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A rigorous proof is given that the charge renormalization constant Z; in (non-compact)
lattice QED with any number of charged massive fermion fields is bounded by 0 < Z, < 1 for all
(non-critical) values of the bare parameters. The significance of this result for the continuum
limit of the theory is discussed and it is shown that in four dimensions an upper bound on the
renormalized charge is implied, while in dimensions greater than four, the theory is trivial.

1. Introduction

It is well known that the bare electron charge e, in quantum electrodynamics
(QED) is greater than the observable charge e defined through the Thomson
scattering cross section, because the electron polarizes the vacuum and its bare
charge is hence partially screened. With a Pauli-Villars cutoff A, the charge
renormalization constant Z;, defined through

e’ =2Zel, (1.1)

can be calculated in perturbation theory and one finds that

el A

23=1—6—721n;+0(e3), (1.2)
where m denotes the physical electron mass. That the sign of the O(e?) term in eq.
(1.2) is negative not only confirms that the bare electron charge is partially
shielded through virtual electron—positron pairs, but it also has significance for the
theory in the limit A — o. This becomes apparent by noting that the Callan—
Symanzik B-function (which eventually controls this limit) is related to the charge
renormalization constant Z, through

Ja e
B(a)=—A(a)) , a=——, (1.3)
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and eq. (1.2) hence implies that B(a) > 0 for sufficiently small values of a > 0. As
in the case of the ¢*-theory (e.g. ref. [7]), one is therefore led to suspect that the
theory is trivial in the sense that, for a given value of the renormalized electron
charge, the cutoff A is bounded by

1
1n(A/m)<B—+B—§ln(Bla)+O(1), (1.4)

1& 1

where B, and B, are the first two coefficients in the perturbative expansion of the
B-function, viz.

* 2
Bla)=a Y Ba*,  Bi=+. (1.5)

v=1 3w

In other words, the cutoff cannot be taken to infinity unless the renormalized
charge is allowed to go to zero so that a cutoff-free theory is necessarily non-inter-
acting.

In nature, the fine-structure constant « is about 1/137 and the bound (1.4) has
no practical significance because cutoff masses many orders of magnitude greater
than the Fermi scale can be accommodated. However, since a fundamental
problem of quantum field theory is being addressed here, it would nevertheless be
very interesting (and possibly useful in other physics contexts) to know whether
QED is really trivial or whether perhaps the B-function has a second zero for some
value a = o* of the renormalized coupling. This question is only well posed if the
theory is properly defined on a non-perturbative level. One possibility then is to
study the model on a euclidean hypercubic lattice and the first generation of
numerical simulations of this system have indeed revealed an interesting phase
transition at some large value of the bare coupling eF [1-5]. It is conceivable that
this transition is associated with the existence of a non-trivial continuum limit, but
to clarify the situation it would certainly be necessary to obtain further information
on the renormalized coupling e and the charged particle mass m in the critical
region.

In this paper I shall prove that the charge renormalization constant in (non-com-
pact) lattice QED with either Wilson fermions or staggered fermions satisfies*

0<Z,<1 (1.6)

for all values of the bare parameters. In view of what has been said above, this

* This inequality already appears in the text book by Bjorken and Drell ([6], subsect. 16.11). However,
the proof given there makes use of the canonical commutation relations for the interacting photon
field and hence remains rather formal, especially so, since no ultraviolet regularization is intro-
duced. It is in fact essential to specify the regularization, because (1.6) is not universally valid.
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result is hardly surprising, but since it holds non-perturbatively and also at strong
coupling (where the simple charge-screening picture could be misleading), it
provides an important constraint on the nature of any possible continuum limit of
the theory. In particular, I shall argue that, in four dimensions, an absolute upper
bound on the renormalized coupling in this limit is implied, while in dimensions
greater than four (where the bound (1.6) holds as well) the theory is necessarily
trivial.

2. Basic properties of lattice QED

For simplicity, details of the proof of the bound (1.6) will only be given for the
case of a single Wilson fermion in four space-time dimensions coupled to the
photon field in the standard way. In the course of the discussion it should however
become clear that the argument carries over almost literally to a large class of
lattice gauge theories involving charged fermions and bosons. In particular, the
proof works for any number of staggered fermions.

2.1. DEFINITION OF THE MODEL

The theories considered in this paper live on a four-dimensional hypercubic
lattice which is assumed to be infinitely extended in all directions. For conve-
nience, the-lattice spacing is set equal to 1, i.e. I will use lattice units.

In the non-compact formulation of lattice QED {which will be adopted here),
the photon field is an assignment of a real number A4 ,(x) to every lattice point x
and direction u*. The field tensor F,, (x) is then defined through

724

Fo(x) =d,4,(x) =d,4,(x), (2.1)
where the forward lattice derivative is given by
A f(x) =f(x+4) =f(x), (2.2)

and /i denotes the unit vector in the positive p-direction. F,,(x) is invariant under
the gauge transformation

A (x) =>A,(x)+3,A(x), (2.3)
* Lattice points x are integer vectors with components x,,. Space-time indices u.v,... run from 0 to
3, space indices k,[,... from | to 3 and Dirac indices «,8,... from 1 to 4. Unless otherwise

specified, repeated indices are summed over.
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and so is the gauge field action

Sa =3 LF(x)F,(x). (2.4)

As opposed to compact electrodynamics, gauge fixing is necessary here to make
the functional integral well defined. In what follows, the choice of gauge is of no
particular importance; however, for the sake of definiteness, the gauge will be
fixed by including the term

A
Sar = LA ()34, (x) (2.5)

in the total action, where A, > 0 is the bare gauge-fixing parameter and 9* denotes
the backward lattice derivative (the adjoint of :3“).

The electron field ,(x) and its conjugate ¢ (x) take values in a Grassmann
algebra and transform according to

P(x) > e Oy(x),  P(x) > d(a)ei i, (2.6)

under gauge transformations, where e, denotes the bare charge. Following Wilson,
the lattice fermion action is defined by

Se= L {T0w() - KE [0+ 9)UCr w5+ 4)

X

S5+ A)(1 - 30w w0 @)

Vevn) =26, Y= (2.8)

Here, K is the hopping parameter and the link variables U(x, u) are related to the
gauge field through

U(x,u) =exp[ie(,AM(x)], (2.9)

so that the fermion action is gauge invariant.
Finally, expectation values of products and more general combinations
Pl A, b, ] of the fundamental fields are defined in the usual way through

1 - '
(@) =7 [ TT4A) [T du(y) dbaly) Fe, (2.10)

S =S¢+ Sqp+Se, (2.11)

where the normalization factor Z is such that (1) = 1.
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Without loss, the bare parameters e, and K can be restricted to the range
0 <e,, K <. From perturbation theory, studies of the limit e, — « and numerical
simulations, one expects that there are critical lines in this range, where the
electron mass vanishes or where a first-order phase transition takes place. In what
follows, I will always assume that the bare parameters are away from these critical
values so that the electron mass (in lattice units) is positive and the cluster
property for correlation functions of local fields holds. Furthermore, I will take it
for granted that the gauge-field propagator has the expected singularity at zero
momentum (the photon pole), as specified in subsect. 2.3.

2.2. WARD IDENTITIES AND THE PHOTON FIELD EQUATION

As in continuum gauge theories, the Ward identities on the lattice are derived
by performing a substitution (2.6) of the fermion integration variables in the
functional integral (2.10) with an infinitesimal (classical) gauge transformation
A(x). The fermion measure is invariant under this change of variables, but the
action is not and the observable # also changes in general. As a result one obtains
the relation

e < e _ Vs >
D) = e (W) 3o () o) (212)
where the electromagnetic current is given by
Jul(x) = eoK[§(x) (1 + 9, JUCe, m)d(x+ ) =9 (x+ @) (1= 9,)UCx, 1)~ 'w(x)].
(2.13)

For later use, note that j (x) is a local, gauge invariant composite field, which only
involves the gauge potential on the link connecting x and x + 4 and the fermion
field at these points.

The photon field equation is obtained by differentiating the integrand in the
functional integral with respect to the integration variable A (x). The resulting
integral vanishes by partial integration, and one arrives at

(OFF, ()0 + A(3,05A(x)O) = —i(j(x)O) = < > (2.14)

94, (x)

In this form, the photon field equation is valid for arbitrary composite fields Z.
By operating with d* on eq. (2.14) and applying the Ward identity (2.12), one
obtains

W _ Ve
AgA(FA (x) &) = —ieo<¢f(x)—— ¥(x) >— <a;k > (2.15)

w(x) ay(x) 34,(x)
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where A =d*4d denotes the lattice laplacian. Particular cases of this identity are
A()A<ay>,k‘%1g(x)/lu(y)> = -—(’)u*axy’ (216)

and
A()A<a:AM(x)lrl/a(y)lZB(z)> = _ie(](ﬁxy - 5x2)<d/a(y)l/_j[3(z)>1 (217)

both of which are of fundamental importance for the renormalization of the
theory.
If # is a local gauge invariant combination of the basic fields, we have

) 7 _ il - lilad B 18
e l!l(x)t?tb(x) _‘//(X)W]"' 94 (x) =0, (2.18)

and the r.h.s. of eq. (2.15) vanishes. Furthermore, by the cluster property, the
expectation value (9%4,(x)7") is a bounded function of x, and since it is a zero
mode of the lattice laplacian, it must be constant. The term proportional to A, in
the field equation (2.14) hence vanishes and one concludes that

ar
OFF, ()7) = =i{j (X)) = <8A (x)> (2.19)

for local gauge invariant observables 7.

2.3. PROPERTIES OF THE PHOTON PROPAGATOR

The (bare) photon propagator D, (k) in momentum space is given by
i -
exp[z(k# —k,,)}Dw,(k) = Z e (A4, (x) A,(0)). (2.20)

As already mentioned above, I will only consider such regions in the space of bare
parameters, where D, (k) has the expected singularity at k = 0, the photon pole.
More precisely, 1 shall assume that in the Brillouin zone |k,| <, the representa-
tion

k2

z,
D, (k)= k—’z[str(,r‘ — Dk, k,/k?]| + (2.21)

holds for some constants Z; and A, where R, (k) is continuous and

R,.(0) =0. (2.22)
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Although a rigorous proof is presently not available, there is little doubt that eq.
(2.21) is valid to all orders of perturbation theory and also in the hopping
parameter expansion. Furthermore, if one takes it for granted that the inverse
propagator is regular at £ = 0 in the sense that

D;V'(k)k= Ay, bk, +c 0k k, +O(k*), (2.23)
-0

urpp pvpo Y ptta

the tensor structure of the pole term in eq. (2.21) is the most general one
respecting the Ward identity (2.16) and the discrete rotation symmetry of the
lattice.

The photon wave-function renormalization constant Z, and the renormalized
gauge-fixing parameter A are defined through eqgs. (2.21) and (2.22). It is easy to
show that

m

(Fu(X)E,(0)) = [ e* D(k), (2.24)

-~ (271')4

lim D(k) =625, (2.25)
k-0

and Z, is hence independent of A,. On the other hand, the renormalized
gauge-fixing parameter is related to A, through A = Z;A,, as can be deduced from
the Ward identity (2.16).

24. REFLECTION POSITIVITY

Lattice QED as defined in this section is known to be reflection positive, a
property which is crucial for the quantum mechanical interpretation of the theory
[8-11]. In the following I will make extensive use of reflection positivity and I
therefore briefly describe what is meant by this term.

First, one defines an operation #, which acts on any function 7 of the basic
fields and which can be interpreted as a reflection with respect to the hyperplane
x, = 1. If # depends only on the gauge field, #/= f[ 4], one sets

o[~ ] =f1A"]*, (2.26)
where the star means complex conjugation and

—A,(—x5,x) ifu=0,

2.27
A,(1—x,,x) otherwise. (2.27)

Al(x) =
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In general, 6[#'] is determined through the rules

8[y(x)] = (1 —xy, 1)y, (2.28)
0l (x)] = you(1—x,x), (2.29)
0[7, + 7, ) =0[2,]+6[7,], (2.30)
0l2,7,] =0[2,1002,] (2.31)

(and egs. (2.26) and (2.27)). For example, for the electromagnetic current, one
finds that

0l = ) i @)
It is obvious that 8 is idempotent, 8 = 1, and one may also show that
Ble]y = ()", (2.33)
as expected for the time-reversal symmetry.
The basic statement now is that [9-11]
oleley =0 (2.34)

for all gauge invariant observables # that do not depend on the field variables
A (x), ¢(x) and $(x) with x, <0. The set of all these observables will be denoted
by o7, . Egs. (2.33) and (2.34) thus imply that

(6, 0) S0l a)eyy, Aoy ed, (2.35)

is a non-negative, hermitian scalar product on &7, *.

Reflection positivity as described here holds for arbitrary values of the bare
parameters, and it is also valid in many other theories such as QED with staggered
fermions, for example. For Wilson fermions, there is another more powerful form
of physical positivity [8, 11], valid for K < 1/6, which I will however not use in what
follows.

* Strictly speaking, reflection positivity has only been shown for compact gauge groups. That it holds
here as well follows from the observation that non-compact QED can be regarded as a limit of a
version of compact QED with adjustable “radius” of the gauge group U(1).
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3. Proof of the bound (1.6)

I will first establish the lower bound Z; > 0. To this end consider the correlation
function

C(f)= Zf(x)*f(y)<Fkl(x)Fk[(y)>’ (3.1)

X,y

where x;=10, y,=1 and

3

f=[" o™ f(k) (3:2)

—r (27)’

is some rapidly decaying test function. The observable

Cu= Zf(Z)Fkl(z)lzozl (3.3)

is an element of &7, and since C(f)=(F,, &), it follows that C(f)>0 by
reflection positivity.
The Fourier representation of C(f) reads

cfy=2f" f(k)? e *o(k28, — k,k;) Dyy(k) (3.4)

—7( )4
k,=2sin (3.3)
and since C(f) > 0 for any test function f, one concludes that C(k) > 0, where

N R s dky
C(k)=2(k26,j—k,kj)f_ ﬁe—'koz),j(k). (3.6)

Now we substitute k& = sq, where s > 0 is a scale factor, g # 0 is held fixed and ¢,
is the new integration variable. As a result, one obtains

C(Sq)/S— (k 611 k k / /77'/3 ﬂ —tst]()SZD[j(sq), (37)

—7r/s

an expression which can be evaluated exactly in the limit s — 0.

Indeed, it follows from the representation (2.21) of the photon propagator and
the continuity of R, (k) in the Brillouin zone that the integrand in eq. (3.7) is
uniformly bounded by a constant times 1/g2, which is an absolutely integrable
function on the real line - < g, < . Thus, the Lebesgue dominated convergence
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theorem applies and one finds

lim C(sq)/s =2Ig|Z;. (3.8)

Because C(k) > 0, this result immediately implies Z5 > 0.
I now proceed to prove the upper bound Z, < 1. The starting point here is the
identity

a}ikF;w(x)ap*Fpa'(y)> = (811(3r:'(< - 6VUA)8X_V _Jvo'(x _y) 2 (39)
Joo(x =) = (G ()i, (¥)) +6,,8,(7(y)), (3.10)

where #Z/(y) is a local composite field whose precise definition will not be needed
in what follows. Eq. (3.9) is obtained by straightforward application of the field
equation (2.19).

In the following, the strategy is to prove that the Fourier transform Jy,(k) of
Jyo{z) is non-negative for k, = 0. The bound on Z, is then easily deduced from
eq. (3.9). Indeed, this relation implies

Aoy 2 ~ ~
(kz) D(,O(O,k)=k2—./00(0,k) (3-11)
so that
= lim k2D,(0,k) <1, (3.12)
P
where 1 have again made use of eq. (2.21) and the continuity of R, (k) at k=0.

To prove that JO(,(() k) is non-negative, I have to go through a number of steps.
First, from eq. (3.9) one infers that

axl, (2)=38,J,0(z)= (3.13)

for all z and ». Using these relations, J,,(x —y) can be rewritten in the suggestive
form

Joo(x_)’):<9[j(—x(1’x)]j()’o,J’)>v (3.14)

where

j(z) =jo(zo+1,2) +3Fj, (2o + 1,2) (3.15)

and I have assumed that x, <y,. Note that j(z) is an element of .7, if z,> 0.
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Next, choose a real test function f(z) and define

o(f) =L f(2)jt,2), (3.16)
C(f)= Z8%0e_E|X("f(x)f(y)J()O(x —-y), (3.17)
X,y

where ¢ > 0 is a cutoff which will be taken to zero later on (this device is needed to
guarantee the convergence of the sum (3.17)). From the above it then follows that

CAf)=2X e *(E(f)+e C_(f).O(f)+e 7,_\(f)), (3.18)
t=1

and since Z(f) e &7, for t > 0, one concludes that C.(f) > 0.
The momentum space representation of C.(f) is

c - d% sinh ¢
)= f_v (27)* coshe — cos k,

k) 2o k) - (3.19)
Eq. (3.9) and the properties of the photon propagator imply that J,(k) is
continuous. Thus,

d3k
(2m)°

lim C.(f) = fﬁ f ()12 0(0, k) (3.20)
-0 -

and since this integral is non-negative for all real test functions f(z), it follows that

fo()(O,k) +joo(0v -k)>0 (3.21)

for all k. This implies that J,,(0, k) is non-negative, because from the definition
(3.10) it is obvious that Jy(z) =J,(—z) and J,(0, k) is hence an even function
of k.

This completes the proof of the upper bound on Z;. It should be clear now that
only very general properties of the theory have been used and that the argument
hence carries over to (non-compact) lattice QED with virtually any multiplet of
matter fields.

4. Implications for the continuum limit

The continuum limit of lattice QED with Wilson fermions is known to exist to
all orders of (renormalized) perturbation theory [12], but as in the case of the



352 M. Liischer / Lattice QED

lattice ¢*-theory, this does not necessarily imply the existence of the continuum
limit on a non-perturbative level for non-zero values of the renormalized charge.

In this section I would like to discuss the significance of the bound (1.6) under
the hypothesis that the continuum limit can be taken non-perturbatively in the
commonly expected way. In doing so I will have to make some weak qualitative
assumptions on how exactly this limit is reached (subsect. 4.1). Most of the text
that follows refers to lattice QED with Wilson fermions, but the conclusions drawn
apply to other models of lattice QED as well. In particular, this includes QED with
staggered fermions and I shall make several remarks concerning these along the
way.

4.1. BASIC FACTS AND ASSUMPTIONS ON THE CONTINUUM LIMIT

The continuum limit of lattice QED is generally expected to be obtained by
approaching a particular critical point ej, K*, A} in the space of bare parameters
along certain curves, the renormalization group trajectories. Suppose
eo(a), K(a), A,(a) is such a curve, where the curve parameter a > 0 is taken to be
the lattice spacing in units of some physical scale (the electron mass m, for
example). Thus, we have e, (0) = ¢ etc., while for a > 0 the theory is non-critical
along the trajectory and the correlation functions of the basic fields are well
defined. When appropriately scaled, they are expected to converge to the Schwinger
functions of the continuum theory in the limit ¢ — 0.

To make this a little more explicit, let G"™X(k; p; q)
form of the connected part of the correlation function

.ap D€ the Fourier trans-

CALx) o Ay ()b (V) - a3 U (20) - s (20 (4.1)

where k=k,,..., k, is a shorthand for the photon momenta and the other sets of
momenta and indices are similarly abbreviated. The &-function expressing total
momentum conservation and a factor of exp[3iku] for every photon momentum k
is omitted from the definition of G"""(k; p; q),,4 (as in the case of the propagator
(2.20)). That the theory has a continuum limit when scaled along the curve
eq(a), K(a), A (a), now simply means that for any set of non-exceptional momenta

k, p,q and appropriately chosen scale factors Z (a), Z,(a), the limit
G (k; p;q)pap = lima *Z,(a) _"/ZZd,(a) _[G("”)(u%; ap;aq),.p (4.2)
a—0

exists and is such that the continuum propagators G*>® and G do not vanish
identically.

In what follows, I shall only consider continuum limits, where the photon pole
(2.21) in the gauge-field propagator survives with a finite positive residue and
where the electron propagator G (5; — p), s 1s a non-trivial function of p. These
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are in any case minimal requirements if the theory is to describe interacting
electrons and photons in the continuum limit. The first of them immediately
implies that

ZA(a)tli()a7(’23(e()(a),K(a)) (4.3)

up to a constant factor, which, without loss, may be set equal to 1. Another obvious
consequence is that the renormalized gauge-fixing parameter A has to converge to
a finite value in the continuum limit (as expected).

4.2. SCALING OF THE RENORMALIZED CHARGE

As in other regularization schemes, the renormalized charge e in lattice QED is
defined through

e=1Zye,. (4.4)

Thus, the renormalized charge is a gauge independent dimensionless parameter
which satisfies 0 < e <e,. I would now like to show that e is proportional to the
renormalized electron—photon vertex and that along any given renormalization
group trajectory it converges to a finite value in the continuum limit.

To this end, recall the Ward identity (2.17). In momentum space, this equation
reads

Aok , GOk p3 @) pap = e[ GO =41 @) ap — GOV (p; —p)us) . (45)

where k+p +¢g =0 and IQ” is given by eq. (3.5). If we now substitute k = ak etc.
and insert eqs. (4.2) and (4.3), the asymptotic relation

ARk, GV (k; p; q)#l,gaj”e[(_?“’*”( ~3;3) s — GNPy —P)ap| (4.6)

is obtained. Since the correlation functions appearing here are independent of a
(and since G P(jp; — p),, is assumed to be a non-trivial function of p), it follows
that e must converge to a finite value for a — 0, the renormalized charge of the
continuum theory.

So far the notion of a renormalization group trajectory was left rather imprecise,
because I wanted to keep the discussion as general as possible. Now it has been
shown that e and A converge to finite values in the continuum limit so that without
loss, we may identify the renormalization group trajectories with the curves of
constant e and A. In other words, a renormalization group trajectory is determined
by the equations e(e,, K) = constant and A,/e} = constant.
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4.3. UPPER BOUND ON THE RENORMALIZED CHARGE

From the bound Z, < 1, one now concludes that the renormalized charge in the
continuum limit satisfies

e<ef. (4.7)
It is conceivable that e} = «, but for various reasons this is an unlikely possibility.

In particular, to all orders of the hopping parameter expansion it can be shown
that

eliinm<F“,,(x)Fp(,(y)> =(F,(x)F,,(¥)k-0> (4.8)
clig;(%()f)%(ﬂ) =8,,8,5c(K), (4.9)

which suggests that the photon decouples and that the electron is infinitely heavy
in the limit e, — «*. This is quite opposite to what would be required for a decent
continuum limit at ej =oo: the bare charge should be strongly screened (i.e.
lim,_,Z;=0) and the fermion propagator should have a nontrivial momentum
dependence.

Another argument against eF = % can be given for lattice QED with staggered
fermions. From numerical work [1-5,13-15] (and more recently also from a
rigorous analytic study [16]), one knows that the exact chiral symmetry of this
model at bare mass m, =0 is spontaneously broken for sufficiently large bare
coupling e,. This is associated with a vacuum expectation value of ¥, which is
non-zero in lattice units, and it would therefore be rather strange if the physical
electron mass in these units would vanish in the limit m, — 0, e, — %, a necessary
requirement for the existence of a continuum limit with ef = o,

As suggested by Kogut et al. [1], a continuum limit of lattice QED with
staggered fermions is more likely to exist at the coupling e, = e, which separates
the chirally symmetric phase from the strong coupling phase where () # 0 at
my = 0. For a one-component staggered fermion (which is expected to correspond
to four degenerate Dirac fermions in the continuum limit), the first numerical
simulations with unquenched fermions indicate that this point is around ej = 2.3
[1-5]. Thus, in any continuum limit taken there, the renormalized fine-structure
constant « satisfies

0<a<ad, af =0.42. (4.10)

* Further support for this conclusion comes from the observation that compact and non-compact
QED coincide at e, = «. Since compact QED confines for sufficiently large e, there can be no
finite energy charged states, while in the non-compact case free electron states are expected to exist
for all e,. A contradiction at e, = = is thus avoided, if the energy of these electron states goes to
infinity in the limit e, — o, i.e. if the electron is infinitely heavy there.
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In particular, the non-trivial zero a* of the B-function, which is associated with the
continuum limit at e, must be in this range.

To obtain some fecling for the significance of the bound (4.10), consider the
Landau scale

AL angan = M(B1a) PP e/ Pre[1+ 0(a)] (4.11)
where
2 1
BIZENF’ B,= 2—77_2NF’ (4-12)

are the one- and two-loop coefficients of the B-function for QED with Ny Dirac
fermions of charge e. The Landau scale is roughly the energy at which renormal-
ized perturbatation theory breaks down. For a single staggered fermion, Np=4
and one finds

A > 12m fora<af, (4.13)

Landau
provided the higher-order corrections in eq. (4.11) can be neglected.

The bound (4.13) suggests that in the continuum limit perturbation theory
should still be useful at low energies even if « assumes its maximal value «F. This
conclusion is also reached by noting that the apparent radius of convergence of
renormalized perturbation theory is roughly given by

a<7/Ng (4.14)

for quantities such as the anomalous magnetic moment of the fermions, the photon
propagator at euclidean momenta of order m and the Callan-Symanzik B-func-
tion. In view of these facts, it now even appears doubtful that the B-function
indeed has a second zero a™ with a* <, i.e. it could be that after all the theory
is trivial in the continuum limit, a possibility which does not contradict any of the
known properties of the system as far as I can see.

4.4, TRIVIALITY OF THE CONTINUUM LIMIT IN HIGHER DIMENSIONS

The Wilson model of lattice QED introduced in subsect. 2.1 can easily be
generalized to hypercubic lattices of dimension d > 5. With the obvious changes,
the proof of the bound (1.6) then goes through as before and the discussion of the
continuum limit in subsects. 4.1 and 4.2 can be taken over. The only essential
difference is that the power a~* in eq. (4.2) is replaced by a ¢ and eq. (4.3)
becomes

ZA(“)aj(]aidizz\z(eo(a)’K(a))- (4.15)
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As a consequence, the charge e on the right-hand side of eq. (4.6) is replaced by
e=a'"2, (4.16)

and it is hence this quantity, which should be regarded as the (dimensionful)
renormalized coupling constant of the theory in the continuum limit. In particular,
the renormalization group trajectories are labelled by A and the dimensionless
parameter m9/2"%¢,
For the same reasons as in four dimensions, one expects that e} <« and the

bound (1.6) thus implies
lime=0 foralldz35, (4.17)

a—0

i.e. the theory is trivial in the continuum limit.

5. Concluding remarks

The question of whether the continuum limit of lattice QED in four dimensions
is trivial or not remains open. Still, I have been able to show in this paper that the
renormalized fine-structure constant « cannot exceed a certain maximal value a§f
in this limit, which turns out to be quite small for staggered fermions (aj is
presently not known for Wilson fermions). This sheds some doubt on the existence
of a second zero a* of the Callan-Symanzik B-function with a* < e}, a necessary
condition for a non-trivial continuum limit.

It is obvious that further progress can be made by performing more detailed
numerical simulations, but there are also analytical methods which have not been
fully exploited so far. In particular, the strategy used to solve the lattice ¢*-theory
[7] can be carried over to QED [17] and constructive techniques can be used to
rigorously control the theory at large e, [16]. Thus, the prospects are rather good
that the time-honoured question of ultraviolet stability of QED will soon receive a
definite answer in the framework of lattice field theory.

I am indebted to P. Rakow and G. Schierholz for discussions on their work. 1
would also like to thank E. Dagotto for stimulating correspondence.
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