-functions (8.19) . We
conclude that at the critical point cpô = 0, the IZGE for the outer region (8.12),
(8.13) are valid for all values of k 2 .

e can extend these arguments to the symmetric phase (cpô < 0) and the phase
of spontaneous symmetry breaking (cpô > 0) by introducing the concept of a
k-dependent critical value of the average field

k 2
~P~(k) = ~Pô(Dk) - A R(I)lc) ~

	

(9.11)

Mere Dk plays the role of a "sliding cutoff" in analogy to the definition _of ~
above . 1~n inner region of the average potential develops only for values of k for
which cps(k ) becomes positive . Using eq. (9.2) we immediately conclude for the
symmetric phase that the average potential has only _an outer region for all values
of k.

	

e can use the IZGE (9.2) down to the value ko for which cpô(ko) vanishes
and then rely on the ItGE for a potential with negative I~2 , which can be derived in
complete analogy_to the treatment of the outer region for ~2 > 0. (The average
potential for k < ko should be parametrized by a suitably defined ~R(k ), since

In the spontaneously broken phase the condition cpô(k) > cps(k) reads

'-'-,cAR(Dk) < (D 2 - 1) -1 ,

	

(9.12)

which coincides essentially with the condition for the validity of perturbation
theory. within _thisimproved treatment ~Po(k) always belongs to the outer region .
For small enough quartic coupling A~ the one-loop I~GE (8.12), (8.13) for A ~( k )
and ~®(k) are therefore valid for all values of k.

e have established that at least a local minimum of the average _potential
occurs in the outer region at cpo( k ) . In the immediate vicinity of cpo(k), naive
perturbation theory is valid for any nonzero value of k. One can argue in favour of
the existence of such a local minimum by a general consistency argument. The
naive perturbative potential Vp(cp) obtains by an expansion around a constant field .
It is plausible that this expansion indeed converges in the vicinity of the minimum
of Vp, at least as long as all fluctuations around this minimum have positive action .
This is the case for finite k since even the "Goldstone fluctuations" need a kinetic
energy of at ieâ:~t k2 8cp2 . We may therefore expect that the minimum of the naive
perturbative potential shows up at least as a local minimum of Uk in a more
general context, for example for a theory with fermions . On the other hand, the
vicinity of cpo(k) which belongs to the outer region shrinks to zero ask ~ 0 (9.11) .

is is required by the convexity of Uo.



. Scale dependence of the average potential i

	

t e i

	

cr
one-loo u roxi atio

The proof that cpo(k) is also the absolute minimum of the average potential
involves a comparison of Uk(cpo) with the average potential in the inner region .
The inner region appears for k 2 < kT, with k~r determined in analogy to (9.7) with
a sliding cutoff,

kcr - ~ R\Dkcr)~Ô( 1 - 2CARlDkcr)D2)_~ .

	

(10.1)

[This coincides with cps(k~~) = 0 (9.11).] For small AR the critical scale k~ is
essentially independent of the constant D,

Similarly, the inner region covers ~~~P < cps(k ),
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k2

In the limit k -~ 0 it extends to cp~(0) _ ßô(0) _ ~Pô . We will investigate the
k-dependence of the average potential in the inner region, for cp2 < cp~( k ) and
k 2 < k~, using the one-loop average potential derived in appendix B.

In the one-loop approximation, the cp-dependence of the average potential in
the inner region reads by virtue of (6.6) and (B.2S) (d = 4)

with R the cp-dependent factor in the determinant (B.27)

R = (P - k2 + 2Jlcp2)(P +- k2)(P-- k2 )

+ A(cp~ - ~2
)( P-k2)(P++ P-- 2k2)

io i t

(10 .3)

(10.4)

(10.6)



C. Wetteràch / Ac~erage action

and average propagators F(q), F+(q) given by (8.10) and (8.24) . We have evalu-
ated a(k ) in appendix I~ and find the renormalization group equation

~~ a( k ) - 2a(

	

)

	

2Tà3

	

®

	

~2

	

1

	

~r( k ) - ~2

	

(

	

)

ere e t is a slowly varying function of

	

2/cpr of order one and the constant e° can
b~e found from (

	

.40), (

	

.4 i ) (for a particular choice of f~(q2 ))

dy

	

1 -y'

	

1 -4y~) + f ~

	

dy

	

i -y2 (i + 2y) .	(10.8)
1/~

or ~® ~~

	

LP one has

	

~~ ~ ~P~ independent o

	

k and eq. (10.7) is easily solved :

A

(

	

)

	

°(~ )
	4Tr~

	

~Pô
-
~z

(10.9)

For small

	

the second part rapidly becomes negligible and one finds that a(k)
does not change its shape in dependence of cp'`, but is simply scaled proportional

' . A direct one-loop calculation of a(k) from (

	

.20) leads to the result (for small
and

	

-' )

implying

()
4~rr3

	

SPô - ~Pa

In this approximation the use of renormalization group equations gives not much
new information for the inner region . (A more careful treatment of the regions
cps = cps and Acp~~ ~ k2 will modify a°(cp), but not change our qualitative conclu-
sions.) 'The average potential in the inner region

~Ik

	

k +
47r3 ~Pô

	

~~+ 4Tr3 ~Pô
ln

cp~cp

	

~P ~ + ~

	

4Tr3

	

~Pô

	

(10.12)

is essentially quadratic ~ -k 2
SPtcp . We observe for finite k a local minimum at



cp = 0 and a local maximum for extremely small cp2,
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4~r3~Pô
~Pm~ _ ~Pô exP

	

- eok 2

	

-

The minimum at cp = 0 is related to the divergence of the second derivative of Uk
for ~P ~ 0. This results from the additional zero made among the fluctuations
around the spin-wave solution which appears for cp --~ 0. In any case, ~ = 0 never is
the global minimum (Uk(acpm~) < Uk(0) for â » 1) and this tiny structure disap-
pears rapidly for k --~ 0. We conclude that the global minimum of Uk (for the inner
and outer region) always occurs at ~Po and lies in the outer region . This justifies the
use of naiyP perturbative results a posteriors .
A last word of caution concerns the reliability of our one-loop renormalization

group equation (10.7) for the inner region . The problem is the qualitative change
in the shape of the potential for small k «k~~ . The one-loop R(iE is computed
with a cp4 potential and some effective momentum cutoff. This procedure is
certainly valid for small A for values of cp2 in the outer region, around ~ô and for
cp2> cpô . In this case the dominant configurations only involve values of X for
which the potential has the form -~2X 2+iAX

a to a good approximation for all
values of k . One can therefore start with a cp4 potential at a scale kQ , usiging kQ as
an effective momentum cutoff in Tka, and compute the change of Uk for k smaller
than kQ. For values cp2« cpô in the inner region, however, the effective potential
Uk differs drastically from the original cp4 potential. A reliable calculation of the
RGE in the inner region should use the average potential Uk instead of the

~4

potential . For the spin-wave solutions discussed in this paper, ~X(x)I 2 lies in the
outer region of Uk where the cp4 potential remains a good approximation . These
spin-wave solutions therefore survive even for a more general treatment and give a
contribution to exp( -Tk ) as discussed in this paper. The RGE (10.7) implicitly
assumes that these spin-wave configurations are the dominant configurations . This
may be justified by the observation that typical potential differences in the inner
region are ~ kâ 4X2 whereas gradient terms contribute ~ k24X2. For k2«kâ
the dominant configurations should then still have IX 12 near the minimum of Uk
(near cpô) _andthus correspond to the spin-wave solutions discussed in this paper .

This argument weakens, ho~:~ever, for k 2~ kâ where potential and kinetic contri-
butions are of similar size . It is not completely excluded that our one-loop
calculation underestimates the contributions from configurations with ~X ~ 2 in the
inner region . In this case our computation of Uk in the inner region rather

constitutes an upper bound for the average potential . An answer to the question
whether Uk flattens in the inner region even faster (due to configurations with

~X ~

2« cps) may be found by repeating our calculation for a general form of the

potential, or perhaps by using the exact renormalization group equation (2.28). A
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similar line of arguments applies to the role of the modified kinetic term in the
average action I'~ for the inner region which has been discussed in sect . 7 .
Although an improvement of our one-loop calculation for the inner region is

conceivar!e, we find it extremely unlikely that the absolute minimum of Uk falls
into the inner region, In the pure scalar theory there is simply no scale which could
determine where the minimum should lie within the inner region . (In the inner
region U~ has "lost the memory" [lI] of the parameters ~2 and A - they only
determine the size of the inner region .)

	

e conclude that naive perturbation
theory for the ~~ theory determines reliably the scale of spontaneous symmetry
breaking, ~P~(

	

-~

	

) _~~, as well as the physical scalar mass and quartic coupling.
A similar argument is not available for the full standard model, where independent
mass scales like 'i~c~ are present .

n conclusion, `ve have demonstrated in this paper that the average action can
be calculated reliably in perturbation theory for small couplings A R, at least for the
modes `vith

	

= e~

	

-' where it is approximately local. The average potential is more
complex than the usual Coleman-Weinberg potential [3], due to the appearance of
a e`v scale ~ , In particular, the minimum of the potential is k dependent,
exhibiting an effect of quadratic renormalization . The average potential becomes
convex as ~ -~ ~.

e

	

ixA

DEGREES OF FREEDOi~at AND FUNCTIONAL INTEGRAL

`~'e zv'ant to describe a euclidean bosonic field theory by an integral over a finite
number of degrees of freedom cp,p, 1 < n < 1V . This corresponds to a theory in a
finite volume and with a finite momentum cutoff. All quantities are well defined
for finite N. The limit 1~T ~ o0 of the integral defines the field theory and
functional integration . Consider a d-dimensional torus T d,

and a set of bosonic fields cpQ(x), periodic on Td,

_--

	

exp(-àq~`x~)cpQ(q) ~

	

(A.2)
9



Here q~ are integers with

and

with

such that

Here ~l is the total volume of Td,
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q~
2Trq~

L~

{qK} 91 92

	

9d

2

_ ~2dx~ . . .~$

	

~ 2Tr
4 ~ _x

_ _

	

L w
9i qd W

~Pa (q) = tPR(q) + i~Pi(q)

J
ddx~a(x)~~a(x) =~~~P~(q)~A(9')

J ddxcpa(x)~pa(x) =~~~P~(q)~P(q)
q

(A.3)

(A.4)

(We use summation over contracted repeated indices if the meaning is obvious.)
Fil~ite h corresponds to a finite resolution in space or to a momentum Cutoff
The Fourier modes cpa(q) are our basic degrees of freedom. For complex fields

cpa(x) we write
(A.s)

(A.6)

(A .7)

For real fields cpa(x) we have only half the number of degrees of freedom since
spa( -q) _ (cp°(q))* . We choose a convention with

1
~a(q) _ ~ (~R(q) + I~i(q)) for q ~ 0,

	

(~..8)

~P
a
(0)

2 +

	

~

	

~

	

~y(q)2

	

-~

	

~P ~

	

(A.9)
a

	

"q>0" y=R,I

	

n



ere we divide all values q ~ 0 into "q > 0" and "q < 0" by some appropriate
convention, ens~~ring that cp°(-q) and cpa(q) are not counted independently in fin .
or

	

1.~ -~ ~ the

	

sum over mo enta

	

is replaced by the

	

integral
(2°~) -damf9 ~ < _,~ d`~q and the Fourier modes of the fields are renormalized, ~(q) _
(2

	

)`~l~,f1 - 'cp(q ), such that

he partition function

	

is formally written as a functional integral,

_ ~e -s[ ~~

for complex ~~(x ) and by

ra

e define the measure by
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,,x
d~ra P -

1

-x

for real cp°(x) . The arbitrary scale parameter p has the same dimension as the
bosonic field cpa(x). With these conventions the gaussian integration is of standard
fo

J D~exp -~ ~~(q)A(q)~P(q)
q

x
d~;~(q) P-1 -

	x
d~ra

P-1

-x

	

ra -x

(A .12)

I~et
~P

A(q)

	

(A.13)

for ~°(x) complex (real), provided the matrix Aab(q) ful~ills A~(q) =A(q), A*(q)
= A( - q ) and A has o_n_ly positive eigenvalues . The measure is invariant under
reflections for any mode cpn (cpn ~ - cpn ) as well as under orthogonal transforma-
tions among all the modes ~Pn (®(N)) . In particularly, for N complex (real)
fields ( a = 1, . . . , N ) it respects "internal" global U(N ) (O(N )) phase rotations
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(cp(x ) ~ Ucp( x )) . Translation symmetry of the measure is trivially realized as a
q-dependent phase rotation of cpa(q) :

8cpa(x) - _E~a~~Pa(x)

The symmetry of continuous euclidean space rotations is only violated by the
infrared cutoff of the measure implied by the torus Td, whereas the ultraviolet
cutoff ~ is consistent with this symmetry [cf. eq. (2.4)] . In the field theory Limit
L~ --~ ~ the full euclidean rotation symmetry of the measure is recovered . The
discretization in momentum space allows a much easier treatment of space
symmetries as compared to the discretization in lattice theory, where translation
and rotation invariance are broken by the ultraviolet regularization .
For a finite number of degrees of freedom 1V we will assume that ~(~,~) is unite

for all finite values of cp,~ and decreases sufficiently fast for I ~Pn I -~ ~ such that the
partition function Z is finite . An operator O[cp] = O(~n) is defined if the integral

exists . For finite L~ and A the theory is fully regularized . For infinite volume
(~l -~ ~) the number of degrees of freedom N becomes infinite . We will be
interested in this field theory limit and only consider regularized operators which
have a well-defined limit for ~ ~ ~. (The limit ~ -~ ~ should be performed at tâe
end of all computations.) We note that our approach permits easily the treatment
of infinite volume (~ ~ ~) while keeping some of the L~ finite . This can be used
for a study of finite-temperature field theory or for compactification of some of the
space dimensions. One may also consider the infinite cutoff limit ~i -~ ~. (This
implies 1V ~ ~ independent of ,fl.) The existence of this limit depends on the
properties of the action S. (Compare sect. 7 for a discussion of actions with explicit
smooth momentum cutoff for which 11 ~ ~ can be easily performed.)

Appendix

ONE-LOOP AVERAGE POTENTIAL FOR THE ~a THEORY

S~Pa(q) =is~`q~~p°(q) 1A.14)

The one-loop approximation to the average potential obtains by gaussian inte-

gration over fluctuations around the absolute minimum of Sk . The action for the

* It is easy to construct a measure which is invariant under the full maximal group of continuous

space symmetries by taking a sphere Sd instead of the torus Td. The basic degrees of freedom ~Pn

are harmonics on S`~ instead of Fourier modes ~p(q). The generalized total angular momentum l

plays the role of q2 and the ultraviolet cutoff corresponds to a maximal l . In the infinite-volume

limit the symmetry group SO(d + 1) of Sd becomes the (euclidean) Poincaré group .
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uct ations is approximated by the quadratic part,

SXy(q) Sâbys(q~q') SX~(q')

~XR(q) _

SXR( -q) _

P2t',t Sâ~Y~(q~g
e
)~

ere

	

;~;~~( , q') is considered as a matrix i

	

internal as well as momentum space.
It can be computed from (5.10) an

	

(5.14) for classical solutions with constant Xa:
~~~~<,(q, q1 ) _

	

}q ; + ~~(

	

).~~(

	

) - a~' + ~X'} SabS~~S( q - q') +

	

b( q, q')} ,

(s .2)

+ Xo,~(q +

	

)~~Xo,b(q® -

	

) +' Xo.a(q -~)T3Xo,b(q' +Q)1T3

-

	

o,a(q +

	

)T~Xo,b(q' +q) +Xo,a(q - q)T2Xo,b(q' - q),TZ

+ ~o,a(q +

	

) %iXo,b(q' - Q) +Xo,a(q - Q)TiXo,b(q' +q)1T1J

B.4)

ere `~~e use an explicit representation with 2 x 2 Pauli matrices for the index
°~, _ ( , I) _ (1, 2) and ~ = XT. In general, the matrix 1V1 mixes different values of
q, a and ~ and the fïuctuation matrix may become quite complicated even for
classical solutions with constant X-.

consider first the constant solution (6.2) with X®, a(q) = cp8a18 y'8(q). The matrix
simplifies to

- ~~2Sa1Sb1(~(q
- q

	

+~(q +q')T3) ~

	

B.5

e perform an orthogonal transformation such that for q > 0,

1

	

(SXi (q) - SXi (q))()

	

(>

1

	

(~Xi (q) + SX i (q)c~

	

c~ )

1
(~X(i,( -q) + bX~2,( -q) ) ,

1
SXi( -q) _ ~ ( -bXci~( -q) + SX~2)( -q)) ~

	

(B.6)



part of SX a(x),
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Then SX(i~(q) and SX~2)(q) are the Fourier components of the real and imaginary

1 J
IZeXa(x) =X(i)(0) + ~

	

l(X~1)(q) +iX(i)(-q))exp(-iq~`x~)
q>0

+ (X(1)(q) - iX(1)( -Lj))exp(lq~`'x~) ~

1
Im X°( x) = X~2)(0) + ~ ~ {(X(2)( -q) +iX(2)(q) )exp( -iq~`x~)

q>0

+ (X(2)( - q) - jX~2)( q) )exp(iq~`x~)~ '

In this basis M is diagonal in momentum space,

and one obtains for an arbitrary number N of reaâ components (N= 2

	

for
complex fields)

1 0
= 2Acp2SalSbiS( q - q~)

+(N- 1)ln(P(q) -1u.2 +Acp2 ) +Nln(~n2/T1~ .

Except for a modified propagator (average propagator)

fk(g)
P(q) = q2 + v(q) 1 -fk(q)

this gives the standard Coleman-Weinberg result in the limit L~

Uk	i(2~)

	

J z

	

zd q

	

m2
q <A

	

0

oo;

(s .lo)

- 1 ln
P(q) -

lu2 + Acp2

	

.
	~ .11)+(N )

	

mô

For the inner region of the potential we have to expand around the spin-wave
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solution (b.5). The nonvanishing components of the matrix 1~L°ab read

with

=AX2~~(q ° q r) + S(q + qI
°

2po)T3} ~

e explicit appearance of the momentum p® reflects tire breaking of translation
s

	

me

	

by the spin-.gave solution. In vâdrr to diagonalize S(2' in momentum
space we first perfo

	

a change of variables by relabelling the momenta in the pô
direction Make p~ =p®c~i) for the second component of 8X,

(B.12)

(B.13)

* The definition of A1 is easily adapted for the case where the right-hand side of eq . (B.16) is not the
square of an integer multiple of 2-rr/L 1 . For every g~ $1 there is a finite number of allowed ql and
the transformation should be cyclic .

q~= mod2 .~,+z~~L,(gl +po) ~ (B.15)

ere ~ ~ is the maximal momentum in the one-direction,

ï =112 - ~ q~qu (B .16)
~~1

and the definition of q_ is chosen* such that

_11 1 <q_<111 . (8 .17)

This variable transformation has unit jacobian . Denoting

(B.18)
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(and omitting the prime for the new variables), one obtains

~. Îab(q~ q')SX a(q)SXb (q')
9~9~

where

with

_ ~

	

~ fab(q~ q') Sxa(q)Sxb(q') +f22(Q . Q')sx 2(q)sx2(q')
9~9' a,b~2

+ ~ [Îa2(q, Q')sx°(q)Sx2(q') +f2a(Q, q')Sx 2(q)sxa(q')J

	

.
a~2

	

'

One then finds for the nonvanishing components of MQb

4~X2e(~i - Iq, +pol )

	

Xi

+ ~

	

~P2

	

~PX2®(11 1 - Iqi +pol )

	

S(q + q')
~PX28(Ai - Iqi +pol )

	

xie(~i - Iqi I - Ipol )

573

(8.19)

(B .ZO)

with the usual step function 8(x > 0) = 1, 8(x < 0) = 0. As we will see in sect. 10,
the high-momentum modes with (11- po)2 < q2 < 112 give negligible contributions
to the cp-dependence of the one-loop average potential in the inner region (for
sufficiently large 112). We therefore neglect the complications due to the finite
cutoff and obtain, after performing the transformation (B.6)

Dab(q) _ (p(q) - k2)Sab for a, b ~ 2 (B.22)

_k2

D22(q)
2(p++P-) _i(p+_p-)

_ (B.23)__ 2( p+_ p-) 2(p++P -) k2

p±(q~,) = p(q~ ±po,~) (B .24)

Mll 1= 2Acp2 =
0 ~ , M22 2Ax2

0 0

M~2
1 0= M21 = 2Acpx2 ® 0

(8 .25)
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t is basis the determi:~ant factorizes,

et(~l-1S(2)) _

	

' det S(q) ,

	

(8.26)

det S(q) _ ~( (

	

) - k '- + 2A~Q2)(P+(~) - k 2)(P-(q) - k2 ) + ~xi(P(q) - k2)

~ (P+(q) + P-(q) - 2k 2 )] (P(q) -
k")N-3 ,

	

(8 .2ï)

where ~ï is again the number of real scalar fields.

	

e note that det S(q) vanishes
for some values of q. These " oldstone modes" correspond to a degeneracy of the
classical solution [8]. Their integration gives a ~-independent constant factor and
they are excluded from the product ( .26) . In addition, the modes corresponding
to

	

e

	

=(1 m

	

es in the origin

	

basis should not be counted in the product
( .26) . (For these modes det S(q ) diverges .) For all remaining values of q
t e quantity det S(q) is positive an

	

finite. n the infinite-volume limit L~ ~ ~ the
exclu e values of q have measure zero and the one-loop contribution to the
average potential in the inner region reads

-<_~-

a

~

	

ln (

	

-

	

') (P+

	

k 2 )(P-- k2 ) + ~~r(P++ P-- 2%2)]

+~~~ 2(P+-

	

2 )(P-- k 2) - ( P - k2)(P++ P-- 2k~)] }

+(

	

-3)ln(P-k2)] +const .

	

(B.28)

e conclude that the one-loop average potential (8.11), (8.28) can be obtained
from the corresponding formulae in ref. [8] by a simple modification of P(q)
accordi~~g to (8.10).

e C

ONE-LOOP RENORMALIZATION GROUP EQUATIONS IN THE OUTER REGION

n this appendix we evaluate the one-loop ß-functions in the outer region of the
potential, as defined by eqs. (8.14)-(8.17). We have to compute the partial
derivatives of the integrals Kn. Let us first concentrate on v = q 2 such that k is the
only mass scale appearing in the dimensionless ratio p(x) = P(x)/x. We introduce
dimensionless quantities

) -n
Ln(w) = k2n-d

	

`~2dxxz`~-n-i
a

	

P x

	

+w
a x

at ~n( w)_

	

Udkd-ZnLn(w)

9

(C.2)



For w = 0 we use

For d = 4 it follows immediately that

and

We find the exact result

a a
ât + ~0a~o

	

KZ(w)
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a _ a
at p(x) -2xaxp(x)

	

(C.3)

and take A -~ ~ since the integrand in eq. (C.1) vanishes exponentially for x -~ ~.

1

	

~

	

a

	

P(x) +w
_ -

	

J dx
16Tr2 o

	

ax

N+ 8
A

16~r2
ß1 =

N
-1

A
16~r 2

N+8
ßi +ß2 =

	

16~r2
AR .

For a separate computation of

	

_rl we note that the integral (C.1) has two
independent infrared cutoffs given by k 2 and 2A R~pô. Fo_r k2» 2ARCpô, the cpo

dependence of Kn

	

can be neglected, whereas for k2 « 2AR~p~ one has
IL2(2 ARcpô ) I « ;L2(0) I . We conclude

for k2 » 2AR~Pô

for k2«2ARCpô,

with a smooth interpolation for the "threshold region" k2 ~ 2AR~pô . Similarly one
obtains

575

(C.5)

(C.6)

(C.7)

N+2 k2
Li( ®) for k2 » 2ARCpô

32-rr2 ka (c.8)
N- 1 k2

Li(®)
for k 2«2ARCpÔ .

32Tr2 k2
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or the coefficient c, we use the identity

a

	

,
(w)

- -
Kz(w) ,

	

(C.9)
aW

a

	

fin

	

t at c, vanishes to lowest order in A .
e coefficient c ~ and the precise form of the threshold behaviour for k2

?~ ~cp~ depend on details of the definition of the average fields, i.e . ß and a in eq.
(?.17),

	

ne finds

L,~(0) _ -2~(1 -~- 1/ß)(2a) -ilß ,

	

(C.11)

n the limit

	

~~we can evaluate (C.1) directly using p( x ) -'a - ®( x - k z) (n > 0)
and

	

= = k',

e obtains in this limit

.d~ - 1

	

3

	

k2
cg

	

16ar2 + 16Tr2 k'- + 2AR~Pô

(C .12)

(C.13)

~ e expect a qualitatively similar behaviour for finite values of ß. For v = const., a
straightforward but somewhat tedious calculation, using

a

	

a

	

a--p

	

= -2x-p

	

- 2v-p

	

(C.14)
at

	

r, v

	

ax

	

k z~ v

	

a1J

	

x,kz

ap

	

- v fk
a ln v

	

~

	

x i -fkx,k-

gives only small corrections to (C.7) and (C.8).

- v

	

i - k 2

	

a

	

fk
po ! 1

ONE-LOOP RENORMALIZATION GROUP EQUATIONS IN THE INNER REGION

(C .15)

In this appendix we compute first the integral J(k) (10.5) which determines the
cp-dependence of the

	

average potential

	

in the

	

inner region

	

a(k) _ -k a +



1lJ(k)/(32~r 4 ) (10.4),
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J(k) - J z

	

z daq ~2(P+-k21(P-
-kz) - (P-k2)(P++P_-2k2),q <A

x {(P - k 2 + 2~1cp2)(P+- k2)(P_- k2 )

+A(~T - ~PZ)( P - k2)(P++ P_- 2k 2 ) } -
~

We then proceed to calculate the renormalization graup equation for a(k) .
Let us first show that a(k) is ultraviolet finite, with corrections from a finite

cutoff of order k4/112 . This justifies to treat the ~P-dependence of the average
potential in the inner region in the infinite cutoff limit A ~ ~. For large q2 we can
neglect the exponential terms in P, P + and approximate (with p® _ ( p®, 0, 0, 0),
po > 0)

( )P = q2 ~

	

P±= ~ q ±Po) = q2 +Pô ± 2Pogi ~

	

D.1

(P+- k2)(P-- k 2 ) _ (q2 +Pô - k2)z - 4Pôgi ~

	

(

	

.2)

The contribution from high momenta q 2 > q~, where (D.1) is valid, to the integral
J(k) is

JI (k) -- 2Pôf

	

d4q(ga - 4qi +Pô - k2)/R
q~ <qz<n2

R - (q2 - %t 2)[(q2 +pô - k2)(g2 +pô - k2 + 2hcpr) - 4Pôgi]

(D .4)

+ 2Jlcp2pô(g2 - 4qi +pô - k 2 ) ~

	

(D.5)

The leading contribution for large q2 vanishes (f d4gq-6(qa - 4qi ) = 0) and the
A-dependence of JI is at most of order k~/A2 .
Next we establish that the ratio z(k) = a(k 2)/k a is finite for k -~ 0 . This implies

that the inner region of the average potential is flat fork = 0. Since for k -~ 0 the
inner region extends to all values cp~cp < cpô, the full one-loop average potential is
convex fork = 0, as it should be. We observe pô ~ k 2 and that the lower bound for
the validity of the approximation (D.1) is proportional k 2, q~ ~ k a. It is easily seen
that for small k 2« ~lcp~ the integral JI(k) is at most of order k4/(~lcps) [8]. We
still have to show that the remaining integral for momenta q z < q~ also vanishes at
least ~ k a. This is obvious except for possibly dangerous contributions from the
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vicinity of the zeroes of R (10.6). For generic values 0 < ~P z < cpr one finds three
zeroes:

~-'P
.~ (~ _)

( P~ )

q? = ®~

q1 = - ~PO~ q2
= P® ~

) _ ?Po~

	

g2= P(j~

e use

	

~ = exp( - (q' k')~} (2.17) and obtain

1

	

1

	

v + 2(k2 -p®)

	

ß - 1
2 k -' -pô v+k2 -p®

	

p®

fk 2( Po) -ß

?Pô( 1 -~k( Po))

±-k = (q~~-2g1Po)

2

J
_ _ _

	

da

	

A

	

2 -

	

a

	

+ P
(qa

- 4qiPô )
(~)

	

~

	

q

	

(~cr

	

~ ~

	

2

	

4+4 2 ~2q

	

q1I o

P+ =P_=kz

P~=P=k 2 ,

P_=P=k 2 .

addition a zero at q~ =p~ (iv) appears for cp s = 0 independent of q 1 (P=k 2),
and similarly for q' _ ~- ~q ~ po (v,vi) for ' = cps (P~ = 2) . Ail these zeroes are
related to " oldstone directions" arising from continuous symmetries of Sk which
are broken by the spin-`vane solution (6.5) [8].

~3ear the respective minima of P, P~ we expand

2(q2
-
Zqi

po)2 - (q2 - pô)2

for v = const .

for e = q 2 .

Since the integral J is symmetric under q 1 -~ - q 1 we only need to consider the
zeroes for q, > 0.

	

e approximate around the zeroes (i) and (iii),

aq
J(üi)-

	

d

	

ZA 2 +

	

2 - 2 2

	

2 -2

	

2 +A 2 - 2

	

2- 2 2
tP

	

P(q

	

Po) )(q

	

giPo)

	

(~cr

	

tP )(q

	

Po)

(D.6)

(D.7)

(D .8)

(D.9)

(D .10)



For generic values ~ ~P z »k 2, Jl(cpi - ~2)» k 2 these integrals converge at the
zeroes (i), (iii) and are indeed proportional ka

	

.
To be more specific we next evaluate the integral J for the limiting case ß -~ ~,

where pô = k2 and

We use variables qt and q1= (qi + qs + qâ )'~z and divide the integration region
for q1 > 0 into four regions, shown in fig. i~.l,
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q -2

	

for q2 >~ 2

q

~p-~- p~ ,

	

(D.12)

* The discussion for Acp 2 « k 2 or ~1(cpc - cp 2) «k2 should also include the zeroes (iv) and (vi) and
will be given later .

( I) qi > k2 and ql > 0 or

qi <k 2 and qi >k+Q or

qi<k2 and Q<ql <k-Q

(II) q i < k2 ,

0<q l < min(Q,k-Q)

(P_~ =0),

(III) q1 < 4k2,

k-Q<q i <Q,

(P_~ =PW -- 0)

(IV) qi <k2 ,
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e

`vit

`vrite tl~e integral J as

Using dimensionless variables

Fig. D.1 . Integration regions for fluctuations around the spin-wave solution . We also indicate the
aeroes of R(see text).

D.13= 8T

	

dq I dq~ q1;(R)

	

(

	

)
tR) tR)

.i(I) v 2k ~(qz - 4gi)l~(qz + 2~Icp~)q2 - 4k 2gi] (q 2 - k~)

I D.14+2Acp2k2(g2 - 4qi )}	~

	

(

	

)

j

	

l I

	

(

	

)
.1(II) - -2q~1g

4
- 4k 2gi + 2A(cp~- ~PZ)g

2
1

	

~

	

D.15

i

	

2 +(ql + k)2 -k 2 +11(cpi - cp2 ) -I,

	

(D.16)
(III) - - {q 1

;(IV) -
(q2 + 4g l k + k')((q 2 - k2)\q

2
+ 2glk + ~.(cPc - ~2)I

y = ~~P~lk 2 ~

	

8 = I~~PZlk
2

~

	

(D .18)

Y = qI/k~ x=ql/9I~

	

(D.19)
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we remain with the integrals in the regions (I)-(ICI)

J(R) = 8Trk2J dYY3J dx,j(R)

_,
x [y2 ( x 2 + 1)2 + 2y( x2 + 1) - 4] + 2S( x2 - 3)}

	

,

	

(D.21)

~(II) _ -2x 2(x 2 + 1){y 2(x 2 + 1)2 + 2( ,~ - 8)(x2 + 1) - 4} -1 ,

	

(D.22)

x [y'(x 2 + 1) + 2y + y - 8] + 28[ y 2 ( x 2 + 1) + 2y] } - i .

	

(D.24)

We note that the limits of the x-integration in the various regions are only
functions of y whereas the y-integration covers the intervals [0,~], [0, z], [0,1] and
[i, 2] for the regions (I)-(IV) . In particular, the integration boundaries are inde-
pendent of k 2. We also may use the identity

1
z,-2d4~(g2

- 4g1)F(q2/k2)
q ~k

= kb

	

~

	

f dYY sJ dxx2 ( x 2 - 3) F(y 2( x 2 + 1) )
(I)+(IV)
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(D.20)

(D.23)

to subtract an appropriate expression from i(i) and 1(tv) and make the integrations
in J(i) manifestly ultraviolet finite .
We are interested in the k-dependence of the quantity a(k) (10.4). Using the

dimensionless variables (D.18) one writes

a(k2 ) = â(y,S)k 2 (D .26)
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and derives the general identity (neglecting the k-dependence of cpT)

n our case this yields

with
a a

(~, =

	

d3,y, ,
dx y~ + ~

a8

	

J(R) ,

	

(D.29)
y

e consider the case ~ - S» 1 and approximate

~ /,

	

~

	

~

	

'	~

	

dxg

	

+

	

dyy3

	

x
dxg

	

,

g(I) = -~4x'(x--3){(x~+ 1)[y-(xZ + 1) - lly+ (x2-3)~}

g(II) ~x2/( y - S) ~

a

	

aâ aâ
k a~ a{k) =2a(k) -2k2

yay
+B aS

	

.

	

(D.27)

(1-Y,) ,I/_
dyy

J

	

/y-
dxg(II)(II) -

	

-0

	

(2 y)/y

_,

1

	

y--( x- + 1)~ + 2y(x2 + 1)] + 2S( x2 - 3)~

	

~,

(III) -

	

I/~dyy3_

	

(2-Y)/Y
dxg(III) +

	

I

	

dyy3

	

(I-Y2)/Y2
dxg(III)

0

	

0

	

1/2 0

(D .3o)

(D .31)

g(III)
~x2

/(y - ~) ~

	

(D .32)

(IV) =

	

I

	

dyy3

	

(2-Y)/y

	

dxg(IV) +

	

2dyy3

	

(2-y)/Y
dxg(I~)

z z1/2

	

(I -y )/y

	

1

	

0

g(IV) ~ -x2l y2( x2 + 1) + 4y + 1,

x {( y - 8) [ Y2( xz + 1) - 1~ + 2S~ y 2 ( x'- + 1) + 2y] }-' .	(D .33)
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K(II) + K(III) - 3(i~ - ~) -I
J

I dy(l -y2)
3~2

0

8
,

K(IV)- -(y-8)_Ie(IV)

	

-8y

with e(I~) of order one for S of similar size as y - 8. An inspection of the integral
K(I) leads to an analogous conclusion : For S of the same order as y - 8 one
obtains

a

	

i k4
kôk a = 2a +

2T3

	

2 -	2

	

e

	

2 -	2
(~~r ~ )

.34)

.35)

(D .36)

with e of order one. For the interesting case of ~PZ «~r (8 « y - 8), however,
there are important contributions to the integrals K(I) and K(IV) from the region
near the boundary at x2 = y -2 - 1. In this region the integrals diverge for 8 = 0
and we have to evaluate them carefully. Consider the region

where one can approximate

(D .37)

g(I) ~ -Y-2(i - y2)(i -
4y2)(y[ y2 (x2 + i) - i~ + 8(i - 4Y2)Î

_ I
,

	

(I).38}

g(IV> ~ - 2Y -2
(i - Y 2 )(i + 2y){y[y2 (x 2 + 1) - 1~ + 28(1 + 2y)~ -1 .

	

(D.39)

Performing the x-integration gives contributions

i I~2

	

~Y
K(I) ~ -

2

	

~

	

dY

	

1 -Yz (1 - 4yz ) ln 8y o
(D .40)

K Iv ~ - 1 r I

	

dy

	

1 -y2 (1 + 2y) ln y - ln(2 + 4y) ,	(D .41)(

	

)

	

y J1 ~2

	

8

and we conclude that the leading contributions are logarithmically divergent for
~Pal~P~ ~ 0~

(D.42)
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`vit

	

ei of order one. We expect a similar qualitative behaviour for (D.36) for finite
values of
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