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This paper contains the second part of our systematic investigation of the weak-coupling limit of
SU(2) lattice gauge theory, using the semiclassical approximation. We study the flow of solutions
close to the subspace of spatially constant fields (“extreme infrared”) and establish the existence of a
dense cobweb of caustics in the region of very small fields. The origin of these caustics are oscilla-
tions of neighboring classical solutions around each other.

I. INTRODUCTION

In a previous paper' (henceforth referred to as I) we
started a systematic investigation of the weak-coupling
limit of SU(2) lattice Yang-Mills? theory, using the Ham-
iltonian formulation and the semiclassical approximation.
The first part consisted of a study of classical trajectories
in the subspace of spatially constant fields (momentum
k=0): They decouple from the other degrees of freedom
and can thus be studied separately. In this paper we ex-
tend from our analysis and include the modes with k0.
We will, however, restrict ourselves to those trajectories
which are close to the k=0 subspace, and we will mainly
be interested in the region of very small k. This second
part of our study, therefore, deals with the ‘“‘extreme in-
frared region.” Furthermore, throughout our analysis we
shall limit ourselves to the Euclidean region (“classically
forbidden region™): This is the region where most of the
confinement dynamics is expected to develop.

It will be useful to review a few results of our previous
study (I). It has been known for some time® ™’ that the
Hamiltonian of the k=0 subspace is nonintegrable; i.e.,
there is no second integral of motion, and neighboring
trajectories depart from each other with a positive
Lyapunov exponent. Nevertheless, in this ‘“sea” of irreg-
ular (chaotic) classical solutions there exists “islands”
which exhibit some regularity. Among these trajectories
which emanate from the origin (=point of zero fields) we
have found directions where classical trajectories are at-
tracted to each other and oscillate around each other.
These oscillations were shown to generate caustics (=set
of points where neighboring trajectories intersect with
each other). Caustics have the important property that
the semiclassical ground-state wave function develops
spikes, i.e., potentially may become large. In our case,
the caustics were found to start right near the origin, and
we have conjectured that they will play an important role
in the dynamics of lattice gauge theories in the weak-
coupling limit.

In the present paper we continue our study of the flow
of the classical lattice Hamiltonian by including the fields
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with nonzero momentum k. To be more precise, we con-
sider an N? lattice model of pure SU(2) Yang-Mills
theory with periodic boundary conditions. However,
rather than attacking the complete set of coupled non-
linear equations of motion we shall linearize around the
solutions of the k=0 sector which we have investigated
in paper I. Thus this part of our analysis will be restrict-
ed to field configurations which are close to constant
fields. Although the main motivation for this restriction
is of technical nature [from the highly nonlinear set of
equations of motion we split off a zeroth-order part (‘“un-
perturbed part”) and treat the remainder as a perturba-
tion], this way of progressing towards the full solution is
also in accordance with a basic physical argument. In
the weak-coupling limit, which defines the continuum
limit, we expect that only long-distance phenomena are
important, i.e., field configurations with small momenta
k.

The main outcome of this paper is that the *“focusing”
effect which we have observed in the subspace of momen-
ta k=0 remains valid also in the presence of the other de-
grees of freedom. Namely, the same trajectories of
momentum k =0 which were found to attract their neigh-
bors inside the subspace of constant fields do the same
also with those of momentum k0. Such a “parent” tra-
jectory is, therefore, surrounded by oscillating neighbors
(“‘daughters”), and each intersection between them gives
rise to caustics. For large N, this “cobweb” of caustics
becomes dense and moves close to the origin. The main
task of this paper is a careful and detailed study of these
oscillations.

Although in this paper we shall not address the ques-
tion of how this pattern of oscillations in the classical
flow translates into dynamical properties of the quantum
system, we nevertheless wish to say in a few words why
we believe that these oscillations and caustics are impor-
tant. In Ref. 8 we have discussed in some detail that near
a focal point quantum fluctuations around a classical
path are stronger than the usual Gaussian fluctuations.
For a few examples we have demonstrated how these
fluctuations give rise to peaks in the semiclassical wave
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function. Strictly speaking, the semiclassical approxima-
tion breaks down near a focal point, and the width of the
“inaccessible” region (which is, approximately, the same
as the width of the peak in the wave function) scales with
a certain characteristic positive power of the lattice cou-
pling g2 It is, however, nevertheless possible to con-
struct the wave function also inside this region, namely,
by approximating near the focal point the potential in the
Schrodinger equation by a constant, and by requiring
that asymptotically the solution match the semiclassical
behavior. Caustics, therefore, do not represent a limita-
tion of the semiclassical approximation, but rather signal
the onset of genuine quantum behavior, and the semiclas-
sical approximation provides enough information for
constructing the wave function. When applying these ar-
guments to the lattice model of this paper, where we find
a dense network of caustics close to the origin, we expect
that the semiclassical wave function, on a microscopic
scale in field space, has many sharp spikes. Looking at
these spikes from a larger scale, they are likely to add up
to a broader enhancement in the wave function. Some
years ago it has been argued by Berry and co-workers® ™!
that the true wave function cannot have such a peaking
behavior on an arbitrarily small scale, but has to be
smooth over distances (in field space) of the order g2.
The semiclassical wave function, therefore, has to be
averaged over distances of this order, before it provides a
good approximation to the exact wave function. Con-
versely, as g2 becomes smaller and smaller, the true wave
function will exhibit more and more of the peaking struc-
ture predicted by the semiclassical approximation. If
these arguments, which have been verified by numerical
calculations so far only for low-dimensional systems in
the classically allowed region,'® also apply to our case,
then the ground-state wave function has a very rich fine
structure, and more and more of its details will become
“visible” in the weak-coupling limit g?—0. This is why
we believe that a detailed study of these oscillations (and
possibly other sources for caustics) are so significant.

The organization of this paper is the following. In Sec.
IT we give definitions, specify the lattice Hamiltonian,
and write down the equations of motion. We then define
the approximation that we are going to use in this paper:
We linearize the equations of motion around a parent tra-
jectory which belongs to the subspace of momentum
k=0 and has been analyzed in I. In Sec. III we discuss
solutions to these equations, in particular the oscillating
ones. In Sec. IV we go a little beyond this linear approxi-
mation. We show that higher-order corrections make the
frequencies depend upon the amplitudes and indicate that
this opens the possibility of a much richer resonance
J

structure. We also give the parent trajectory a small
component outside the k=0 subspace and study the
changes in the accompanying oscillating neighbors. Sec-
tion V contains a general discussion of the results, and
gives an outlook on future steps of this program. A few
details of our calculations are put into the Appendix.

II. THE EQUATIONS OF MOTION

We begin with a few definitions which have been made
already in 1. In our N lattice each site is labeled by a
vector 1, each link is specified by a site 1 and a direction i
(i=1,2,3), and each plaquette by a site 1 and the direc-
tions i and j. Link variables belong to the SU(2) gauge
group manifold and are parametrized as U =x,+ix-o
(x3+x*=1). The lattice Hamiltonian is

2
H=%S fx)+5 Sul1-UGP)], @1

2

links 8" plag

where 9P denotes the boundary of the plaquette P,
FHx)=—g%x)(9,0,—T%3,) ,

and

glx)=1(8,, —x,%,) - (2.3)
We shall work in the approximation x> << 1. This allows
us to drop in Eq. (2.2) the second term with the
Christoffel symbols, in Eq. (2.3) the term proportional to
x,x,, and to expand the potential function in powers of
x%. In order to be as close as possible to the continuum
theory we shall disregard all terms of higher order than
(x%)%. A further justification of this approximation will
be given below. For the ground-state wave function we
make the following ansatz (we limit ourselves to the Eu-
clidean region):

P({x;;})= Aexp =S|, 2.4)

8
g

where both 4 and S depend upon the x;; and are com-
puted along classical paths. The equations of motion to
be solved are of the form

oV
= . 2.5
XL, axl,i ( )
The potential function
V=2 Vi (2.6)
Li<j

is a sum over single plaquettes. Each V) ;;, has the form

Vl,(ij): —%["%(Xl+X2_x2_x4)2+(X2XX3)'X4+(X3XX4)'X1—(X4XX1)'X2_(X1 sz)'X3

(X x) (X3 X+ 40— X)X (K, = %32 = Ly +x3)2(x, + %) — L(xE— x2+x2—x2)?]

(for simplicity we have set x; ; =x, Xi+i,j = Xy X4 = X3, X ; =X4). We introduce the Fourier transform

—ik-1

1 ikl 1
X, = e Xg i PiiT e Px,i »
TN % i N2 4
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where k=
Egs. (2.6) and (2.7).
function V then becomes
y=1] zx ki (K28 —kik )X, 22—
N ki

1

3
{ki

+N— S 8(k; +ky+ky ke e x i xxy

For later convenience we rescale all p’s and x’s by
1/N37%. in the equations of motion (2.5) then all factors
of N drop out.

It is easily seen that the solutions with k=0 decouple:
Setting x, ; =0 for all k#0, the equations of motion Eq.
(2.5) reduce to a set of nine coupled equations. Because
of rotational symmetry in group space (global gauge in-
variance) and in ordinary space, they can be further re-
duced down to three equations. The study of these three
equations was the content of I. Two solutions were found
to be of special interest:

— 11 - |0
V2 V2
Xox_’__t 0, xp,= : Ly,
0 0 (2.10)
0 .
X0 3= |0
0
and
i 1 0
xO‘lz’:; 0 ) XO,Z_ ! 1 N
0 0 (2.11)
1 0 ‘
XQ}ZTZ 0
1

(and their rotated counterparts in group or ordinary
space). For the first solution (2.10) we have found that it
is surrounded by oscillating neighboring trajectories, and
the caustics which they generate form nested cones. The
second solution (2.11) has no such oscillations, but it is
the line where all the cones around (2.10) intersect with
each other.

In this paper we want to turn on the degrees of free-
dom with momentum k0, but we still do not want to go
too far away from the subspace k=0. We are searching
for solutions of the form

xk',-(t)zy,-(t)-i-ﬁxk,,-(t) 5 (212)
where y; =X, ; is given by either (2.10) or (2.11) and
18, ()] <<ly, ()] . (2.13)

In the following we will use the notation x, ; for 6x,,.
For the small deviations x, ; the equations of motion be-
come linear. If we introduce the nine-component vector

(2w /N)(n,n,,n3), and the p’s are the momenta conjugate to the ‘‘coordinates” x’s. With this we go into
We will be interested in the region of small momenta and expand in powers of k. The potential

5 2 8 k,+k,+ky)k€x} ]x,‘ Jxk

x| (2.9)
r
Xg,1
Xk = Xk, 2 5 (2. 14)
X,3

the linearized equations of motion are conveniently writ-
ten in form of a matrix equation

X, (1)=[A +iB(1) H1X, ()+0(X?) . (2.15)

A,B,C are 9X9 matrices. The matrix A is independent
of y and quadratic in k, B is linear in both y and k, and C
is quadratic in y and independent of k. In more detail,
the matrices A4,B,C consist of 3X3 block matrices, and
we denote the elements of 4, ;) (i and j refer to spatial
directions, a and b to directions in group space). We then
have

A i), jbh:%(aijklv‘kikj )3, (2.16)

Biiay oy ==k, + 3 ky; +kyf )]edte (2.17)
Clia), (jb) 2(6 YI ,VIHJ’I )5,','

—(B“by,»'yj _yiay]b)+6ab6(yi ij ) . (2.18)

Equation (2.15) [with Egs. (2.14) and (2.16)-(2.18)] is

an approximation to the full set of equations of motion
(2.5). Its validity is restricted by the constraints

0= x| <ly;l=0(1/lt]) <1,

(2.19)
0<lk|l<<1.

There are two special cases of these conditions, where the
equations of motion become particularly simple

~ly, | <<lk;| <1 (2.20)

1
I
and

K| <<1y,-[~|T:| «1.
In the first case we can drop the two terms B and C. This
is the region where ordinary perturbation theory around
the zero-field point works. For the second case (2.21) the
terms proportional to A and B are small compared to the
third one. We are interested in regions where the terms
B (triple-gluon coupling) and C (quartic-gluon coupling)
have nontrivial effects, and (2.21) is an extreme case of
this.
Finally we have to say a few words about the question

(2.21)
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of gauge fixing. In order to keep the equations of motion
as simple as possible, we choose, in this paper, to work
without any gauge fixing. Any such constraint would
inevitably make the kinetic part of the Hamiltonian non-
local and thus spoil the simple form of the equations of
motion. The obvious disadvantage of this, on the other
hand, lies in the fact that the space of field configurations
is larger than really necessary. For each classical trajec-
tory there are neighboring solutions which are merely im-
ages under infinitesimal gauge transformations. Genera-
tors of these symmetry transformations are constants of
motion:

3
Gi= X [(’x?,ipl,i _x(l)—i,ip14i,i )
i=1

—(xp,; Xpy, ) = (X X Pr—i; )] (2.22)

[here p,; are the momenta canonically conjugate to the
coordinates x,;, and we are returning to the notation
used in and after Eq. (2.1)]. In the approximation
|x;,;] <<1and |p, ;| <<1 (2.22) becomes

3
Gi= X [(pyi—P1—i,i )= (x; Xpy, "= (x1—; ; Xpy—i,:)°]
i=1

(2.23)
and the infinitesimal gauge transformations are

J

2k, —k,

k,
—2k, ki, —k,
— kl
B= k, —2k,
k, —k, 2k, ks
— k3
ks
—k; ks —2k,
and
1 2
0 —1
1
—1 0
c= |2 1 (3.4)
1
1
1
2

It is not possible to diagonalize all these matrices simul-
taneously. The commutators of 4 and B or B and C are
zero only for k=0, whereas [ 4,C]=0 for k=(0,0,k).
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8% ;=g —gi+itx,; X(g+8+i)» (2.24)
opy,i =p1,; X (g1 +g1+i) - (2.25)

In the following we will discuss small deviations away
from the parent trajectories (2.10) or (2.11). It will be im-
portant to distinguish between those directions away
from the parent trajectory which are obtained by the
canonical transformations (2.24) and (2.25) and hence are
the gauge images, and others which lead to new and in-
dependent classical solutions.

III. SOLUTIONS TO THE LINEARIZED EQUATIONS
OF MOTION

We begin with by investigating the vicinity of the solu-
tion (2.10). With r =27 and k=(k,k,,k;) the linearized
equations of motion become

%= A +i%B+—:’7C X . 3.1)
The explicit form of the 9 X9 matrices 4,B,C is
(k3+k3)1  —kk,1 —k ksl
A= | —kk,1 (kiI+k3)1 —kk;1 |, (3.2
—kky1 —kyky1 (ki+EDL

where we have used block matrix notation,

(3.3)

2k,
—2k,

We, therefore, concentrate on this simplest case and we
shall come back to the more general case somewhat later.
Introducing in (3.1) the new time variable k7 instead of 7
we find for 4 and B the simpler expressions

(3.5)
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0 0 0 O
0 0 o 1
0 0 -1 O
0 —1
B= 0 (3.6
0 1
0O 0 O -1 0
0 0 1 0
0 —1 01 0

(C does not depend upon k and therefore remains un-
changed). A and B are easily brought into diagonal form
through two rotations in the 1-5 plane and in the 2-4
plane by 45°. The matrix A is the same as before, but B
and C have changed into

0 0 0 0
0 0 0 0
0 0 —1 0
0 -2
B= 0 , (3.7)
0 1
000 -1 0
00 1 0
000 V2 0
3
-1
1
1
Cc= -1 (3.8)
1
1
1
2

The nine differential equations (3.1) now decouple into
five separate sets of equations.
Case (1) (lines 2 or 5)

d*x 2
—=|1—— [x (3.9)
d7 =

Case (2) (line 1)
d*x 6
—= |14+ —= . (3.10)
dr? 72 x

Case (3) (lines 3 and 8; lines 6 and 7 are the complex
conjugates)

10
00

0 —1
1 0

10
01

d*x

dr?

iv?2
T

2
)

X .

(3.11)
Case (4) (lines 4 and 9)
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dx _||1 0| 3|0 —V2 L2 1o

dr 00|77 [v2 o 210 2]|%"
(3.12)

We are looking for solutions which, in the infinite past,
leave from the origin. They all can be expressed in terms
of elementary functions or, at most, integrals over ele-
mentary functions. Cases (1) and (2) are Bessel equations

(1) x(r)=constXV —7K, (—7), 0=1V7, (3.13)

(2) x(r)=constXV —7Ks ,,(—7) . (3.14)

Case (3) is solved as follows. Denote the two components
by x, and x,. From the first line one obtains
x,=(ir/V2)[x| —x,—(2/7%)x,] and substitutes into
the second line:

T 2O (P — AP —x =0 (.15)
Set x| =u /7

Tu'" =4y +(6—7)u'=0 . (3.16)
Finally, with u "=y,

"y =0 . (3.17)

We chose the solution which goes to zero as 7— — «

u=Ce’. (3.18)
This gives, after a few partial integrations,
1 1 .
x (r)=C|-+—|e7, (3.19)
2 -7
x,(7)=C——e". (3.20)
2T

Case (4) is treated in a similar way. From the second line
one obtains x;=—i7[ix} —(2/7%)x,]. We insert this
into the first line

e 2 e 2 rn 4 " 8 1 ”n
x, "+ | —x, Xy |~ :5"2—_3)‘2 —x, =0
(3.21)
or
—— |(rx5)" — H—i x5 | =0 (3.22)
dr 1 2 2 2 ) :

This can easily be integrated, and with u =7x we obtain

1+
2

u''— u=cCr. (3.23)

Here C is a constant which will be shown to be zero for
our case. The solution to the homogeneous equation with
the correct behavior for 7— « is

U (1)=V'=7K 55 (=) . (3.24)

A particular solution to the inhomogeneous equations is
found as
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c L
inhom(T) =32 [uz(f)f_wdfum r
+uyn [Paruene | 629)
where u, is given in (3.24),
uy(r)=V'—7I 3 ,(—7) (3.26)

and W=—1. For 7— — 0, #;,;,om(7) increases as ~Cr,
and this cannot be compensated by adding any solution
of the homogeneous equation. So u(7)~C7 and also
x,~Cr, unless C=0. This then leaves us with (3.24) for
u(r). Returning to x, and x,, we find

fd\/

x,(1)= 7K 5T, (327

-—27'

x,(r)=C’ f_w ==Kl (3.28)

Let us discuss a few aspects of these solutions. For
T— — o [region (2.20) with —1/¢ << |k|] all solutions go
to zero exponentially, as it is predicted by perturbation
theory. More interesting is the behavior for small 7, i.e.,
|k| << —1/t <<1 [region (2.21)]. This is the region where
in the differential equation (3.1) we can disregard the first
two terms, and all essential information is contained in
the eigenvalues of the matrix C [Eq. (3.8)]. The negative
ones signal attraction to the parent trajectory,

x(1)~V'—7cos |wln :5— —do | » (3.29)
whereas the positive ones indicate repulsion
x(1)~(—7)"P (3.30)

with p=2, 1, (V'17—1)/2 for the eigenvalues 3, 1, 2, re-
spectively. One easily verifies that (3.13), (3.14), (3.19)
and (3.20), and (3.27) and (3.28) have, in fact, this asymp-
totic behavior for 7—0.

The oscillating trajectories (3.13) [or (3.29)] are the
most interesting ones, since they produce caustics. The
frequency w and the strength of the “friction” are the
same for all values of k. Consider the solution (3.13) and
its dependence upon the momentum k. Since for small
values of its argument the Bessel function goes as

K; (z)=pcos wln%—gbo [1+0(z%)] (3.31)
with
Cliow)=pe'® .
=T (3.32)
P osinh(7w) ’
n—1

¢o= lim |wlnn -T— > arctan =

n— oo 2 k=1 k

there will be an infinite sequence of positive zeros of
K, (z), which accumulate at zero
2, >zy> e

>z,>2z,.,> " >0. (3.33)
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For sufficiently large n, z, /z, . ;=exp(7m/w). Following
the parent trajectory which at t = — « starts at the ori-
gin, the first intersection will be with the oscillating tra-
jectory of smallest k, k.. This will be at time

4z,

k

—t,= (3.34)
min

Subsequent intersections with the same trajectory occur
at times

i i (3.35)
tz_kmin, ts—kmin,”., '
tn
=~exp(m/w) . (3.36)
n+1

A similar string of intersection points belongs to any oth-
er k value. For sufficiently large N (=size of the lattice)
the smallest nonzero value k is arbitrarily small, and the
sequence of focal points along the parent trajectory be-
comes arbitrarily dense. This is one of the main results of
this paper.

What about the other, nonoscillating directions? As
we have discussed at the end of Sec. III, there must be
some directions which belong to local gauge transforma-
tions. Translating (2.24) and (2.25) into Fourier space
and applying it to our parent trajectory (2.10), we find
that for each momentum k there must be three different
gauge copies under infinitesimal gauge transformations.

For k=(0,0,k) they are
0 _
Vv
8x 1= (0], 5xk,2=—3—t—2- ,
0
(3.37)
1
8xk,3 —'lk 0 N
0
and
— |0 0
Vv
Sxk’l:_zTg' 0 ) Sxkyz_ 0 y
1 0
(3.38)
0
5xk,3=—ik 1 )
0
and
— |0 _
Vv
xi= 22 1|, m,= 22 o],
0 0
(3.39)
0
Sxk’3:"‘ik 0

1

One can check that they are, in fact, solutions to the
equations of motion (3.1). From this we conclude, in par-
ticular, that the oscillating solutions which we have dis-
cussed before reflect genuine dynamical effects, rather
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than simply being gauge artifacts.

Next we want the momentum vector k to be more gen-
eral than (0,0,k). For such general k we have not been
able to find solutions which can be expressed in terms of
elementary functions. Fortunately, however, the most
important information on the existence of oscillations re-
sides in the matrix C, the third term of the differential
equation (3.1), which is independent of momentum k. It
is then sufficient to verify the existence of solutions which
for t — — « are exponentially small, and for 7—0 turn
into such an oscillating solution. This we have checked
with a computer: We have followed the first zero z, as a
function of the direction of the vector k (keeping the
magnitude of k fixed). When k leaves the three-direction,
the degeneracy of the two oscillating solutions is lifted,
and the zero breaks up into a pair of zeros which slowly
start to move towards the origin (the closest distance
from the origin is reached when k is orthogonal to the
three-direction). This shows that the situation changes
continuously when k changes direction, and the existence
of oscillating solutions holds for arbitrary directions of k.

Before ending this section we look into the vicinity of
the other parent trajectory (2.11). In accordance with
our findings in I we shall show that, from the point of
view of caustics, this trajectory is much more difficult to
study than the previous case. As we have learned before,
the essential information on the motion of neighboring
trajectories is contained in the eigenvalues of the matrix
C. We, therefore, substitute (2.11) into the general ex-
pression for C [Eq. (2.18)] and obtain [again for

k=(0,0,k)]
2 2 2
1 ~1
1 —1
~1 1
c=|2 2 2 (3.40)
1 —1
—1 0 1
-1 1
2 2 2

Its eigenvalues are found to be 6,2,2,2,0,0,0,0,0, i.e., there
is no negative one. For 7—0 the solutions go as (—7)7 7
with p=2,1,1,1,0,0,0,0,0, respectively. Our study of the
linearized equations of motion, therefore, seems to indi-
cate that there are no caustics in the vicinity of this tra-
jectory. However, our numerical analysis described in I
has told us that, in the k=0 subspace, this ray is the in-
tersection of infinitely many caustic cones. This could
not be seen by studying the linearized equations of
motion but only by numerically following the caustic sur-
faces. A similar situation might also hold for the k#0
directions. Either further computer studies or more ad-
vanced analytic methods are needed to find a reliable
answer.

It may be of interest to note that, at least initially, this
trajectory (2.11) coincides with the instanton solution.'?
In the 4,=0 gauge the instanton has the form'?
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A, =U""A+3,)U (3.41)
with
_A_k=—2'?+‘_'13\7(xOUk +Ekm1xm0'1) ’ (3.42)
x
Zo=i—%§ , (3.43)
x
U=T exp -—J”dt'zo(x,t’)]
=cos¢+i[|’TTsin¢ , (3.44)
|x| Vx2+A2
=13 __ Ré S 3.45
¢ Y osary arctan _p ( )
Fort— —
2
k=—23’tk3 o +0(t7%), (3.46)

i.e., A, is proportional to the parent trajectory (2.11).
This explains why one would not expect to see caustics
when linearizing the equations of motion around the in-
stanton solution, and the calculation of Gaussian fluctua-
tions around the instanton in the path integral does not
lead to any difficulties. It follows, however, from what
we have said before that in fact the situation may be
much more complicated and the linear approximation is
insufficient to extract the correct structure near the in-
stanton paths.

IV. HIGHER-ORDER CORRECTIONS

So far our discussion has been restricted to the linear
approximation of the equations of motion around the two
parent trajectories (2.10) and (2.11). In this section we
discuss a few effects of the nonlinear terms in (2.15)
[denoted by O (X?)] around the trajectory (2.10). Of par-
ticular interest are the oscillating solutions. One of the
peculiar features that we encountered in the linear ap-
proximation was the fact that the frequencies were the
same for all momenta k. Will this degeneracy be lifted
once we include higher-order corrections? For simplicity
we will again restrict ourselves to the case k=(0,0,k). In
this case we can make use of the analytic solutions found
in Sec. III. Furthermore we have, in addition to the
gauge symmetry, also symmetry of spatial rotations
around the direction of k vector, i.e., in the 1-2 plane.

To simplify calculations, it is convenient to use the fol-
lowing 3 X 3 matrix notation:

Xk:(xk‘l(t),xk’z(t),xky3(t)) . (4-1)

In this notation our parent trajectory (2.10) has the form

100
Y(t)=: 010 (4.2)
00O
The oscillating solutions found in the previous section
have the structure
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X, =constXV —7K, (—7) [0 —1 0

or

010
X, =constXV —7K, (—7)[1 0 0
000

Since the latter form can always be diagonalized through
gauge rotations or spatial rotations, it is sufficient to con-
sider only the first case. A closer inspection of the poten-
tial function (2.9) shows that the following ansatz leads to
a closed system of equations of motion

(4.4)

100 1 0 O
X =fi()|0 1 O|+ge ()0 —1 O (4.5)
000 0O 0 O
The equations of motion are
d K =3 ffute— Saugifi,, @0
5 " |[JkT kJrkJk,” 2 8k 8k, Jk, > :
dt? 4 k] 17 %7 K i) 19%27 %3
d* k?
PO %gklgkzgkl_ l%fklszgk3 . 4.7

Here the summation includes momentum conservation
k,+k,+k;+k=0. [As a side remark we note that these
equations represent the equations of motion of the lattice

1.0

0.5

-0.5 Y S Y
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version of the Lagrangian of a two-component (Euclide-
an) field theory in 1+ 1 dimensions

L =13, +1m%3,4,)* +L(d1—9¢,) 4.8)
with m?=1]
The equations of motion (4.6) are solved by the ansatz

V2

fo=— +f'+ 0, 4.9)
g =€k2V—7K, (—7)+gP+ -+ (k#0),  (4.10)
[ =f24 - (k#0), (4.11)
go=g¢ + ", 4.12)

where the superscript indicates the order of smallness €.
By inserting this ansatz into (4.6) and (4.7) we obtain in-
homogeneous equations for f}?, gi>, etc. They can be
solved, since we have analytic solutions of the corre-
sponding homogeneous equations and thus can construct
Green’s functions with the correct asymptotic behavior.
Rather than describing these calculations in detail, we
only discuss a simplified model which contains the essen-
tial features. It consists of the two equations

d2 — £3 2

dth f ng ) (4.13)
d?  k?

pPriall Lk S 4.14)

With

| IR e | P S| N |

10-? 100 10°

102 103 104 10°

FIG. 1. Behavior of the function g vs f in the two-component model for different initial values. Upper-right corner: Enlargement
showing the shift of intersection points and the formation of caustics.
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V2

f(O)z(—_‘t—)' , (4.15)
gV=2evV'—7K, (— 1), (4.16)
we have the equations for %’ and g¥
d2
?_3f(0)2 f(2)=_2f(0)g(1)2 , (4‘17)
d? k?
i _4__f(o>2 g =3g(13_ 200 £ (1)

(4.18)

With the Green’s functions which are given in the Ap-
pendix we first find f?) as an integral involving powers of
t and Bessel functions. Inserting this into the right-hand
side of (4.18), we obtain an expression for g3’ which in-
volves single and double integrals over Bessel functions
and powers of t. Since we are mainly interested in the
asymptotic behavior for 7—0, we only present the lead-
ing behavior for small 7

2
f(2>z%(—r/2)2(Ao+ A,cos®+B,sin®) , (4.19)
3
g(3)=—;7\/—f[cocos®+€,sin<l>
+(—1)(A5c083®+ B,sin3d)],  (4.20)

where the constants A4,B,C are explained in the Appen-

g 1.5 r
j
1.0 ;
l)"
0.5 F ;

dix and

d=pln |— < |—¢, . 4.21)

N

We have also studied the behavior of the set of equa-
tions (4.13) and (4.14) numerically. Figure 1 shows g
versus f for a range of €’s, where the asymptotic form of
g'" [Eq. (4.16)] has been used to parametrize the starting
values. Let us start with infinitesimally small values of e.
Initially, i.e., for 7— — c or f close to zero, g grows ex-
ponentially and then turns into a decaying oscillation
around the parent trajectory ‘.. Each intersection be-
tween f and g defines a focal point. From Egs. (4.15) for
f© and (3.31) for the limiting behavior of the modified
Bessel function K, as 7 tends to zero, one immediately
obtains the time and the value of f at the nth intersection
point of g and f to lowest order in €

(—n+Lr+
(—7,/2)=exp —_2____¢ ,
¢ (4.22)
3 .
Flo)=-Y2
—27,

This implies that the ratio of the values of f at two con-
secutive intersection points is constant to lowest order in
€ (cf. Fig. 1).

When € increases, each intersection point shifts to
larger values of f. This leads to the formation of caus-
tics, namely, the envelope of the trajectories to the right

-0.5 N | Lol

1l | Loau ol Lol

10-1 10° 10!

102 103 104 10%

FIG. 2. The function g vs f for two initial values: Small € (solid line) and e close to €., (dashed line).
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of the focal point. This situation is illustrated in the
upper-right corner of Fig. 1. To obtain this shift §, f
analytically one has to compute to order €2. Using the
asymptotic form of the higher-order corrections (4.19)
and (4.20) (which we interpret as the first terms in a
Fourier expansion with time-dependent coefficients 4,,
B,, C,, and argument ¢) we obtain

62

S == )

4.23
T,/2) ( )

[C,+0((—71,)9)] .

The numerical result for the coefficient in the brackets is
in good agreement with the analytic value for C, given in
Eq. (A25) since the O(( —7,)?) corrections vanish rapidly
as n gets large. With further increasing € the amplitude
of oscillation grows until for some €, the trajectory
asymptotically approaches a line g =af +b with slope
a =v'2/5. For even larger values of € the curve finally
turns over, and f stars oscillating around the g axis.

In Fig. 2 we compare a trajectory with a moderate
starting value (drawn curve) to one with € close to €
(dashed curve). It can be seen that the intersection points
of the latter are shifted to rather large values of f and
that the first of them lies even beyond the second inter-
section point of the trajectory with smaller €. Hence, the
larger the initial amplitude the smaller is the number of
oscillations to the left of any value of f. In this sense the
frequency of the oscillations depends on the initial ampli-
tude.

Returning to the full set of equations (4.6) and (4.7), we
shall not present here those results which are the analogs
of (4.19) and (4.20). They are obtained by exactly the
same methods, and they are of the same form as (4.19)
and (4.20). As to the zeros of the g, we again find a shift
(in £ or in time), but this shift now depends upon all
the amplitudes e(k). In addition, there is no new feature
which was not present in the simple two-component
model: the zeros of the g;’s are no longer intersection
points of our parent trajectory (2.10) [or (4.2)] and the
daughters (which are described by the set {f},g,|k#0}).
This is because to order €%, the f,’s are no longer zero,
and they do not vanish at or near a zero of g{!". In order
to have an intersection point, we have to slightly shift the
parent trajectory, namely, to give it small (of order €*)
components f;. This seems very natural. When e(k) in-
creases, the intersection point moves away from the origi-
nal parent trajectory, indicating that the caustic extends
away from the focal point on the parent trajectory (2.10).

Our analytical calculations (perturbation theory) do
not allow us to go very far away from the parent trajecto-
ry (2.10), but the computer analysis (Fig. 2) shows the be-
ginning of a very interesting structure. Once the frequen-
cies of oscillating modes start to depend upon the ampli-
tudes, resonance between different modes become possi-
ble (i.e., there exist oscillating solutions for which the fre-
quencies of different k modes are multiples of each other).
Studies of nonlinear periodic motion show, quite in gen-
eral, that in the vicinity of resonances one often en-
counters a rich structure of secondary resonances. Such
“oscillations around oscillations” then will generate new
focal points and caustics, making the cobweb of caustics
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denser and denser. In a future paper we shall investigate
this resonance structure using somewhat different
methods.

Having seen that higher-order corrections to the oscil-
lating modes show the onset of a very promising struc-
ture, we have also to look into the other directions in the
vicinity of the parent trajectory [cases (3) and (4) of Sec.
III]. The latter one involves solutions which for small 7
diverge away from the parent trajectory and, within our
perturbative treatment, they are not promising candi-
dates. The former case, however, leads to solutions
which have the same small-7 behavior as our parent tra-
jectory and thus have to be studied. First we use again

perturbation theory and we make the ansatz
Xk:X%l(l)+XL2)_+_... i (4.24)

In our matrix notion (4.1) the lowest-order terms is (in
the limit 7—0)

_I'C:(Z)
0 0 —_———
V2
l-c(l)
Xw=—-|o o -——% (4.25)
C;(l) C;(Z) 0

with arbitrary complex constants C'" and C'?. Rather
than now presenting details of calculations of higher-
order corrections (the method is the same as before), we
only briefly describe the results. Up to the order n=5 we
have verified that X' vanishes for odd n, whereas for
even n it has the form

W o
XP=—= |y sw o (4.26)
0 0 S

(the f}j”) are homogeneous polynomials in C{}’ and C3 of
degree n; different values of momentum k are now cou-
pled together). In particular, it follows from this result
(4.26) that there is no resonance; i.e., there is no change
in the power of 7, and the parent trajectory (2.10) does
not change significantly.

It is useful to derive this result in a different way. One
notices that by disregarding in the differential equations
(3.1) the first two terms A4 and B one has eliminated the
dependence upon momentum k, i.e., all spatial deriva-
tives. Thus, in this approximation, the equations of
motion are local and can be solved separately for each
site 1. Returning to (2.9) and undoing the Fourier trans-
formation (2.8), and using a 3 X3 matrix notation analo-
gous to (4.1), the equations that we want to solve take the
form

dZ

;t—z—x, =[X,tr(X{X)— X, XX,]

(4.27)
(for each site 1). These equations have two kinds of O(3)
symmetry: global gauge symmetry (matrix multiplication
from the left) and rotations in ordinary space (matrix
multiplication from the right). We are looking for solu-
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tions of the form
—\/5 _\/_i my, m; my

— (4.28)
—t -t

my my my|,

mi mjz mgy

where the m,; are constants, and we have suppressed the

subscript 1. The matrix M then satisfies

0=M—Mtr(M™M)—MM™™ |, (4.29)

and it should be a generalization of our previous parent
trajectory (2.10)

1 00
010
000

Ay= (4.30)

Because of the O(3)XO(3) symmetry, any matrix M
which has the same form

M =R, A4,R, 4.31)

is a solution of (4.27) [where R; and Ry are O(3)
matrices]. ~ Writing R; =R;,R;3R;,, and Ry
=Rpg1Rg13RR, (With R;; denoting a rotation in the i-j
plane), we see that (4.31) generates a five-parameter fami-
ly of solutions. On the other hand, this is already the
most general solution of (4.27) that we can have. Multi-
ply (4.29) by M T from the left and set B=M M

0=B[B—1(1-TrB)] . (4.32)

Then either detB=0, or the square brackets has to van-
ish. The latter case means that B =11 which is too far
away from (4.30). Therefore, detB=0, and also detM =0,
from which it follows that the column vectors of M are
linearly dependent and lie in a plane. Hence it is possible,
by successive O(3) matrix multiplications from the left or
from the right, to cast M into the form

a B 0
M—M=|y 8 0 (4.33)
0 00
Equation (4.29) with M —M then implies that

a=8=cosf, B= —y =sinf with some 6.

This result then means that in the vicinity of our
parent trajectory (4.2) there exists, for each site 1, a five-
parameter set of solutions which are either gauge or
space rotations of (4.2). Since these parameters can be
chosen independently for each 1, these configurations can
have a rather arbitrary 1 dependence. The counting of
parameters matches with our discussion in k space [cf.
the discussion after (4.25)]. For each k we had started
with a two-parameter set of solutions. However, solu-
tions which go like 1/7 can also be simply gauge images
of our parent trajectory [(3.37)-(3.39)]. This gives us
three more parameters and, again, adds up to five. By
this we have a complete picture of the neighborhood of
our parent trajectory (4.2), going in the direction of either
gauge transformations or of the lines 3,8 or 6,7 in our
nine-component vector X.
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Finally let us give the parent trajectory (2.10) a small
component of the form (4.25) and ask, whether the oscil-
lating neighboring trajectories still have the same behav-
ior as in (3.11). The answer follows immediately from our
previous observation. All trajectories of the form (4.28)
are obtained from (2.10) either by a spatial rotation or by
a gauge transformation, and both of them leave leading-
(1—0) behavior invariant. This is because they do not
change the eigenvalues of C, which are responsible for
the oscillating behavior. We, therefore, conclude that the
structure of oscillations will not be changed, if our parent
trajectory moves into the direction of (4.25). This im-
plies, in particular, that there are many more trajectories
which are surrounded by oscillating neighbors. Which
one finally will be the most important one, cannot be de-
cided yet.

V. DISCUSSIONS

In this paper we have continued our semiclassical
analysis of the weak-coupling limit of SU(2) Yang-Mills
theories. Our main attention was devoted to the search
for caustics: We have collected further evidence that in
Yang-Mills theories there exists a dense ‘“‘cobweb” of
caustics which begins already in the region of very small
fields. This gives further support to our expectation that
caustics play an important role in the dynamics of these
theories.

The source of these caustics are oscillations of classical
trajectories around each other. For a particularly simple
example of a “parent” trajectory we have studied, first in
the linear approximation, how neighboring “daughter”
trajectories oscillate around it. Each intersection be-
tween neighboring trajectories produces a focal point,
which gives rise to strong quantum fluctuations and,
hence, to an enhancement in the ground-state wave func-
tion. Higher-order corrections to the linear approxima-
tion indicate the onset of a rich resonance structure
which makes the cobweb of caustics even more dense.
This indicates that the density of caustics may eventually
become so high that the enhancement resulting from the
quantum fluctuations can compete with the exponential
fall off of the action integral in the semiclassical wave
function. Our calculations have also shown that there
are many more (potentially even more important)
“parent” trajectories which are also surrounded by oscil-
lating neighbors.

This seems to suggest a new quantum-mechanical
mechanism which is completely different from previous
attempts of analyzing quantum field theories in the semi-
classical approximation. Rather than studying single
field configurations with finite action (e.g., instantons) in
a dilute-gas approximation it may be more appropriate to
search for regions in the space of field configurations
where classical solutions stay close to each other for long
times, intersect with each other, and thus produce strong
quantum fluctuations. These regions may be more
significant than the isolated field configurations which
have been studied previously. Our analysis shows that
such regions exist in Yang-Mills theories.

It then becomes mandatory to investigate the structure
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of these “condensates” of classical solutions, in particular
to search for some “simple” pattern. The oscillations
which we have encountered in our analysis are, in our
opinion, promising candidates where such an investiga-
tion could start, and we will do this as the next step of
our program. In order to study these oscillations beyond
the linear approximation which we have used in this pa-
per we have to somewhat generalize our framework. So
far our parent trajectory was restricted to have strictly
zero energy. As a result, it takes infinite time to leave the
origin and to reach the end point. If, on the other hand,
we allow for a small negative energy, this trajectory will
start to swing very slowly between its previous starting
and end points, while its neighbors are oscillating around
it. As we explained before, we then expect.resonances be-
tween these oscillating modes, which will generate more
caustics and thus further enhance the significance of
these classical solutions. In analyzing this pattern of os-
cillations the observations made in Ref. 14 may be help-
ful. There it has been shown that certain solutions to the
equations of motion of a classical (lattice) field theory fol-
low very much the behavior predicted by the
renormalization-group equations of the quantum field
theory.

We have outlined in the Introduction how the struc-
ture of oscillations in the flow of classical solutions may
propagate into the quantum system, namely through the
caustics which generate a g>-dependent peaking structure
in the ground-state wave function. If our picture is
correct, we predict that a similar g2 dependence will also
appear when one calculates expectation values of observ-
ables. In this way the small-g? behavior of physical quan-
tities is closely connected with the structure of classical
solutions.
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APPENDIX: HIGHER-ORDER PERTURBATION
THEORY

In this appendix we give a few details of the higher-
order calculations of the two-component model of Sec.
IV. The equations of motion we want to solve are

d2
:Ff=f3—2fg2, (A1)
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——— g =3g"— . A2
We make the ansatz
f=(—v_%)~+f‘”+--- ; (A3)
g =26V —7K, (—7)+gP+ - | (A4)

Inserting this ansatz into Eq. (A1) we first obtain an inho-
mogeneous equation for f?

d_zz_3f(0)2 fP=_pfOgm2 (AS)
dt
With the Green’s function
1372 1<t'<0
G(t,t')= (A6)

1372 <t <0

the solution is found to be
13 po _
F )= ?f_ di't’ 2[—2f(°)(t')g‘”2(7’)]

-2
e [ldre =2 g V] (A

with 7'=kt'/2. The Green’s functions has been chosen
such that for both — — w0 and t—0, f? goes to zero.
For t — — « the second term in (A7) dominates and goes
as ¢t 72, whereas for t —0 both terms are of the same or-
der and behave as

2

f‘”z-i- — T | (A4y+ A,c082® + B,sin2d)  (A8)
with

A0=%16z0.842 , (A9)

A2=—‘%%~o.zol , (A10)

BZ:—%\/ig:—o.ms , (A11)

®=0ln —% — by - (A12)

Next we consider the inhomogeneous equation for g‘*’

dZ

dtz g(3)=3g(1)3_2f(0)f(2)g(1) X

k2 on
read

(A13)

The Green’s function is given by
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, 0, 7<7<0,
G(r,7)= (P (7)) =1y (Phuy () (A14)
, T<1<0,
w
where 7=kt /2, v=i0=iV'7/2, and
u(1)=Re zwexp—\/ TH\V(—ir) |=2V —7K, (—7), (A15)
_ i7T’V — (2) . . —
u,(r)=Re vexp——z—\/- HY(—ir) |=27V —7Rel, (—7) (A16)
W=uju,—uju,=—4mr. (A17)

With this Green’s function g*’ goes as e /(

—7)? for —7— 0, whereas for small 7 the leading behavior is found to be

gl ~—\/ T{[Co+O0((—7)2)]cos®+[C, +0((—7)?)]sin®+( —7)3( 4 ,cos3® + B,sin3d)) (A18)
with
c0=32pf0°°dz [322Re1( )K3(z)— 3z ?Rel (2)K fdz'z'31<2( - _2Kf,(z)fozdz’z’3ReIV(z’)KV(z’) , (A19)
C =—._ dz |3 2K4 16, —2K2 Zd ’ I3K2 ’
1 f z |3z°K (z2)— & )fo 2’z °K(z") (A20)
20,2 2 2
30 e R Ki(v"—1)vp . o | 14247 vi(1—+2)
= ';p‘ dZ[3ZK (z) :—(51 fﬁ‘KVKV V—1—7 +K7 7 + ) +—‘-22—
~—0.40 , (A21)
16p° =
4 =—a/)°—\/7[+6(—g+,_1;_)+%(3_0 2)]=—0.00572 , (A22)
3
By= [ 3)+ 4 (— 1= %)]=0.0160 (A23)
From (A3), (A8), and (A4), (A18) we compute the shift of the nth zero of g (1)
2
=€ 3
S5f k(_T”/2)[C2+O(( 7,71 (A24)
with
)
c,=—21c, ~0.1% . (A25)
8wp

The coefficient C, is positive; i.e., the zeros move towards larger values of f as € increases.
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