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A rigorous proof is given that the charge renormalizationconstant Z
3 in (non-compact)

lattice QEDwith any numberof chargedmassivefermion fields is boundedby 0 ~ Z3 ~ I for all
(non-critical) valuesof the bareparameters.The significanceof this result for the continuum
limit of the theoryis discussedand it is shown that in four dimensionsan upper boundon the
renormalizedchargeis implied, while in dimensionsgreaterthan four, the theoryis trivial.

1. Introduction

It is well known that the bare electroncharge e1~in quantumelectrodynamics
(QED) is greater than the observablecharge e defined through the Thomson
scatteringcross section, becausethe electronpolarizes the vacuum and its bare
charge is hence partially screened.With a Pauli—Villars cutoff A, the charge
renormalizationconstantZ3, definedthrough

e
2=Z

3e~, (1.1)

canbe calculatedin perturbationtheoryand onefinds that

e~ A
Z3=1—------~ln--—+O(e~), (1.2)

m

wherem denotesthe physicalelectronmass.That the signof theO(e~)term in eq.
(1.2) is negativenot only confirms that the bare electron charge is partially
shieldedthroughvirtual electron—positronpairs,but it also hassignificancefor the
theory in the limit A —* ~. This becomesapparentby noting that the Callan—
Symanzik f3-function (which eventuallycontrolsthis limit) is relatedto the charge
renormalizationconstantZ3 through

aa
/3(a)= —A — , a=—, (1.3)an ~
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andeq. (1.2) henceimplies that f3(a)> 0 for sufficiently small valuesof a > 0. As
in the caseof the 44-theory(e.g. ref. [71),one is thereforeled to suspectthat the
theory is trivial in the sensethat, for a given value of the renormalizedelectron

charge,the cutoff A is boundedby

ln(A/m)~~+~ln(/3
1a)+O(1), (1.4)

I3ict /3~

where~ and f~2are the first two coefficientsin the perturbativeexpansionof the
/3-function, viz.

/3(a) =a ~ ~ /3~= ~. (1.5)
v~1

In other words, the cutoff cannot be taken to infinity unlessthe renormalized
chargeis allowedto go to zeroso that a cutoff-free theory is necessarilynon-inter-
acting.

In nature, the fine-structure constant a is about 1/137and the bound (1.4) has
no practicalsignificancebecausecutoff massesmany ordersof magnitudegreater
than the Fermi scale can be accommodated.However, since a fundamental
problemof quantumfield theory is being addressedhere,it would neverthelessbe

very interesting(and possibly useful in other physics contexts)to know whether
QED is really trivial or whetherperhapsthe /3-functionhasa secondzero for some
value a = a* of the renormalizedcoupling. This questionis only well posedif the
theory is properly definedon a non-perturbativelevel. One possibility then is to
study the model on a euclideanhypercubic lattice and the first generationof
numericalsimulations of this systemhave indeed revealedan interestingphase
transition at somelarge valueof the barecoupling e~[1—5].It is conceivablethat
this transitionis associatedwith the existenceof a non-trivial continuumlimit, but
to clarify the situation it would certainlybe necessaryto obtain further information
on the renormalizedcoupling e and the chargedparticle mass m in the critical
region.

In this paperI shall provethat thechargerenormalizationconstantin (non-com-
pact) lattice QED with eitherWilson fermionsor staggeredfermions satisfies*

0~Z3~1 (1.6)

for all valuesof the bare parameters.In view of what has been said above,this

* This inequality alreadyappearsin thetext book by Bjorken andDrell ([61, subsect.16.11).However,

the proof given theremakesuseof the canonicalcommutationrelationsfor the interactingphoton
field and henceremainsrather formal, especiallyso, since no ultraviolet regularization is intro-
duced.It is in factessentialto specify the regularization,because(1.6) is not universallyvalid.
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result is hardly surprising,but sinceit holds non-perturbativelyand also at strong
coupling (where the simple charge-screeningpicture could be misleading), it
providesan importantconstrainton the natureof any possiblecontinuumlimit of
the theory. In particular,I shall arguethat, in four dimensions,an absoluteupper
bound on the renormalizedcoupling in this limit is implied, while in dimensions
greaterthan four (where the bound (1.6) holds as well) the theory is necessarily
trivial.

2. Basic properties of lattice QED

For simplicity, details of the proof of the bound (1.6) will only be given for the
case of a single Wilson fermion in four space-timedimensionscoupled to the
photon field in the standardway. In the courseof the discussionit shouldhowever
becomeclear that the argumentcarries over almost literally to a large class of
lattice gaugetheories involving chargedfermions and bosons.In particular, the
proof works for any numberof staggeredfermions.

2.1. DEFINITION OF THE MODEL

The theoriesconsideredin this paper live on a four-dimensionalhypercubic
lattice which is assumedto he infinitely extended in all directions. For conve-

nience,thelatticespacingis set equal to 1, i.e. I will use lattice units.
In the non-compact formulation of lattice QED (which will be adopted here),

the photon field is an assignmentof a real numberA~(x) to every lattice point x
anddirection ~ The field tensorF~(x)is then definedthrough

F~(x)=~A,,(x)—a,,A~(x), (2.1)

wherethe forward lattice derivativeis given by

a~f(x) =f(x+~) -f(x), (2.2)

and /1 denotesthe unit vectorin thepositive pr-direction.F~(x)is invariant under
the gaugetransformation

A~(x) ~A~(x) +a~A(x), (2.3)

* Lattice points x areIntegervectorswith componentsxu. Space-timeindices ~i, v,... run from 0 to

3. space indices k.l,... from 1 to 3 and Dirac indices a,~,... from I to 4. Unlessotherwise
specified,repeatedindicesare summedover.



344 M. Lbscher / Lattice QED

andso is the gaugefield action

SG = ~ LF~(x)F~jx). (2.4)

As opposedto compactelectrodynamics,gaugefixing is necessaryhere to make
the functional integralwell defined. In what follows, the choice of gaugeis of no

particular importance; however, for the sakeof definiteness,the gaugewill be
fixed by including the term

A()
(2.5)

in the total action,where A0> 0 is the baregauge-fixingparameteranda~’denotes
the backwardlattice derivative(the adjointof —a).

The electron field ~!ia(x)and its conjugate fJa(X) take valuesin a Grassmann
algebraandtransformaccordingto

~/i(x) —~ e_1et~)t/j( x), ~(x) —~ t~j(x)e1eo.~©, (2.6)

undergaugetransformations,where e0 denotesthe barecharge.Following Wilson,
the lattice fermion action is definedby

SF= ~{~(X)~(X) -KE[~(x)(1+y)U(x,i~(x+4)

+~(x+~)(1~ (2.7)

(y~,y~}=2&~, y~=y~. (2.8)

Here, K is the hoppingparameterandthe link variablesU(x, ~ are relatedto the

gaugefield through

U(x,ji) = exp[ie0A~(x)}, (2.9)

so that the fermion action is gaugeinvariant.
Finally, expectation values of products and more general combinations

~[A, ~i, ~/‘]of the fundamentalfields aredefinedin the usualway through

= fl dA~(x)fl ~ (2.10)

S=SG+SGF+SF, (2.11)

wherethe normalizationfactor Z is suchthat K1~= 1.



M LOscher / Lattice QED 345

Without loss, the bare parameterse0 and K can be restricted to the range
0 ~ e0, K < ~.From perturbationtheory, studiesof the limit e0 —~ ~ andnumerical
simulations,one expectsthat there are critical lines in this range, where the
electronmassvanishesor where a first-orderphasetransitiontakesplace.In what
follows, I will alwaysassumethat thebare parametersareaway from thesecritical
values so that the electron mass (in lattice units) is positive and the cluster
propertyfor correlationfunctionsof local fields holds. Furthermore,I will take it
for grantedthat the gauge-field propagatorhas the expectedsingularity at zero
momentum(the photonpole), as specifiedin subsect.2.3.

2.2. WARD IDENTITIES AND THE PHOTONFIELD EQUATION

As in continuumgaugetheories,the Ward identitieson the lattice arederived
by performing a substitution (2.6) of the fermion integration variables in the

functional integral (2.10) with an infinitesimal (classical) gauge transformation
A(x). The fermion measureis invariant under this changeof variables,but the
action is not andthe observable~ also changesin general.As a result oneobtains
the relation

I a~ — a~ \
Ka:j~(x)~)=eo\~/J(x)() ~ (2.12)

wherethe electromagneticcurrentis given by

j~(x)=eoK[~(x)(1 + y)U(x,~(x +~) - ~(x +4)(i - y)U(x,,~
1~(x)J.

(2.13)

For lateruse,note that j~(x)is a local, gaugeinvariantcompositefield, which only
involves the gaugepotentialon the link connectingx and x + j% and the fermion
field at thesepoints.

The photon field equationis obtainedby differentiating the integrandin the
functional integral with respectto the integrationvariable A~(x).The resulting
integralvanishesby partial integration,andone arrivesat

Iae~\
(ä~F~(x)6~)+A <a~aA~(x)~Y)= -i(j~(x)EY~ \aA~(x)). (2.14)

In this form, the photonfield equationis valid for arbitrarycompositefields t~.

By operatingwith a~on eq.(2.14) and applying the Ward identity (2.12), one
obtains

I a~ — ae~ \ / a~ \
= _ieo ~(x) B~(~_t/J(x)~-~—))~\a~aA()), (2.15)
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where ~i = a~a~denotesthe lattice laplacian.Particularcasesof this identity are

= —3~8X),, (2.16)

and

= —ie0(6~~,— ~ (2.17)

both of which are of fundamentalimportance for the renormalization of the
theory.

If ~ is a local gaugeinvariantcombinationof the basicfields, we have

— a~
ieo[~(x)() _~(x) _~ )]~~~A() =0, (2.18)

and the r.h.s. of eq. (2.15) vanishes.Furthermore,by the cluster property, the
expectationvalue K3A,~(x)~) is a boundedfunction of x, and since it is a zero
modeof the lattice laplacian,it mustbe constant.The term proportionalto A0 in
the field equation(2.14) hencevanishesand oneconcludesthat

Ia~\
= -iKj~,(x)~)- \aA~(x)) (2.19)

for local gaugeinvariant observables~.

2.3. PROPERTIESOF THE PHOTON PROPAGATOR

The (bare)photonpropagatorD~~(k)in momentumspaceis given by

exp{~(k~— k~)]D~,(k) = ~ e~x(A~(x) A,~(0)). (2.20)

As alreadymentionedabove, I will only considersuchregions in the spaceof bare
parameters,where D,~(k)hasthe expectedsingularityat k = 0, the photonpole.
More precisely,I shall assumethat in the Brillouin zone ~ ~, the representa-
tion

Z~ R (k)
D,~(k)= ~ [~,+ (A

1 — 1)k~k~/k2]+ k2 (2.21)

holdsfor someconstantsZ
3 and A, whereR~(k)is continuousand

R~,(0)=0. (2.22)
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Although a rigorous proof is presentlynot available, thereis little doubt that eq.
(2.21) is valid to all orders of perturbation theory and also in the hopping
parameterexpansion. Furthermore,if one takes it for grantedthat the inverse
propagatoris regular at k = 0 in the sensethat

D~’(k)k—~0~+ ~ + ~ + O(k2~), (2.23)

the tensor structure of the pole term in eq. (2.21) is the most general one
respectingthe Ward identity (2.16) and the discrete rotation symmetry of the
lattice.

The photon wave-function renormalizationconstantZ
3 and the renormalized

gauge-fixingparameterA are defined through eqs.(2.21) and(2.22). It is easyto
show that

d
4k

(F~(x)F~(0)) = e~©rD(k), (2.24)

limD(k) =6Z
1, (2.25)

and Z1 is hence independentof A0. On the other hand, the renormalized
gauge-fixingparameteris related to A0 through A = Z3A0, as canbe deducedfrom
the Ward identity (2.16).

2.4. REFLECTION POSITIVITY

Lattice QED as defined in this section is known to be reflection positive, a
propertywhich is crucial for the quantummechanicalinterpretationof the theory
[8—111.In the following I will make extensive use of reflection positivity and I
thereforebriefly describewhat is meantby this term.

First, one definesan operation0, which acts on any function ~ of the basic
fields andwhich can be interpretedas a reflectionwith respectto the hyperplane
X0 = ~. If ~ dependsonly on the gaugefield, ~=f[A], one sets

o[~] =f[As]* (2.26)

where the starmeanscomplex conjugationand

—A (—x0,x) if~=0,
A°(x) = , (2.27)

A,~(1 x~,x) otherwise.
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In general,0[~] is determinedthrough the rules

0[~!i(x)} =~(1—x0,x)y0, (2.28)

O[~i(x)I = ~0~J(l —xe,x), (2.29)

(2.30)

0[~I~2]=O[~2]0[~1] (2.31)

(and eqs. (2.26) and (2.27)). For example, for the electromagneticcurrent, one

finds that

j~(—x0, x) if ,L = 0,
0[j~(x)] = . . (2.32)

—j~(1—x0,x) otherwise.

It is obvious that 0 is idempotent,02 = 1, and onemay also show that

Ke[~})= (2.33)

as expectedfor the time-reversalsymmetry.
The basicstatementnow is that [9—111

(0[e~]~>>0 (2.34)

for all gaugeinvariant observables~ that do not dependon the field variables
A~(x), ~~i(x)and 1/1(x) with ~ ~ 0. Theset of all theseobservableswill be denoted

by d~.Eqs.(2.33) and(2.34) thusimply that

(2.35)

is a non-negative,hermitianscalarproduct on
Reflectionpositivity as describedhere holds for arbitrary valuesof the bare

parameters,andit is alsovalid in many other theoriessuchasQED with staggered
fermions,for example.For Wilson fermions, thereis anothermorepowerful form
of physical positivity [8, 11], valid for K < 1/6, which I will howevernot usein what
follows.

* Strictly speaking,reflectionpositivity hasonly beenshownfor compactgaugegroups.That it holds

hereas well follows from the observationthat non-compactQED can be regardedas a limit of a
versionof compact QED with adjustable“radius” of the gaugegroup U(1).
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3. Proofof the bound (1.6)

I will first establishthe lower boundZ3 > 0. To this end consider the correlation
function

C(f) = Lf(x)*f(y)(Fkl(x)Fkl(y)), (3.1)
x, y

wherex0 = 0, y0 = 1 and

d
3k

f(z) =f ~ e~f(k) (3.2)

is some rapidly decayingtestfunction. The observable

= Ef(z)Fkl(z)1Z
0_i (3.3)

is an elementof ~ and since C(f) = (ok,, t~kl),it follows that C(f) > 0 by
reflection positivity.

The Fourier representationof C(f) reads

C(f) = 2f d
4k f(k)12 e~o(&2~

1j— ~1)D11(k), (3.4)

k
k~=2sin—~-, (3.5)

and sinceC(f) > 0 for any testfunction f, oneconcludesthat C(k) > 0, where

~(k) ~ (3.6)

Now we substitutek = sq, wheres > 0 is a scalefactor, q � 0 is held fixed and q0
is the newintegrationvariable.As a result,oneobtains

~(sq)/s =2(&2~ii_ j)/s2f~~ e~°s
2D

11(sq), (3.7)

an expressionwhich can be evaluatedexactlyin the limit s —~ 0.
Indeed,it follows from the representation(2.21)of the photonpropagatorand

the continuity of R11(k) in the Brillouin zonethat the integrand in eq. (3.7) is
uniformly boundedby a constanttimes 1/q

2, which is an absolutely integrable
function on the real line — <~. Thus,the Lebesguedominatedconvergence
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theoremappliesandone finds

lim C(sq)/s=2~qIZ3. (3.8)
s -.0

BecauseC(k)> 0, this result immediately implies Z3 > 0.
I now proceedto prove the upperbound Z3 ~ 1. The startingpoint here is the

identity

= (a~a~~— ~ J~ff(X—y), (3.9)

J~,(,(x—y) = (j~(x)j~(y))+ xv(~(Y)~, (3.10)

where ~(y) is a local compositefield whoseprecisedefinition will not be needed

in what follows. Eq. (3.9) is obtainedby straightforwardapplicationof the field
equation(2.19).

In the following, the strategyis to prove that the Fourier transform .J~0(k)of

J(t)(z) is non-negativefor k0 = 0. The bound on Z3 is then easily deducedfrom

eq.(3.9). Indeed,this relation implies

(~2)
2D~

0(0k) = £2 —i~~(o,k) (3.11)

so that

= lim £2D0~(0,k) ~ 1, (3.12)

k-.0

where I haveagainmadeuse of eq.(2.21) andthe continuity of R~(k)at k = 0.
To prove that J00(0, k) is non-negative,I haveto go through a numberof steps.

First, from eq.(3.9) oneinfers that

a~J~(z)=a~J~(z)= 0 (3.13)

for all z and r’. Using theserelations,J00(x— y) canbe rewritten in the suggestive
form

J00(x —y) = (0[j( —X0, x)]j(y0, y)), (3.14)

where

j(z) =j0(z0+ 1,z) +31k(zO+ 1,z) (3.15)

and I haveassumedthat X() ~Y0~ Note that j(z) is an elementof ~ca/÷if z0> 0.
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Next, choosea real testfunction f(z) and define

~(f) = ~f(z)j(t,z), (3.16)
z

Cf(f)=~~y(Oe~©
1f(x)f(y)JOO(x_y), (3.17)

wheree > 0 is a cutoffwhich will be takento zero lateron (this device is neededto
guaranteethe convergenceof thesum(3.17)). From the aboveit then follows that

CF(f) = E e2~(f) + e~~
t(f), ~(f) + e~~1(f)), (3.18)

t~ i

and since ~(f) E ,~4for t > 0, oneconcludesthat C~(f)> 0.
The momentumspacerepresentationof CF(f) is

d
4k sinhe - -

C~(f)= f 4 f(k)~2J
00(k). (3.19)

—~ (2w) coshe — cosk0

Eq. (3.9) and the propertiesof the photon propagatorimply that i00(k) is

continuous.Thus,

4

lim Cf(f) =f~ 3~f(k)~
2~)(o,k), (3.20)

—~

andsincethis integralis non-negativefor all real test functionsf(z), it follows that

J
00(0,k) +J~0(0, —k) >0 (3.21)

for all k. This implies that J~0(0,k) is non-negative,becausefrom the definition
(3.10) it is obvious that J00(z) =J~0(—z) and J~~(0,k) is hence an even function
of k.

This completesthe proofof the upperboundon Z3. It shouldbe clearnow that

only verygeneralpropertiesof the theoryhavebeenusedandthat the argument
hence carries over to (non-compact)lattice QED with virtually any multiplet of
matterfields.

4. Implications for the continuum limit

The continuumlimit of lattice QED with Wilson fermions is known to exist to
all ordersof (renormalized)perturbationtheory [12], but as in the case of the
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lattice ~4-theory, this doesnot necessarilyimply the existenceof the continuum
limit on a non-perturbativelevel for non-zerovaluesof the renormalizedcharge.

In this section I would like to discussthe significanceof the bound(1.6) under
the hypothesisthat the continuum limit can be taken non-perturbativelyin the
commonlyexpectedway. In doing so I will haveto make some weak qualitative
assumptionson how exactly this limit is reached(subsect.4.1). Most of the text
that follows refersto lattice QED with Wilson fermions,but the conclusionsdrawn
apply to othermodelsof lattice QEDas well. In particular,this includesQED with

staggeredfermions and I shall makeseveralremarksconcerningthesealong the
way.

4.1. BASIC FACTSAND ASSUMPTIONSON THE CONTINUUM LIMIT

The continuum limit of lattice QED is generallyexpectedto be obtainedby
approachinga particular critical point ed’, K*, A~in the spaceof bareparameters
along certain curves, the renormalization group trajectories. Suppose
e

0(a),K(a), A0(a) is such a curve,where the curve parametera > 0 is takento be
the lattice spacing in units of some physical scale (the electron mass m, for

example).Thus,we havee0(0)= e~’ etc., while for a > 0 the theory is non-critical
along the trajectory and the correlation functions of the basic fields are well
defined.Whenappropriatelyscaled,theyare expectedto convergeto the Schwinger
functionsof the continuumtheory in the limit a —*

To make this a little more explicit, let G
1”1~(k;p;q)~~pbe the Fourier trans-

form of the connectedpart of the correlationfunction

(4.1)

wherek = k
1,...,k, is a shorthandfor the photonmomentaand the othersets of

momentaand indices are similarly abbreviated.The s-function expressingtotal
momentumconservationanda factor of exp[41k1t] for every photonmomentumk
is omittedfrom the definitionof G

t”1~(k;p; q)~,~p(asin the caseof the propagator
(2.20)). That the theory has a continuum limit when scaled along the curve
e

0(a),K(a), A0(a), now simply meansthat for any set of non-exceptionalmomenta
k, ~,~ andappropriatelychosenscalefactors ZA(a),Z,,(a), the limit

d~’~’’~(i~]5; ~ = jima
4ZA(a) ‘~2Z

4(a)
1G~”~(ak;aj5; a~)~,a

0(4.2)

existsand is such that the continuumpropagatorsd~
2°~and d~°I) do not vanish

identically.
In what follows, I shall only considercontinuumlimits, where the photonpole

(2.21) in the gauge-field propagatorsurvives with a finite positive residueand
wherethe electronpropagatorG~°’l)(p; —p)~is a non-trivial function of j5. These
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are in any case minimal requirementsif the theory is to describe interacting
electrons and photons in the continuum limit. The first of them immediately

implies that

ZA(a) = a6Z
3(e~(a),K(a)) (4.3)

a (I

up to aconstantfactor,which, without loss, maybe set equalto 1. Anotherobvious

consequenceis that the renormalizedgauge-fixingparameterA has to convergeto
a finite valuein the continuumlimit (asexpected).

4.2. SCALING OF THE RENORMALIZED CHARGE

As in otherregularizationschemes,the renormalizedchargee in lattice QED is
definedthrough

e = ~ (4.4)

Thus, the renormalizedchargeis a gaugeindependentdimensionlessparameter
which satisfies0 ~ e ~ e~. I would now like to show that e is proportionalto the
renormalizedelectron—photonvertex and that along any given renormalization
group trajectoryit convergesto a finite value in the continuumlimit.

To this end, recall the Ward identity (2.17). In momentumspace,this equation

reads

A0k
2k~G°’‘~(k;p; ~ = e

0[G~°’~(—q; q)~ — G
10’ )(p; —p)~~~], (4.5)

where k +p + q = 0 and is given by eq. (3.5). If we now substitutek = ak etc.
andinsert eqs.(4.2) and(4.3), the asymptoticrelation

Ak2k~G~’~(k;~ ~ ~ ~ r~)Q0— d~°’~(~5—P)~3] (4.6)

is obtained,Sincethe correlation functionsappearinghere are independentof a
(and sinceG~~’1~(p;~ is assumedto be a non-trivial function of ~),it follows
that e must convergeto a finite value for a —~ 0, the renormalizedchargeof the

continuumtheory.
Sofar thenotion of a renormalizationgroup trajectorywas left ratherimprecise,

becauseI wanted to keepthe discussionas generalas possible.Now it has been
shownthat e and A convergeto finite valuesin the continuumlimit so that without
loss, we may identify the renormalizationgroup trajectorieswith the curves of
constante and A. In otherwords,a renormalizationgroup trajectoryis determined
by the equationse(e~,K) = constantand A~~/e~= constant.
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4.3. UPPERBOUND ON THE RENORMALIZED CHARGE

From the bound Z3~ 1, onenow concludesthat the renormalizedchargein the
continuumlimit satisfies

ez~e~’~’. (4.7)

It is conceivablethat e~~’= ~,but for variousreasonsthis is an unlikely possibility.
In particular, to all ordersof the hoppingparameterexpansionit can be shown
that

lim (F~(x)F~(y))= KF~(x)F,,,(y)) K=~0’ (4.8)
e1~—‘

lim ~(x)~(y)~ = ~~~6~c(K), (4.9)
Cu—.

which suggeststhat the photondecouplesandthat the electronis infinitely heavy
in the limit e0 —~ cu~•This is quite oppositeto what would be requiredfor a decent

continuum limit at e/~’ = ~: the bare charge should be strongly screened(i.e.
lima,0Z3 = 0) and the fermion propagatorshould havea nontrivial momentum
dependence.

Anotherargumentagainst e/~’ = ~ can be given for lattice QED with staggered
fermions. From numerical work [1—5,13—15] (and more recently also from a
rigorous analytic study [16]), one knows that the exact chiral symmetry of this
model at bare mass = 0 is spontaneouslybroken for sufficiently large bare
coupling e0. This is associatedwith a vacuumexpectationvalue of 1/’1/j, which is
non-zeroin lattice units, and it would thereforebe rather strangeif the physical

electronmassin theseunits would vanish in the limit m0 —~ 0, e0—* ~, a necessary
requirementfor the existenceof a continuumlimit with e/~’=

As suggestedby Kogut et al. [11, a continuum limit of lattice QED with

staggeredfermionsis more likely to exist at the coupling e0 = es’, which separates
the chirally symmetric phasefrom the strong coupling phasewhere (t/i1/i) ~ 0 at
m0 = 0. For a one-componentstaggeredfermion (which is expectedto correspond
to four degenerateDirac fermions in the continuumlimit), the first numerical
simulationswith unquenchedfermions indicate that this point is around e~’ = 2.3
[1—51.Thus, in any continuum limit taken there, the renormalizedfine-structure

constanta satisfies

~ a(i’0.4
2. (4.10)

* Further support for this conclusioncomesfrom the observationthat compact and non-compact

QED coincide at e
11 = ~. SincecompactQED confines for sufficiently largee0, there can be no

finite energychargedstates,while in the non-compactcasefreeelectronstatesareexpectedto exist
for all e~.A contradictionat e0= ~ is thus avoided,if the energyof theseelectronstatesgoes to
infinity in thelimit e1) —u ~, i.e. if the electronis infinitely heavy there.
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In particular,the non-trivial zero a* of the /3-function,which is associatedwith the
continuumlimit at ~ mustbe in this range.

To obtain some feeling for the significance of the bound (4.10), considerthe
Landauscale

ALandau = m(/3
1a)O2~Te!~~u[1+ 0(a)], (4.11)

where

2 1
/3l=—NF, /32=—~NF, (4.12)3~- 2ir

are the one- and two-loop coefficientsof the /3-function for QED with NF Dirac
fermions of chargee. The Landauscaleis roughly the energy at which renormal-
ized perturbatationtheory breaks down. For a single staggeredfermion, NF = 4
and onefinds

ALandau>I
2m fora~a~~’, (4.13)

provided the higher-ordercorrectionsin eq. (4.11) canbe neglected.
The bound (4.13) suggeststhat in the continuum limit perturbation theory

shouldstill be useful at low energieseven if a assumesits maximal value a~’.This
conclusion is also reachedby noting that the apparentradius of convergenceof
renormalizedperturbationtheory is roughly given by

a~7r/NF (4.14)

for quantitiessuchasthe anomalousmagneticmomentof thefermions,the photon
propagatorat euclideanmomentaof order m and the Callan—Symanzik/3-func-
tion. In view of these facts, it now even appearsdoubtful that the /3-function

indeedhas a secondzero a* with a* ~ a
11’, i.e. it could be that after all the theory

is trivial in the continuumlimit, a possibility which doesnot contradict any of the
known propertiesof the systemas far as I can see.

4.4. TRIVIALITY OF THE CONTINUUM LIMIT IN HIGHER DIMENSIONS

The Wilson model of lattice QED introduced in subsect. 2.1 can easily be
generalizedto hypercubiclattices of dimensiond> 5. With the obvious changes,
the proofof the bound(1.6) thengoes throughas beforeand the discussionof the
continuum limit in subsects.4.1 and 4.2 can be takenover. The only essential
difference is that the power a

4 in eq. (4.2) is replacedby a~ and eq. (4.3)
becomes

ZA(a) = a_d_2Z
3(eo(a),K(a)). (4.15)

a —.0
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As a consequence,the chargee on the right-handside of eq.(4.6) is replacedby

ë=a”-”
2~2e, (4.16)

and it is hence this quantity, which should be regardedas the (dimensionful)
renormalizedcoupling constantof the theory in the continuumlimit. In particular,
the renormalizationgroup trajectoriesare labelled by A and the dimensionless
parameterm~22ë.

For the same reasonsas in four dimensions,one expectsthat e~’ <cc and the
bound(1.6) thusimplies

limë=0 for all d>5, (4.17)
a —‘0

i.e. the theory is trivial in the continuumlimit.

5. Concluding remarks

The questionof whetherthe continuumlimit of lattice QED in four dimensions
is trivial or not remainsopen.Still, I havebeenableto showin this paperthat the

renormalizedfine-structureconstanta cannotexceeda certainmaximal value a~’
in this limit, which turns out to be quite small for staggeredfermions (a~is
presentlynot known for Wilson fermions). This shedssomedoubton the existence

of a secondzero a* of the CalIan—Symanzik/3-functionwith a* <a(’~’,a necessary
conditionfor a non-trivial continuumlimit.

It is obvious that further progresscan be madeby performingmore detailed
numericalsimulations,but thereare also analyticalmethodswhich havenot been
fully exploitedso far. In particular,the strategyusedto solve the lattice ~4-theory
[7] can be carriedover to QED [171and constructivetechniquescan be used to
rigorously control the theoryat large e

0 [161.Thus, the prospectsare rather good
that the time-honouredquestionof ultraviolet stability of QED will soonreceivea
definite answerin the frameworkof lattice field theory.

I am indebtedto P. Rakow and G. Schierholzfor discussionson their work. I
would also like to thank E. Dagottofor stimulating correspondence.

References

[1] J.B. Kogut, E. Dagotto andA. Kocié, Phys.Rev. Lett. 60 (1988)772
[2] J.B. Kogut, E. Dagotto andA. Kocié. Phys.Rev. Lett. 61(1988)2416
[3] J.B. Kogut, F. Dagotto andA. Koek~,Nuel. PhysB317 (1989) 253; 271
[4] M. Gbekleler,R. Horsely, E. Laermann,P. Rakow, G. Schierholz, R. Sommerand U-J. Wiese,

QED — a lattice investigationof the ehiral phasetransition andthe natureof the continuumlimit,
preprintDESY 89-124 andHLRZ 89-69



M. Lflscher / Lattice QED 357

[5] S. Hands,J.B. Kogut andE. Dagotto,Towardsthechiral limit of stronglycoupledquenchedQED,
SantaBarbarapreprint NSF-ITP-89-180

[6] J.D. Bjorken and S.D. Drell, Relativistic quantumfields (McGraw-Hill, New York, 1965)
[7] M. Liischer and P. Weisz,Nuel. Phys.B290 (1987)25
[8] M. Liischer, Commun.Math.Phys.54 (1977) 283
[9] K. Osterwalderand E. Seiler, Ann. Phys. (N.Y.) 110 (1978) 440

[10] E. Seiler, Gauge theories as a problem of constructive quantum field theory and statistical
mechanics,LectureNotes in Physics,Vol. 159 (Springer,Berlin, 1982)

[II] P. Menotti and A. Pelissetto,Commun.Math.Phys. 113 (1987) 369
[12] T. Reisz,NucI. Phys.B318 (1989)417
[13] P. Rossiand U. Wolff, NucI. Phys.B248 (1984)105
[14] U. Wolff, Habilitationsschrift,Kiel (1987)
[15] P. Ueberholz, DynamischeFermionen mit U(l)-Eichfeldern, PhD Thesis, Wuppertal (1989),

WUB-DIS 89-5
[16] M. Salmhoferand E. Seiler,Proofof chiral symmetry breakingin lattice gaugetheory, Miinchen

preprint,MPI-PAE/PTh 84/89
[17] A. Cornelius,PhD Thesis,in preparation


