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We formulate an effective action I'; for averages of fields taken within a volume of size
k7. In contrast to the block-spin anproach on the lattice we work in continuous (euclidean)

space, preserving all symmetries. We establish how expectation values of operators with mo-
menta smaller than k can be computed from I';. The average action at different scales is related
by an exact renormalization group equation. We apply these ideas to the N-component &
theory in the spontancously broken phase and derive the one-loop remormalization group
equations for the average potential. The average potential becomes convex as k — 0.

1. Introduction

In field theory the laws of physics are formulated at some short-distance scale
(which may be finite or arbitrarily small). From this starting point one has to
compute the behaviour of the theory at long distances. A similar problem arises in
statistical mechanics whenever the correlation length is large compared to the
scale where the microphysical laws of a system are known. In a formulation of field
theory or statistical mechanics on a lattice, Wilson and Kadanoff [1] introduced the
concept of a “blockspin”, i.e. the average of the field over a block of lattice sites.
They defined an effective action for blockspins with blocks of size k=4 - the
“blockspin action” I',. The physics at length scales ~ k~! is well described by I.
In particular, the vacuum expectation value of some scalar field (or operator) ¢ is
given by the minimum of the effective potential U, (¢) — the nonderivative part of
I, — in the limit k — 0. There is a close connection between the change of I, in
dependence on k and the renormalization group equations in field theory. Unfor-
tunately the block-spin action becomes very complicated for practical purposes.
This can be understood from the fact that physics at small k is supposed to obey
the continuous symmetries of space rotations and translations whereas I is
formulated on a block lattice. Complicated interactions in I', must compensate for
the discrete formulation.

0550-3213 /91 /$03.50 © 1991 - Elsevier Science Publishers B.V. {North-Holland)



v

30 C. Wetterich / Average action

In a different approach the effective action I’ and the effective potential U are
defined [2] by a Legendre transformation from the partition function in the
presence of sources. Scalar expectation values are again given by the minimum of
U(e). It can be shown that U(e) indeed corresponds to the limit Xk — 0 of a
suitably defined “block-spin potential” U,(¢). A perturbative loop expansion for
the effective potential for a scalar ¢* theory (also coupled to gauge bosons and
fermions) was provided by Coleman and Weinberg [3]. These authors also com-
puted U(e) in the one-loop approximation. Although there is no dependence of U
on an expiicit length scale &~! (U relates to infinite distances), it can be argued
that the role of & is now played by the infrared cutoff provided by some constant
“background™ field @. The block-spin action I; obtains from the short-distance
action S by functional integration over modes with momenta g2 > k2. The effec-
tive action I involves an integration over all modes, but the contribution of modes
with > < & is suppressed by mass terms ~ @. Thus the renormalization group
equation for the quartic scalar coupling can now be related to the ¢ dependence of
the fourth derivative 3*U/d¢* (¢ = @) etc. The definition of r by a Legendre
transformation has the important advantage to exhibit fully the continuous space-
time symmetries and be compatible with field-theorctical expansion methods (e.g.
perturbation series based on Feynman graphs). Most practical applications so far
have concentrated on this latter approach.

For certain questions, however, the effective action r and, in particular, the
effective potential U fail to give a useful description. Being defined by a Legendre
transformation the effective potential must be convex [4]. In the spontaneously
broken phase of a scalar theory the potential U(¢) must therefore have an “inner
region” which is completely flat. No information can be extracted for values of ¢
within this inner region. In this region a background field ¢ does not implement an
effective infrared cutoff. The direct relation between the shape of U(¢) and the
k-dependence of U, is lost. The renormalization group equations relevant for the
inner region cannot Le extracted from U(g). In addition, naive perturbation theory
breaks down for the inner region [3]. The one-loop effective potential develops an
imaginary part and the perturbation series does not converge to a convex potential.
(Compare refs. [5, 6] for improved perturbation series giving a good approximation
to the convex U, and ref. [7] for an interpretation of the naive perturbative
potential.)

In this paper we discuss an average action I'; [8] which generalizes the block-spin
action to continuous space. This formulation preserves the simple physical inter-
pretation of I'; as an effective action for averages of fields over volumes with size
k=7 and the direct relation between the scale dependence of I’ . and the renormal-
ization group equations. On the other hand, it incorporates the advantages of the
full continuous symmetry of space translations and rotations and the possibility of
using field-theoretical methods like the steepest-descent approximation. In particu-
lar, the average action is an appropriate tool for questions related to the “inner
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region” of the potential in spontaneously broken scalar field theories, which are
difficult to access by other methods.

Effective actions with the full continuous symmetries have been used previously
in a somewhat different context [9], namely the derivation of exact renormalization
group equations by integrating out successively modes with a continuous momen-
tum spectrum. Our concept overlaps in some aspects with this earlier work, but our
main emphasis is here on the notion of averages of fields. These averages are not
merely technical tools. They acquire a direct physical meaning in problems with
coherent motion of fields or with effective interactions between averages of fields.

Among the applications for models with spontaneous symmetry breaking are
issues where the local short distance interactions have to be compared with
(effective) nonlocal interactions involving averages of fields over large distances. A
well-known example in statistical mechanics are the Weiss domains in ferromag-
nets, where the size of the domains results from a competition between strong
local ferromagnetic interactions and weak nonlocal magnetic interactions®. In field
theory, a similar problem arises in the standard model if one wants to assess the
relative importance of the effective nonlocal interactions for the Higgs scalar which
are generated by the fluctuations of quarks etc. It is conceivable that naive
perturbation theory gives a misleading picture of electroweak spontaneous symme-
try breaking and that the Fermi scale is generated by long-distance physics, making
the parameters of the short-distance scalar potential irrelevant (within a certain
range). This would solve the gauge hierarchy problem [10] and the scalar mass
would become in principle predictable [11].

Another issue concerns the coherent evolution of scalar fields in cosmology. The
time evolution of scalar fields plays an important role in a variety of contexts:
inflation, phase transitions in the early universe and aspects of late cosmology
related to the problem of the vanishing cosmological constant. The usual approach
uses classical field equations derived from the perturbative effective potential.

The exact conditions for the validity of the perturbative picture are yet to be
worked out. In general, if one is interested in the zero temperature dynamics of a
scalar field mode with typical length scale ! cne should consider the effective
action for averages of fields over volumes ~1[¢ ie. k=«l"'! with k> 1 some
constant of order one. This means that quantum fluctuations with momenta
p?> k™% are “integrated out”. (The inclusion of quantum fluctuations with
p?2<k?l~? needs a more detailed investigation depending on details of the
effective infrared cutoff at the scale /~'.) Of course, if the scalar fluctuations
(around some background field) have a finite coherence length [, <! it is sufficient
to consider k =I;'. (Quantum fluctuations with momenta p> <m?=I5? give a
negligible contribution.) Nevertheless, in cosmological models one often encoun-

* There is a critical value of k where the minimum of U, jumps from the boundary of the irner
region to zero.
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ters problems where m? is very small or even negative (unstable modes) so that /
(or. in case of dynamical evolution, an appropriate time scale) determines the
relevant k. In particular, for overall homogeneous and isotropic cosmology the
relevant scale is set by the Hubble parameter, k ~ H. The relevant potential for
the dynamics of slowly moving spatially constant scalar fields (e.g. inflation) is the
average potential U,(¢), k = xH, rather than the perturbative potential V,(¢). We
will see that these two potentials coincide only for m” > k2. For nonzero tempera-
ture the relevant potential is further modified.

The purpose of this paper is twofold. In the first part (sects. 2-4) we give a
precise definition of the average action and discuss its general properties. The
second part (sects. 5-10) applies these concepts to the N-component ¢* theory,
with particular emphasis on the renormalization group equations for the average
potential U.

In sect. 2 we define the average field &;(x) with the help of a smooth test
function f; which is almost constant within a volume V, ~ k~¢ around x and
decreases fast (exponentially) outside this volume. The test function is compatibie
with translation and rotation symmetries. It is chosen such that the average of an
average field is again an average field, now over a larger volume. The average
action [ is formally given by

exp — Ii[e] = [ Dx TT 3(44(x) - e(x))exp - Six]
= [ Dx Pl . xlexp — S[x].
du(x) = [dyfily =x)x(¥). (1.1)

We define this expression by the use of a gaussian constraint P,. This essentially
fixes the average ¢, of the field xy to coincide with a given configuration ¢,
& (x)=¢(x). A certain amount of fluctuations of ¢, around ¢, however, is still
allowed. This enables us to formulate the constraint in continuous space, respect-
ing translation and rotation symmetry. The average potential U,(¢) is obtained for
¢ = const.

In our formulation In P, can be written as an integral over space, permitting the
introduction of a constrained action S, = S — In P, such that exp(—1I}) is obtained
as the partition function from §,

eXD—Fk[¢]=fDxexp—Sk[<P,x]. (1.2)

This opens the door to the use of standard field-theoretical methods like steepest-
descent approximations for a computation of I,. The constrained action S,
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contains new nonlocal terms which originate from the nonlocality of the constraint
¢,(x) = ¢(x). These nonlocalities are quadratic in xy and can be handled rather
well, as we will demonstrate for the ¢* theory.

There is a one to one correspondence between operators O,[¢] and operators
0,[#,](0,[¢] has the same functional dependence on ¢ as O,[¢,] on &,). The
expectation value of O,[¢], evaluated with the average action I',[¢], is the same as
the expectation value of O,[¢,], evaluated with the original action S[yx] (sect. 3):

Z"'f Do O.[¢lexp — Tl ¢]

=z"' [Dx ;[ Jexp - S[x] +O(27"). (13)

The (calculable) corrections are tiny and vanish in the infinite volume limit 2 — =.
This estabiishes that I';[o] is indeed the effective action for averages of fields. The
operators relevant for the long-wavelength physics with g2 < k? (e.g. appropriate
n-point functions) have typically simple expressions in terms of ¢,. Concerning this
type of operators, no relevant information is lost when passing from S[x] to I;[¢].

In contrast to the lattice formulation, where the number of block-spins is less
than the original number of spins, the number of degrees of freedom ¢ and y
remains the same in our case. Nevertheless, the average action I,[¢] has the
property that the high-momentum modes ¢ (¢>> k?) decouple from the low-
momentum modes ¢ (g> <k?). Thus Il¢] is an effective action for the low-
momentum modes where the high-momentum modes have been integrated out.
For practical purposes the situation is completely analogous to the block-spin
action in this respect. More precisely, the scale k provides an infrared cutoff for
the constrained action S,. The functional integration (1.2) involves effectively only
the high-momentum modes y (g% > k?). As one of the consequences, the average
potential U,(¢) is not necessarily convex for k # 0, even in the infinite volume limit
0 — . It is shown, however, that U, approaches in the limit kK — 0 the convex
effective potential U (defined by a Legendre transformation). It interpolates
between the classical potential V() (k — ) and the effective potential U(e)
(k — 0) (sect. 4).

As we have mentioned already, the use of the constrained action in (1.2) allows
for a steepest-descent approximation. We can therefore attempt to compute I, in
perturbation theory. We begin with the average action for the N-component o*
theory in lowest order in perturbation theory, i.e. the classical average action. We
derive in sect. 5 the classical field equations from the nonlocal constrained action
S, and discuss general properties of solutions y,(x) with constant norm | xo(I =
const. In momentum space the nonlocality of S, finds its expression in the
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replacement of the (inverse, massless) propagator q> by an “average propagator”

P(q) =q*+v(1-f(@) ' f(a). (14)

(Here » can be a function of ¢°, independent of k. We consider either v = g’ or v
some constant with dimension mass® which should be chosen much larger than all
relevant mass scales of the model.) The minimum of P(q) sets the physical scale
associated with the size of the volume over which averages are taken,

k2 =P(p,) =min P(q) =0O(k*). (1.5)

For large momenta q° > p = O(%*>) the aonlocal constraint plays no important
role. whereas for modes with small momentum q° < p; the constraint induces a
large quadratic term in S, effectively suppressing the propagation.

We discuss in sect. 6 the average potential U, in the spontaneously broken
phase for which the classical potential reads

Vix)=—-wxy +Ax'x). w'>0. (1.6)

For &% < u° the classical average potential U behaves qualitatively different in
the “outer region™ for A¢'e > p® — k? and the “inner region™ for Ag'e < p®— k>
in the outer rcgion the constant solution y, = ¢ minimizes the constrained action
S:le.x] and U concides with V(). In the inner region, however, the solution
Yo = ¢ corresponds to an unstable saddlepoint rather (han to a minimum of §,.
The constrained action has its absolute minimum for a new *“spin-wave solution™.
For the spin wave some of the components vary in space ~ exp(—ip§x,), whereas
the length of the spin vector is constant, | ,\/(,(.wf)ﬂ2 = (p° — k?)/A. Comparing the
difference in S, for ¢> =0and ¢> = @2, = u*/A for small k? < u?, one finds that
only very little potential energy is needed since | X(,(x)l2 is close to the minimum of
the classical potential at ¢2,,. Also gradient terms give only a contribution
~ Pi¢rim- The classical average potential in the inner region obtains by inserting
the spin-wave solution into §;

Ul = —k?*p'p + const. (1.7)

It is independent of the parameters u and A. For k — 0 the classical average
potential develops a flat inner region and becomes convex. In contrast to naive
perturbation theory we have here a good starting point for a perturbative computa-
tion of U,.

A study of the gradient terms in the classical average action I [¢] (sect. 7)
needs solutions of the nonlocal field equations derived from S,[¢, x] with ¢(x)
varying in space. We find exact solutions for some special choices of ¢(x).
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Inserting these solutions into S,, one derives the following features for the g¢°
dependenice of I'?: For small g2 < k? the standard kinetic term is only modified
by a g*-dependent wave function renormalization. This simply reflects that ¢ now
stands for an average field. For the modes with large g> > k? the average action
rapidly approaches a gaussian Iy ~ L _r¢'(q)¢(q) and the modes with g*> k?
effectively decouple from the low-momentum modes with g2 < k2. The transition
regime with ¢° = k2 turns out to be rather complicated and is different for the
outer and inner regions.

We proceed to compute the “one loop™* average potential U;' by evaluating the
determinant for small fluctuations around the absolute minimum of §,. This is
used to derive in sect. 8 the one loop renormalization group equations (RGE) for
the average potential U,(¢) in the outer region. We parametrize the average
potential in the outer region by its minimum at %(72) and the fourth derivative at
¢,(k), the renormalized quartic coupling Ag(%). The RGE describe the k depen-
dence of ¢, and Ay and are independent of the cutoff .1 (and »). In particular,
the RGE for ¢2(k) has a “universal” quadratic contribution (sect. 9} which does
not depend on the ultraviolet regularization of the theory, in contrast to the widely
discussed nonuniversal “quadratic divergence” of the scalar mass [12]. Its solution

k*+ &3 (1.8)

distinguishes two different regimes. In the “scaling region” k2> 327252 /(N +2)
the minimum scales with &, ¢y(k) ~ k, and the B-function for the quartic coupling
takes the Coleman-Weinberg [3] form B, = (N + 8)A% /167>, For small k? <
3272¢%/(N + 2) the minimum of U, settles near the vacuum expectation value
(vev) p2(k — 0) = $2, whereas B, still gets contributions from “Goldstone fluctua-
tions”, B, = (N — 1)A%/1672. As a consequence, the theory is infrared-free even
for finite cutoff A and finite vev ¢,,.

Due to the quadratic contributions from fluctuations a mass term w? of the
order AA? is needed to obtain a small vev, ¢ < A. In this case ¢, belongs to the
inner region of the classical average potential U for small values of k and one
may doubt the validity of the RGE derived for the outer region. By a computation
in consecutive steps (renormalization group improved perturbation theory) we can
extend, however, the validity of the RGE for ¢, and Ay to arbitrary small k. We
establish that goO(Z) always belongs to the outer region in a renormalization group
improved treatment. The expansion around a constant field is valid in the vicinity
of the minimum (po(}). The inner region only appears for small enough k& and

* We do not use explicit graphical methods here. They can be systematically developed on the basis
of the constrained action S, using sources and the average propagator P(q).
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oxtends to

ol < o2 (k) = @5 —k*/Ag(K). (1.9)
In sect. 10 we derive the one loop RGE for the average potential in the inner
region. We find that U, is approximated for small k& by

) ] T2 ¢ 7.4 =21 %
U = const.— | & +4~_3A (0 PN

(1]

Cy - ,
+ ﬁﬁk‘«spﬂ ‘teIn(¢i/¢'e), (1.10)
with & ¢, of order one. We conclude that @g(k) corresponds to the absolute
minimum of U, for all scales % > 0. The use of naive perturbation theory for a
Jetermination of the scale of spontancous symmetry breaking can be justified
a posteriori. We also see here explicitly that for all values of % and ¢ the one-loop
average potential remains real (in contrast to the naive perturbation expansion for
the effective potential) and that U, becomes convex for k — 0.

2. Average action

In this section we develop the concept of an effective action for the average
value of fields over a volume with giver size — the average action. This is a
translation of block-spin concepts on the lattice to a formulation in continuous
space®. In the lattice formulation the blocks reflect the discrete structure of the
lattice. In contrast, our approach allows the use of smooth volumes. We define the
average field é,(x: x) by

¢2(x) = [d9fily —x)x*(¥), (2.1)

with f, vanishing rapidly for |y — x| > k~' and approximately constant for |y — x|
< k™. The function f,(x) determines the “shape” of a volume with characteristic
(linear) size of order k. It is normalized,

[ dxfi(x) =1, (22)
reflection symmetric,

fi(—=x) =fi(x), (23)

* Our conventions for field variables and the regularization are specified in appendix A.



C. Wetterich / Average action 537

and periodic on T¢,

filx,)=fi(x,—nL,) for(n—3)L,<x,<(n+3)L,.

®

(2.4)

We use the same space resolution (momentum cutoff) for f, as for the fields y*
and express f,(x) by its Fourier components

f(x) =27'Y fi(a)exp(—ig*x,),

fill—a) =fi(@)” =fi(a), (2.5)
[ d*vfily ~x)exp(ia*y,) = fi(@)explig x,). (2.6)
The normalization (2.2) implies

filgq=0)=1. (2.7)

(In the infinite-volume limit our normalization is f,(x)= Q=) % d%f.(q) X
exp(—ig*x,).) In terms of the Fourier modes the average field reads

é(x) = X fi(@) x(a)exp(—ig"x,),

é(q) =fi(a)x(q)- (2.8)

The function f,(g) should depend only on g’ =gq"q, to be compatible with
rotation invariance. We assume that f,(q) is a continuous function of both q? and
k obeying (for k + 0 and finite k and q)

0<fi(q) <1, (2.9)
fi(g) <1 forg’>0 (2.10)
I}imofk(q) =0 forqg+#0. (2.12)

In addition, we require the composition property

fi{@) fri(a) =fi(a) (2.13)
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with
k=k(k) ky) =k(k,. k) <min(k,, k),

klim k(k, ky)=k,. (2.14)
This implies
[atzfls =D felz=¥) =flx~y), (2.15)

and therefore that the average of an average field is again an average field

{3 x) = [ A2 (2 =) i (x5 2)

=d(x:x). (2.16)

The new average is taken over a volume with similar shape but larger in size as
given by k(k,,&,). This can be understood intuitively since averaging of averages
extends the range where f(q) differs substantially from zero. As an example we
may consider

2,8
fi(q) =exp(—a(%) ) (2.17)

with

k=28 =k + k3%, (2.18)

For B8 — = the function f;(q) approaches the step function 8(k?—g?) and the
composition property degenerates, k = min(k, k,). In the limit L, — « the func-
tion f;(x) is obtained as the Fourier transform of f,(q). For example B = 1 leads
to the gaussian (for A — ) [8]

fi(x) = (kz/w)d/zexp(—kzx"x”) . (2.19)
The average action I'[¢] is formally given by (1.1),
exp ~I,[e] = [ Dx TT8(¢(x) — ¢(x))exp — S[x].

In the lattice formulation the number of lattice sites is discrete and there are fewer
block lattice sites than original lattice sites. The variable x in eq. (1.1) corresponds
to block lattice sites and (1.1) is well defined. For continuous space, however, we
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have to specify the meaning of I, 8(¢,(x) — ¢{x)). As a next step we want to
construct a constraint operator P, which replaces the constraint [1, 8(¢,(x)—
¢(x)) in the lattice block-spin approach. Since in our context the set of points x is
continuous we cannot use the &-distribution. If the average field ¢,(x) is exactly
equal to ¢(x) for every point x then x(x) is uniquely determined by ¢(x) (the two
are equal up to a g-dependent wave function renormalization). We only would
change our variables and no progress would be made. We therefore should require
¢,{(x) to be equal to ¢(x) only within a certain variation. This idea is realized by
the “gaussian constraint operator”

Pk[‘P’X] = l:llﬁn(qpn’Xn)9

n qay

> 1/2
p=P =("L:fﬁl) (1-5A)™"”

x exp{ - w(a)(1 - f2(@)) ' (¢3(a) ~ful@)x3(a))}

= C, exp{—4,(¢, — fuxa)’}- (2.20)

(See appendix A for the precise definition of the Fourier modes xJ(q).) The
effeciive action for average fields ¢ — the “average action” - is then defined by

exp — Ii[¢] = [ Dx Plo, xlexp — S[x]. (2.21)

-

Let us discuss a few properties of P,. The coefficient C, = pw~'/?4}/? is chosen
such that P, is normalized,

rao

j P AP0 xa) =1,

[DePde.x]=1. (222)

The function »(g?) should not depend on k. We will choose v =q2 B>2, or
v = constant, B> 1, for reasons to be explained later. For a constant » this
parameter should be larger than all physical mass scales, for example of the order
of the momentum cutoff A2 or beyond. For g2—0 the function f,=f(q)
approaches one (2.8) and A, diverges, with

pq=0,a,y=p8(‘P$(0) -Xﬁ(o))- (2.23)
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Similarly we note the infinite-volume limit 2 —
!gim FD!(‘P"’X") =p6(¢n _ann)' (2‘24)

For modes with g2 > k? the coefficient A4, approaches Qv. In this regime P, is
approximated by a gaussian in coordinate space for v = constant,

p=

5 =172
= {QW ) exp — vfd"xld;k(x) —¢(x)|2, (2.25)

w

with » a measure for the mean deviation between ¢,(x) and ¢(x). We have
introduced the g> dependence of A, in order to obtain an exact composition
property of the gaussian constraint operator,

f p‘ ! d/\’n Fwsk:)( @naXn)l-)rSk“( Xns in) = Frgk)( Pus Yn) ° (226)

[ Dx P le.x1P [x. X1 =P, X]. (2.27)

where k(k,, k,) is defined by (2.13). This composition property will allow us to
obtain the average action for large volumes (small k) by repeated use of averaging
over smaller volumes - in correspon 'ence to repeated block-spin transformations
on the lattice. In particular, we can derive from the limit k, > an exact
renormalization group equation®,

0
k(’Tkrk[QD] == Z

n

dlnf, [ 1 &,
dink | 20, (3¢,)°

1 (ark)"' ar,
+

—1}. 2.28
200, \0p, | " 9p," } (228)

The effective action I, (2.21) leads to the same partition function as the original
action S,

Z=fDxexp—S[)(]=ngoexp—Fk[<p]. (2.29)

(This can be obtained by insertion of (2.22).) The relative probability for a

* For other formulations of exact RGE compare ref. [9]. The precise relation to our formulation is
not yet clear to us.
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configuration ¢ is given by the expectation value of the gaussian constraint
operator

Z 'exp—Tilel =( Ple.x])

=Z“fDka[¢,x]exp-S[xl- (2.30)

Since P, is a well-defined strictly positive operator for all finite values ¢, (it
decreases exponentially for large ¢,) we conclude that I, {¢] is well defined and
finite for all finite ¢, (and finite £2, A). Alternatively, we can interpret exp(—1I7})
as the partition function of a “constrained &ction™ S, with “parameters™ (back-
ground fields) ¢,

exp ~Ii[¢] = [ Dyexp - Si[e.x]. (2.31)

Sile.x]1=Slx}]-nPfeo,x]
=S[x] + Sconsu:l @5 x] + const. (2.32)

We perform the trivial part of the functional integration for the ¢ = 0 modes and
identify x(q = 0) with ¢(g = 0). The remaining constraint term

Seomste =2 ¥ v(a)(1 -F2(a)) ' (¢7(@) —fiul @) x(a)e(a) - fil @) x(a))

q+0

(233)

describes a nonlocal interaction. It is obviously invariant under internal orthogonal
(or unitary) transformations, provided ¢ and x? are transformed simultaneously.
If S[x] possesses such a symmetry with respect to rotations of x¢, the average
action I',[¢] will have the same symmetry with respect to rotations of ¢°. The
same holds for translation invariance. Euclidean rotation invariance is also pre-
served up to finite-size effects from the discretization of momentum space on the
torus. In the infinite volume limit I, possesses the full Poincaré symmetry.
Expanding in powers of momentum we obtain potential, kinetic term and terms in
higher order of g%. Only a few terms will be relevant for small g? and the
corresponding invariants can be classified by the usual methods of dimensional
analysis. This is an important advantage compared to the block-spin concepts on
the lattice where the number of relevant terms in the block-spin action increases
rapidly since only discrete lattice symmetries can be used for a classification of
operators. In addition, the formulation (2.31) in terms of the constrained action S,
allows the use of perturbation methods (like the steepest-descent approximation)
for a computation of I [¢].
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3. Green functions for average fields
The average action I, [¢] can be used to calculate expectation values of
operators 0,[¢]
(Olel) =Z7' [ Dp Ol olexp - il e]. (3.1)

How are the operators O[] related to the original operators O[ x]? By inserting
(2.21) for exp! —TI3) it follows immediately that O,[¢] has the same expectation
value as the related operator Oy},

Olx1= [ De O [¢lPle.x].

(Olx)) = [ Dx Ol x]exp - S[x]1 ={ Ou[¢]) . (3:2)

These operators can therefore be identified. The relation between O[ x] and O,[»]

is particularly simple for operators depending only on the mean value ¢(0)=
Q7Y d% o(x):

0(x(0)) = 0, (¢(0)). (33)

Any operator O, , depending only on modes with a given momentum q is mapped
into a similar operator O,(x(q)),

Or(#5(a)) = Oy{x7(a)) = fﬂ dwi(q) Or(05(0)) Pyo(95(a), x5(a)) .-
(3.4)
Products of Oy, correspond to products of O,
O le]= l;Iqu(90$(cI)) - O0[x]= l;[Oq(x;’(q))- (3.5)

For any operator O, which admits a Taylor expansion in ¢, we have a similar
expansion for O(y,,),

m
Ole)=2 X X 8(Xpi—m)al: lopft.. of
m k=1p,...p;
ny...n,

0 =2 X X 8(Xpi—m)al PFP(x,,)-.. FP(x,,), (3.6)

m k=1p,...p,
ny...n
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with (cf. (2.20))

FP(xa) = [p7" 40, 02P( 002 X)

A,, 1/2
- fdeot( ) ewl-ade-fx) 6D
A, =0 (1-£2)"". (3.8)
This relates the n-point functicns in terms of x,, to those in terms of ¢,. Using

0 for p odd

~14g _ Pp = p+1
fp ¢;1(¢n ann) n(‘Pn’Xn) A;P/zﬁ-"l/zr(——z—) fOl’p cven

(39)
one obtains

FX(xn) =faXn-

FP(x,) = (f.x.) (HO((f,.x,.)zﬂvn))’ p=>2. (3.10)

The correction in (3.10) contributes lower powers of f,x, with tiny coefficients.
They vanish for 2 — . We conclude that up to these (calculable) finite-volume
corrections we can identify

Oi(@,) = O(x,) = Oi(fuxn)

Ok[‘P]_"O[X]=0k[¢k]- (3.11)

The operators O,[¢] correspond to operators O[ x] which depend on the average
field ¢, in the same functional form as O, depends on ¢. This justifies to call
I [¢] the average action, i.e. the effective action for average fields. At this place
we remember (2.8) that even in the long-wavelength limit g% < k? the fields xy and
¢, differ by a g-dependent “wave function renormalization” f,(q). We will see in
sect. 7 how this shows up in the kinetic terms of I'[¢].
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4. The approach to convexity for the average potential

The reader may have noticed that the number of degrees of freedom ¢, is the
same as the number of original y,. A reduction of the total number of degrees of
freedom can only be obtained in the limit when f,(q) approaches the step function
8(k* —g%) (B = = in eq. (2.17)). In this limit P, reduces to a product P,z _;2X
P, ;> The first factor is a product of J-distributions 3¢, —x,) for all modes
with ¢° < &*. The second factor involves the modes with g > k2 and is indepen-
dent of y,

Qv, 172 s
Pq: Sp2 = n p( ?) exp( —Qv,,«p,;) . (4.1)
@5k '

Correspondingly, the average action splits into two pieces involving modes with
g <k*and ¢° >k

I NF PEDFES ) IETGEN Fpse=—In Py o, (4.2)

The functional integration over modes ¢,(q> > k?) becomes a simple gaussian
integration and reduces to a factor unity for all operators O, which only involve
modes with g2 < k> We are then left with a reduced number of modes with
g° < k*>. The corresponding average action Iz . - is obtained by “integrating out”
the short-distance modes with ¢> > &2,

exp{ -T2 2| 0(a® < k3)]}
= [Dx(a*= k*)exp - S[e(a® <k?), x(a*> k?)] . (4.3)

We will work with smooth functions f;(g?) which have the qualitative feature of
a step function. The averace action therefore reflects the process of “integrating
out” the short-distance modes. For modes with g?> k? it approaches fast the
quadratic action

I—qu>k2=‘(2 Z vn¢5'

n
(g%>k?)

It is interesting to study the limit kK — 0 where f,(q) reduces to the step function
[0 =1, f,(g+#0)=0 (3.12), or equivalently f,(x)=0"". In this limit ¢, corre-
sponds to the average over the whole volume £, ¢,(x) = x(q =0). The average
action can again be divided into a gaussian part I 2?>0 and a remaining part
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Iy[¢(0)] which is obtained by integrating out all modes with q>>0,

e~ Ti¢) = [Dx TTa(¢" -0 fatxxtx)Jem—STxl. (40

The quantity 2~ 'T(¢) is the “constraint effective potential” discussed earlier in
ref. [5]. In particular, 2~ 'TI'(¢) approaches for £ — = the usual effective potential
U(e) which is obtained by a Legendre transformation and therefore convex [4]. In
the opposite limit k — « P, becomes a product of &-distributions and

Jlim Ii[eo] = S[e]. (4.5)

We define the classical potential ¥(¢) and the average potential U,(¢), by the
non-derivative parts of S[¢] and I',[¢], respectively

Slel = fd"x V(e(x)) + derivative terms,

Liel= fd"x U.(¢(x)) + derivative terms. (4.6)

In the infinite-volume limit {2 — « the average potential U, interpolates continu-
ously between the classical potential V(@) (k — ) and the convex effective
potential U(¢) (k — 0). We emphasize that the approach to convexity results from
a successive integration of quantum fluctuations. Convexity is a physical effect and
not merely a technical construction corresponding to a “superposition of states”.

To close the first part we should mention that our concept of the average action
does not depend on the particular regularization (with momentum cutoff) de-
scribed in appendix A. We may use any other short-distance regularization which
keeps the relevant functional integrals finite even for infinite momentum cutoff A.
The sums and products over g become then infinite sums and products. Our
discussion applies to this case as well. We also may easily modify the infrared
cutoff implied by the finite volume (2. In any case, we expect no probiems with
the limit {2 — « as long as k # 0 provides an effective infrared cutoff for the com-
putation of I',. We note that all arguments of this section are valid for positive
iunctions v(g?) as long as lim, _, ((1 — fA(q)v~'(q) = 0.

5. Nonlocal field equations and exact solutions

We want to compute in perturbation theory the average action for the SO(N)
symmetric ¢*-theory [8]. The action for M complex scalars y (M =N/2, N even)
is

Slx]= f ddx{a”xfaﬂx — Ty + %A(XTX)Z} . (5.1)
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In a steepest-descent approximation we have to find first the minimum of the
constrained action S,

Sle-x] =n{ ¥ [R(@) (@) — Fl@) (@) (e(a) - fil2)x())

q+=0
+(a> = )X (@) x(a)] - 6" (0)¢(0)

s X s(qg—q:+q3-—m)(x*(q,)x(qz))(x*(q3)x(q4))}
i 92-93.4s

-M Y In(="'Qp%.(q)), (5.2)

qg=90

where we have already identified ¢(0) and y(0). (We use here arbitrary #,(q) and
specifv only later 71,(q) = v(gX1 — f(g) ', in contrast to ref. [8] where A, =v.)
The ficld equation for the modes with g # 0 is obtained by varving §; with respect
o x'(g)

h(a)fila)elq)

= (h (@) @) +a* =12 + 26" (0)e(0))x(q) + 2 X (x7(a)x(4,))x(q)

q,#=0

+A{¢*w>xw)+x*<—q)¢(0)+ Y x*(q.)x(q+q.)}¢(0)

q,*+0.—¢q

X {@(O)x(ql)u*(—q,w(m

q,#0.q

+ X x*(qg)x(qﬁqz))x(q—ql)- (5.3)

q-+0. —q,

The nonlocality of the field equation arising from the constraint has a simple

expression in momentum space. We concentrate on configurations ¢ which admit
solutions y(x) with xi(x)xo(x) = const. = x?,

X% =x3(x)xo(x) =¢'(0)0(0) + X x{(a)xo(a), (54)

q#0

¢ (0 xo(q) +xo (e + ¥ xi(a)xo(a+a)=0, (55)

q,#0,—¢q

for all g # 0. In this case the field equation simplifies considerably since the two
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last terms of (5.3) vanish

(¢ +h (@) f2(q) — 12 + Ax?)xo(q) = hi(a) fi(a)e(a). (5.6)

The condition for ¢(x) can be worked out by inserting the solution of (5.6) into
(5.5). As an example, for constant ¢(x) [¢(g # 0)=0] there nalways exists the
constant solution x,(q # 0) =0, but there may be additional solutions with ¢ +

h fi—p2+axt=0.
We next expand around an arbitrary solution y,(x) of the field equation (5.6),
x(q) =xo(q) +dx(q), (5.7

and insert in S,

S, =S+ AS, + const., (5.8)

¢ =ﬂ{(1\)?2 —12)e (0)9(0) — }A(%%) + L e’ (a)(e(q) —kaO(Q))} )

q+0
(59)
AS, =0 Z‘.O(qv2 +h fE— 1’ +Ax%)ox"(a)dx(q)
q#+
+34 [ A xd(x)8x(x) +8x*(x)xo(x) +8x*(x)ox()]*.  (5.10)

A solution x, corresponds to the absolute minimum of S, if 4S5, > 0. In this case
S? is the classical approximation to the average action I,. The second term in AS,
is always positive (or zero) (8x(x) =L, .o 8x(q)exp(—ig"x,)). We derive a suffi-
cient condition for a solution with constant |x,(x)|’ to be the absolute minimum
of §,, namely if

a*+h(q)fH(q) — > +A%*>0 (5.11)

for all values g #0. We denote by p2 the value of g® which minimizes the
g*dependent part of (5.11), P(q), and by k? its minimum value

P(q) =q*+h,(q)fi(a), k*=P(p,)=minP(q). (5.12)
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If a solution with constant | xo(x)!z exists, it is always the absolute minimum of S,
if

k2> pl. (5.13)
For k2 < u* (which only occurs for a negative quadratic term in S[x], u>>0) a
more detailed investigation is necessary. In particular, if at least one (real)

component of the solution y,(x) vanishes one can always construct an orthogonal
variation 8y , (x) such that the quadratic part

a5 = 1 ax[x(x)ax(x) +x () xo( 1))

=Y a%*(q)a(q), (5.14)
q
a(q) = ¥ (xi(—a+a)dx(a) +8x'(a)xo(qa + 7)) (5.15)
g =0

vanishes. Small fluctuations 3y , ( p,) lead to negative AS; whenever (5.11) is not
fulfilled for g = p,. The solution corresponds then to a saddlepoint rather than a
minimum. For this type of solutions expression (5.11) constitutes a simple criterion
to decide whether they correspond to the absolute minimum of S, for

ARizp’ - k2 (5.16)

or, in the opposite case, to a saddiepoint.

6. The classical average potential

The average potential U,(¢) reads for a constant field ¢(x) = ¢, (¢(g +0)=0,
o(0) = @)

1
Up) = —ElnfDxexp—Sk[%x]- (6.1)

The field equation (5.6) always admits the trivial solution with constant y,(x)=
o(x)=o,

x0(0) =0(0), xo(g#0)=0, X*=¢"p. (6.2)

For k2 — 12 + A¢'p > 0 this corresponds to the absolute minimum of § - In lowest
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order (tree approximation) the average potential is then given by S? (5.9),

_ 2
Ul =07'S) = — 1?6’ + 3M(¢'p)". (6.3)
For k2 < u?, however, there is always a range of small |¢]

lol <@ers 0% =(n>—k?)/A (6.4)

for which (5.16) is violated and yq(x) =¢ corresponds to a saddlepoint. We call
these values of ¢ the “inner region”. Let us consider the case M >2 and take
¢ in the one-direction ¢, = ¢} =¢. We can then find a different solution with
Ixo(x)1? = const., namely

Xo.x(o) =,

1/2
Xo,z(Pf)‘) = (<p3,—cp2) =X,
XO,a(q“$p(']‘sO) =0; X(),a(p(‘)‘) =0 fora¢2,
Po.PE=P5. X’=¢%- (6.5)

The direction of p§ is arbitrary and we can of course rotate y, ,{ p4) into some
other direction in internal space orthogonal to ¢,. This solution is a “spin wave” in
the direction of p§ and corresponds to the absolute minimum of S, . For the inner
region with || < ¢_,, the average potential in lowest order is again obtained from
(5.9),

U = Q7S = — 3205 + (A% — 1”)o'e
= —3A¢, —k76Tp. (6.6)

This potential is quadratic in ¢ and matches (6.3) for ¢'p = ¢2. The quadratic
term ~ k2 is of order k2 — the exact relation betveen k2 and k2 depends on the
choice of f,(q) (cf. sect. 2). For k — 0 the quadratic term in the inner region
vanishes and ¢_ approaches the minimum of the classical potential ¢2;, = p?/A.
Already in the tree approximation the average potential becomes convex for
k—0.

The reason for the flattening (with k — 0) of the “inner part” of the potential is
easily understood [11]. One can obtain an average value ¢, = 0 by slowly rotating a
vector with constant 2= ¢2. . Such a spin wave “costs” only gradient energy
~ k2pZ. . Our result translates trivially to the ¢* theory with N real components
for N> 3. For N =2 the tree average potential should have a similar qualitative
behaviour. Quantitative differences may occur since the spin-wave solution has to
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be modified. In contrast, for the case of discrete symmetry (N = 1) we expect a
much slower flattening of the inner part of the potential (~ &) since a finite
surface energy arises at the boundary of regions with x = + ¢

7. Kinetic terms and locality

Next we turn to the kinetic terms in the average action. We consider a
configuration (N > 3)

o x)=9¢;.
ex( &) =¢aexp(—iQ¥x, ), (7.1)
Of. In momentum space.
{ &

0
, 0 ¢>
e@)=fg|- eQ)={o}|-
¢(q) =0 forg*+0,0" (7.2)
with ¢,. ¢, real and

¢ (x)¢(x) = ¢f + @3 = const. (7.3)

7.1. OUTER REGION

The field equation (5.3) has a solution y(x),

xol Q%) =A(Q)e(Q%),  x(0) = p(0)
Xolq) =0 for g* +Q*,0, (7.4)

h (Q) fi(Q)

A =
Q" o @) — AR

(7.5)

with constant y;(x)x.(x) = ¥2,

X:=0} +A4*(Q)¢3. (7.6)

(This solution always exists provided G2 + h,(Q)f2(Q) — p? + A(? +A%Q)e3) +



C. Wetterich / Average action 551

0.) For this solution one obtains for the classical action (5.9)

S =0{0%(4¢,) - w3 (9} + (49,)%)

+3M(01+ (A0,)) +h Q1 -Af(Q))e3).  (77)

Using the criterion (5.11) we find that (7.4) corresponds to the absolute minimum
of the constant action if

Mot +A4%(Q)e3) = p? — k2. (7.8)

In this region the classical approximation to the average action can be written as

I =0Y ¢'(a)| 42(a)(a* - 122) + hi(@)(1 - A(a) fu()) ] e( @)
q

+3A02 Y A(q,)) A(g,) A(a:) A(g, — a, + a;)(¢'(9,)e(a,))
qy-43.93

X (¢'(a3)e(a, —a,+qs)) + AT + const., (79)

with
A(g+0) =h f,(P(q) -2 +1%?) ",

A0)=1, x*=)YAq)¢'(a)e(q). (7.10)

q

The piece AIY only contains terms which vanish for configurations olx)=
¢; exp(—ig;x). (This can be checked easily by generalizing our procedure to such
configurations.)

Several features of I [eq. (7.9)] are worthwhile noting:

(i) The fields ¢(g) are always multiplied with a g>-dependent wave function
renormalization factor A(q). For large g > k? the factor A(q) = h,(q)f(gXq* —
u? + Ax2)~! decreases exponentially. As a consequence, the term ~ ;A¢* in (7.9)
disappears rapidly for large momenta. The average action becomes quadratic to a
very good approximation,

hife
g% — 12 +A%2

Fko(q2>>}2)=.(22hk(1+ ) ¢ (a)¢e(q)

+O(2AA%%). (7.11)
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Up to exponentially suppressed corrections ~ f2 the quadratic term is ~ Qo>
Also the interactions of modes with q° > k2 with the low-momentum modes
(q® < %) are exponentially suppressed ~ f7. In consequence, the high-momentum
modes effectively decouple from the low-momentum modes. The average action [,
is an effective action for the low-momentum modes plus a decoupicd gaussian
action for the high-momentum modes. The scale k provides for an effective
ultraviolet cutoff in I',. We could indeed start with I’ ¥ instead of the action §
(5.1) and perform all momentum integrations without explicit cutoff. All computa-
tions would be automatically finite and gwve the same results as the formulation
used in this paper, up to negligible cutoff corrections. This observation may be
helpful for a generalization of our method to gauge theories, where an explicit
sharr momentum cutoff would violate gauge invariance.
(ii) To first order in g° the classical wave function renormalization reads

1=1+0" i N N !
A=1+0 {BQ3 * 6Q:(hkfk2+Q2) +(w' - Ax )an } Q:=n. (7.12)
Inserting

hi(q) = 1—'_;’;‘(’.:5(% (7.13)

the first two terms in the curly bracket in (7.12) vanish for g > 1. For v = const.
this condition is sufficient to guarantee 4 = 1 + O(Q?*#). For v(q) = g2, however,

we have to impose B8 > 2 in order to make the last term in (7.12) vanish. We will
always impose the conditions

B=3 forv(q)=q?,

B =2 for v=const. (7.14)

which imply at least 4 =1+ O(Q*) and similarly #(1 — Af)?> = O(Q*) in (7.9). In
the outer region the classical approximation to the average action I, coincides
then with the classical action S up to corrections from higher derivative terms at
most of order Q*. For Q% < k? the average action is effectively local. Nonlocali-
ties appear only for the short-distance modes Q2 > k? for which the average action
is not an appropriate tool anyhow. We will see that (for finite B) these features
persist including quantum corrections.
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(iii) We finally note that all these features already appear in the free theory
(A =0, u? <) where

g% —u?

hy

-1

R=0% (q¢*- uz)(sz + ) ¢'(q)e(q) +const.  (7.15)
q

7.2. INNER REGION

For Mg} + AX(Q)¢32) < u? —k? the solution (7.4) corresponds to a saddlepoint
(at least for N > 4) rather than a minimum of S,. We again have to find a new
solution minimizing S, in the inner region. (The concept of an inner region is now
generalized from a certain range of constant fields ¢ to more general configura-
tions ¢(x).) For technical simplicity we consider the case Af > 3 (or N > 5) which
should, however, reflect all the qualitative features of I', for the models with
N >3 as well. In this case it is easy to find a new solution with constant |y.(x)|
where the phase of the third component of y, rotates as a spin wave,

x0(Q,) =A(Q)e(Q,),  x0(0) =0(0),

xo(p8) =(0,0,x5,0,...),
xo(q) =0 for g* # Q*. p§,0. (7.16)

Here A(Q) is again given by (7.5), p4 minimizes P(q) (5.12), and x; (real) is
chosen such that

At =M} +A4%( Q)% +x2)
=p2—k2=2A¢>%. (7.17)

The inequality (5.11) is fulfilled and (7.16) indeed corresponds to the absolute
minimum of S,. .

The tree approximation for the average action reads after inserting (7.16) into
S2 (5.9),

P =0{-ir¢l — k%7 + B(Q) 03}, (7.18)
where

B(Q) =hk(Q)(1 "A(Q)fk(Q))

QZ_%Z -1
7(Q) ) |

- (0*-%Y)

fe(Q) + (7.19)
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This can be generalized to
ry =Q{ -k + X (a® —P)C"'(q)qo*(th(cn} +Ar  (7.20)
q

with Al vanishing for configurations of the type (7.1). We again observe a
¢>-dependent wave function renormalization C(q),

h.(q)

C(q) = m.

(7.21)

with Clg)=1+0(g?), for small g°> < k>. For large-momentum modes with
g’ > %2 the average action approaches a gaussian and those modes decouple
again from the low-momentum modes.

In the vicinity of ¢° =p; the renormalization factor C(q) becomes large and
even diverges for g2 — pi. We therefore have to discuss the region g° = 2=k?
with some care. First we note that the solution (7.16) only exists if

el + A Q)ei<el = (7 — k%) /A
Qr. equivalently.

h(Q)fl(Q) _ Vel —oi

A= Fg- < w

(7.22)

For ¢° - pf, the left-hand side of eq. (7.22) diverges and the inequality is
therefore violated for arbitrarily small nonvanishing ¢,. This implies that for the
immediate vicinity of ¢> = pj eq. (7.18) is not valid. Nevertheless, the increase of
C(Q) for Q% — p} is an important effect, as may be illustrated by comparing I/
for two configurations of the type (7.1), both with ¢, = 0 and ¢, < ¢,. For the first
configuration we consider Q> < k2 and obtain

1 P ,
07 = = (w = k) + k(g% — 03) + Q%3 (7.23)

This configuration needs potential energy for the difference ¢Z, —¢3 and the
kinetic energy ~ Q%32 is minimized for 9 — 0. The second configuration has a
wavelength near k!, namely at the boundary of the inner region at g2 = g2, with
Alq) = ¢ /p, (7.22). One finds

1 o _
ﬂ"Fk"=—E(M“—k4)+k2(¢§r—¢§)+(B(qc)+k2)¢§ (7.24)
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with (for v = const.)

B(q.) +k*=

2% _( (02/%3) ) 3 (725)

3 In(v/(k* - p3)) @2
for 1 < ¢, /¢, < (v/k?)'/2. The kinetic term ~ B(g_.) — B(0) = B(q,) + k? is now
negative and almost cancels the potential energy. Configurations with E«pz(x)iz =
const. < ¢Z have a much lower average action for spin waves with 02 =%? than

for constant fields! The immediate neighbourhood of Q% = pé, finally. is described
again by the solution (7.4). For g% = p? one has

k*-p?
Me? +AX(po)or — 02 ) fi(po)

A(py) = (7.26)

with 4> (2 —¢)/? /¢, for ¢ <@l. We consider again configurations with
¢, = 0 where (v = const.)

2 1 < 1/2
A(Ae3 - o%) =~ (v(R* - p}))” (7.27)
and
— — - 1/6 - -1/2
ey = [T E BN for 2> ae(v(R2 - 5))
’ Oer/ P2 otherwise .
(7.28)
One obtains, for not too small o,,
07T = vpd — 2132 (k2 — pR) i . (7.29)

We conclude that the kinetic terms have a standard form only for small momenta
g? < k2, whereas the threshold behaviour for g near k? is rather complicated.
Spin-wave configurations with g2 = k2 have much lower euclidean action than
expected from a standard kinetic term. The onset of nonlocality at g* = k? differs
for the inner and outer region. It depends both on details of the theory and of the
physical question that is investigated.
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8. Perturbative renormalization group equations for the average potential
in the outer region

In the classical approximation the average potential is independent of the scale
k in the outer region (6.3), whereas in the inner region it becomes flat with the
square of & (6.6). For small values of A we can study the k-dependence of the
average potential in more detail using the method of steepest descent. The
one-loop contribution to the average potential U,(¢) is computed in appendix B,
reproducing the results of ref. [8] obtained for a somewhat different definition of
the average action. It has been shown [8] (for d = 4 and L, — x) that the one-loop
average potential equals the Coleman-Weinberg potential in the outer region [3),
except for effects of an additional infrared cutoff given by k. In the inner region
the one-loop contribution becomes negligible for small k. It was emphasized,
however. that a renormalization group improved treatment is necessary for k2 <
(A/167°).4°. This is the aim of the remainder of this paper.

In this section we consider the outer region of the potential. As long as the
minimum of the average potential occurs for nonvanishing ¢, and lies in the outer
region (this is guaranteed for large enough k), we parametrize U,(¢) by the
minimum value ¢ (%) which obeys [cf. eq. (B.11)]

U, |
3(¢~:¢) (‘P@)= o+ Ay,
1 _ 3A (N-1)A
+ -_;(2'«7) df‘ ‘ddq{ 3 5 + 5 2}
2 @ < P(q) —p +3rg;  P(q) —p”+Ag;
=0. (8.1)

Here N is the number of real scalar components, the average propagator P(q) is
given by

f kz( q)
1-f kZ( q)
and we exploit the fact that U, is a function of the invariant ¢’ only. As a second

parameter we use the renormalized quartic coupling AR(Z) which we define by

9%U,
Ap=———(¢3)

(9(¢70))

P(q) =q> +v(q) (8.2)

g 9A? (N —-1)A?
=a—3(2m) ™[ d - =+ —
<8\ (P(q) -#*+32¢3)"  (P(q) —1*+ Ag})

(8.3)
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We note that Ag(k) is directly related to the mass matrix of the scalar excitations
around the minimum at ¢y(k). For ¢} = ¢4, ¢4 =0, j # 1, one has

2 U,

1
U2 ¢ agt

(‘Pa) = ZAR‘Ptz) On 8,1 s (8-4)

and we define the k-dependent mass parameter
pr(k) = Ap(k)ea(k). (8.5)

The average potential for ¢’ sufficiently near ¢2(k) is well approximated by

U(@) = — (k) e'e + 1Ag(B) (). (8.6)

The (non-Golcistone) scalar mass squared is 2u%(k). Using the variable x = ¢ the
quantities ¢3(k) and Ag(k) can be written in the form

2

5= —3K(BAgf - 1?) — (N - DK(Aej— 1), (8.7)
A=A~ 9'\2K2(3A€D(2) _#2) —(N- I)Asz()‘ﬁpaz) _uz)’ (8.8)
with
R T e R
K (w) =g " dxxd=n=tp(w) ™", (89)
0
_ P(x)+w w
p(w)=——"-—=p(x)+—, (8.10)
x x
vyt =24%17/2r(1d). (8.11)

We are interested in the dependence of ¢ and A on the scale of the average
volume. For v = const. the average action I, depends on two parameters with
dimension mass?, k2 and v, in addition to the physical mass parameters contained
in the renormalized couplings. (It also depends on dimensionless parameters
specifying the form of f,(q).) The relevant physical scale corresponds to the
effective infrared cutoff arising from the average propagator P(q). We identify this
scale with the minimum value of P(q), i.e. k2. For v =q?, in contrast, k* is the
only scale relevant for the averages and we have k ~ k. The change of the average
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potential for different values of k is parametrized by the evolution equations

) =k == —_— 8.12
" ka Pp=0C k" + 2‘P(2) ot c k%, ( )
Mg -0 1 3¢}
Pl S 202 at 2 (8.13)
We want to compute the quantities ¢; and B; (“B-functions”),
- dK K
c k2= —38—'(2AR¢5) —(N-1)—(0), (8.14)
t at
¢,k = —3¢0—(2AR¢0) (N- l)soo—(m (8.15)
oK IK
Br= — 9%~ (24egd) — (N = 1A =(0), (8.16)
oK K,
Br= — koo (22r¢3) — (N = 1) Akpo7—(0), (8.17)
¢ d¢g

in lowest order in Ag. The appearance of two terms (e.g. B, and B,) reflects the
fact that the integrals K, depend on the scale k both exphcntly through the
k- dependence of the average propagator P(q) and implicitly through the k-depen-
dence of @2 in the argument of K,. The second term in the RGE (8.12), (8. 13)
accounts for the change of the renormallzatlon point (po(k) whereas the partial
derivatives 9K, /ot are taken at fixed ¢J. For egs. (8.14)—(8.17) we have used the
lowest-order relations A = A and A@3 = u? in the arguments of the derivatives of
K,. The second approximation is valid for

A2 — p?| < k? (8.18)

and we will justify this later. The arguments 2Ag ¢ and 0 for the derivatives of K,
correspond to the masses m? of the scalar excitations around the minimum which
appear in the propagators (P(q) + m?)~'. (There are N — 1 Goldstone bosons.)
Let us concentrate on four dimensions (d = 4). We have evaluated the B-func-
tions in appendix C and find approximately (using a definite choice f,(q) for the
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definition of the average field)

N-1 3 k2
= + — =
‘T J6n? | 1672 k2 +2Ag03° ¢2=0,
1\/-1)lz . 9 . k*
T o * (k% + 205 02)
9 ‘P(z)(%z‘*"\R‘PZ)
B, = 3 2 (8.19)

4w R (B2 4 20 p02)

All these quantities are essentially independent on the ultraviolet cutoff A (and
the parameter v for v = const.). In this sense they are universal. More precisely,
the A-dependence of ¢; and B; is exponentially suppressed. The prec..e definition
of the ultraviolet cutoff becomes therefore irrelevant. This distinguishes the
universal quadratic contribution to d¢3/dt from the non-universal quadratic cutoff
dependence of K, (often called quadratic divergence) which depends very sensi-
tively on the choice of the cutoff. The quantity B, + 8, is also independent of the
precise definition of the scale k and the average field (f,(g)). In contrast, the
“threshold dependence” in ¢, and B, as well as the absolute magnitude of ¢, (not
the sign!) depend on f,(q) and the definition of k. Obviously, a rescaling k — yk
leads to a rescaling ¢; > y~’c; whereas B; remains invariant.

9. Quadratic renormalization

The renormalization group equation for @3(k) is governed by a “quadratic
renormalization” (¢ = c,),

k—=@3 =ck?. (9.1)

Except near the threshold k%= 2z s We can approximate ¢ by a constant and
find the simple solution

- C_
PA(R) = Sk + 3. (9.2)

The qualitative behaviour of the model depends on the integration constant $2. As
long as

- 2
k2> -Elq’i(z,| , (9.3)
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one is in the “scaling region”. For decreasing k the minimum of the average
potential moves inward as QL= ick?. All relevant scales are proportional k,
implying the Coleman -Weinberg RGE [3]

+8

—175}7)‘2’" (9.4)

g
= Pt B2=

Assuming validity of perturbation theory, cAg < 1, one finds for the scaling region
%2> 2Agz¢p. The contributions from ¢, and B, are therefore negligible in this
region.

The scaling region ends for k2 = (2/c)|$3|. For negative ¢3 the minimum ea(k)
is driven to zero for a finite value k2= —(2/c)@Z. The theory is in the symmetric
phase without spontaneous symmetry breaking in the vacuum. Although we have
started at short distances with a negative quadratic term —u’p’ and <p(2)(7c) is
different from zero for large enough k, the long-distance average potential
(k* <F§) has its minimum at ¢ = 0 with a positive quadratic term. In contrast, a
positive constant ¢2 sets the asymptotic value ¢Z(k =0) in the spontaneously
broken phase. (Positive ¢2 requires u? to be larger than some critical value p2.)
For k2 < (2/c)@? the relative renormalization effect for ¢f becomes very small
and the minimum of the average potential is stationary. We note, however, the
nonvanishing B-function for A, even for k2 < Ay 3 (8.19) which implies that the
theory is infrared-free (“trivial”) even for finite cutoff A and finite scale of
spontaneous symmetry breaking ¢3. The phase transition between the symmetric
phase and spontaneous symmetry breaking occurs for an “infinite scaling region”,
@2 =0. The phase transition corresponds to the fixpoint in the renormalization
group equation for the ratio y = ¢2/%?,

ay .
a—t=ﬁy=c—4y (9.5)
at y =c /2. This fixpoint is infrared unstable and a value go§(7c = 0) < A? requires

an initial value <p(2,(7< = A) extremely close to the fixpoint. This is another facet of
the “gauge hierarchy problem” [10].

So far we have implicitly assumed that ¢,(k) always lies in the outer region. For

large enough k, k%> u? (5.13), the outer region covers all values of ¢. Using the
lowest-order relation

u?=Ag(A)ei(A) (9.6)

and (9.2) we conclude that for a range of k2,

k2(A) = teAg(AY A2+ Ag(A) P2 <k? < A, (9.7
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there is no inner region of U, and the constrained action S, always takes its
absolute minimum for a constant field. For $3 < A? and 1cAg(A) <1 this range
extends to small enough values of k2 so that the cutoff dependence in the
renormalization group equations can be completely neglected. In this range our
one-loop computation of U, in the outer region is therefore valid. For smaller
values of k, k% <k2(A), the potential develops an inner region which extends to
values of the average field [cf. (6.4)]

72

Ar(A)

Cc
0? <g2(A) = A+~ (98)

For small || < 3c?Ax(A)A? one finds that (k) always becomes smaller than
©2(A) for small enough k. One may naively argue that our one-loop calculation of
the evolution d¢2 /3t is not valid for very small k in this case, since ¢3(k) does not
remain in the outer region.

This situation can be improved, however, by exploring the region of small |53
and small k2 in consecutive steps. We will use “block-spin” ideas as discussed in
sect. 2 in order to introduce the concept of a k-dependent cutoff. Consider first
the phase transition point $3=0. We can use the RGE (9.1) to compute the
average potential at a scale }, =A,

A =D%*2(A)<A*, D>1 (9.9)

with D a constant chosen such that cutoff effects can be neglected for the RGE at
the scales A2 and D~2A2. The average action at the scale A has essentially the
same form as the “bare” action at the scale A, with parameters Ag(A) and p%(A)
replacing the original “bare” parameters. The scale A acts as an effective momen-
tum cutoff for the average action I'; (cf. sect. 7). We can now repeat our one-loop
calculation with the new cutoff A. No inner region appears for

k2>k2(A) = eM(A) A2, kZ(A) <kZ(A) (9.10)

and we have extended the validity of our calculation to smaller values of k2. The
difference between I'; and the bare action S appears only in higher order in A
(except for the transition from sharp to smooth momentum cutoff which is not
relevant here). To lowest order in A one therefore obtains the same RGE as
before. Repeating this procedure we can extend the range of validity of our
approximations to arbitrary small values of k. With this method the inner region
never appears for ¢3 = 0. A similar reasoning can be applied to justify (8.18). We
approximate p2(A) = Ag(A)p3(A) = 1cAg(A)A? and find that (8.18) is valid as
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long as k2> tcAgA? =k2(A). For small enough Ag we can always reliably use
the region k2(A) < k2 < A? to compute the perturbative B-functions (8.19). We
conclude that at the critical point $3 =0, the RGE for the outer region (8.12),
(8.13) are valid for all values of k2.

We can extend these arguments to the symmetric phase (% < 0) and the phase
of spontaneous symmetry breaking (¢3>0) by introducing the concept of a
k-dependent critical value of the average field

7(2

0% (k) = 93( Dk) — (9.11)

Ae(DE) °

Here Dk plays the role of a “sliding cutoff” in analogy to the definition of A
above. An inner region of the average potential develops only for values of k for
which ¢2(k) becomes positive. Using eq. (9.2) we immediately conclude for the
symmetric phase that the average potential has only an outer region for all values
of k. We can use the RGE (9.2) down to the value k, for which ¢3(k,) vanishes
and then rely on the RGE for a potential with negative u?, which can be derived in
complete analogy to the treatment of the outer region for u?>> 0. (The average
potential for & <7c0 should be parametrized by a suitably defined pﬁz@ ), since
ook <kg)=0.)
In the spontaneously broken phase the condition ¢3(k) > ¢Z(k) reads

leAp(DEK) <(D*-1)"", (9.12)

which coincides essentially with the condition for the validity of perturbation
theory. Within this improved treatment (,oo(i) always belongs to the outer region.
For small enough quartic coupling Ay the one-loop RGE (8.12), (8.13) for Ag(k)
and @Z(k) are therefore valid for all values of k.

We have established that at least a local minimum of the average potential
occurs in the outer region at ¢,(k). In the immediate vicinity of ¢@,(k), naive
perturbation theory is valid for any nonzero value of k. One can argue in favour of
the existence of such a local minimum by a general consistency argument. The
naive perturbative potential Vp((p) obtains by an expansion around a constant field.
It is plausible that this expansion indeed converges in the vicinity of the minimum
of V,, at least as long as all fluctuations around this minimum have positive action.
This is the case for finite k since even the “Goldstone fluctuations” need a kinetic
energy of at least k2 8¢2. We may therefore expect that the minimum of the naive
perturbative potential shows up at least as a local minimum of U, in a more
general context, for example for a theory with fermions. On the other hand, the
vicinity of ¢,(k) which belongs to the outer region shrinks to zero as k — 0 (9.11).
This is required by the convexity of U,.



C. Wetterich / Average action 563

10. Scale dependence of the average potential in the inner region in the
one-loop approximation

The proof that ¢,(k) is also the absolute minimum of the average potential
involves a comparison of U,(¢,) with the average potential in the inner region.
The inner region appears for k? < k2, with k. determined in analogy to (9.7) with
a sliding cutoff,

7cgr=AR(l)7ccr)‘ﬁ0(l - %CAR(DZcr)DZ)-l' (10-1)

[This coincides with ¢2(k.)=0 (9.11).] For small Ay the critical scale %k is
essentially independent of the constant D,

k2 =Ap(k. )@2 + O(Ahd3). (102)

Similarly, the inner region covers ¢'o < @2 (k),

72

(D) + O(k?). (10.3)

@2 (k) =3 —

In the limit k-0 it extends to ¢Z(0)=3(0)=@3. We will investigate the
k-dependence of the average potential in the inner region, for ¢’ < ¢2(k) and
k2 < k2, using the one-loop average potential derived in appendix B.

In the one-loop approximation, the ¢-dependence of the average potential in
the inner region reads by virtue of (6.6) and (B.28) (d = 4)

=—k2+
a(qo“(p) 3274

I(k), (10.4)
J(%) =jq2<Az dq[2(P, - &2)(P_-%?)
—(P-%2*)(P,+P_—2k?)|/R, (10.5)

with R the p-dependent factor in the determinant (B.27)

R=(P-%k%+2A¢%)(P,—k?)(P_—k?)

+ (9% — 0*)(P—k?)(P,+ P_—2k?) (10.6)
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and average propagators P(q), P (q) given by (B.10) and (B.24). We have evalu-
ated a(k) in appendix D and find the renormalization group equation

ad

k3%

2¢(7, 1.4
el k) +el) k (10.7)

- - 1
a(k) =2a(k) + —2?(eoln pe; () =

Here e, is a slowly varying function of ¢2/¢2 of order one and the constant e, can
be found from (D.40), (D.41) (for a particular choice of f,(g3))

1 o1 _
ey = ;f"'dy\/l —yI(1-4y?) +f’ dyy1—-y2(1+2y). (108)
2 1,2
For k<« AgZ one has ¢ =&} independent of k and eq. (10.7) is easily solved:

k? e, In(@2/¢%) +e
0 (‘Po/ﬁpz) 1. (10.9)

k)= k2 +
a(k) au(‘P) 4> 435_90

For small X the second part rapidly becomes negligible and one finds that a(k)
Eloes not change its shape in dependence of ¢2, but is simply scaled proportional
k3. A direct one-loop calculation of a(k) from (D.20) leads to the result (for small
k2 and ¢?)

k* eoIn(p2/0%) +é
) (ﬁpo/‘PZ) 1’ (10.10)

k)= -k*+
) e R 4

implying
ag(@?)=—1. (10.11)

In this approximation the use of renormalization group equations gives not much
new information for the inner region. (A more careful treatment of the regions
@? = @2 and A2 =k? will modify a,(¢), but not change our qualitative conclu-
sions.) The average potential in the inner region

_, ¢ Kk eo k* [ &} K (¢'e)’
U = — k2+___ T +_0_l o + + O] ——= 10.12
. e |7 T g M |9 Ol e | (1012

is essentially quadratic ~ —k2p'p. We observe for finite k a local minimum at
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¢ =0 and a local maximum for extremely small ¢2,

(10.13)

a6}
eok?

‘Ptznax = ‘»6(2) exp( -

The minimum at ¢ = 0 is related to the divergence of the second derivative of U,
for ¢ — 0. This results from the additional zero mode among the fluctuations
around the spin-wave solution which appears for ¢ — 0. In any case, ¢ = 0 never is
the global minimum (U (a@¢2,,) < U,(0) for @ > 1) and this tiny structure disap-
pears rapidly for kK — 0. We conclude that the global minimum of U, (for the inner
and outer region) always occurs at ¢, and lies in the outer region. This justifies the
use of naive perturbative results a posteriori.

A last word of caution concerns the reliability of our one-loop renormalization
group equation (10.7) for the inner region. The problem is the qualitative change
in the shape of the potential for small k < k. The one-loop RGE is computed
with a ¢* potential and some effective momentum cutoff. This procedure is
certainly valid for small A for values of ¢? in the outer region, around ¢} and for
2> ¢2. In this case the dominant configurations only involve values of x for
which the potential has the form —u?y?+ 1Ax* to a good approximation for all
values of k. One can therefore start with a ¢* potential at a scale k,, using 'I-c,, as
an effective momentum cutoff in I';,, and compute the change of U, for k smaller
than -léa. For values ¢? < ¢g in the inner region, however, the effective potential
U, differs drastically from the original ¢* potential. A reliable calculation of the
RGE in the inner region should use the average potential U, instead of the ot
potential. For the spin-wave solutions discussed in this paper, | x(x)lz lies in the
outer region of U, where the ©? potential remains a good approximation. These
spin-wave solutions therefore survive even for a more general treatment and give a
contribution to exp(—TI;) as discussed in this paper. The RGE (10.7) implicitly
assumes that these spin-wave configurations are the dominant configurations. This
may be justified by the observation that typical potential differences in the inner
region are ~k2Ay? whereas gradient terms contribute ~k?Ax”. For k2 <k?
the dominant configurations should then still have | x|* near the minimum of U,
(near ¢3) and thus correspond to the spin-wave solutions discussed in this paper.
This argument weakens, however, for k2 = k2 where potential and kinetic contri-
butions are of similar size. It is not completely excluded that our one-loop
calculation underestimates the contributions from configurations with | X|2 in the
inner region. In this case our computation of U, in the inner region rather
constitutes an upper bound for the average potential. An answer to the question
whether U, flattens in the inner region even faster (due to configurations with
|,\/|2 < ¢?) may be found by repeating our calculation for a general form of the
potential, or perhaps by using the exact renormalization group equation (2.28). A
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similar line of arguments applies to the role of the modified kinetic term in the
average action I, for the inner region which has been discussed in sect. 7.

Although an improvement of our one-loop calculation for the inner region is
conceivahle, we find it extremely unlikely that the absolute minimum of U, falls
into the inner region. In the pure scalar theory there is simply no scale which could
determine where the minimum should lie within the inner region. (In the inner
region U, has “lost the memory” [11] of the parameters u? and A — they only
determine the size of the inner region.) We conclude that naive perturbation
theory for the ¢* theory determines reliably the scale of spontaneous symmetry
breaking, %(Tc — 0) = ¢, as well as the physical scalar mass and quartic coupling.
A similar argument is not available for the full standard model, where independent
mass scales like Agcp are present.

In conclusion, we have demonstrated in this paper that the average action can
be calculated reliably in perturbation theory for small couplings AR, at least for the
modes with ¢° < k2 where it is approximately local. The average potential is more
complex than the usual Coleman-Weinberg potential [3], due to the appearance of
a new scale k. In particular, the minimum of the potential is k¥ dependent,
exhibiting an effect of quadratic renormalization. The average potential becomes
convex as k — 0.

Appendix A

DEGREES OF FREEDOM AND FUNCTIONAL INTEGRAL

We want to describe a euclidean bosonic field theory by an integral over a finite
number of degrees of freedom ¢,, 1 <n <N. This corresponds to a theory in a
finite volume and with a finite momentum cutoff. All quantities are well defined
for finite N. The limit N — o of the integral defines the field theory and
functional integration. Consider a d-dimensional torus T¢,

(ST

L, <x

u <

9]~

L,, (A.1)

I
and a set of bosonic fields ¢%(x), periodic on T¥,

d#x#
L

w

o(x) = T exp{—zm-z
{g.) B

}so“(é)

= Y exp(—ig“x,)e%(q). (A2)

q
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Here g, are integers with

2wq
9= (A3)
and
Y=YX=xY...X (g%g.<4?)
q g} a1 4 44
2 27T 2
Ej(']/‘ dx-zza([Z(—Z—) é“du]—x). (A4)

(We use summation over contracted repeated indices if the meaning is obvious.)
Finite A corresponds to a finite resolution in space or tc a momentum cutoff.

The Fourier modes ¢“(q) are our basic degrees of freedom. For complex fields
0% (x) we write

¢(q) =ok(q) +ipi(q), (A5)
with

[ d'x ¢°(x)*¢"(x) =2 L 6" (a)¢(q)
q
=YY ¥ o%q)’=0Y ¢ (A6)
qg a y=R,I n
Here £ is the total volume of T?,

2=TIL,. (A.7)

7

For real fields ¢?(x) we have only half the number of degrees of freedom since
¢“(—q) = (¢%(q))*. We choose a convention with

¢“(0) = ¢x(0),

1
#"(a) = 75 (¢k(q) +igi(a)) for g 0, (£.8)

such that

fddx P (x)e(x) =Y. ¢'(a)e(q)

-0L(e0’+ T T #i(a)) =0T} (A9)

“g>0" y=R,1
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Here we divide all values ¢ #0 into “q> 0" and “q <0” by some appropriate
convention, ensuring that ¢?(—q) and ¢“%(q) are not counted independently in ¥,,.
For L, > the sum over momenta is replaced by the integral X, 6 —
(2m) ™40 : . ;»d’ and the Fourier modes of the fields are renormalized, ¢(q) =
2m)472071¢(q), such that

o(x) = (27) ™ [ d%g (a)exp(~ig"x,). (A.10)

The partition function Z is formally written as a functional integral,

Z= [Dpexp-Slel,

Slel= [ a'xLie] = S(¢2(a)) = S(,). (A.11)

We define the measure by
JPe=TITITI[ dei(@)p™'=TI[ dg,p”"
a a vy -= n Y=
for complex ¢% x) and by

chpE El(fjwd"oa(o)p—] “qI;IO“ I;[fjxdq’:(‘I)P‘l)

=T1[ de,p™ (A.12)
n -

for real ¢%x). The arbitrary scale parameter p has the same dimension as the

bosonic field ¢“(x). With these conventions the gaussian integration is of standard
form:

[ Deen{ -2 L ¢ (a) A(a)e())

0p? —1(=1/2)
= [ Det 7A(Q)) , (A.13)

for ¢“(x) complex (real), provided the matrix A,(q) fulfills A(q) = A(q), A*(q)
=A(—g) and A has only positive eigenvalues. The measure is invariant under
reflections for any mode ¢, (¢, = —¢,) as well as under orthogonal transforma-
tions among all the modes ¢, (O(N)). In particularly, for N complex (real)
fields (a=1,..., N) it respects “internal” global U(N) (O(N )) phase rotations
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(o(x) = Up(x)). Translation symmetry of the measure is trivially realized as a
g-dependent phase rotation of ¢%(q):

d¢%(x) = —e*9,0%(x), b8¢"(q) =ig"q,0°(q). (A.14)

The symmetry of continuous euclidean space rotations is only violated by the
infrared cutoff of the measure implied by the torus T¢, whereas the ultraviolet
cutoff A is consistent with this symmetry [cf. eq. (2.4)). In the field theory limit
L,—»x the full euclidean rotation symmetry of the measure is recovered*. The
discretization in momentum space allows a much easier treatment of space
symmetries as compared to the discretization in lattice theory, where translation
and rotation invariance are broken by the ultraviolet regularization.

For a finite number of degrees of freedom N we will assume that S(¢,) is finite
for all finite values of ¢, and decreases sufficiently fast for |¢,| — « such that the
partition function Z is finite. An operator O[¢] = O{¢,) is defined if the intcgral

(Olel) =z~ [ Dp Ol plexp - Sle] (A.15)

exists. For finite L, and A the theory is fully _regularized. For infinite volume
(2 > x) the number of degrees of freedom N becomes infinite. We will be
interested in this field theory limit and only consider regularized operators which
have a well-defined limit for 2 — . (The limit {2 — « should be performed at the
end of all computations.) We note that our approach permits easily the treatment
of infinite volume ({2 — «) while keeping some of the L, finite. This can be used
for a study of finite-temperature field theory or for compactification of some of the
space dimensions. One may also consider the infinite cutoff limit A — o. (This
implies N — » independent of 2.) The existence of this limit depends on the
properties of the action S. (Compare sect. 7 for a discussion of actions with explicit
smooth momentum cutoff for which A — « can be easily performed.)

Appendix B

ONE-LOOP AVERAGE POTENTIAL FOR THE ¢* THEORY

The one-loop approximation to the average potential obtains by gaussian inte-
gration over fluctuations around the absolute minimum of S,. The action for the

* It is easy to construct a measure which is invariant under the full maximal group of continuous
space symmetries by taking a sphere s instead of the torus T4. The basic degrees of freedom ¢,
are harmonics on S¢ instead of Fourier modes ¢(q). The generalized total angular momentum l
plays the role of g2 and the ultraviolet cutoff corresponds to a maximal /. In the infinite-volume
limit the symmetry group SO(d + 1) of $¢ becomes the (euclidean) Poincaré group.
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fluctuations is approximated by the quadratic part,

S@= Y oxi(q)SP(a,q') 8x3(a), (B.1)
q.q9'#0
1 1 )y ' pz
U, = -ﬁlnDct S$7°(q,q )—1; . (B.2)

Here $37°(q, q') is considered as a matrix in internal as well as momentum space.
It can be computed from (5.10) and (5.14) for classical solutions with constant x:

$27v(q,q") = Q{a> + h(q) f2(a) — u* +A%%} 8,,6"°8(q — q') + M2 (q,4q')},

(B.3)

M} (q.q") = 3A Z{fn.a(‘l +@)Xo.s(d' +q) +Xo.o(a— @) x0.(a’ -q)
q

+ {,{’a\a(q +G)73xo.p(@ — @) +Xo.o(@ —G)73x0.6(a' +51')]T3

— [ Xo..(@ + @) 72x0.6(a" + ) +Xo..(ad = d)72x05(a2' — )] 7,

+[X0..(@+ @) 7 1x0.6(a" — @) + Xo.o{d — @) 71x0.5(q" +3)] 71}
(B.4)

Here we use an explicit representation with 2 X 2 Pauli matrices for the index
v, =(R,1)=(1,2) and § = x'. In general, the matrix M mixes different values of
g, a and y and the fluctuation matrix may become quite complicated even for
classical solutions with constant y2.

Consider first the constant solution (6.2) with x, (g) = ¢5,,67'8(g). The matrix
M simplifies to

M =21¢%6,,6,(8(a—q') +5(a+q’)7s;). (B.5)

We perform an orthogonal transformation such that for g > 0,

1
5/\’1‘11(‘1) = "/‘5'(5/\’(“1)(‘1) _‘SX(%_)(‘I)),
1
dxa(—q) = 75—(5)((“1)(61) +8x5,(4)),
1
dxi(q) = ﬁ(ﬁx{‘l,( -q) +8x&(—4)),

1 \
dx{(—q) = ﬁ(—ﬁxﬁ)(—q) +8x&(—4q)). (B.6)
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Then 8x(,(q) and 6x5(q) are the Fourier components of the real and imaginary
part of dy“(x),

Re x“(x) =X(al)(0) ‘/— Z {(X(l)(‘I) +lX(l)( q))exp(—lq"x )

q>0

+(x&)(a) —ixé&)(—a))exp(ig”x,)},

Im x“(x) =X(az)(0) ‘/— Z {(X(Z)( ‘1)'*")((2)(4)}“’(9( iq"x )

q>0

+ (X(az)( -q) - iX(aZ)(q))exP(iqux“)} . (B.7)

In this basis M is diagonal in momentum space,

0
M =21¢%5,,8,,6(q - q)(0 0) (B.8)

and one obtains for an arbitrary number N of reai components (N=2M for
complex fields)

Ul==— X {In(P(q) — u?+31¢?)

q#0

20

+(N-1)In(P(q) — x> +A¢?) + N In(2p%/7)}. (B.9)

/7

Except for a modified propagator (average propagator)

P(q) =q2+V(q)T§‘%, (B.10)

this gives the standard Coleman-Weinberg result in the limit L, — oo

P(q) — > +3A¢°
1_1 -d dgl1
Ul = 1(27) j;2<A2d q{n -
P(q) —p*+A¢?
+(N-1)In ) — . (B.a11)
0

For the inner region of the potential we have to expand around the spin-wave
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solution (6.5). The nonvanishing components of the matrix M, read

My, =2¢*{8(q—q') +8(q +q') 73},

My, =2x3{8(a—q') +8(ga+4a' —2p,) 73},

My, = Apx2{8(a —q' +p,) +8(q+q' —py)7s},

M,, =Aox2{8(a—a' —po) +3(q+q' —po)73}, (B.12)

with

xi=—(P—k?)—o* =92 — . (B.13)

|
A
The explicit appearance of the momentum pj§ reflects the breaking of translation
symmetry by the spin-wave solution. In order to diagonalize $® in momentum

space we first perform a change of variables by relabelling the momenta in the p}
direction (take p§ =p,8}) for the second component of Sy,

‘SXZ(qhquael)=6X§(q—,qp_ael) (B.14)

gz=mod,, .5, (a,FDpy). (B.15)

Here A, is the maximal momentum in the one-direction,

A =A— Y q*q,, (B.16)

n#*l
and the definition of g_ is chosen* such that
—-A, <g_<A,. (B.17)

This variable transformation has unit jacobian. Denoting

0,=(a4+,49,.1) (B.18)

* The definition of A is easily adapted for the case where the right-hand side of eq. (B.16) is not the

square of an integer multiple of 277 /L. For every q,, «1 there is a finite number of allowed g, and
the transformation should be cyclic.
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(and omitting the prime for the new variables), one obtains

Z'fab(q, a')ox*(a)dx*(a")

= L { T ful0.0)8x(0)5x(a) +£2(Q:Q)5x*()3x*(4)

q.q9' ‘a,b+2

+ T [£(0,2)3x(0)3x%(a) + (2. 4)8x*(2)8x"(a)]} . (B19)

a#2

One then finds for the nonvanishing components of M,

2 P
M ¢ ox20(4, 2Iq, +pol) 5(q—q)
ox20(A, — la; +pol) X3
2 ’
¢ ox20(A, — la; +P0|)
+A 8(g+q')7;, (B.20)
(‘PXZB(AI —lg, +pol)  x30(A, — lasl — Ipol) ’

with the usual step function 8(x > 0) =1, 8(x < 0) = 0. As we will see in sect. 10,
the high-momentum modes with (A — p,)? < g < A? give negligible contributions
to the ¢-dependence of the one-loop average potential in the inner region (for
sufficiently large A?). We therefore neglect the complications due to the finite
cutoff and obtain, after performing the transformation (B.6)

S:s%)):Q{Dab(q) +Mab(q)}8(q_q')a (B21)
where
D,,(q) =(P(q) —k?)5,, fora,b+2 (B.22)
_[3(P+P)—k*  —3(P.—P)
D,(q) = _Y(P,—P_) %(P++P_)—}2 (B.23)
with

P.(q,) =P(q,tpo,.), (B.24)

1 0 1 0
M11=2)“P2(0 0)’ M22=2’\X22(0 0)’

M12=M2|=2'\‘PX2((1, 8) (B.25)
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In this basis the determinant factorizes,

Det(2715@) = [T det S(q), (B.26)
q

det S(q) = [(P(a) — %2+ 24¢*)(P.(q) —k*)(P_(q) —k?) +Ax3(P(q) —k?)

x(P,(q) +P_(q) - 2k3)|(P(a) -%2)"°, (B.27)

where N is again the number of real scalar ficlds. We note that det S(g) vanishes
for some values of g. These “Goldstone modes™ correspond to a degeneracy of the
classical solution [8). Their integration gives a ¢-independent constant factor and
they are excluded from the product (B.26). In addition, the modes corresponding
to the ¢ =0 modes in the original basis should not be counted in the product
(B.26). (For these modes detS(q) diverges.) For all remaining values of g
the quantity det S(q) is positive and finite. In the infinite-volume limit L, — o the
excluded values of g have measure zero and the one-loop contribution to the
average potential in the inner region reads

Ul =1@m)

q <

dg[in{(P-%2)[(P.~k*)(P_—k2) + AgZ(P,+ P_—2k?)]

t =

FAG[2P,~R2)(P_—F?) - (P—F})(P,+ P_— 287)])
+(N—3)ln(P—7c2)] + const. (B.28)

We conclude that the one-loop average potential (B.11), (B.28) can be obtained

from the corresponding formulae in ref. [8] by a simple modification of P(q)
according to (B.10).

Appendix C

ONE-LOOP RENORMALIZATION GROUP EQUATIONS IN THE OUTER REGION

In this appendix we evaluate the one-loop B-functions in the outer region of the
potential, as defined by egs. (8.14)-(8.17). We have to compute the partial
derivatives of the integrals K,,. Let us first concentrate on » = g2 such that k is the

only mass scale appearing in the dimensionless ratio p(x) = P(x)/x. We introduce
dimensionless quantities

. P(x)+w\ "
L,,(w)=k2"‘df0A2dxxi“‘"“a(———(x) w) , (C.1)

d
7 Kn(W) =v,k“72"L, (w). (C2)
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For w =0 we use
d 5 d
5 P(x) = ~2x—p(x) (C3)

and take A — o since the integrand in eq. (C.1) vanishes exponentially for x — .
For d = 4 it follows immediately that

L,0)=-2[d v _ ., C4
A(0) = —2[ dx——=-2, (C4)
and
d d K
__+ —
Y. ‘Poa‘Po 2(W)
1 e P(x)a-w)"2 1
= — dx—| —— = — . CSs
167721;) xax( X | 1672 (C3)
We find the exact result
N+8)\2 (C$6)
Bl+ﬁ2— 167‘_2 R* -

For a separate computation of 8, we note that the integral (C.1) has two
independent infrared cutoffs given by k> and 2Agp3. For k%> 2Az0;, the ¢,
dependence of K, can be neglected, whereas for k< 2Agp; one has
|L,(2Aged)| < |L(0)|. We conclude

N+8 _, ,
E—_Z—AZR for k° > ZARQDO
B, = ™ (C.7)
! N-1 -
—1-6—-7A%§ for k? < ZARQD(Z) ,
ks

with a smooth interpolation for the “threshold region” k? = 2Ag - Similarly one
obtains

N+2 k2 7.2 2
_F?L‘(O) for k°>> 2Ag 04
T (C.8)

N-1k?

_F?LI(O) for k2 < 2Ap @3 .
™
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For the coefficient ¢, we use the identity

K
—5;(;12) = —K,(w), (C.9)

k=203, (C.10)

and find that ¢, vanishes to lowest order in A.

The coefficient ¢, and the precise form of the threshold behaviour for k2=
2Ag 5 depend on details of the definition of the average fields, i.e. 8 and a in eq.
(2.17). One finds

L(0)=-2r(1+1/B)(2a)""". (C.11)

In the limit 8 — = we can evaluate (C.1) directly using p(x)~" = 8(x — k?) (n > 0)
and k2=k3,

n

k2
gl_r)nmL,,(w) = —2(k2+w) . (C.12)

’

One obtains in this limit

N-1 3 k?
+ .
1672 1672 k> + 220}

Cl=

(C.13)

We expect a qualitatively similar behaviour for finite values of B. For » = const., a
straightforward but somewhat tedious calculation, using

0 ) d , P
3tpx,v'- XEP kZ,,,— V"gp x,EZ, (C.19)
ap v fZ 722 9 fz
dlnv| z. x 1-f¢ o5 Jox\1=f2 ||,

gives only small corrections to (C.7) and (C.8).

Appendix D

ONE-LOOP RENORMALIZATION GROUP EQUATIONS IN THE INNER REGION

In this appendix we compute first the integral J(k) (10.5) which determines the
¢-dependence of the average potential in the inner region a(k)= —k2+
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(k) /(327%) (10.4),
J(k) = [ A2d4q[2(P+—P)(P_—Z2) —(P-k*)(P,+P_-2k?)]
q°<
X{(P—k?+2r¢?)(P,.—%*)(P_~-k?)

+A(¢% - @?)(P-%?) (P, +P_—-2k2)} .

We then proceed to calculate the renormalization group equation for a(k).

Let us first show that a(k) is ultraviolet finite, with corrections from a finite
cutoff of order k*/A2. This justifies to treat the o-dependence of the average
potential in the inner region in the infinite cutoff limit A — . For large ¢g> we can
neglect the exponential terms in P, P, and approximate (with p,=(p,,0,0,0),
Do > 0)

P=q?, P.=(q%po)’=a>+pi+2pea,, (D.1)
(P.—K2)(P_-%2)=(a*+p3 - k)’ - 4pia?, (D.2)
P.+P_—2k?>=2(q*+p2—k?). (D.3)

The contribution from high momenta g2 > g2, where (D.1) is valid, to the integral
J(k) is

J(k)=2p3[ d%(q®-4a}+pi-%*)/R, (D.4)

qa2<q*<A?
R=(q*-%?)[(q* +p —%%)(a® + p3 — k% + 2A¢%) — 4piai]
+2A¢%p2(q® — 497 + p3 — k?). (D.5)

The leading contribution for large g2 vanishes (fd%qq~%(g* — 447) =0) and the
A-dependence of J, is at most of order k*/A2. _

Next we establish that the ratio z(k) = a(k?)/k? is finite for k — 0. This implies
that the inner region of the average potential is flat for k = 0. Since for k — 0 the
inner region extends to all values ¢'p < @2, the full one-loop average potential is
convex for k = 0, as it should be. We observe p3 ~ k> and that the lower bound for
the validity of the approximation (D.1) is proportional k2, g2 ~ k>. 1t is easily seen
that for small k2 < A2 the integral J,(k) is at most of order k*/(A¢Z,) [8]. We
still have to show that the remaining integral for momenta g* < g2 also vanishes at
least ~ k2. This is obvious except for possibly dangerous contributions from the
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vicinity of the zeroes of R (10.6). For generic values 0 < ¢ < ¢Z one finds three
zZeroes:

(i) q2=0; P =P =k2,
(i) q,=—-1ipy,, q*=p3; P,=P=k?,
(i) q,=31py, @°=p3; P_=P=k>. (D.6)

In addition a zero at g> = p; (iv) appears for ¢? =0 independent of g, (P = k?),
and similarly for g2 = F2q, p, (v,vi) for ¢*>=¢2 (P, =k?). All these zeroes are
related to “Goldstone directions™ arising from continuous symmetries of S, which
are broken by the spin-wave solution (6.5) [8].

Near the respective minima of P, P, we expand

k2 =p(a>-p3)’,

P.—k2=p(q> £ 2a,p,)’. (D.7)

We use f;, = exp{—a(q?/k?)?} (2.17) and obtain

0D | e

(Po)

(

1 1 v+2(k?-p3) B-1
2 Ez—pg V+7€2-p8 B pg
fi?(po) — B

2p¢(1-f2(py))

{

for v = const.

(D.8)

for v =¢q°>.

Since the integral J is symmetric under g, > —q, we only need to consider the
zeroes for g, > 0. We approximate around the zeroes (i) and (iii),

P (q "4‘11P0)
d4 I\ 2 +
(1) f (¢cr ) 2 q +4611]70 > (D9)
2(a* - 24,p0)" - (4> - p3)’
()=fd4q q qlp() q pO
iii 2
(2002 +p(a® - PE) )(a> ~ 24, py)" + A(92 — 9?)(a* —P3)"

(D.10)



C. Wetterich / Average action 579

For generic values Ag? > k2, A2 — ¢?)> k? these integrals converge at the
zeroes (i), (iii) and are indeed proportional k**.

To be more specific we next evaluate the integral J for the limiting case g — o,
where p2=k? and

-2

fi 2>7€2
P-%q)={q ora =" (D.11)

0 for g2 <k?.

We use variables g, and g, = (g2 + g2 + g2)'/? and divide the integration region
for g, > 0 into four regions, shown in fig. D.1,

() q>>k? and ¢,;>0 or
g  <k* and ¢;>k+Q or
g’ <k? and Q<q,<k-Q
(2= (k*-q2)"),

() 4% <k?,
0<gq, <min(Q,k - Q)
(P~'=0),

(I 4% <32,
k-Q<q,<Q,
(P '=pP-1=0),

(IV) 4% <k?,
max(Q,k - Q) <q,<k+Q
(Pz'=0). (D.12)

* The discussion for Ap? < k2 or A(pZ — ¢?) < k? should also include the zeroes (iv) and (vi) and
will be given later.



580 C. Wetterich / Average action

x|

s R ag
4 1

Fig. D.1. Integration regions for fluctuations around the spin-wave solution. We also indicate the

zeroes of R (see text).

We write the integral J as

J= 8772[ dq,dq ., 4% R,
(R) (R)

with
joy=2k*(q* - 4q}){[(a% + 2202 )q* - 4K%a( | (¢* - k°)
+219%k*(q* — 44})}
jan = —2a*{a* - 4k2q2 + 2A(e2 — 0*)a?}

- - -1
Jam = _{qi +(q,+k) —k2+ (% - 902)} )

Javy= (q2 + 4‘11E + EZ){(QZ - Ez)(qz + quE + ’\((Pgr - ‘PZ))

+22¢%(g% + 2q,1?)}" .

Using dimensionless variables

y=ApZ/k?,  8=M\p?/k?,

y=q,/k, x=q,/4,,

-1
’

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)
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we remain with the integrals in the regions (I)-(IV)

Jry=8mk?[ dyy* [ dxjg, (D.20)
Jon=2x2(x? = 3){[y*(x*+1) - 1]
x[y2(x2+ 1)+ 29(x2+1) - 4] +25(x2-3)} ", (D21)

= —22(2+ D[22+ 1)+ 2y - 8)(x2+1) -4}, (D.22)
Jamy = —xz{y2x2+(y+1)2+'y—6—-1}—1, (D.23)
J:w) =.7c2[y2(x2 +1) +4y+ 1]{[y2(.xc2 +1) - 1]

x[y2(x2+1) +2y +y—8] +26[y2(x2+1) +2y]} ", (D.24)

We note that the limits of the x-integration in the various regions are only
functions of y whereas the y-integration covers the intervals [0, <], [0, 1], [0, 1] and
[2,2] for the regions (I)-(IV). In particular, the integration boundaries are inde-
pendent of k2. We also may use the identity

[, .d'a(a®~4a})F(a*/R?)
q=

=k ¥ [dyy*[dxx®(x2=3)F(y*(x*+1))
D+AV)

(D.25)

[
=)

to subtract an appropriate expression from ]:1) and sz) and make the integrations
in J;, manifestly ultraviolet finite. _

We are interested in the k-dependence of the quantity a(k) (10.4). Using the
dimensionless variables (D.18) one writes

a(k?) = a(y,8)k? (D.26)
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and derives the general identity (neglecting the k-dependence of ¢2)

1?6 k) =2a(k) —2k? i aaﬁ D.27)
— = - — +6—]. .
—za(k) =2a(k) - 28|y + 855 (
In our case this yields

_ 9 A,

k5]={-a =2a— E:T?k-ZK(R) (D28)

(R)
with
. 3 3.
Kgy= [dyy?[dx Y3y * 835 Jim- (D.29)

We consider the case y — & > 1 and approximate

x R*

Ky= Ovzd)’)’sf dxgg, + flz/zd)’ysf dxgy, + Lmdyy3j:dxg(,,,

-y’ Q-vi/y

gny = —4x3(x?— (=2 + D[y2(x2+1) - 1]y + (x%-3)8)

x{[y(x2+1) - 1]{y2(x2 + 1)? + 29(x2+ )] +28(x2 - 3)}_2,

(D.30)
Kan .[ Cay 3[\/(;_%)’2”: dxgar»

g =x>/(v—8), (D.31)
K= Ol/zdyy3f0‘/mdxg(m, + fll/zdyy3f0“(l_y2)/y2 dxgam

gamy =x*/(y-9), (D.32)

_ ! V2-y)/y 2 Ve-»
K - dvy3 y 3 )y
avy fl/z yy fmdxg(wﬁfl dyyf0 dxgqvy»

Eav) = —xz[yz(x2+ 1) +4y + 1]

X{(y—8)[y2(x2+1) —1] +28[y2(x2+ 1) +2y]}_|. (D.33)
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One immediately finds

S 3,2
Kay+ Kany = 3(y—9) l](; dy(1-y?) / (D.34)

and similarly
o & )
Kavy= —(y-9) €av) 'YTBJ ’ (D.35)

with ey, of order one for & of similar size as y — 8. An inspection of the integral
K, leads to an analogous conclusion: For & of the same order as y — & one
obtains

9 a2 ! i il D.36
—_— = + .
kT R (- 2= | (D.36)

with e of order one. For the interesting case of ¢? < <p§, (6 < y — ), however,
there are important contributions to the integrals K;, and Ky, from the region
near the boundary at x>=y~2— 1. In this region the integrals diverge for 6 =0
and we have to evaluate them carefully. Consider the region

yi(x2+1)-1x1, (D.37)
where one can approximate

gy = =y 2(1-y2)(1 - 4y?){y[y3(x2+1) 1] +8(1 - 4y?)} "', (D.38)
-1
gavy= =2y 2(1 —y?)(1 +2y){y[ y2(x2+1) - 1] +26(1 +2y)} . (D.39)
Performing the x-integration gives contributions

_ 1
Ky = - ——fl/zdy\/l -y2(1 —4y2)[1nZ —In(1 —4y2)], (D.40)
2y Jo )

- 1 4 Y
K== [ a0 +2y)[ng —m@+4p)],  (D4D

and we conclude that the leading contributions are logarithmically divergent for
¢*/9% =0,

e = egIn(92/9?) +ey(0%/(0% — %)) (D.42)
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with e, of order one. We expect a similar qualitative behaviour for (D.36) for finite
values of 8.
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